数字滤波器的优化设计

合集下载

IIR数字滤波器的群延时优化设计和实现论文设计

IIR数字滤波器的群延时优化设计和实现论文设计
(2.6)
根据式(2.6)我们可以直接画出直接型结构的信号流图,如图2-1所示:
2.级联型结构
对 滤波器的系统函数进行因式分解,可以将直接型结构转变成多个一阶或二阶子网络构成的级联型网络,即:
(2.7)
数字滤波器级联型结构如图2-2所示。在该结构中,可以方便的通过控制各阶网络来控制零点位置。因此级联型结构适用于需要对系统零点进行控制的系统。由于该结构系统函数的系数较多,使得函数拆项后产生的因子较多,所以需要更多的乘法器。由于阶数较高 滤波器系统函数不易进行拆项,因此在设计高阶滤波器时,一般选择直接型结构。
表2-2IIR低通滤波器特性对比
通过表2-2可以得出,虽然巴特沃斯型滤波器的相位线性度较好,但是所需要的阶数比较高。切比雪夫Ⅰ型滤波器的线性度适中。而采用椭圆型滤波器所需滤波器的阶数最低,具有高度非线性相位,但是其频率选择性好,可以达到较好的滤波效果。
通过对 和 滤波器的比较分析,综合考虑系统频率选择性、设计难以程度等,本文将提出适用于级联型 数字滤波器的群延时优化方案。
Keywords: digital filter; group delay optimization; all-pass network equalizer; filter design;
1
1.1
现代社会早已进入数字化时代,数字信号处理技术突飞猛进,其理论算法以及实现手段均获得了较快的发展,已经成为一门必不可少的学科和技术领域。其主要内容包括对信号进行滤波、转换等一系列加工处理[2]。数字滤波技术作为数字信号处理的关键部分开始引起了人们越来越多的关注与研究。
比较直接Ⅰ型与直接Ⅱ型可知,后者比前者所需结构延时单元少,可以节省更多寄存器,更加经济。
2.级联型结构

数字滤波器的优势和实现方法

数字滤波器的优势和实现方法

数字滤波器的优势和实现方法数字滤波器是一种在数字信号处理中常用的工具,它能够对信号进行滤波和处理,以消除噪声、改善信号质量和提取感兴趣的信息。

本文将讨论数字滤波器的优势以及一些常见的实现方法。

1. 数字滤波器的优势数字滤波器相对于模拟滤波器具有以下几个优势:1.1 精度高:数字滤波器能够提供非常高的滤波精度,能够实现复杂的滤波特性。

相比之下,模拟滤波器受到元器件的限制,在滤波特性的精度上有所不足。

1.2 稳定性好:数字滤波器的性能不会随着时间、温度和其他环境因素的变化而发生明显的变化,能够保持较好的稳定性。

而模拟滤波器受到元器件参数的影响,容易受到环境因素的干扰而导致不稳定。

1.3 灵活性强:数字滤波器的参数可以通过编程进行调整,可以根据实际需求进行设计和修改。

而模拟滤波器的参数通常需要通过更换元器件或调整电路进行修改,不如数字滤波器灵活。

1.4 抗干扰能力强:数字滤波器能够有效抑制噪声的干扰,提高信号的抗干扰能力。

相比之下,模拟滤波器对于噪声干扰的抑制效果较差。

2. 实现方法2.1 FIR滤波器FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,其特点是滤波器的输出只取决于滤波器的输入和滤波器的系数。

FIR滤波器通过调整滤波器的系数来实现不同的滤波特性。

FIR滤波器的输出可以通过以下公式计算:y(n) = h(0)x(n) + h(1)x(n-1) + ... + h(N-1)x(n-N+1)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入,h(i)表示滤波器的系数。

2.2 IIR滤波器IIR(Infinite Impulse Response)滤波器是另一种常见的数字滤波器,其特点是滤波器的输出不仅取决于滤波器的输入和滤波器的系数,还取决于滤波器的历史输出。

IIR滤波器的输出可以通过以下公式计算:y(n) = b(0)x(n) + b(1)x(n-1) + ... + b(M)x(n-M) - a(1)y(n-1) - ... -a(N)y(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入,b(i)和a(i)分别表示前向系数和反馈系数。

数字滤波器的设计与优化方法

数字滤波器的设计与优化方法

数字滤波器的设计与优化方法数字滤波器是一种用于信号处理的重要工具,广泛应用于通信、图像处理、音频处理等领域。

它能够实现对信号的去噪、平滑、提取等功能,可以有效地改善信号的质量和准确性。

在数字滤波器的设计和优化过程中,有多种方法和技巧可以帮助我们获得更好的滤波效果。

一、数字滤波器的基本原理数字滤波器是利用数字信号处理的方法对模拟信号进行滤波处理的一种滤波器。

它可以通过对信号进行采样、量化、数字化等步骤将模拟信号转换为数字信号,并在数字域上进行滤波处理。

数字滤波器通常由滤波器系数和滤波器结构两部分组成。

滤波器系数决定了滤波器的频率响应特性,滤波器结构决定了滤波器的计算复杂度和实现方式。

二、数字滤波器的设计方法1. 滤波器设计的基本流程(1)确定滤波器的性能指标和要求,如截止频率、通带增益、阻带衰减等;(2)选择合适的滤波器类型和结构,如FIR滤波器、IIR滤波器等;(3)设计滤波器的系数,可以通过窗函数法、最小二乘法、频率采样法等方法来实现;(4)验证滤波器的性能指标是否满足要求,可以通过频率响应曲线、时域响应曲线等方式进行。

2. 滤波器设计的常用方法(1)窗函数法:通过在频域上选择合适的窗函数,在时域上将滤波器的频率响应通过傅里叶变换推导出来。

(2)最小二乘法:通过最小化滤波器的输出与期望响应之间的误差,得到最优的滤波器系数。

(3)频率采样法:直接对滤波器的频率响应进行采样,在频域上选取一组离散频率点,并要求滤波器在这些频率点上的响应与期望响应相等。

三、数字滤波器的优化方法数字滤波器的优化方法主要包括滤波器结构的优化和滤波器性能的优化。

1. 滤波器结构的优化滤波器的结构优化是指通过改变滤波器的计算结构和参数,以降低滤波器的计算复杂度和存储需求,提高滤波器的实时性和运行效率。

常见的滤波器结构包括直接型结构、级联型结构、并行型结构等,可以根据具体需求选择合适的结构。

2. 滤波器性能的优化滤波器的性能优化是指通过选择合适的设计方法和参数,以获得更好的滤波效果。

数字滤波器的优化设计

数字滤波器的优化设计

数字滤波器的优化设计浅析201120003025何志会数字滤波器的优化设计浅析摘要当前,在数字信号处理和电子应用技术领域,数字滤波器以其精度高、灵活性好、便于大规模集成等突出优点,占据了至关重要的地位。

按冲击响应持续时间,数字滤波器可分为有限冲击响应(FIR)滤波器和无限冲击响应(IIR)滤波器。

传统的数字滤波器的设计方法有窗函数法、频率采样法和等波动最佳逼近法等。

但是随着时代的发展,应用领域的广泛增加、信号处理要求变高以及计算复杂程度的不断提高,对于数字滤波器软件和硬件的要求也越来越专业、复杂。

因此,数字滤波器的优化设计也显得更加重要。

近年来,国内外对数字滤波器的优化算法进行了较多的研究,提出了很多优化方法和算法,如:人工鱼群算法、粒子群算法、遗传算法、最小P误差法、小波逼近法等。

这些算法大大提高了数字滤波器的应用范围,使结果更加逼近于目标函数。

硬件上,FPGA以其体积小、速度快、重量轻、功耗低、可靠性高、成本低等优点在数字滤波器上得到应用,具有很好的发展前景。

关键词:数字滤波器;优化;算法Optimization design of FIR digital filterAbstractAt present, the digital filter with its high precision, flexibility, ease of large-scale integration and other advantages, occupies a crucial position in the field of digital signal processing and application of technology.According to the duration of the impulse response, digital filter can be divided into finite impulse response (FIR) filters and infinite impulse response (IIR) filter. Traditional methods of digital filter design use window function method, sampling method, frequency fluctuations and the best approximation method. But with the development of the times, a wide range of applications increases, the signal processing requirements of high change and increasing complexity of the calculations for the digital filter software and hardware ,requirements have become more specialized and complex. Therefore, the digital filter design optimization is even more important. In recent years, domestic and international digital filter optimization algorithm for more research, made a lot of optimization methods and algorithms, such as: artificial fish school algorithm, particle swarm optimization, genetic algorithm, the smallest P error method, wavelet approximation method . These algorithms greatly improve the application of digital filters, so that the results more close to the target function. Hardware, FPGA with its small size, fast, light weight, low power consumption, high reliability and low cost have been applied in the digital filter, with good prospects for development.Key words:Digital filter ;Optimization;;algorithm1 研究意义由于数字滤波器审计在实际工程中只能是逼近理想的设计指标,即:主要任务是使滤波器幅频响应与所要求的幅频响应的均方误差最小,因此可以将它看成是一个按某种优化准则求解最优解的优化问题。

FIR数字滤波器的设计--等波纹最佳逼近法

FIR数字滤波器的设计--等波纹最佳逼近法

FIR 数字滤波器的设计--等波纹最佳逼近法一、等波最佳逼近的原理简介等波纹最佳逼近法是一种优化设计法,即最大误差最小化准则,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。

用等波纹最佳逼近法设计的FIR 数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度,这就是等波纹的含义。

最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。

与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。

阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。

等波纹最佳逼近法的设计思想 。

用)(ωd H 表示希望逼近的幅度特性函数,要求设计线性相位FIR 数字滤波器时,)(ωd H 必须满足线性相位约束条件。

用()ωH 表示实际设计的滤波器的幅度特性函数。

定义加权误差函数()ωε为()()()()[]ωωωωεH H W d -=式中,()ωW 为幅度误差加权函数,用来控制不同频带(一般指通带和阻带)的幅度逼近精度。

等波纹最佳逼近法的设计在于找到滤波器的系数向量()n h ,使得在通带和阻带内的最大绝对值幅度误差()ωε为最小,这也就是最大误差最小化问题。

二、等波纹逼近法设计滤波器的步骤和函数介绍1.根据滤波器的设计指标的要求:边界频率,通带最大衰减,阻带最大衰等估计滤波器阶数n ,确定幅度误差加权函数()ωW2.采用Parks-McClellan 算法,获得所设计滤波器的单位脉冲响应()n h实现FIR 数字滤波器的等波纹最佳逼近法的MATLAB 信号处理工具函数为firpm 和firpmord 。

firpm 函数采用数值分析中的多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR 数字滤波器的单位脉冲响应()n h 。

基于MATLAB的FIR数字滤波器的优化设计

基于MATLAB的FIR数字滤波器的优化设计
科技信息
。科教前沿0
SCIENCE&TECHNOLOGY INFORMATION
2008年 第 32期
基于 MATLAB的 FIR数字滤波器的优化设计
陈玲 玲 ’ 张 虹 (1.吉林化 工 学院 吉林 吉 林 132022;2.东 北 电力大 学 吉林 吉 林 132022)
【摘 要】本文主要介 绍 FIR 滤波 器的原 理,在此基础 上利用最 小二 乘法对 FIR 滤 波器进行优化设 计.同时在 MATLAB平台下以生动界 面 、丰 富 内容 、交 互 式人 机 对 话 对优 化后 FIR 滤 波 器进 行 仿 真 ,达 到 了预 期 理 想 滤 波 效 果 .
种方法均不易精确控制通带与阻带边界频率。所 以在实际应用 中有一 和式最小,即希望J (n)一^(n)l_0,D≤n≤Ⅳ_1.在这一条件下,就有e2
定 局 限性 [】J.为此 ,提 出 最 小 二 乘 优 化 设 计 法 ,它 可设 计 任 何 最 优 线 性 相
位 FIR滤 波 器 ,而 且 作 为 一 个 子 程 序 在 许 多 计 算 平 台 上 都 可 获 得 ,因 而 。mi e ’也 就是 说要满
fn一 )

)]
n≠
则误差能量:lE( )I =IHa(ej ̄) ( )2(1)
2.3FIR数 字 滤 波 器 幅 度 特 性 推 导 由于 ^( )=h (n) ( ),所 以根 据 FTr性 质 ,时 域乘 积 ,在 频 域 卷 积
均方误差:e。= 『二I ( )一H(el ̄)l 如 (2)
2)高通 h(n)表达式 (n)= sin[oo (o

逼 近频 带 范 围 内,逼 近 误 差 绝 对 值 最 大 值 平 方 和 为 最小 ,从 而 得 到 唯 一

FIR数字滤波器的优化设计外文翻译

FIR数字滤波器的优化设计外文翻译

FIR滤波器设计技术L.R. Rabiner著,赵然然译摘要这份报告列举了一些设计FIR滤波器所使用的技术。

首先讨论了窗函数法和频率取样法的优点和缺点。

FIR数字滤波器也包含了许多优化设计的方法,这些优化技术减少了在频率采样时非采样频率点的误差频率。

对于用于设计数字滤波器的技术,例如matlab,进行了简明扼要的探讨。

介绍z 的多项式,因FIR滤波器的频率响应是频率的FIR滤波器的系统函数是一个1实函数,也称其为零相位滤波器。

N阶FIR滤波器的系统函数表示为(1)FIR滤波器是十分重要的,可应用于精确线性相位相应。

FIR滤波器的实现方式保证了它是一个稳定的滤波器。

FIR滤波器的设计可分为两部分:(i)近似问题(ii)实现问题解决近似问题,要通过四个步骤找出传递函数:(i)在频域内找出期望的或最理想的反应(ii)选择滤波器的阶数(FIR滤波器的长度N)(iii)选择近似结果中较好的(iv)选择一种算法寻找最优的滤波器传递函数选择部分结构处理实现传递函数的形式可能是线路图或程序。

本质上来说,有三种著名的FIR滤波器设计方法:(!)窗函数法(2)频率取样法(3)滤波器的优化设计窗函数法在该方法中,[Park87],[Rab75], [Proakis00]从理想的频率响应H d(w)出发,其对应的单位脉冲相应关系如下:(2)(3)一般来说,单位脉冲相应h d(n)的持续时间是无限的,所以在某种程度上说,它必须截断。

n=M-1约束着FIR滤波器的长度M。

以M-1截断的h d(n)乘以窗函数就得到了滤波器的单位脉冲响应。

矩形窗口的定义为w(n) = 1 0≦n≦M-1 (4)0 其它FIR滤波器的单位脉冲相应为h(n) = h d(n) w(n) (5)= h d(n) 0≦n≦M-1= 0 其它现在,多元化的窗函数w(n)与h d(n)相当于h d(w)与w(w)的卷积,其中,w(w)是窗函数的频域表示(6)因此H d(w)与w(w)的卷积为FIR数字滤波器的截断后的频率响应(7)频率响应也可以利用以下的关系式(8)由于非均匀收敛的傅里叶级数的不连续性,其自身的波纹前后有一种近似于不连续的频率响应,因此直接截断的h d(n)来获得h(n)将导致吉布斯现象。

数字滤波器设计中的算法优化与实现

数字滤波器设计中的算法优化与实现

数字滤波器设计中的算法优化与实现
数字滤波器设计是数字信号处理领域的重要课题,对于信号处理的质量和性能有着至关重要的影响。

在数字滤波器设计中,算法优化与实现是至关重要的环节,它直接影响到数字滤波器的性能和效果。

首先,算法优化是数字滤波器设计的核心。

在设计数字滤波器时,我们需要选择合适的滤波器结构和算法来实现滤波功能。

常见的数字滤波器结构包括FIR滤波器和IIR滤波器,它们各自有着不同的优缺点。

在选择滤波器结构时,需要考虑到滤波器的设计要求和性能指标,以及实际应用的需求。

在选择滤波器算法时,我们需要根据信号的特点和滤波要求来优化设计算法,以提高数字滤波器的性能和效果。

其次,实现数字滤波器的算法是数字滤波器设计的关键。

在具体实现数字滤波器时,我们需要考虑算法的复杂度和计算开销,以保证实现的高效性和实用性。

常见的数字滤波器算法包括差分方程法、矩阵方法、频域方法等,它们各自有着不同的实现细节和特点。

在实现数字滤波器时,我们需要结合具体的应用场景和要求来选择合适的算法,并注意算法的实现细节,以确保数字滤波器的性能和效果。

在数字滤波器设计中,算法优化与实现是密不可分的。

通过合理优化算法并高效实现,可以提高数字滤波器的性能和效果,从而更好地满足信号处理的需要。

在未来的数字信号处理领域,数字滤波器设计将继续发展和完善,算法优化与实现也将成为数字滤波器设计的重要研究方向之一。

希望未来能够不断改进和创新,为数字信号处理领域的发展做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字滤波器的优化设计浅析201120003025何志会数字滤波器的优化设计浅析摘要当前,在数字信号处理和电子应用技术领域,数字滤波器以其精度高、灵活性好、便于大规模集成等突出优点,占据了至关重要的地位。

按冲击响应持续时间,数字滤波器可分为有限冲击响应(FIR)滤波器和无限冲击响应(IIR)滤波器。

传统的数字滤波器的设计方法有窗函数法、频率采样法和等波动最佳逼近法等。

但是随着时代的发展,应用领域的广泛增加、信号处理要求变高以及计算复杂程度的不断提高,对于数字滤波器软件和硬件的要求也越来越专业、复杂。

因此,数字滤波器的优化设计也显得更加重要。

近年来,国内外对数字滤波器的优化算法进行了较多的研究,提出了很多优化方法和算法,如:人工鱼群算法、粒子群算法、遗传算法、最小P误差法、小波逼近法等。

这些算法大大提高了数字滤波器的应用范围,使结果更加逼近于目标函数。

硬件上,FPGA以其体积小、速度快、重量轻、功耗低、可靠性高、成本低等优点在数字滤波器上得到应用,具有很好的发展前景。

关键词:数字滤波器;优化;算法Optimization design of FIR digital filterAbstractAt present, the digital filter with its high precision, flexibility, ease of large-scale integration and other advantages, occupies a crucial position in the field of digital signal processing and application of technology.According to the duration of the impulse response, digital filter can be divided into finite impulse response (FIR) filters and infinite impulse response (IIR) filter. Traditional methods of digital filter design use window function method, sampling method, frequency fluctuations and the best approximation method. But with the development of the times, a wide range of applications increases, the signal processing requirements of high change and increasing complexity of the calculations for the digital filter software and hardware ,requirements have become more specialized and complex. Therefore, the digital filter design optimization is even more important. In recent years, domestic and international digital filter optimization algorithm for more research, made a lot of optimization methods and algorithms, such as: artificial fish school algorithm, particle swarm optimization, genetic algorithm, the smallest P error method, wavelet approximation method . These algorithms greatly improve the application of digital filters, so that the results more close to the target function. Hardware, FPGA with its small size, fast, light weight, low power consumption, high reliability and low cost have been applied in the digital filter, with good prospects for development.Key words:Digital filter ;Optimization;;algorithm1 研究意义由于数字滤波器审计在实际工程中只能是逼近理想的设计指标,即:主要任务是使滤波器幅频响应与所要求的幅频响应的均方误差最小,因此可以将它看成是一个按某种优化准则求解最优解的优化问题。

而优化是指在给定的制约条件下,求出使目标函数(组)最大或最小的变量组合问题。

从理论上讲,任何确知的制约条件及目标函数的优化问题都存在一组实质解,工程中我们不但关心这组解是否存在,而且关心求解所需的运算时间,因此最优解问题可以根据所需要的求解时间来进行分类。

滤波器的设计包括三个基本步骤:(1)按照实际的任务要求,确定滤波的性能指标。

(2)设计一个因果、稳定的离散线性时不变系统的系统函数)(zH,去逼近这一性能指标。

根据不同的要求可以用FIR系统函数,也可以用IIR系统函数去逼近。

(3)从物理上实现所设计的)(zH,即利用有限精度算法去实现系统函数。

可见,逼近)(zH的效果,直接决定了数字滤波器性能的优劣。

随着计算机技术的快速发展,实践证明,利用优化算法来设计,不仅可以获得满意的效果,而且成本得到很大降低,灵活程度也更好。

因此,本文主要浅析几种现今主要的数字滤波器的优化算法设计。

2 数字滤波器的优化设计表2.1 FIR数字滤波和IIR数字滤波器的比较比较FIR滤波器IIR滤波器性能可以得到严格的线性相位。

但是要提高选择性,所用存储器较多,运算时间长,成本高,时延较大。

用较少的阶数获得很好的选择性,所用存储单元少,运算次数少。

但是相位非线性,选择性越好,相位越趋于非线性。

结构采用非递归结构,系统稳定,预算误差较小。

还可以采用快速傅里叶变换算法等,在同阶条件下,运算速度较快。

采用递归型结构,极点位置必须在单位圆内,以保证系统稳定。

运算过程中采用四舍五入,有时会引起寄生震荡。

设计角度对计算工具要求较高设计和计算的工作量较小,对计算工具要求较低从表2.1可知:FIR和IIR各有特点,所以在设计中应该从实际出发,多方面考虑加以选择。

例如:对于线性相位要求不敏感的场合,如语音通讯等,用IIR 较合适。

对于图像信号处理,数据传输系统等,对线性相位要求较高,用FIR较好。

2.1FIR 滤波器的优化设计FIR 滤波器优化设计应该遵循最优化准则,一般有均方误差最小准则和最大误差最小化准则(也称为加权贝雪夫等纹波逼近)。

2.1.1 粒子群算法1.定义粒子群算法,又称为粒子群优化算法(Particle Swarm Optimization,PSO)是一种新的全局优化算法,算法模拟鸟群飞行觅食的行为,通过鸟之间的集体协作使群体达到最优,PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉” 和“变异”操作,它通过追随当前搜索到的最优值来寻找全局最优。

这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。

2.由均方误差最小准则有:[]∑∑⎰+-==-=-n o t h e rd N n d jw n h n h n h dwe E e ,221022)()()()(21πππ (公式2.1) 要使均方误差2e 最小,则应该使:0)()(=-n h n h d , 10-≤≤N n以一维实数FIR 优化为例:0)(sin )()sin()()(cos )()cos()(1210210102≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=∑∑∑-=-=-=N i p p p R N i p p p R P P P w w H iw i h w w H iw i h a A e ϕϕ (公式2.2)∑-==10P P p a A (公式2.3)3.适应度函数 粒子群优化算法通过适应度来确定粒子当前位置的优劣,所以必须根据实际问题需要来选择适应度函数F,这里选择2e 作为FIR 数字滤波器设计的适应函数,即:2e F = (公式2.4)4.参数的选择(1)权函数)(w H d 的选择:根据不同的设计问题,在不同的频段上选择合适的值,以期获得较好的频率特性。

(2)初始化)0(i a 和)0(i b ,即初始化种群中的粒子:在给定区间]2,2[ 中产生一组随机数作为初始化种群。

(3)设定频率采样点:80到120 (4)设定迭代次数,即指定运算代数,以便寻找到最优粒子。

丢弃其余位置的粒子,由新的随机产生的粒子代替。

这里,我们选择代数为100到250。

5.设计优化步骤(1)根据不同频段要求初始化p a ;(2)设定粒子群优化算法的参数,包括群体大小,参数维数,加权因子;(3)在参数区间内随机初始化群体中各粒子的位置与速度;(4)根据公式2.3计算A,利用公式2.2计算粒子的适应度;(5)根据粒子群建模,更新粒子的位置和速度;(6)多次迭代,达到预先的迭代次数。

6.实验仿真及结果实验运用matlab 进行仿真,实验数据参考文献【1】7.实验结果分析:通过实验结果可以看出:在给定的一定区域内,算法能够很好地逼近给定的目标,获得较好的阻带特性。

但是同时也看到对于有些频率区域会出现局部最优,即出现局部极值点,而且迭代次数较多,速度较慢。

2.1.2 蚁群算法1.定义 蚁群算法(ant colony algorithm, ACA)是模拟蚂蚁觅食时建立巢穴到食物源最短路径的一种新型启发式优化算法,它提供了一种求解复杂优化问题的方法,并且不依赖于问题的领域和种类,具有本质并行、自组织、正反馈以及鲁棒性等优点,广泛地应用于很多学科和领域。

虽然蚁群优化算法的研究只有十几年的时间,但已经显示出其在求解复杂优化问题方面的优越性,在很多领域中的应用价值越来越被人们重视。

相关文档
最新文档