实数第二课时2.doc
八年级数学上册第二章实数第二节平方根第2课时平方根教案北师大版(2021-2022学年)

1.了解平方根的概念、开平方的概念,进一步明确平方与开方互为逆运算.2.会求一个数的平方根,明确算术平方根与平方根的区别与联系。
1。
了解平方根、开平方的概念,会利用互逆运算关系求某些非负数的算术平上节课我们学习了算术平方根的概念、性质若一个正数x的平方等于a,即x2=a。
则x叫a的算术平方a根,记作x=,而且a也是非负数,比如正数22=4,则2叫4的算术平方根,4叫2的平方,但是(—2)2=4,则—2叫4的什么根呢?下面我们就来讨论这个问题.(1)9的算术平方根是3,也就是说,3的平方是9,还有其他的数,它的平方也是9吗?(2)平方等于4/25的数有几个?平方等于0.64的数呢?一般地,如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根(square root),也叫二次方根,3和-3的平方都等于9,由定义可知3和—3都是9的平方根,即9的平方根有两个3和—3,9的算术平方根只有一个是3.由平方根和算术平方根的定义,大家能否找出它们有什么相同和不同之处呢?【归纳结论】联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.(2)存在条件相同:平方根和算术平方根都是只有非负数才有。
(3)0的平方根、算术平方根都是0。
区别:(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根"。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
(3)表示法不同:正数a的平方根表示为±,正数a的算术平方根表示为。
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
什么叫开平方呢?我们共学了几种运算?这几种运算之间有怎样的联系?2。
平方根的性质请大家思考下面的问题:(1)一个正数有几个平方根?(2)0有几个平方根?(3)负数呢?ﻬ作业布置1.习题2.4第1、2、3、4题.2.完成本课时练习部分.板书ﻬa a。
2023八年级数学上册第二章实数2平方根第2课时平方根教案(新版)北师大版

3.信息化资源:教学课件、动画演示、数学视频讲解、在线习题库。
4.教学手段:讲解、示范、引导、讨论、小组合作、练习、反馈。
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:通过在线平台或班级微信群,发布预习资料(如PPT、视频、文档等),明确预习目标和要求。
学生活动:
-听讲并思考:认真听讲,积极思考老师提出的问题。
-参与课堂活动:积极参与小组讨论、实际计算练习等活动,体验平方根的运算。
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
教学方法/手段/资源:
-讲授法:通过详细讲解,帮助学生理解平方根的概念和性质。
-实践活动法:设计实践活动,让学生在实践中掌握平方根的运算。
-提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:引导学生自主思考,培养自主学习能力。
-信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
-预习资料:PPT、视频、文档等。
作用与目的:
-帮助学生提前了解平方根的概念和性质,为课堂学习做好准备。
本节课的教学目标包括:理解平方根的概念,掌握平方根的性质,能够熟练运用平方根进行计算。在教学过程中,需要注意引导学生通过观察、思考、探究来理解平方根的概念和性质,培养学生的逻辑思维能力和运算能力。同时,结合学生的实际情况,适当增加一些与生活实际相关的例题,提高学生的学习兴趣和积极性。
核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理、数学建模等核心素养。通过平方根的概念探究,使学生能够抽象出平方根的定义,理解平方根的本质特征,提升数学抽象能力;通过平方根性质的探究,让学生学会运用逻辑推理的方法,得出平方根的性质,提高逻辑推理能力;同时,通过平方根运算的练习,让学生能够运用平方根解决实际问题,培养数学建模的核心素养。
八年级数学上册 .2 实数教案2 华东师大版

11.2 实数三维教学目标知识与技能:1、了解有理数的相反数、绝对值等概念、运算法则、运算律在实数范围内仍然适用。
2、能对实数进行大小比较和四则混合运算。
过程与方法:1、有理数中的相反数、倒数和绝对值等概念与运算法则和运算律在实数范围内仍成立,让学生体会到这是一种知识的迁移.2、体会用取近似值、平方法进行实数大小的比较和运算的经验.情感态度与价值观:认识到数的扩充、无理数与实数概念的引入、知识的迁移是客观实际的需要,也是数学自身发展的需要。
教学重点:实数的性质、实数的大小比较及运算教学难点:实数的大小比较课堂导入1、无理数与实数的概念?实数分类的方法?2、我们以前学过的运算法则、运算律、大小比较的方法等在有理数的范围适用,那么在实数的范围内适用吗?教学过程一、复习回顾(1)用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律。
(2)用字母表示有理数的加法交换律和结合律。
(3)平方差公式?完全平方公式?(4)有理数的相反数是什么?不为0的数的倒数是什么?有理数的绝对值等于什么?二、探究归纳=_____1、填空32与____互为相反数,5与_____互为倒数,332、概括从有理数扩充到实数后,正数总可以开方.在实数范围内,任意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
任意一个实数有且仅有一个立方根。
在实数范围内,有关有理数的相反数、倒数和绝对值等概念、大小比较、运算法则及运算律仍然适用。
三、举例应用例1试估计3+2与π的大小关系。
解用计算器求得3+2≈3.14626437, 而 π≈3.141592654, 因此 3+2>π。
例2 计算:2612π--(精确到0。
01) 解 247.1414.1167.0261-=-≈- 于是247.1261≈- 32.0324.0247.1571.12612π≈=-≈-- 四、课堂练习1、比较下列各对数的大小:(1)332与(2)53533++π与 2、计算:(1)()()2323+-; (2)218-. 3、借助计算器计算下列各题:(1)211-; (2)22111 1-;(3)222111 111-; (4)222 2111 111 11- 。
初中数学北师大版八年级上册第二章实数第2节平方根(二).2平方根(二)

区别:
1.个数不同:一个正数有两个平方根,但只有一个算术平方根.
2.表示法不同:平方根表示为 ,而算术平方根表示为
出示例1,探索求平方根的方法,教师示范(1),两名学生板演(2)(3),关注学困生的表现,适时进行点拨引导评价。
口算练习,指定学生抢答。引导学生发现并归纳不同类型的数平方根的特点。
板书课题
检查自学情况,展示相关问题的答案。板书平方根的概念、符号表示。引导学生对平方根的概念深度剖析。
分析开平方运算和平方运算的互逆关系
问题引发学生思考,产生探究学习的兴趣.
自学教科书相关内容,独立解决并口答问题1-3。列举事例理解概念,
配合教师检查,对照
完善答案。
复习平方运算的知识,提出问题,为本节课的学习做好知识的预备,并让学生体会知识之间的联系。
出示例2,求各式的值,指导学生先明确各式子的意义再计算,对学生的回答进行点拨评价。
引导学生展开讨论,从区别和联系两方面归纳总结。教师对学生的结论适时点评鼓励。
通过对例1的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.
熟练口算,归纳平方根的性质
口答各式子的意义及计算结果,初步感受平方根与算术平方根的区别与联系。
形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并明白它们之间的互逆关系.
教学环节
教师活动
预设学生行为
设计意图
三、例题示范,应用新知
例1.求下列各数的平方根:
(1)81;(2) ;(3)0.49;
练习:口答下列各数的平方根:
教学环节
八年级数学教案:实数(全2课时)

在研究边长为1的正方形的对角线的长是多少的问题中,我们发现了 ,说说你对 的认识.
实践探索一
利用计算器探究 是怎样的数.在充分的探索中感受逼近思想,得出结论: 是无限不循环小数,是无理数.引导学生经历“有理数——实数”的又一次数的扩充,并且从中不断积累数学活动的经验.
总结无理数和实数的概念,并对实数进行分类
课外作业:
板书Hale Waihona Puke 计教后札记教学课题
4.3 实数(2)
教学目标
1.了解有理数的运算在实数范围内仍然适用;
2.能用有理数估计一个无理数的大致范围;
3.能利用计算器比较实数的大小,进行实数的四则运算;
.通过用不同的方法比较两个无理数的大小,理解估算的意义、发展数感和估算能力,在运用实数运算解决实际问题的过程中,增强应用意识,提高解决问题的能力,体会数学的应用价值.
课时NO:主备人:审核人用案时间:年月日星期
教学课题
4.3 实数(1)
教学目标
1.了解无理数和实数的概念,会判断一个数是有理数还是无理数;
2.知道实数和数轴上的点一一对应;
3.经历用计算器估算 的探索过程,从中感受“逼近”的数学思想,发展数感,激发学生的探索创新精神;
4.通过用不同的方法比较两个无理数的大小,理解估算的意义,发展数感和估算能力.
分析:两个负数比较大小,先比较其绝对值,大的反而小.要比较- 与- 的大小,应先比较 与 ,这时需用计算器显示出结果.
例题2 用计算器计算.
(1) +π;
(2)3× - ;
(3) +3-( + ).
依次按照书上显示按键顺序操作完成.
四.课堂练习:
完成课本P105练习1、2、3.
人教版七年级下册数学实数第2课时实数与数轴的关系及实数的运算 同步练习

6.3 实数第2课时实数与数轴的关系及实数的运算基础训练知识点1 实数与数轴上的点的关系1.和数轴上的点一一对应的数是( )A.整数B.有理数C.无理数D.实数2.若实数a,b在数轴上的位置如图所示,则下列判断错误的是( )A.a<0B.ab<0C.a<bD.a,b互为倒数3.实数a,b在数轴上对应的点的位置如图所示,计算|a-b|的结果为( )A.a+bB.a-bC.b-aD.-a-b4.在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是错误!未找到引用源。
和-1,则点C所对应的实数是( )A.1+错误!未找到引用源。
B.2+错误!未找到引用源。
C.2错误!未找到引用源。
-1D.2错误!未找到引用源。
+15.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动1周,点A 到达点A'的位置,则点A'表示的数是( )A.π-1B.-π-1C.-π+1D.π-1或-π-1知识点2 实数的大小比较6.下列四个数中,最大的一个数是( )A.2B.错误!未找到引用源。
C.0D.-27.(2016·泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是( )A.pB.qC.mD.n8.若a,b为实数,下列说法中正确的是( )A.若a>b,则a2>b2B.若a>|b|,则a2>b2C.若|a|>b,则a2>b2D.若a>0,a>b,则a2>b2知识点3 实数的运算9.有一个数值转换器,原理如图所示.当输入的x为-512时,输出的y是( )A.-2B.-错误!未找到引用源。
C.-3错误!未找到引用源。
D.-3错误!未找到引用源。
10.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是( )A.a·b>0B.a+b<0C.|a|<|b|D.a-b>011.实数a,b在数轴上对应的点的位置如图,则必有( )A.错误!未找到引用源。
4.3《实数(2)》参考教案

例一让学生 理解实数的绝对 值和相反数概 念, 例二使学生 掌握计算器的使 用以及实数的运 算。
(1) 5 ; (2) 3 2 - 3 2 ;
3 (3) 5 3( - 3 5 5) .
归 纳 新 知
让学生自己独立解决,然后进行检查,找出问题,加 深理解和应用。
1.判断正误,若不对,请说明理由,并加以改正。 (1)无理数都是无限小数。 学 以 致 用 (2)带根号的数不一定是无理数。 (3)无限小数都是无理数。 (4)数轴上的点表示有理数。 (5)不带根号的数一定是有理数。 2.计算: (1) 4 2 6 2 ; 巩 固 提 高 课堂 小结 1.本节课你有哪些收获? 2.你还有什么问题或想法需要和大家交流? 引导学生从内容上、方法上、情感上小结。 整体 感知 作业布置:P105 习题 4.3 第 3 题。 1.比较下列各组数的大小。 (1)3 2 与 2 3 2.课本第 104 页练习 (2) 2 与 第 1、2、3 题 1 2 (2) 3( 3 2) ;
能展示学生 对所学知识的思 考过程,全班纠 错,小组互相监 督,培养学生良 好的学习习惯。
让学生按这 一模式进行小 结,培养学生学 习——总结—— 学习——反思的 良好习惯。
2/2
4.3 实数(2)
学 目 习 标 1.掌握实数的相反数和绝对值; 2.掌握实数的运算律和运算性质。 1.会求实数的相反数和绝对值; 重 点 2.会进行实数的加减法运算; 3.会进行实数的近似计算。 难 点 认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。 教 教学环节 创 设 情 境 教 学 学 过 活 程 动 设 计 意 图
复习引入:有理数的一些概念和运算性质运算律: 1.相反数:有理数 a 的相反数是 a 。 2.绝对值:当 a ≥0 时, a a ,当 a ≤0 时, a a 。 3.倒数: 4.有理数的大小比较: 5.运算律和运算性质: 有理数之间可以进行加、 减、 乘、 除 (除 数不为 0) 、乘方、非负数的开平方、任意数的开立方运算, 有理数的运算中还有交换律、结合律、分配律。 出示自学提纲: 给学生 充足的时间 和空间,理解 和感知无理 让学生 复习有理数 的一些概念 和运算性质、 运算律。
第2讲 实数

师航教育一对一个性化辅导讲义第2讲 实数【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.重难点;数是中学数学重要的基础知识,中考中多以选择题、填空题的形式出现,实数的运算主要是由二次根式、三角函数、幂等组成的混合算式的计算,常以计算或化简题型出现.另外,命题者也会利用分析归纳总结规律等题型考查考生发现问题、解决问题的能力第2讲实数考点一 实数的分类 有理数和无理数统称为实数. 1.实数的分类按定义分: 按与0的大小关系分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数 实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2)无理数分成三类:①开方开不尽的数,如5,32等;②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应. 3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(3)任何非负数的算术平方根是非负数,即0a ≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算:(1)运算法则、运算律有理数的运算法则与运算律对实数仍然适用.值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)运算顺序在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行. 5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小; 法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 考点二 平方根、算术平方根、立方根 1、平方根、立方根类型项目平方根 立方根被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==2.算术平方根(1)如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作a .零的算术平方根是零,即0=0.(2)算术平方根都是非负数,即a ≥0(a ≥0). (3)(a )2=a (a ≥0),a 2=|a |.(4)ab =a ·b (a ≥0,b ≥0);a b =ab(a ≥0,b >0).【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.2实数
第 2 课时
知识与技能目标
1.了解有理数的相反数和绝对值等概念、运算法则以及混合运算顺序和运算律在实数范围内仍然适
用.
2.能利用运算法则进行简单的四则运算.
过程与方法目标
体会有理数的相反数和绝对值等概念、运算法则以及运算律在实数范围内仍然适用.
情感与态度目标
通过学习消除对无理数的陌生感,对实数形成初步的较完整地认识.
教学过程
一、复习旧知,导入新知
1.复习提问
(1)用字母来表示有理数的乘法交换律、乘法结合律和乘法分配律.
(2)用字母表示有理数的加法交换律和结合律.
(3)有理数 a 的相反数是什么 ?不为 0 的数 a 的倒数是什么 ?有理数 a 的绝对值等于什么 ?
(4)有理数的混合运算顺序是怎样规定的?
2.新知提问
我们数学王国里面又有了一个新成员--- 无理数,那么有关有理数的相反数、倒数和绝对值等概念、
大小比较,运算法则及运算律对于无理数(实数)还适用吗?
二、新知认识
(一)相关概念
因为无理数同有理数一样都可以对应到数轴上一个唯一点来表示这个数,因此,无理数同有理数一样
有相反数、倒数和绝对值等概念,意义也一样,只是形式不同而已. 也就是说在实数范围内,有关有理数
的相反数、倒数和绝对值等概念仍然适用.
1.相反数:实数 a 的相反数是- a, 0 的相反数是 0,具体地,若 a 与 b 互为相反数,则 a+ b= 0;反之,若a+ b=0,则 a 与 b 互为相反数 .
举例:求2, 3 2 的相反数.
2.绝对值:一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0 的绝对值是0.
a a 0 ,
实数 a 的绝对值可表示为 a 就是说实数 a 的绝对值一定是一个非负数,即a ≥0.
a a0 .
举例:求2, 3 2 的绝对值.
另外 ,若x= a(a≥ 0),则 x=± a.
举例:x = 5 ,求x
3.倒数:乘积为 1 的两个实数互为倒数,即若
互为倒数 .这里应特别注意的是0 没有倒数 .
a 与
b 互为倒数,则ab= 1;反之,若ab= 1,则 a 与b
举例:求 5 的倒数.
(二)大小比较、运算及运算律
因为无理数同有理数一样有相反数、倒数和绝对值等概念,意义也一样,只是形式不同而已
在实数范围内(有无理数参加),有关有理数的大小比较,运算法则及混合运算顺序和运算律仍然适用
三、例题讲解
例 1.计算:π-| 2 3- 3 2|( 结果精确到0.01)
分析:对于实数的运算,通常可以取它们的近似值来进行. 提问:用什么手段取它们的近似值例 2.计算 : . 同样的
. ?
2 ( ( 15)2
3 216) 2
解 :原式 = 2 [15 ( 6)] 2
= 2 21 2
=( 22) 21
=0-21
=-21
例3 比较大小: 4 3和 5 2.
分析: 4 3约等于 6.8 , 5 2约等于 7,所以 4 3小于 5 2.
四、课堂练习
P11 页练习 2、 3
让三位同学板演,教师根据学生的具体解答情况作出正确判断,并分析发生错误的原因.
五、小结
由学生完成如下小结:
1.在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.
2.实数的运算法则 a + b= b+ a (a + b) +c= a+ (b + c)
a× b= b× a (a × b) × c= a× (b × c) (a +b) × c=ac + bc
3、实数的混合运算顺序同有理数的混合运算顺序一样.
六、作业
课堂作业 :
P11 页习题 11.2
家庭作业 :
导学与测评P3-5 11.2 实数与数轴 .
七、板书设计:
11.2.2实数与数轴
复习 :大小比较例题
有关概念和运算
相反数
全品中考网
全品中考网绝对值练习
倒数。