格林公式及其应用

合集下载

第3节 格林公式及其应用

第3节  格林公式及其应用

那末 Pdx Qdy Pdx Qdy
L1
L2
由于 Pdx Qdy Pdx Qdy
L2
L2
即 Pdx Qdy 0 .
L1

L
2
L1 L2 是 G内一条有向闭曲线 .
因此 , G内由曲线积分与路径无关
可推出,在 G 内沿闭曲线的积分为零 .
G
DC
x
于是我们得到与定积分中莱布尼兹公式类似的公式 ,
(x, y) Pdx Qdy U (x, y) ( x0 , y0 )
(x , y) ( x0 , y0 )
U (x, y) U (x0 , y0 )
,
其中 L 为一条无重点 ` 分段光滑
且不经过坐标原点的连续曲线 , L的方向为逆时针方向.
解 令 P y , Q x .当 x2 y2 0 时,有
x2 y2
x2 y2
? ? Q
x
y2 x2 x2 y2 2
, P y
y 2 x2 , Q P . x 2 y 2 2 x y
记 L 所围的区域为 D : (1) 当 (0, 0) D , 由格林公式
y
L D

L
xdy x2

ydx y2



D
Q x

P y
dxdy

0
D
dxdy

0
.
o
x
(2) 当 (0, 0) D ,取 r 适当小, 作小圆l
l : x2 y 2 r 2 , 记 L l 所围的区域为 D1 .
y

格林公式及其应用

格林公式及其应用
思考:如果L 取负向呢?
证明: 设 D 是 X 型区域,
D {( x , y ) a x b , 1 ( x ) y 2 ( x )}


P ( x , y )dx
L


L1



L2


L3

P ( x , y ) dx
L4
Pdx
L1 a b

Pdx
2( y)
1
x 1( y)
y
D
L3
L4
c
x 2( y)
[
c
D
Q ( x , y ) x
( y)
dx ]dy (把Q( x , y )看作x的函数
x dxdy .
Q
用牛顿 莱布尼兹公式)
如果D既是X型又是Y 型,则

L
P ( x , y ) dx
P y

则曲线积分 Pdx Qdy在该区域内与路径无关 .
L
( 2 ) 如果
Q x

P y
在复连通域内成立,则
曲线积分
不一定与路径无关。
前例,
xdy ydx x y
2 2
.
L
( 3)由定理的证明过程可知 u ( x, y)

( x, y) ( x 0 , y0 )
P ( x , y ) d x Q( x , y ) d y .
L3
( L2 , L4上 dx 0)
b a
L1 y ( x ) 2
L2

P ( x , 2 ( x )) dx
b a
P ( x , 1 ( x )) dx

格林公式及其应用

格林公式及其应用
L1 L2 L2
Pdx Qdy Pdx Qdy
L2
Pdx Qdy Pdx Qdy 0,
L1 L1 ( L2 ) L2
Pdx Qdy 0
此时L1 ( L2 )为有向闭曲线,故结论成立, 反之也成立.
3、定理2
设区域G是一个单连通域,函数P( x, y )、Q( x, y ) 在G内具有一阶连续偏导数,则曲线积分 Pdx Qdy
Q y2 x2 P 2 2 2 x ( x y ) y 则
L
xdy ydx x y
2 2
0
(2) 原点在D内时
选取适当小的r 0, 作位于D内的圆周l x2 y2 r 2 记L与l所围的闭区域为D1;
即D1为复连通区域,
l的方向取逆时针方向 有 , xdy ydx x y
P 因 连续,故第一式左边 y 2 ( x ) P ( x, y ) P b dy dx y dxdy a 1 ( x ) y D a Px, 2 ( x) Px,1 ( x)dx
b
第一式右边 Pdx Pdx Pdx
第三节
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径 无关的条件 三、二元函数的全微分求积
一、 格林公式
平面单连通区域: 设D为平面区域,如果D内任一闭曲线所围的部
分都属于D,则称D为平面单连通区域,否则称为复连
通区域.
通俗的说,平面单连通区域是不含有“洞”的区
域.
例如 圆形区域: x, y ) x 2 y 2 1} {(
Pdx Qdy
ABPA
Q P x y dxdy Pdx Qdy D3 BCNB

格林公式及其应用

格林公式及其应用

u ( x, y)
P(x, y)dx Q(x, y)dy y
( x0 , y0 )
x
y

x0 P(x, y0 )dx
Q(x, y)dy
y0

u (x, y)
y
y0 Q(x0 , y)dy
x
P(x, y)dx
x0
y0
x0
x
©
格林公式及其应用
例 计算 ( x2 2xy)dx ( x2 y4 )dy.其中L为

y)dy
©
例4续

1 0
1 1+y
y
2
dy

1 1 x 1 1+x 2
dx

0 1 y 11+y2 dy

2
01 1 1+y 2
dy

1 xdx 1 1+x 2

11 11+x2 dx

4
01 11+y 2
dy

0

4(arc tan y)
0 -1
P Q y x
©
证明 (4)
(1)
设L为D中任一分段光滑闭曲线,所围区域为 D D (如图) , 因此在 D上
P Q y x
D D L
利用格林公式 , 得

L
P
d
x

Q
d
y

D
(
Q x

Q x
)dxd
y
0
证毕
©
说明: 根据定理2 , 若在某区域内 P Q , 则 y x
所以
P ( x2 y2 ) 2 y( x-y)

高等数学-格林公式及其应用.ppt

高等数学-格林公式及其应用.ppt

l D1
O D2
x
1

d
1 2π
π
20
2
l :4x2 y2 2
法二
l
ydx xdy 4x2 y2
l
ydx
2
xdy
1
2
ydx xd y
l
格林公式
D2是由l 所围区域
4x2 y2 2
所以 I 0 π
π.
1
2
1
2
(1
D2
(2)
π
2
1)dxdy
2
π
25
10.3 格林公式及其应用
Pdx Qdy
L
(L1, L2, L3对D来说为正方向)
8
10.3 格林公式及其应用
(3) 对复连通区域证明:
对若复区连域通不区止域由D一, 格条林闭公曲式线
的右所曲端围线应成积 包.添分 括加,沿且直区边线域界段D的的A方全B向,部CE对边.区界 G D
域则DD来的说边都界是曲正线向由. AB, L2 , BA,
2π 0
格林公式
sin d(
2
(Q P )dxdy D1 x y 0
cos ) cos d(
2
2
0 sin
)
24
10.3 格林公式及其应用
l
ydx xdy 4x2 y2

sin
d(
2
cos
)
2
cos
d(
sin
)
0
2
2 0
π
2
2
sin
2
2
2
2
cos2
d
y L: x2 y2 4

格林公式及其应用

格林公式及其应用
高等数学
格林公式及其应用
本节,我们将会讨论曲线积分与二重积分之间的关系.格林公式就是 连接两种积分的桥梁.
1.1 格林公式
格林公式给出了平面闭区域上二重积分与该闭区域边界曲线上第二类曲线积分之 间的关系.在介绍它们之间的关系前,我们首先给出单连通区域和复连通区域的定义.
定义 设 D 为平面区域,如果 D 内任意一条闭曲线所围成的部分都属于 D ,则称 D 为平面单连通区域(即 D 内部不含有“洞”),否则称为复连通区域.
1.1 格林公式
定理 1(格林公式) 设函数 P(x ,y) , Q(x ,y) 在闭区域 D 上具有一阶连续偏 导数,则有
D
Q x
P y
dxdy
L
Pdx
Qdy

其中 L 为 D 的正向边界曲线.
(12-4)
1.1 格林公式
证 将区域 D 分为单连通区域和复连通区域两种情形来证明.
(1)如果 D 是单连通区域,则分以下两种情况讨论.
例 如 , 区 域 {(x ,y) | x2 y2 1} 和 (x ,y) | y x 是 单 连 通 区 域 ; 环 状 区 域
{(x ,y) |1 x2 y2 4} 是复连通区域.
1.1 格林公式
关于平面区域 D 边界曲线的正负向规定如下:设平面区域 D 的边界曲线为 L , 当沿着边界曲线 L 运动时,平面区域总在其左侧,此运动方向即为 L 的正向,此时 的反向即为 L 的负向.对于单连通区域来说,逆时针方向为正向.对于如图所示的 复连通区域来说,图中的箭头指向即为边界正向.
b a
P
(
x
,2
(
x))dx
b a
P
(
x

高等数学-格林公式及其应用

高等数学-格林公式及其应用
由格林公式知 xdy ydx 0 L x2 10 y 2
(2) L为正方形 x y 1 的正向.
作位于 D内圆周 l : x2 y2 a2 ,
取顺时针方向。
记 D1由 L和 l所围成, 应用格林公式,得
L
xdy x2
ydx y2
xdy ydx Ll x2 y2
xdy ydx l x2 y2
,
0 2
所围面积
1 2 (abcos2 absin2 ) d ab 20 14
例5 计算抛物线 ( x y)2 ax(a 0) 与 x 轴所围成
的面积.
解 ONA为直线 y 0.
曲线 AMO 由函数
y ax x, x [0,a]表示,
M
N
A(a,0)
1
A xdy ydx
计算
L
xdy x2
ydx , y2
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
(2) L为正方形 x y 1的正向.
解 记 L所围成的闭区域为 D,

P
y x2 y2
,
Q
x2
x
y2
,
则当
x2 y2 0
时,有
Q x
y2 x2 ( x2 y2 )2
P .
y
(1) L为圆周(x 1)2 ( y 1)2 1的正向.
高等数学
第二十讲
第三节
第十一章
格林公式及其应用
一、格林公式
二、平面上曲线积分与路径无关的 等价条件
一、 格林公式
区域 D 分类 单连通区域 ( 无“洞”区域 )
L
多连通区域 ( 有“洞”区域 )
D
域 D 边界L 的正向: 域的内部靠左

格林公式及其应用格林公式

格林公式及其应用格林公式

格林公式及其应用格林公式格林公式是向量分析中的一个重要定理,也被称为格林-斯托克斯定理。

它是由爱尔兰数学家乔治·格林在19世纪提出的,用于计算一个曲线或曲面上的环流和散度之间的关系。

格林公式的应用非常广泛,可以用来求解流体力学、电磁学和热力学等领域的问题。

下面将介绍格林公式的表达形式,以及它在常见问题中的具体应用。

1.格林公式的表达形式格林公式有两种常见的表达形式,一种是针对平面区域的格林公式,另一种是针对空间曲线的格林公式。

下面将分别介绍这两种格林公式的表达形式。

1.1平面区域的格林公式若D是一个紧致的平面区域,边界为C(C是一个简单、逐段光滑的曲线),向量函数F(x,y)=(P(x,y),Q(x,y))在区域D中具有二阶连续偏导数,则有如下格林公式:∬D(∂Q/∂x-∂P/∂y)dxdy=∮C(Pdx+Qdy)其中,∂P/∂y和∂Q/∂x分别表示P和Q对y和x的偏导数,dxdy表示在D中的面积元素,Pdx+Qdy表示沿着边界C的曲线元素。

1.2空间曲线的格林公式若S是一个有向光滑曲面,它的边界为C(C是一个简单、光滑的曲线),向量函数F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))在曲面S内具有连续偏导数,则有如下格林公式:∯S(∂R/∂y-Q)dydz+(∂P/∂z-R)dzdx+(∂Q/∂x-P)dxdy=∮C(Pdx+Qdy+Rdz)其中,∂P/∂z、∂Q/∂x和∂R/∂y分别表示P、Q和R对z、x和y的偏导数,dydz、dzdx和dxdy表示在S内的面积元素,Pdx+Qdy+Rdz表示沿着边界C的曲线元素。

2.格林公式的应用格林公式具有广泛的应用,在流体力学、电磁学、热力学等领域都能够找到它的身影。

下面将以几个例子来说明格林公式的具体应用。

2.1流体力学中的应用格林公式在流体力学中常常用于计算流体的环流和散度。

例如,可以利用格林公式来推导速度势函数和流函数之间的关系,进而求解流场中的速度分布。

§11.2(2)格林公式

§11.2(2)格林公式

Q P ∫∫D( x y )dxdy = ∫L Pdx + Qdy
4
2) 若D不满足以上条件, 则可通过加辅助线将其分割 为有限个上述形式的区域 , 如图 Q P ∫∫D( x y ) dxdy
y
1 D2 D
L
= ∑∫∫
k =1 n
n
Dk
(
Q P ) dxdy x y
Dn
o
x
= ∑∫
k =1
du = xy2 dx + x2 ydy. (0,0)( Nhomakorabea, y) .
= ∫ x 0 dx + ∫
0
x
y 2 x y dy 0
(x,0)
=∫
y 2 x y dy 0
18
xd y y d x 在右半平面 ( x > 0 ) 内存在原函 例6. 验证 2 2 x +y y 数 , 并求出它. (x, y) y x , Q= 2 证: 令 P = 2 2 x +y x + y2 2 2 o (1,0) ( x,0) x P y x Q 则 = 2 = ( x > 0) 2 2 x (x + y ) y 由定理 2 可知存在原函数 定理
Q P ∫∫ x y dxdy = ∫ Pdx + Qdy ( 格林公式 ) D L

∫∫ P
D
x
y
Q
dxdy = ∫ Pdx + Qdy
L
2
证明: 证明 1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且 1(x) ≤ y ≤ 2 (x) y E D: d a ≤ x ≤b
y0 x0 x0 y y0 x

5 格林公式及其应用

5 格林公式及其应用


L
P d x Qd y 0 .
(ii) 对D 中任一按段光滑曲线 L, 曲线积分 与路径无关, 只与 L 的起点及终点有关.

L
P d x Qd y
的全微分,
(iii)
是 D 内是某一函数 即 d u ( x, y ) P d x Q d y
(iv) 在 D 内处处成立
P Q . y x
曲线积分 Pdx Qdy 在 G 内与路径无关相当于沿 G 内任
L
意闭曲线 C 的曲线积分 Pdx Qdy 等于零
L
这是因为 设L1和L2是G内任意两条从 点A到点B的曲线 则L1(L2)是G内一条任 意的闭曲线 而且有
L Pdx Qdy L Pdx Qdy
1 2
设L为D中任一分段光滑闭曲线, 由条件(iv), 在 D 上处处成立
D
P Q y x
利用格林公式 , 得
Q P L P d x Q d y ( x y )d xd y 0
证毕
由上述证明可看到,在定理的条件下,二元函数:
u ( x, y)
P(x, y)dx Q(x, y)dy
y y0 x
u(x, y) P(x, y0)dx Q(x, y)dy
x0 y
u(x, y) Q(x0, y)dy P(x, y)dx
y0 x0
应用定理2应注意的问题 (1)区域G是单连通区域 (2)函数P(x y)及Q(x y)在G内具有一阶连续偏导数 如果这两个条件之一不能满足 那么定理的结论不能保 证成立
AO ,
原式
L AO ( x 3 y) dx ( y x) d y 2 2 ( x 3 y ) d x ( y x) d y OA 4 2 y 4 d xd y x dx L 0 D

格林公式及其应用

格林公式及其应用
-
平面单连通区域的概念:
设D为平面区域,如果D内任一闭曲线所围的部分都
属D则称D为平面单连通区域,否则称为复连通区域 。通
俗的说,平面单连通区域就是不含“洞”(包括点“洞”) 的
区域,复连通区域是含有“洞”(包含“洞”的区域)。
例如,平面上的圆形区域{(x,y) |1< x2 y2 <4 } 或
2 xy Q d (x ,x y )d y 2 xy Q d (x ,x y )dy
(0 ,
解: 由题意知曲线积分与路径无关,因而有 Q (2xy)
x y
-
即 Q 2x. 于是 Q(x,y)x2(y)其中 ( y)
x
为任意可导函数。 如图所示,取点 A (t,0) , B (t,1) , C (1,0) , D (1,t) . 对所给等式
-
定理1:设闭区域D由分段函数光滑的曲线L围成, 函数P(x,y)及Q(x,y)在上具有一阶连续偏导数,则有
DQ xP ydxdyPdxQdy (1)
其中L是D的取正向的边界曲线。 公式(1)叫做格林公式。
注意哦
对于复连通区域D,格林公式(1)右端应包括沿区 域D的全部边界的曲线积分,且边界的方向对区域D来 说都是正向。
(3) 若函数 P (x,y), Q(x,y) 满足定理2条件
(x,y)
u(x,y)
PdxQd满y 足
x y ( , ) 00
-
duPdxQdy
例 4 设函数 Q(x,y) 在xoy面上具有一阶连续偏导数,曲线积分
L2xydQ y(x,y)dy
与路径无关,且对任意实数 t ,恒有
(t,1 )
(1 ,t)
{(x,y)| 0< x2 y2 <2}都是复连通区域。

格林公式及其应用

格林公式及其应用

P dxdy
b
dx
2 ( x) P dy
D y
a
1( x) y
y
b
a{P[ x,2( x)] P[ x,1( x)]}dx.
L2 : y 2( x)
D
Pdx Pdx Pdx
L
L1
L2
L1 : y 1( x)
Oa
bx
b
a
a P[ x,1( x)]dx b P[ x,2( x)]dx
L l
xdy ydx 4x2 y2
0,
于是I
L
xdy ydx 4x2 y2
l
xdy ydx 4x2 y2
1 a2
xdy ydx
l
2 a2
(l所围的椭圆区域的面积)
2 a2
a2π 2
π.
感谢下 载
I1 I2
由格林公式
I1
D
Q x
P y
dxdy
D
(b
a)dxdy
(b
a)
πa 2 2
由于OA在x轴上, y 0, dy 0,
故I2
2a
(bx)dx
2a 2b,
0
于是
I
I1
I2
π 2
2 a 2b
πa3. 2
(2)简化二重积分
例4 计算 e y2dxdy, D :以O(0,0), A(1,1), B(0,1)
线y 2ax x2到点O(0,0)的有向弧段.
解 Q e x cos y a, x P ex cos y b, y
y
D
O
Ax
Q x
P y
b
a,
添加辅助线OA,

格林公式及其应用

格林公式及其应用

例7 验证: 在整个xOy面内, xy2dx+x2ydy是某个函数的全微 分, 并求出一个这样的函数. 解 这里P=xy2, Q=x2y. 因为P,Q在整个xOy面内具有一阶连续偏导数, 且有
Q =2xy= P , x y 所以在整个xOy面内, xy2dx+x2ydy是某个函数的全微分.
取积分路线为从O(0, 0)到A(x, 0)再到 B(x, y)的折线, 则所求函数为
解 记L所围成的闭区域为D. 当(0, 0)∈D时, 在D内取一圆周l: x2+y2=r2(r>0). 记L及l所围成的复连通区域为D1, 应用格林公式得
xdy ydx Q = ∫∫( P)dxdy=0 , ∫L+l x2 + y2 x y D
1
其中l的方向取顺时针方向. 于是 xdy ydx xdy ydx =∫ 2 2 ∫L x2 + y2 l x + y
选择从O(0, 0)到A(1, 0)再到B(1, 1)的折线作为积分路线,

∫L
2xydx+x2dy = ∫ 2xydx+ x2dy+∫ 2xydx+x2dy
OA AB 1 0
=∫ 12dy =1.
三,二元函数的全微分求积
二元函数u(x, y)的全微分为 du(x, y)=ux(x, y)dx+uy(x, y)dy. 表达式P(x, y)dx+Q(x, y)dy与函数的全微分有相同的结构, 但它未必就是某个函数的全微分. 那么在什么条件下表达式P(x, y)dx+Q(x, y)dy是某个二元 函数u(x, y)的全微分呢?当这样的二元函数存在时, 怎样求出 这个二元函数呢?
格林公式:

第13讲格林公式及其应用

第13讲格林公式及其应用
4.第一边值问题解的唯一性和稳定性 定理2.4 方程(1.1)的狄利克莱内问题(1.5)的解如果存在,必是唯一的, 而且连续地依赖于所给的边界条件 f 定理2.5 方程(1.1)的狄利克莱外问题(1.5)的解如果存在,必是唯一的。
同样可证明狄利克莱外问题(1.5)的稳定性。

v u v )dS n n
(2.3)
定义 设 M 0 ( x0 , y0 , z0 ) 是区域 内的一固定点。称函数
v
1 rM0 M

1 ( x x0 )2 ( y y0 )2 ( z z0 )2
(2.4)
为三维拉普拉斯方程的基本解。 性质 1.在 内,基本解满足方程
定理2.2 (平均值定理)设函数 u( M ) 在某区域 内调和, M 0 是 中 的任意一点。则对以M 0为中心、a为半径完全落在区域
的内部的球面
(2.11)
a ,成立
1 u(M 0 ) udS 4 a 2 a
证明 由 公式(2.6)得到
1 1 1 u u(M 0 ) (u ( ) )dS 4 a n rM0M rM0M n
以及
1 u 1 u 1 u u dS dS 4 dS 4 2 n 4 n n r n
由(2.5)式得到


(u

1 1 u ( ) )dS n r r n
1 1 u u (u ( ) )dS 4 u 4 0 n r r n n
注意:在 \ K 有 u 0, 0 在球面 K 上,有
1 r 1 1 1 1 ( ) ( ) 2 2 n r r r r
所以
(u

格林公式及其应用

格林公式及其应用
d d c
x 2 ( y) Cy 1 ( x ) x b
Q( 2 ( y ), y ) d y Q( 1 ( y ), y ) d y c

CBE
Q( x, y )d y
EAC
Q( x, y )d y
即 同理可证

② ①、②两式相加得:
Q P D x y d xd y L Pd x Qd y
例31.8. 计算 I
B(2,0)的路径.
AOB
(12 xy e y )dx (cos y xe y )dy ,
其中AOB为由点A(1,1)沿y x 2到O(0,0),再沿y 0到
解: 添加辅助线: 直线段BC与CA.
y A
O
I sin 1 e 1.
C
B
x
(2) 若D不满足以上条件,则可通过加辅助线将其分割
为有限个上述形式的区域 , 如图 Q P D x y d xd y
y
D2
D1
L
Dn

k 1 n
n
Dk

Q P d xd y x y
o
x

k 1
Dk
P dx Qd y
(Dk 表示 Dk 的正向边界 )
(1)
其中L取正向.
公式(1)称为格林公式.(Green formula)
证明: (1) 若D 既是 X - 型区域 , 又是 Y - 型区域 , 且
1 ( x) y 2 ( x) D: a xb
y
d x 1 ( y) A
E
y 2 ( x)
D
B

03第三节格林公式及其应用

03第三节格林公式及其应用

03第三节格林公式及其应用格林公式是微积分中的一项重要定理,它在多元函数的积分计算以及微分方程的解法中都有广泛的应用。

本文将详细介绍格林公式的概念、表达式以及在实际问题中的应用。

格林公式是由英国数学家格林(George Green)于1828年首次提出的,它是高斯定理在平面上的推广形式。

格林公式用于计算一个平面区域内的一些向量场的闭合曲线积分与该场在该区域内的散度的面积积分之间的关系。

根据格林公式,对于一个平面区域D内的向量场F(x, y) =(P(x, y), Q(x, y)),其中P和Q是函数x和y的偏导数连续的函数,闭合曲线C是D的边界,那么有以下的等式成立:∮C(Pdx + Qdy) = ∬D((∂Q/∂x −∂P/∂y)dA)其中,∮表示沿C的积分,∬表示对D的积分,(Pdx + Qdy)表示场F的微分形式,dA表示平面上的面积元。

格林公式可以看作是微积分中的一个重要结论,在实际应用中有着广泛的应用。

以下将介绍两个格林公式的重要应用。

第一个应用是计算平面区域上面积的问题。

根据格林公式,如果一个平面区域D的边界C是一个简单闭合曲线,那么可以通过计算场F = (0, x)(其中x为函数)沿着C的曲线积分来求解该平面区域的面积。

这是因为根据格林公式,等式可以化简为∮C Qdy = ∬D (∂Q/∂x)dA。

由于场F的向量值为(0, x),所以Q = x,那么上述等式可以进一步化简为∮C xdy = ∬D (∂Q/∂x)dA。

由于场F的x分量为0,所以x的偏导数等于0,那么上述等式可以进一步化简为∮Cxdy = 0。

由于dy在曲线C上的积分等于0,所以有∮Cxdy = ∫Cxdy = ∫(xdy + 0dx) = ∫xdy,即通过计算∫xdy可以得到平面区域D的面积。

第二个应用是计算其中一区域内的散度。

根据格林公式,可以通过计算场F = (P, Q)的闭合曲线积分∮C(Pdx + Qdy)来求解场F在区域D内的散度。

格林公式及其应用

格林公式及其应用
a
2. 质点M 沿着以AB为直径的半圆, 从 A(1,2) 运动到 点B(3, 4),在此过程中受力 F 作用, F 的大小等于点 M
到原点的距离, 其方向垂直于OM, 且与y 轴正向夹角为
锐角, 求变力 F 对质点M 所作的功.
( 1990 考研 )
解: 由图知 F ( y , x) , 故所求功为
注:若存在连续可微函数 ( x, y) 0 , 使 为全微分方程, 则称 ( x, y )为原方程的积分因子. 在简单情况下, 可凭观察和经验根据微分倒推式得到
思考: 如何解方程
积分因子.
内容小结
1. 格林公式 2. 等价条件
Q P d xd y L P d x Q d y D x y
D L O 1 2x
2. 设
提示: d u ( x, y ) ( x 4 xy ) dx (6 x y 5 y ) d y
4 3 2 2 4
( x 4 xy ) dx (6 x y 5 y )d y C

x 4 y x d x (6 x 2 y 2 0 0
4
3
(5 x 4 3x y 2 y3 ) d x (3x 2 y 3x y 2 y 2 ) d y 0 P 2 Q 6x y 3y , 故这是全微分方程. 解: 因为 y x 法1 取 x0 0, y0 0, 则有
2 2 2 u ( x, y ) 5 x d x 0 (3 x y 3x y y ) d y 4 0 x y
思考与练习
1. 设
2
y
l
且都取正向, 问下列计算是否正确 ? xd y 4y d x l x2 y2 1 1 x d y 4 y d x 5 d 5 π 4 l 4 D 2 2 x y 0时 提示 : xd y yd x Q P l x2 y2 (1) x y 1 1 x d y yd x 2 d Q P 4 D 4 l (2) x y 2π

格林(Green)公式及其应用

格林(Green)公式及其应用
格林(green)公式及其应用
• 格林公式简介 • 格林公式的基本性质 • 格林公式的应用 • 格林公式的扩展 • 格林公式的实际例子 • 总结与展望
01
格林公式简介
格林公式的定义
格林公式是一个数学定理,用于描述二维平面上的向量场和路径之间的关系。它 指出,在一个封闭的区域内,沿任意路径的积分等于该区域内散度的体积分。
在实变函数中的应用
证明定理
格林公式在证明实变函数中的一些定 理中发挥了重要作用,如黎曼定理和 克雷洛夫定理等。
求解积分方程
利用格林公式,可以将积分方程转化 为边界积分方程,从而简化求解过程。
04
格林公式的扩展
高维格林公式
总结词
高维格林公式是格林公式在高维空间中 的推广,它描述了高维空间中向量场和 标量场之间的关系。
THANKS
感谢观看
格林公式的变种
总结词
格林公式的变种是原始格林公式的不同形式 或应用,它们在特定情况下可能更加方便或 有效。
详细描述
随着数学和物理学的发展,人们发现了许多 格林公式的变种。这些变种可能在某些特定 情况下更加适用,例如在处理非线性问题或 复杂边界条件时。了解这些变种有助于我们
更好地理解和应用格林公式。
03
格林公式在数学分析中占有重要的地位,是微积分学中的基本定理之一。它为 解决许多复杂的积分问题提供了一种有效的方法,使得许多难以计算的问题变 得简单明了。
对未来研究的展望
随着数学和其他学科的发展,格 林公式在各个领域的应用越来越 广泛。未来,我们可以进一步探 索格林公式的各种应用,如数值 计算、物理模拟、图像处理等。
解决偏微分方程的实例
总结词
格林公式还可以用于解决偏微分方程的问题,通过将 偏微分方程转化为等价的积分方程,可以简化求解过 程。

格林公式及其应用

格林公式及其应用

∫L Pdx + Qdy = ∫L Pdx + Qdy
1 2
与路径无关, 则称曲线积分 ∫ Pdx + Qdy 在 G 内与路径无关,
L
y
否则与路径有关. 否则与路径有关.
o
机动
L1
⋅B
L2
G
⋅ A
x
目录
上页
下页
返回
【定理2】 设D 是单连通域 , 函数 定理 】 具有一阶连续偏导数, 则以下四个条件等价: 具有一阶连续偏导数 则以下四个条件等价
第三节 格林公式及其应用
一、格林公式 二、格林公式简单应用 三、平面上曲线积分与路径无关的 等价条件 四、小结
机动 目录 上页 下页 返回
引言
莱公式: 牛——莱公式:∫a F ′( x )dx = F (b ) − F (a ) 莱公式 特点: 特点: F ′( x )在区间[a , b ]上的定积分可通过它的 原函数
+ ∫ ( x 2 + 3 y) d x + ( y 2 − x) d y
OA
= 4 ∫∫ d xd y + ∫ x 2 dx
0
D
4
y
L D
64 = 8π + 3
o
Ax
机动
目录
上页
下页
返回
2. 简化二重积分 【例4】 计算 】
− y2
其中D 其中 是以 O(0,0) , A(1,1) ,
有多种取法, 有多种取法, 则选最简单的
【例8】验证 】
是某个函数的全微分, 是某个函数的全微分 并求
出这个函数. 出这个函数 [利用曲线积分与路径无关] 【解Ⅰ】 利用曲线积分与路径无关] ∂P ∂Q 2 2 = 2x y = 设 P = x y , Q = x y, 则 ∂y ∂x 由定理2 可知, 由定理 可知 存在函数 u (x , y) 使
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∫L Pdx + Qdy = ∫L
1
Pdx + Qdy
2
恒成立, 就说曲线积分 ∫ Pdx + Qdy 在 G 内
L
与路径无关, 否则说与路径有关.
Jlin Institute of Chemical Technology
上页
下页
返回
退出
二、平面上曲线积分与路径无关的条件
曲线积分与路径无关
曲线积分 ∫ Pdx + Qdy 在 G 内与路径无关相当于沿 G 内任
上页
下页
返回
退出
xdy − ydx , 其中 L 为一条无重点、分段光滑且 2 2 L x +y 不经过原点的连续闭曲线, L的方向为逆时针方向.
例 4 计算 ∫
解 记L所围成的闭区域为D. 当(0, 0)∈D时, 在D内取一圆周l: x2+y2=r2(r>0). 记L及l所围成的复连通区域为D1, 应用格林公式得
§10.3 格林公式及其应用
一、格林公式 二、平面上曲线积分与路径无关的条件 三、二元函数的全微分求积
Jlin Institute of Chemical Technology
上页 下页 返回 退出
一、格林公式
单连通与复连通区域 设D为平面区域, 如果D内任一闭曲线所围的部分都属于 D, 则称D为平面单连通区域, 否则称为复连通区域.
上页
下页
返回
退出
格林公式:
∂Q ∂P ∫∫( ∂x − ∂y )dxdy = ∫L Pdx + Qdy .
D
用格林公式计算区域的面积 设区域D的边界曲线为L, 则
A = 1 ∫ xdy − ydx . 2 L 例1 求椭圆x=acosθ, y=bsinθ 所围成图形的面积A.
解 设L是由椭圆曲线, 则
D
用格林公式计算区域的面积 设区域D的边界曲线为L, 则
A = 1 ∫ xdy − ydx . 2 L
提示: 在格林公式中, 令P=−y, Q=x, 则有
− ydx + xdy = 2∫∫ dxdy , 或 A = ∫∫ dxdy = 1 ∫ xdy − ydx . ∫L 2 L
D
D
Jlin Institute of Chemical Technology
L由L1与L2组成
边界曲线L的正向: 当观察者沿边界行走时,区域Df Chemical Technology
上页
下页
返回
退出
y
证明(1)
若区域 D 既是 X − 型又 是Y − 型,即平行于坐 标轴的直线和 L至多交 于两点.
d x = ψ 1( y) A c o a
1 xdy − ydx = 1 2π (ab sin 2 θ + ab cos2 θ )dθ A= ∫ 2 ∫0 2 L 1 ab 2π dθ = abπ . = 2 ∫0
Jlin Institute of Chemical Technology
上页
下页
返回
退出
格林公式:
∂Q ∂P ∫∫( ∂x − ∂y )dxdy = ∫L Pdx + Qdy .
AB
y
A
D
o
L
B
x
解 引入辅助曲线 L , L = OA+ AB+ BO
应用格林公式,
P = 0, Q = x 有
Jlin Institute of Chemical Technology
上页
下页
返回
退出
用格林公式求闭曲线积分 xdy − ydx 例 4 计算 ∫ 2 2 , 其中 L 为一条无重点、分段光滑且 L x +y 不经过原点的连续闭曲线, L的方向为逆时针方向. 解 记L所围成的闭区域为D. 当(0, 0)∉D时, 由格林公式得
E
y = ϕ 2 ( x)
D
B
x = ψ 2 ( y) Cy = ϕ 1 ( x ) x b
D = {( x , y ) ϕ 1 ( x ) ≤ y ≤ ϕ 2 ( x ), a ≤ x ≤ b}
D = {( x , y )ψ 1 ( y ) ≤ x ≤ ψ 2 ( y ), c ≤ y ≤ d }
Jlin Institute of Chemical Technology
上页 下页 返回 退出
1 2 3
= ∫L Pdx + Qdy + ∫L Pdx + Qdy + ∫L Pdx + Qdy
1 2 3
= ∫L Pdx + Qdy
L3
D3
D2
L2
( L1, L2 , L3对D来说为正方向 )
D1
L1
L
Jlin Institute of Chemical Technology
上页
下页
返回
退出
证明(3) 证明(3)
单连通区域
在他的左边. 在他的左边 Jlin Institute of Chemical Technology
复连通区域
边界曲线的正向: 当观察者沿边界行走时,区域 区域D总 边界曲线的正向: 当观察者沿边界行走时 区域 总
上页
下页
返回
退出
设空间区域G, 如果G内任一闭曲面所围成的区域全 属于G, 则称G是空间二维单连通域; 如果G内任一闭曲线总可以张一片完全属于G的曲面, 则称G为空间一维单连通区域.
Jlin Institute of Chemical Technology
上页
下页
返回
退出
∂Q ∂P 两式相加得 ∫∫ ( ∂x − ∂y )dxdy = ∫L Pdx + Qdy D
证明(2) 证明(2)
若区域 D 由按段光 滑的闭曲线围成.如图, 将 D 分成三个既是 X − 型又是 Y − 型的区域 D1 , D2 , D3 .
2
3
= ( ∫L + ∫L + ∫L )( Pdx + Qdy ) = ∫L Pdx + Qdy
2 3 1
( L1, L2 , L3对D来说为正方向 )
Jlin Institute of Chemical Technology
上页
下页
返回
退出
格林公式:
∂Q ∂P ∫∫( ∂x − ∂y )dxdy = ∫L Pdx + Qdy .
L3 D3 D2 L2
D
D1
L1
L
∫∫ (
D
∂ Q ∂P ∂Q ∂ P − )dxdy = ∫∫ ( − )dxdy ∂x ∂y ∂y D + D + D ∂x
1 2 3
Jlin Institute of Chemical Technology
上页
下页
返回
退出
∂Q ∂P ∂Q ∂P ∂Q ∂P ∫∫ ( ∂x − ∂y )dxdy + ∫∫ ( ∂x − ∂y )dxdy + ∫∫ ( ∂x − ∂y )dxdy D D D
∫ xe
dy

Jlin Institute of Chemical Technology
上页
下页
返回
退出
格林公式:
∂Q ∂P ∫∫( ∂x − ∂y )dxdy = ∫L Pdx + Qdy .
D
•简化曲线积分 简化曲线积分
例 3 计算 ∫ xdy ,其中曲线 AB是半径为 r 的圆在第一 象限部分.
⇔ ∫ Pdx + Qdy + ∫
L1
Jlin Institute of Chemical Technology
L2

Pdx + Qdy = 0 ⇔ ∫
L1 + ( L2 )

Pdx + Qdy = 0 .
上页 下页 返回 退出
二、平面上曲线积分与路径无关的条件
曲线积分与路径无关
曲线积分 ∫ Pdx + Qdy 在 G 内与路径无关相当于沿 G 内任
r 2 cos2 θ + r 2 sin 2 θ dθ =2π. r2
上页 下页 返回 退出
二、平面上曲线积分与路径无关的条件
曲线积分与路径无关 设G是一个开区域, P(x, y)、Q(x, y)在区域G内具有一阶 连续偏导数. 如果对于G内任意指定的两个点A、B以及G内从点A到点 B的任意两条曲线L1、L2, 等式
L
意闭曲线 C 的曲线积分 ∫ Pdx + Qdy 等于零.
L
这是因为, 设L1和L2是G内任意两条从 点A到点B的曲线, 则L1+(L2−)是G内一条任 意的闭曲线, 而且有
∫L Pdx + Qdy = ∫L Pdx + Qdy
1 2
⇔ ∫ Pdx + Qdy − ∫ Pdx + Qdy = 0
L1 L2
x = ψ1( y)
E D
x =ψ 2 ( y)
= ∫CBE Q( x , y )dy − ∫CAE Q ( x , y )dy
= ∫CBE Q ( x , y )dy + ∫EAC Q ( x , y )dy
= ∫L Q ( x , y )dy
c o
C
x
同理可证
∂P − ∫∫ dxdy = ∫L P ( x , y )dx D ∂y
D
其中L是D的取正向的边界曲线. >>>
定理证明
应注意的问题: 对复连通区域D, 格林公式右端应包括 沿区域D的全部边界的曲线积分, 且边界的 方向对区域D来说都是正向.
相关文档
最新文档