六年级分数应用题单位一三大分类
小学六年级分数应用题单位1的确定
小学六年级:分数应用题中单位“1”的确定分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中120吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是 28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 37.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,96×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40%-25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得 x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。
小学六年级分数应用题单位1的确定
小学六年级:分数应用题中单位“1”的确定分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中120吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是 28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 37.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,96×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40%-25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得 x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。
六年级上分数百分数应用题分类总结
六年级上分数百分数应用题分类总结本文是一篇数学应用题分类总结文章,主要包括三类问题。
第一类问题是求一个数的几分之几(百分之几)是多少,需要用到乘法和连乘。
例如,某食油批发店上午卖出96箱花生油,下午卖出上午的5/12,需要求下午卖出的箱数;一根钢管长8米,用去一部分后还剩下全长的20%,需要求还剩下多少米。
第二类问题是求甲数是/占/相当于已数的几分之几(百分之几),需要用到除法。
例如,六(1)班有男生30人,女生20人,需要求男、女生各占全班的几分之几。
第三类问题是已知甲数的几分之几(或百分之几)是多少,需要用到除法或方程解。
例如,海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3,需要求海豹的寿命大约是多少年。
2330平方千米缩减到了大约1860平方千米,面积缩减了多少百分之几?6、一辆汽车从甲地到乙地,全程共600千米,第一天行了全程的三分之一,第二天行了剩下路程的一半,第三天行了剩下路程的三分之二,第四天行了剩下路程的四分之三,第五天行了剩下路程的五分之四,第六天行了剩下路程的六分之五。
这辆汽车比规定时间多行了多少百分之几的路程?7、某种药品原价100元,现在打7折出售,打折后的价格是多少?打折后比原价少多少百分之几?8、一件衣服原价200元,现在降价出售,降价后的价格是原价的75%,降价后比原价少多少百分之几?9、某地区去年的旅游人数是100万人次,今年增加到120万人次,今年比去年增加了多少百分之几?10、某种蔬菜去年产量是1000吨,今年增加到1200吨,今年比去年增加了多少百分之几?1、洞庭湖的面积从4350平方千米缩小到了约2700平方千米,面积减少了大约38.62%。
2、机器零件的成本从2.4元降低到了0.8元,成本降低了66.67%。
4、某玩具厂原计划要做550个布娃娃,实际比计划多做了50个,多做了9.09%。
5、西瓜太朗的书包原来每个96元,现在每个只要75元,降价了21.88%。
北师大版 六年级上册数学讲义-《分数(百分数)应用题》
成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。
二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。
一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。
(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。
(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。
小学六年级关于单位1的应用题
小学六年级关于单位1的应用题复分数应用题为了帮助孩子们复分数应用题,以下是一些做题方法和不同类型的应用题。
做题方法:1.找到单位“1”。
2.判断单位“1”是已知还是未知。
3.如果单位“1”已知,使用乘法;如果单位“1”未知,使用方程。
分数应用题类型:1.有关一个数的几分之几是多少的应用题。
2.有关比谁多(或少)几分之几的应用题。
3.已知部分求整体的应用题。
请注意,在这三种类型的分数应用题中,都可能存在单位“1”已知和未知的情况。
因此,在做题时需要注意区分。
专项练(在做题前,请先找到单位“1”):1.有关一个数的几分之几是多少的应用题1) 六年级一班有44名学生,参加合唱队的占全班学生的2/11.参加合唱队的人数是多少?2) 一只鸭子重3千克,一只鸡的重量是鸭子重量的2/3.这只鸡的重量是多少千克?3) 一个排球的价格是60元,篮球的价格是排球价格的5/6.篮球的价格是多少元?4) XXX的储蓄箱中有18元,XXX储蓄的钱是小亮的5/6.XXX储蓄了多少元?5) XXX有36枚邮票,小新的邮票是小红的5/6.小新有多少枚邮票?6) 六年级同学收集了180个易拉罐,是五年级收集的3/5.五年级收集了多少个?7) 两个小朋友跳绳,XXX跳了100下,XXX跳的是XXX跳的5/8.XXX跳了多少下?8) 小红体重42千克,是小丫体重的2/3.小丫体重是多少千克?9) 长跑锻炼,XXX跑了6千米,是小勇跑的3/5.XXX跑了多少千米?10) XXX读了一本书,上午读了26页,读了全书的2/7.全书共有多少页?2.有关比谁多(或少)几分之几的应用题1) 甲数是10,乙数比甲数多1/2.求乙数。
2) XXX六年级有360名学生,五年级比六年级的人数少1/5.五年级有多少人?3) 六年级同学给灾区的小朋友捐款,一班捐了500元,二班捐的比一班多的1/5.二班捐款多少元?4) 果园有120棵桃树,梨树比桃树少1/6.梨树有多少棵?5) 某鞋店进了600双男士皮鞋,进来的女士皮鞋比男士皮鞋多1/6.进来的女士皮鞋有多少双?6) 学校买了100个篮球,买的篮球比足球多1/4.买的足球有多少个?7) 红红身高140厘米,红红的身高比妹妹高2/5.妹妹身高多少厘米?8) 书店卖出120本故事书,卖出的故事书比科幻书少1/5.卖出的科幻书有多少本?9) 食堂运来80千克大米,运来的大米比面粉多1/7.运来的面粉多少千克?10) 一件羽绒服冬季卖260元。
六年级分数应用题单位一三大分类
六年级分数应用题单位一三大分类(一般我们把它分为:三类)解答分数乘法应用题时,应该借助于线段图来分析数量关系。
在画线段图时,先画单位“1”的量分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)第一类: 1、求一个数是另一个数的几分之几。
这类问题特点是:已知两个数量,比较它们之间的倍数关系,(解这类应用题用除法)。
方法1:一个数÷另一个数=几分之几例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?梨树的棵数÷苹果树的棵数 =梨树的棵数是苹果树的几分之几 15÷20 = 3 4 答:梨树的棵数是苹果树的3 4 。
例如:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数是梨树的几倍?方法2、求一个数比另一个数多几分之几。
相差量÷标准量=分率(多几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数比梨树多几分之几?(相差量是比较量。
)苹果树比梨树多的棵数÷梨树树的棵数=多几分之几(20—15)÷15 = 1 3 答:苹果树的棵数比梨树多1 3 。
方法3、求一个数比另一个数少几分之几。
相差量÷标准量=分率(少几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数比苹果树少几分之几?梨树比苹果树少的棵数÷苹果树的棵数 =少几分之几(20—15)÷20= 1 4 答:梨树的棵数比苹果树少1 4 。
练习题:求一个数是另一个数的几分之几。
1、六(1)班有男生30人,女生27人,男生人数是女生人数的几分之几?女生人数是男生人数的几分之几?男、女生人数各占全班人数的几分之几?男生人数比女生人数多几分之几?女生人数比男生人数少几分之几?2、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?3、五年级植树145颗,六年级植树210颗,六年级比五年级多几分之几?4、五年级植树145颗,六年级植树210颗,五年级比六年级少几分之几?5、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?6、五年级植树145颗,六年级比五年级少植树20颗,五年级比六年级多几分之几?7、五年级植树145颗,五年级比六年级多植树20颗,五年级比六年级多几分之几?8、五年级植树145颗,五年级比六年级多植树20颗,六年级比五年级少几分之几?9、一件大衣,平时售价400元,元旦期间,售价300元,元旦期间,这件大衣降价几分之几?10、小华家去年年收入3万元,今年年收入3.6万元,小华家今年年收入比去年收入增长几分之几?11、六(1)班女生人数占全班人数的4/7,女生人数比男生人数多几分之几?男生人数比女生人数少几分之几?12、一头牛的重量约为一头大象重量的1/10,一头大象的重量比一头牛的重量重几分之几?一头牛的重量比一头大象的重量轻几分之几?第二类:求一个数的几分之几是多少。
六上分数乘除应用题归类
六上分数乘除应用题归类
六年级上的分数乘除应用题主要考察了学生对分数乘法和除法的理解。
这类问题往往涉及几个关键概念,如单位“1”的量、分率、具体数量等。
以下是一些常见的分数乘除应用题归类:
1. 单位“1”的量已知:这种类型的问题通常会给出具体的数量和它所占的份数,然后要求找出单位“1”的量。
例如:某班有50名学生,其中30名是女生,那么男生人数占全班的几分之几?
2. 分率已知:这种类型的问题会给出单位“1”的量以及与它有关的某个数量对应的分率,然后要求求出这个具体数量。
例如:一项工作,甲单独做需要10天完成,乙单独做需要15天完成。
如果甲乙合作,多少天能完成?
3. 求一个量是另一个量的几分之几:这种类型的问题会给出两个有关系的数量,然后要求找出其中一个数量是另一个数量的几分之几。
例如:某校有学生1000人,其中男生有400人,女生有多少人?
4. 根据已知量求解未知量:这种类型的问题通常会给出两个有关系的数量,然后要求解出其中一个未知的具体数量。
例如:某班有男生25人,女生人数是男生的3倍少10人,那么这个班女生有多少人?
5. 求一个量比另一个量多(或少)几分之几:这种类型的问题会给出两个有关系的数量,然后要求找出其中一个数量比另一个数量多(或少)几分之几。
例如:某校去年有学生1000人,今年比去年增加了1/5,那么今年该校有多少学生?
以上就是六年级上分数乘除应用题的一些常见归类。
要解决这类问题,学生需要深入理解分数乘法和除法的概念,以及如何应用这些概念解决实际问题。
六年级上分数、百分数应用题分类总结
六年级上分数、百分数应用题分类总结六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)就是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的就是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数就是苹果的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数就是苹果的12%(5/8)。
(1)进的梨的箱数就是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨与苹果共有多少箱?6、小红体重42千克,小方体重38千克,小明的体重相当于小红与小方体重总与的50%,小明体重多少千克?7、从邮电局汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学与洒索玛小学的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,洒索玛小学有学生750人,哪个学校的男生多?多多少人?9、小强在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,她捐献了多少元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长就是12米,宽就是长的60%,这个花坛的面积就是多少?13、王格尔塘镇中心小学有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14、王格尔塘镇中心小学开展回收废纸活动,共回收废纸87、5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15、海象的寿命大约就是40年,海狮的寿命就是海象的3/4,海豹的寿命就是海狮的2/3。
海豹的寿命大约就是多少年?第二类:(1)求甲数就是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实际种树200棵,计划种树的棵树就是实际的百分之几?第三类:已知甲数的几分之几(或百分之几)就是多少,求甲数(用除法或者用方程解)1、工地运来的水泥有24吨,运来的水泥就是黄沙的5/6,运来的黄沙有多少吨?2、水果店运来苹果28箱,正好就是运来梨的箱数的45%,运来的梨有多少箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距多少千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要得到熟牛肉26千克,需要鲜牛肉多少千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积就是种小麦面积的36%,这个村种小麦多少公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,就是下半年产量的80%,这个电视机厂去年全年的产量就是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、王老师有1800元,就是张老师的12%,李老师的钱就是张老师的8%,李老师有多少元?11、汪刚瞧一本书,第一天瞧了18页,第二天瞧了全书的97%,还余45页没有瞧,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数就是白兔的60%,白兔比灰兔多10只,白兔有多少只?14、我已经打了2000个字,正好打了全文的40%。
小学六年级:分数应用题中单位“1”的确定方法,别再弄错了
小学六年级:分数应用题中单位“1”的确定方法,别再弄错了分数应用题中怎样分析数量之间的关系,如求一个数比另一个数多(或少)百分之几的问题.解决的核心是要弄清楚哪个量是“单位1”,这多(或少)的百分之几究竟是谁的百分之几?常用的方法有以下3种:(1)在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.如:有120吨货物,运走了24吨,还剩下百分之几没有运走?这个问题中12 0吨是总数量,24吨是部分数量,因此120吨就是单位1;六(1)班女生占总人数的3/5,六(1)班总人数就是单位1.(2)熟练掌握几个关键的字:“比”、“是”、“的”、“占”、“相当于”等. 一般情况下,“比”后“的”前的量是“单位1”,“是”、“相当于”、“占”后面的量是“单位1”.举例说明如下:将正确列式的选项填在相应的括号里.①李明家养了120只灰兔,白兔的只数是灰兔的40%,李明家养了多少只白兔?()②李明家养了120只灰兔,占白兔只数的40%,李明家养了多少只白兔?()③李明家养了120只灰兔,比白兔的只数少40%,李明家养了多少只白兔?()④李明家养了120只灰兔,白兔的只数比灰兔少40%,李明家养了多少只白兔?()A.120×(1-40%)B.120÷40%C.120÷(1-40%)D.120×40%解析:①中,“白兔的只数是灰兔的40% ”,“是”后面是灰兔,因此灰兔的只数是“单位1”;②中,“占白兔只数的40% ”,“占”后面是白兔,因此白兔的只数是“单位1”;③中,“比白兔的只数少40% ”,“比”后面是白兔,因此白兔的只数是“单位1”;④中,“白兔的只数比灰兔少40% ”,“比”后面是灰兔,因此灰兔的只数是“单位1”.正确答案是(1)D(2)B(3)C(4)A.(3)原数量与现数量的比较型问题,一般原数量是单位1.如:一种机器零件成本从8元降到6元,成本降低了百分之几?原来的数量是8元,现在是6元,单位1就是原数量8元.再如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12.象这样的水和冰两种数量到底谁作为单位“1”?我们只要看,原来的数量是谁,谁就是单位“1”.比如水结成冰,原来的数量是水,那么水就是单位“1”;冰融化成水,原来的数量是冰,所以冰的体积就是单位“1”.【易错题型练习】1.()比28千克多12.5%.A.3.5千克B.24.5千克C. 31.5千克D.32千克2.今年棉花产量比去年增加20%,就是()A.今年的棉花产量是去年的102%;B.去年棉花产量比今年少20%;C.今年的棉花产量是去年的120%;D.去年产量比今年少80%.3.李叔叔10月份看中的轿车是12万元,到了年底降到了10.8万元.问降了百分之几?4.李奶奶家养母鸡25只,公鸡20只.(1)李奶奶家养的母鸡比公鸡多百分之几?(2)李奶奶家养的公鸡比母鸡少百分之几?5.(1)利民服装厂计划11月份加工服装25万件,实际加工30万件.实际比计划多加工百分之几?(2)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件.实际比计划多加工百分之几?(3)利民服装厂计划11月份加工服装25万件,实际比计划多加工5万件. 实际加工的相当于计划的百分之几?(4)利民服装厂11月份实际加工服装30万件,比计划多加工5万件. 实际比计划多加工百分之几?6.把一个长6厘米、宽5厘米、高4厘米的长方体木块,加工成一个棱长是4厘米的正方体木块.体积减少了百分之几?7.甲校学生人数比乙校学生人数多25%,求乙校学生人数比甲校学生人数少百分之几?8.已知甲数比乙数多3/5,那么乙数比甲数少百分之几?9.一本科幻小说有96页,小军看了43页.小军说“剩下的比这本书的1/2少5页”,小丽说“剩下的比这本书的5/12多13页”.小军和小丽谁说的对?10.建筑工地要运进一批沙子,第一次运进总量的25%,第二次运进总量的40%,第二次比第一次多运30吨.这批沙子共有多少吨?11.一根竹竿不足8米,如果从一头量到4米做一记号,再从另一头量到4米做一记号,若这两个记号之间的长度是全长的25%,那么竹竿全长是多少米?【答案】1. 28千克就是单位1,比28多12.5%的数就是28×(1+12.5%)=31.5,正确答案选C.2.“比去年增加20%”,“比”后的“去年”就是单位1,因此今年的产量就是(1+20%)=120%,正确答案是C.3.原数量12万元就是单位1,(12-10.8)÷12=10%.4.(1)公鸡是单位1:(25-20)÷20=25%;(2)母鸡是单位1:(25-20)÷25=20%.5.本题的4问中,单位1都是计划加工服装的件数.(1)(30-25)÷25=20%;(2)5÷25=20%;(3)(25+5)÷25=120%;(4)5÷(30-5)=20%.6.虽然没有“比、是、的”这些关键的字,但是认真读题,不难看出题中的意思是“正方体的体积比长方体的体积减少了百分之几?”,因此长方体的体积是单位1.(6×5×4-4×4×4)÷(6×5×4)≈46.7%.7.1+25%=125% (125%-1)÷125%=20%.8.第一句是“甲数比乙数”,因此“比”后的乙数就是单位1,甲数就是(1+ 3/5)=8/5.;第二句“乙数比甲数”,因此甲数就是单位1,(8/5-1)÷8/5= 3 7.5%.9.小军说“剩下的比这本书的1/2少5页”,是以“这本书”为单位1的,96×1/2=48,48-5=43,而剩下的页数是(96-43)=53页,因此小军说错了;小丽说“剩下的比这本书的5/12多13页”,也是以“这本书”为单位1的,9 6×5/12=40,40+13=53,和剩下的页数是相等的,因此小丽说的对.10.题中的25%和40%都是针对总量的,也就是总量就是单位1,两次的差额40% -25%=15%,也是占总量的15%,30÷15%=200吨.11.画出示意图:25%就是两次重合的部分,设竹竿的全长是x米,由题意可得x+25%x=4+4 ,可解得x=6.4,即竹竿全长为6.4米.。
分数、百分数应用题分类总结(应用题)青岛版六年级下册数学
六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少 ?(单位“1”已知,用乘法,包括连乘)1、 某食油批发店,上午卖出花生油96箱,下午卖出的是上午的512,下午卖出多少箱?2、 一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、 养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来多少只小鸡?4、 一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是多少?5、海象的寿命大约是40年,海狮的寿命是海象的34,海豹的寿命是海狮的23。
海豹的寿命大约是多少年?第二类:求甲数是/占/相当于已数的几分之几(百分之几)?(用除法:甲数÷已数)1、 六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、 某村计划种树250棵,实际种树200棵,计划种树的棵树是实际的百分之几?第三类:已知甲数的几分之几(或百分之几)是多少,求甲数(单位“1”未知,用除法或者用方程解,对应的量除以对应的分数),运来的黄沙有多少吨?1、工地运来的水泥有24吨,运来的水泥是黄沙的562、水果店运来苹果28箱,正好是运来梨的箱数的45% ,运来的梨有多少箱?3、一辆客车从甲地开往乙地,已行240千米,还剩40%,甲乙两地相距多少千米?4、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?5、一辆汽车从甲地到乙地,行了全程的3,行了240千米,还剩多少千米没有行?46、王老师有1800元,是张老师的12% ,李老师的钱是张老师的8% ,李老师有多少元?7、汪刚看一本书,第一天看了18 页,第二天看了全书的97% ,还余45页没有看,这本书共有多少页?8、修一条公路,已经修了全长的4,未修的比已修的少28千米,这条公路全长多少千米?9、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有多少只?10、小明看一本书,第一天看了全书的30%,第二天看了全书的25%,两天工看了110页,这本书有多少页?第四类:求甲数比已数多(少)几分之几(百分之几)?(用除法:相差数÷单位1=多出的分率)1、我校男生500人,女生450人。
(完整)六年级分数除法应用题分类
分数除法应用题一、同步知识梳理1、求一个数的几分之几是多少 .用一个数×几分之几,也就是 :单位“1”的量 ×分率=分率对应量 2、求一个数是另一个数的几分之几.用一个数÷另一个数,也就是:对应量÷单位“1”的量=对应分率 3、已知一个数的几分之几是多少,求这个数.用一个数÷几分之几,也就是:对应量÷对应分率=单位“1”的量二、同步题型分析题型1:稍复杂的分数除法应用题例1、(1)希望小学四年级的人数比三年级多29 ,四年级是三年级的几分之几?(2)希望小学四年级有学生 286 人,是三年级911,三年级有多少人?(3)希望小学四年级有学生 286 人,比三年级多29 ,三年级有学生多少人?例2、(1)一种节能灯,现在每盏的成本比原来降低了53。
现在每盏的成本是原来的几分之几?(2)一种节能灯,现在每盏的成本是 4.6元,是原来的52。
原来每盏的成 本是多少元?(3)一种节能灯,现在每盏的成本是 4.6元,比原来降低了53。
原来每盏的成本是多少元?例3、冰融化成水后体积减少111,现有10立方分米的水,结成冰后体积是多少? 分析:“冰融化成水后体积减少111”是说“水比冰体积减少111”,所以冰是单位“1”。
练习:1、某果园今年植树棵树比去年多29 ,今年植树 220 棵,去年植树多少棵?2、商店运进苹果 280 箱,比运进的梨多25 。
运进的莉有多少箱?3、某机械厂现在生产一种零件成本是28元,比过去降低了51,过去生产这种零件成本是多少元?三、课堂达标检测(一)填空1、根据算式补充条件。
小明看一本故事书,已经看了60页, ,未看的有多少页? 60÷35 。
60×35 。
60×(1+35) 。
60×(1-35) 。
60÷(1+35) 。
60÷(1-35) 。
2、27吨的31是( )吨,( )千克的51是20千克,( )千克比16千克多43,25千克比( )千克少61。
分数应用题三大类训练[1]
第一讲分数应用题分数应用题是小学应用题的重难点之一。
解答分数应用题时,关键是判断哪个数量是标准量(即单位“l”),然后找出比较量的对应分率。
对于较复杂的分数、百分数应用题,可通过画线段图来揭示数量与分率的对应关系。
分数应用题大致可分为三种类型:一、求一个数是另一个数的几分之几的应用题这类应用题和整数应用题中求一个数是另一个数的几倍一样,都是比较两个数的倍数关系,都是用一个数除以另一个数,不同的是分数应用题所除的商是分率。
解答这类应用题时,应从“所求问题”入手.弄清是以什么数量为标准量,什么数量与标准量相比较就是比较量,其数量关系是:比较量÷标准量=分率。
或一个数÷另一个数=分率(即一个数是另一个数的几分之几),这类应用题还可以延伸为一个数比另一个数多(少)几分之几。
这时标准量仍为另一个数,而比较量则为一个数比另一个数多(少)的部分。
二、求一个数的几分之几的应用题求一个数的几分之几这种类型应用题是根据题目所给的标准量和比较量的对应分率求出比较量,解答这类应用题的关键:一是要确定题目中哪一个是标准量(标准量一般在题目的已知条件中),二是要根据题目所要求解答的问题,找出它所占标准量的对应分率,然后用标准量乘以分率,就可以求出它的比较量。
标准量×对应分率=比较量三、已知一个数的几分之几是多少,求这个数的应用题解答这类应用题的关键,同样应通过对分率的分析,要认真判断题目中是以什么数量为标准量(单位“1”),正确找出表示已知数量与所求问题之间的对应关系的分率,用比较量除以分率,就可以求出标准量,当标准量(单位“1”)未知时,设它为x,就将问题转化为求x的几分之几是多少,求出x的值。
如果这种分析方法比较熟悉以后,可以不必通过列方程,而直接引出算出式,解答其数量关系式是:比较量÷对应分率=标准量分数应用题又是小学应用题的巅峰,它可以汇集小学所有应用题关系,在数量关系方面错综复杂,为了更好地把握其结构和解答方法,我们将分数应用题分类更详细些。
六年级分数应用题单位一三大分类
分数应用题的分类之阳早格格创做(普遍咱们把它分为:三类)解问分数乘法应用题时,该当借帮于线段图去分解数量闭系.正在绘线段图时,先绘单位“1”的量分数应用题主要计划的是以下三者之间的闭系.1、分率:表示一个数是另一个数的几分之几,那几分之几常常称为分率.2、尺度量:解问分数应用题时,常常把题目中动做单位“1”的那个数,称为尺度量.(也喊单位“1”的数量)3、比比力:解问分数应用题时,常常把题目中共尺度量比较的那个数,称为比比力.(也喊分率对于应的数量)第一类: 1、供一个数是另一个数的几分之几. 那类问题特性是:已知二个数量,比较它们之间的倍数闭系,(解那类应用题用除法).要领1:一个数÷另一个数=几分之几比圆:书籍院的果园里有梨树15棵,苹果树20棵.梨树的棵数是苹果树的几分之几?梨树的棵数÷苹果树的棵数=梨树的棵数是苹果树的几分之几 15÷20 = 3 4 问:梨树的棵数是苹果树的3 4 .比圆:书籍院的果园里有梨树15棵,苹果树20棵.苹果树的棵数是梨树的几倍?要领2、供一个数比另一个数多几分之几.出进量÷尺度量=分率(多几分之几).比圆:书籍院的果园里有梨树15棵,苹果树20棵.苹果树的棵数比梨树多几分之几?(出进量是比比力.)苹果树比梨树多的棵数÷梨树树的棵数=多几分之几(20—15)÷15 = 1 3 问:苹果树的棵数比梨树多1 3 .要领3、供一个数比另一个数少几分之几.出进量÷尺度量=分率(少几分之几).比圆:书籍院的果园里有梨树15棵,苹果树20棵.梨树的棵数比苹果树少几分之几?梨树比苹果树少的棵数÷苹果树的棵数 =少几分之几(20—15)÷20= 1 4 问:梨树的棵数比苹果树少1 4 .训练题:供一个数是另一个数的几分之几.1、六(1)班有男死30人,女死27人,男死人数是女死人数的几分之几?女死人数是男死人数的几分之几?男、女死人数各占齐班人数的几分之几?男死人数比女死人数多几分之几?女死人数比男死人数少几分之几?2、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?3、五年级植树145颗,六年级植树210颗,六年级比五年级多几分之几?4、五年级植树145颗,六年级植树210颗,五年级比六年级少几分之几?5、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?6、五年级植树145颗,六年级比五年级少植树20颗,五年级比六年级多几分之几?7、五年级植树145颗,五年级比六年级多植树20颗,五年级比六年级多几分之几?8、五年级植树145颗,五年级比六年级多植树20颗,六年级比五年级少几分之几?9、一件大衣,通常卖价400元,元旦功夫,卖价300元,元旦功夫,那件大衣落价几分之几?10、小华家去年年支进3万元,今年年支进3.6万元,小华家今年年支进比去年支进删少几分之几?11、六(1)班女死人数占齐班人数的4/7,女死人数比男死人数多几分之几?男死人数比女死人数少几分之几?12、一头牛的沉量约为一头大象沉量的1/10,一头大象的沉量比一头牛的沉量沉几分之几?一头牛的沉量比一头大象的沉量沉几分之几?第二类:供一个数的几分之几是几.那类问题特性是:已知一个瞅做单位“1”的数,供它的几分之几是几,它反映的是完齐与部分之间闭系的应用题,解那类应用题用乘法.要领一:供一个数的几分之几是几.单位“1”的量×几几(分率)=分率对于应的量.比圆:书籍院购去100千克黑菜,吃了4 5 ,吃了几千克?黑菜的总沉量× 4 5 = 吃了的沉量 100 × 4 5 = 80 (千克)问:吃了80千克.要领二:供比一个数多几分之几的数是几.单位“1”的量×(1+ 几几)(分率)=是几(分率对于应的量).比圆:书籍院有20个脚球,篮球比脚球多1 4 ,篮球有几个?脚球的个数×(1+ 1 4 )=篮球的个数20×(1+ 1 4 )=25(个)问:篮球有25个.要领三:供比一个数少几分之几的数是几.单位“1”的量×(1- 几几)(分率)=是几(分率对于应的量).比圆:书籍院有20个脚球,篮球比脚球少1 5 ,篮球有几个?脚球的个数×(1 — 1 5 )=篮球的个数 20×(1 — 1 5 )=16(个)问:篮球有16个.四:变同情况比圆1:有一摞纸,共120弛.第一次用了它的35 ,第二次用了它的 1 6 ,二次一共用了几弛纸?纸的总弛数×( 35 + 1 6 )= 二次共用的弛数 120×( 35 + 1 6 )=92(弛)问:二次共用92弛.比圆2:有一摞纸,共120弛.第一次用了它的35 ,第二次用了它的 1 6 ,第一次比第二次多用了几弛纸?纸的总弛数×(35 - 1 6 )= 多用的弛数120×(35 - 1 6 )=52(弛)问:二次共用52弛.例3:小黑体沉42千克,小云体沉40千克,小新体沉相称于小黑战小云体沉总战的 1 2 .小新体沉是几千克?(二个数量的战干为单位“1”的量)(小黑体沉 + 小云体沉)× 1 2 = 小新体沉(42 +40)× 1 2 = 41 (千克)问:小新体沉41千克.第二类训练题:供一个数的几分之几是几.1.一桶油10千克,用去了那桶油的4 5 ,用去了几千克? 2.育民小教有男共教840人,女共教人数是男共教的4 7 ,那个书籍院有女共教几人?3.一堆煤12吨,又运去它的1 4 ,又运去的煤是几吨?4.西席公寓有三居室180套,二居室的套数是三居室的32,一居室的套数是二居室的 4 1 .西席公寓有一居室几套?5.阳光小教有男死750人,女死人数是男死的5 4 ,那个书籍院有女死几人?一公有教死几人?6、某工厂去年计划死产呆板2800台,本质多死产了1/4,本质死产了几台?7、甲、乙二天相距64千米,一辆汽车从甲天启往乙天,走了齐程的7/10,那辆汽车离乙天另有多近的路途?8、文具店有72个新书籍包,第一天出卖那批书籍包的1/3,第二天出卖的是第一天的1/2,第二天出卖书籍包几个?第三类:已知一个数的几分之几是几,供那个数.那类问题特性是:已知一个分数与那个分数对于应的本质数,供单位“1”的量.(解那类应用题用除法,也不妨用圆程去解问).要领一:已知一个数的几分之几是几,供那个数.(分率对于应的量)÷几几(分率)=单位“1”的量.比圆:一个女童体内所含火分有28千克,占体沉的4 5 .那个女童的体沉有几千克?体内火分的沉量÷ 4 5 =体沉 28 ÷ 4 5 = 35(千克)问:那个女童体沉35千克.要领二:已知比一个数多几分之几的数是几,供那个数是几?(分率对于应的量)÷(1+ 几几)(分率)=单位“1”的量.比圆:书籍院有20个脚球,脚球比篮球多1 4 ,篮球有几个?脚球的个数÷(1+ 1 4 )=篮球的个数20÷(1+ 1 4 )=16(个)问:篮球有16个.要领三:已知比一个数少几分之几的数是几,供那个数是几(分率对于应的量)÷(1 –几几)(分率)=单位“1”的量比圆:书籍院有20个脚球,脚球比篮球少1 5 ,篮球有几个?脚球的个数÷(1—1 5 )=篮球的个数20÷(1—1 5 )=25(个)问:篮球有25个.要领四:变同情况例1:某工程队建筑一条公路.第一周建了那段公路的14 ,第二周建筑了那段公路的2 7 ,第二周比第一周多建了2千米.那段公路齐少几千米?需要找出进数量对于应的分率第二周比第一周多建的千米数÷(27 —1 4 )= 公路的齐少2÷( 27 — 1 4 )=56(千米)问:那段公路齐少56千米.例2:一辆汽车从甲天启往乙天,第一小时止了齐程的14 ,第二小时止了齐程的518 ,二小时止了114 千米.二天之间的公路少几千米?已知数量对于应的分率是二个分率的战二小时止的路途÷(14 + 5 18 )=二天之间的公路少度114÷(14 + 5 18 )=216(千米)问:二天之间的公路少216千米.例3:火果店运一批火果.第一次运了50千克,第二次运了70千克,二次正佳运了那批火果的 1 4 . 那批火果有几千克?二个已知数量的战所对于应的分率(第一次运的沉量+第二次运的沉量)÷1 4 = 那批火果的沉量(50+70)÷1 4 =480(千克)问:那批火果480千克.第三类训练题:已知一个数的几分之几是几,供那个数. 1、一个数的65是12 5 ,供那个数.算法:-------------------------2、五年级有教死270人,是四年级人数的91 ,四年级有几人?算法:--------------------------------3、五年级有教死270人,比四年级多9 1 ,四年级有几人?算术要领:-------------------------------4、一种彩电,当前每台卖价1800元,是本去卖价的101 ,本去每台卖价几元? 算法: ------------------5一种彩电,当前每台卖价1800元,比本去落矮了10 1 ,本去每台卖价几元? 算法:--------------------概括训练题1、五年级运砖150块,六年级运的是五年级的2/5,六年级运砖几块?2、六年级运砖150块,六年级运的是五年级的2/5,五年级运砖几块?3、五年级运砖150块,六年级比五年级多运2/5,六年级比五年级多运几块?4、五年级运砖150块,比六年级少运2/5,六年级运了几块砖?5、五年级运砖150块,比六年级多运1/2,六年级运砖几块?6、某钢铁厂9月份死产钢铁4000吨,10月份死产的是9月份的7/8,11月份比10月份多死产1/8,11月份死产钢铁几吨?7、一本书籍,每天瞅14页,5天后还剩下齐书籍的3/8不瞅,那本有几页?一种商品当前48元,比本价落矮了1/5,落矮了几元?8、某书籍院四月份用电160度,比三月份俭朴了1/9,三月份用电几度,四月份比三月份俭朴用电几度?9、某皮鞋厂本月死产皮鞋1800单,比上月删产1/8,上月死产几单皮鞋?本月比上月多死产了几单皮鞋?10、小明瞅一本书籍,第一天瞅了一半,第二天瞅了齐书籍的1/4,还剩24页不瞅,那本书籍有几页?11、小明瞅一本240页的故事书籍,第一天瞅了3/8,第二天瞅了余下的2/5,还剩几页不瞅?12、有一桶油,第一次与出总数的1/4,第二次与出总数的2/5,第二次比第一次多与出7.5千克.第一次与出几千克?13饲养场养小鸡400只,比母鸡只数的1/2少100只,饲养场养的母鸡几只?。
分数乘法 单位“1”精讲
分数乘法 单位“1”精讲【知识点】1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量(单位“1”):解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)4、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
5、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
【例题讲解】例题1、求一个数是另一个数的几分之几学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?变式1、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?变式2、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?例题2、已知整体的量,部分是整体的几分之之几,求部分的量一根绳子有8米长,用去了总长的52,还剩下多少米?变式1、某车间总人数为45人,男工人占所有工人的94,男工人有多少人?例题3、已知一个数,比已知数多几分之几分的量是多少 今年的水果产量比去年多了61,去年的水果产量是30吨,问今年的水果产量是多少?变式1、大卡车的运载量为1200千克,小卡车的运载量比大卡车少41,小卡车的运载量是多少?变式2、小红家上个月的电费是78元,这个月比上个月节约61,问这个月的电费是多少元?例题4、已知一个数的几分之几是多少,求这个数。
一个儿童体内所含水分有28千克,占体重的4/5 。
这儿童的体重有多少千克?变式1、学校有20个足球,足球比篮球多 1/4,篮球有多少个?变式2、学校有20个足球,足球比篮球少 1/5 ,篮球有多少个?例题5、单位“1”不明确,或发生转移的情况商场一台电冰箱原价1500元,商家先提价51,过了半个月又降价51,这个时候冰箱比原价降了还是升了?现价原价相差多少元?变式1、冰化成水,体积减少111,水结成冰,体积增加了几分之几?变式2、状元工厂准备生产一批糖果,原计划4个月完成任务,实际3个月就完成了任务,问工作效率是提高了还是降低了?实际与计划工作效率相差几分之几?【课堂作业】1、五年级运砖150块,六年级比五年级多运52,六年级比五年级多运多少块?2、五年级运砖150块,比六年级多运21,六年级运砖多少块?3、某钢铁厂9月份生产钢铁4000吨,10月份生产的是9月份的7/8,11月份比10月份多生产1/8,11月份生产钢铁多少吨?4、一本书,每天看14页,5天后还剩下全书的3/8没有看,这本有多少页?一种商品现在48元,比原价降低了1/5,降低了多少元?5、某学校四月份用电160度,比三月份节约了1/9,三月份用电多少度,四月份比三月份节约用电多少度?6、某皮鞋厂本月生产皮鞋1800双,比上月增产1/8,上月生产多少双皮鞋?本月比上月多生产了多少双皮鞋?7、小明看一本书,第一天看了一半,第二天看了全书的1/4,还剩24页没有看,这本书有多少页?8、小明看一本240页的故事书,第一天看了3/8,第二天看了余下的2/5,还剩多少页没有看?8、有一桶油,第一次取出总数的1/4,第二次取出总数的2/5,第二次比第一次多取出7.5千克。
六年级分数(百分数)应用题典型解法的整理和练习
1、分数应用题类型总结第一类、一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
“是比占”相当于“=” “的”相当于“×”例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 = 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、一个数的几分之几。
未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
“是比占”相当于“=” “的”相当于“×”例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=251、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有桃树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 、看问题求小利有图书多少本; B 、小利的图书是小芳的3/4;从ab 看,如果知道小芳的图书本数,即可求出小利有多少本图书,小芳的图书是单位‘1’,小利图书=小芳图书×1/4,从题目看,小芳的图书本数没有直接给出,现在还不能求出小利的图书本数,接着看题目。
C 、小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数; D 、最后,彩蛋来了,“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
看明白了吗?从问题开始分析,根据条件一步步得到答案,像柯南找破案一样,很酷吧。
自己尝试做一下吧B 、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
分数应用题的分类
分数应用题的分类根据分数应用题的特点,可以把分数应用题分成三大类:一、求一个数是另一个数的几分之几(或百分之几、),1:求一个数是另一个数的几分之几?例:六年级<1>有男生30人,女生24人,女生是男生的几分之几?方法是:一个数÷另一个数算式: 30÷24 =这里“是”是关键词,也就是“是”字后面的是单位“1”2:求一个数比另一个数多几分之几(或百分之几、几倍)。
例:甲数是5,乙数是4,甲数比已数多几分之几》?方法是:(甲数-乙数) ÷乙数这里的关键词是“比”,比字后边的是单位“1”。
算式:(5-4)÷4 =3:求一个数比另一个数少几分之几(或百分之几、几倍)例:甲数是5,已数是4,已数比甲数少几分之几》?方法是:(甲数-乙数) ÷甲数=这里的关键词是“比”,比字后边的是甲数,所以甲数是单位“1”。
算式: (5-4)÷5 =此类题型特点:分率未知,求分率,用除法计算。
二:求一个数的几分之几(或百分之几、)是多少。
1、求一个数的几分之几(或百分之几、)是多少。
例、小明看一本60页的故事书,第一天看了这本书的32,第一天看的多少页?(这里“这本书”是单位“1”,是谁的32谁就是单位“1”.)特点:单位“1”的量已知,用乘法计算。
解题方法:单位“1”的量×所求数量的对应分率= 所求数量算式: 60×32=40(页)2、求比一个数多几分之几的数是多少。
某校六年级有男生120人,女生比男生多51,女生有多少人?特点:单位“1”的量已知,用乘法计算。
“多”是加法方法是: 单位“1”的量×(1+几分之几)=(1+几分之几)对应量算式:120×(1+51)=3、求比一个数少几分之几的数是多少。
例、某校六年级有女生120人,男生比女生少51,男生有多少人?特点:单位“1”的量已知,用乘法计算。
“少”是减法方法是: 单位“1”的量×(1-几分之几)=(1-几分之几)对应量算式:120×(1-51)=三、已知一个数的几分之几是多少,求这个数。
小学五六年级单位-1-应用题专项练习
小学分数应用题(单位”1“)专题讲解一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、分数应用题的分类。
(三类)1、求一个数的几分之几是多少。
(解这类应用题用乘法)这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是:单位“1”的量×分率=分率对应的量。
2、已知一个数的几分之几是多少,求这个数。
(解这类应用题用除法)这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量关系是:分率对应的量÷分率=单位“1”的量。
3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量 ÷标准量 = 分率。
三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。
判断单位“1”的量:知道单位“1”的量(用乘法),未知道单位“1”的量(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。
2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
小学六年级关于单位1的应用题
复习分数应用题一、做题方法:1、找单位“1”2、看单位“1”是已知还是未知3、单位“1”已知用乘法,单位“1”未知用方程。
二、分数应用题类型1、有关一个数的几分之几是多少的应用题2、有关比谁多(或少)几分之几的应用题3、已知部分求整体的应用题(注明:分数应用题的这三种类型中都有单位“1”已知和未知的情况。
请孩子做题时注意区分。
)三、专项练习.(要求做题前,先找单位“1”。
)(一)有关一个数的几分之几是多少的应用题1、六年级一班有学生44人,参加合唱队的占全班学生的2/11。
参加合唱队的有多少人?2、一只鸭重3千克,一只鸡的重量是鸭的2/3。
这只鸡重多少千克?3、一个排球定价60元,篮球的价格是排球的5/6。
篮球的价格是多少元?4、小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6。
小华储蓄了多少元?5、小红有36枚邮票,小新的邮票是小红的5/6。
小新有多少枚邮票?6、六年级同学收集180个易拉罐,是五年级收集的3/5,五年级收集多少个?7、两个小朋友跳绳,小明跳了100下,小明跳的是小强跳的5/8,小明跳了多少下?8、小红体重42千克,是小丫体重的2/3,小丫体重是多少千克?9、长跑锻炼,小雄跑了6千米,是小勇跑的3/5,小勇跑了多少千米?10、小王读一本书,上午读了26页,读了全书的2/7,全书共有多少页?(二)有关比谁多(或少)几分之几的应用题1、甲数是10,乙数比甲数多1/2,求乙数?2、光明小学六年级有学生360人,五年级比六年级的人数少1/5,五年级有多少人?3、六年级同学给灾区的小朋友捐款,一班捐了500元,二班捐的比一班多的1/5,二班捐款多少元?4、果园有桃树120棵,梨树比桃树少1/6,梨树有多少棵?5、某鞋店进来男士皮鞋600双,进来的女士皮鞋比男士皮鞋多1/6,进来的女士皮鞋有多少双?6、学校买了100个篮球,买的篮球比足球多1/4,买的足球有多少个?7、红红身高140厘米,红红的身高比妹妹高2/5,妹妹身高多少厘米?8、书店卖出120本故事书,卖出的故事书比科幻书少1/5,卖出的科幻书有多少本?9、食堂运来大米80千克,运来的大米比面粉多1/7,运来面粉多少千克?10、一件羽绒服冬季卖260元,冬季卖的钱比夏季高1/9,这件羽绒服在夏季卖多少元?(三)已知部分求整体的应用题1、一桶水,用去它的3/4,还剩15千克。
六年级分数乘除法应用题类型总结
分数应用题类型总结分数应用题解题口诀:找出关键句,判断单位“1”。
已知单位“1”,直接用乘法。
不知单位“1”,用除法第一类、求一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、已知一个数的几分之几,求这个数?未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=25 1、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有梨树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 看问题求小利有图书多少本;b 小利的图书是小芳的3/4;C 小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数;“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
1、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
六年级分数百分数应用题分类总结
六年级分数百分数应用题分类总结六年级分数、百分数应用题分类总结第一类:求一个数的几分之几(百分之几)是多少?(用乘法,包括连乘)1、某食油批发店,上午卖出花生油96箱,下午卖出的是上午的5/12,下午卖出多少箱?2、一根钢管长8米,用去一部分,还剩下全长的20%,还剩下多少米?3、水果店运来苹果20筐,运来的橘子的筐数是XXX的12%,运来橘子多少筐?4、修一段公路,第一天修300米,第二天比第一天的7/15少60米,第二天修多少米?5、水果店进苹果36箱,进的梨的箱数是XXX的12%(5/8)。
(1)进的梨的箱数是多少?(2)进的梨的箱数比苹果少多少箱?(3)进的梨和苹果共有多少箱?6、小红体重42千克,小方体重38千克,XXX的体重相当于小红和小方体重总和的50%,XXX体重多少千克?7、从XXX汇款需要交1%的汇费,寄2000元需要交多少汇费?8、王格尔塘镇中小学和XXX的男生人数分别占全校学生总数的52%,王格尔塘镇中小学有学生800人,XXX有学生750人,哪一个学校的男生多?多几何人?9、XXX在银行里储蓄了1200元钱,取出一部分捐献给灾区,还剩40%,他捐献了几何元?10、养鸡场用2400个鸡蛋孵小鸡,有5%没有孵出来,孵出来几何只小鸡?11、王格尔塘镇中小学有学生480人,只有10%的学生没有参加意外事故保险,参加保险的学生有多少?12、一个长方形花坛,长是12米,宽是长的60%,这个花坛的面积是几何?13.XXX有480人,只有5%的学生没有参加意外事故保险。
参加保险的学生有多少人?14XXX开展回收废纸活动,共回收废纸87.5吨,用废纸生产再生纸的再生率为80%,这些回收的废纸能生产多少吨再生纸?15.海象的寿命大约是40年,海狮的寿命是海象的3/4,海豹的寿命是海狮的2/3。
海豹的寿命大约是多少年?第二类:(1)求甲数是/占/相当于)已数的几分之几(百分之几)?(用除法:甲数÷已数)1、六(1)班有男生30人,女生20人,男、女生各占全班的几分之几?2、某村计划种树250棵,实践种树200棵,计划种树的棵树是实践的百分之几?第三类:已知甲数的几分之几(或百分之几)是几何,求甲数(用除法大概用方程解)1、工地运来的水泥有24吨,运来的水泥是黄沙的5/6,运来的黄沙有几何吨?2、水果店运来苹果28箱,正好是运来梨的箱数的45%,运来的梨有几何箱?3、一辆客车从甲地开往乙地,已行240千米,占全长的30%,甲乙两地相距几何千米?4、鲜牛肉煮熟后的重量只有原来的5/12,要获得熟牛肉26千克,需求鲜牛肉几何千克?5、王格尔塘下摊村种玉米120公顷,种玉米的面积是种小麦面积的36%,这个村种小麦几何公顷?6、我校有女生160人,正好占男生人数的42%,全校有多少人?7、某电视机厂去年上半年生产电视机48万台,是下半年产量的80%,这个电视机厂去年全年的产量是多少万台?8、一辆汽车从甲地到乙地,行了全程的3/4,行了240千米,还剩多少千米没有行?9、一辆汽车以每小时45千米的速度从甲地到乙地,3小时行了全程的15%,这辆汽车还要行多少千米才能到达乙地?10、XXX有1800元,是XXX的12%,XXX的钱是XXX的8%,XXX有多少元?11、XXX看一本书,第一天看了18页,第二天看了全书的97%,还余45页没有看,这本书共有多少页?12、修一条公路,已经修了全长的4/5,未修的比已修的少28千米,这条公路全长多少千米?13、草地上的灰兔的只数是白兔的60%,白兔比灰兔多10只,白兔有几何只?14、我已经打了2000个字,正好打了全文的40%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数应用题的分类令狐采学(一般我们把它分为:三类)解答分数乘法应用题时,应该借助于线段图来分析数量关系。
在画线段图时,先画单位“1” 的量分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)第一类:1、求一个数是另一个数的几分之几。
这类问题特点是:已知两个数量,比较它们之间的倍数关系,(解这类应用题用除法)。
方法1:一个数÷另一个数=几分之几例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?梨树的棵数÷苹果树的棵数 =梨树的棵数是苹果树的几分之几15÷20 = 3 4 答:梨树的棵数是苹果树的3 4 。
例如:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数是梨树的几倍?方法2、求一个数比另一个数多几分之几。
相差量÷标准量=分率(多几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数比梨树多几分之几?(相差量是比较量。
)苹果树比梨树多的棵数÷梨树树的棵数=多几分之几(20—15)÷15 = 1 3 答:苹果树的棵数比梨树多1 3 。
方法3、求一个数比另一个数少几分之几。
相差量÷标准量=分率(少几分之几)。
例如:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数比苹果树少几分之几?梨树比苹果树少的棵数÷苹果树的棵数 =少几分之几(20—15)÷20= 1 4 答:梨树的棵数比苹果树少1 4 。
练习题:求一个数是另一个数的几分之几。
1、六(1)班有男生30人,女生27人,男生人数是女生人数的几分之几?女生人数是男生人数的几分之几?男、女生人数各占全班人数的几分之几?男生人数比女生人数多几分之几?女生人数比男生人数少几分之几?2、五年级植树145颗,六年级植树210颗,五年级是六年级的几分之几?3、五年级植树145颗,六年级植树210颗,六年级比五年级多几分之几?4、五年级植树145颗,六年级植树210颗,五年级比六年级少几分之几?5、五年级植树145颗,六年级比五年级少植树20颗,六年级比五年级少几分之几?6、五年级植树145颗,六年级比五年级少植树20颗,五年级比六年级多几分之几?7、五年级植树145颗,五年级比六年级多植树20颗,五年级比六年级多几分之几?8、五年级植树145颗,五年级比六年级多植树20颗,六年级比五年级少几分之几?9、一件大衣,平时售价400元,元旦期间,售价300元,元旦期间,这件大衣降价几分之几?10、小华家去年年收入3万元,今年年收入3.6万元,小华家今年年收入比去年收入增长几分之几?11、六(1)班女生人数占全班人数的4/7,女生人数比男生人数多几分之几?男生人数比女生人数少几分之几?12、一头牛的重量约为一头大象重量的1/10,一头大象的重量比一头牛的重量重几分之几?一头牛的重量比一头大象的重量轻几分之几?第二类:求一个数的几分之几是多少。
这类问题特点是:已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,解这类应用题用乘法。
方法一:求一个数的几分之几是多少。
单位“1”的量×几几(分率)=分率对应的量。
例如:学校买来100千克白菜,吃了 4 5 ,吃了多少千克?白菜的总重量× 4 5 = 吃了的重量100 × 4 5 = 80 (千克)答:吃了80千克。
方法二:求比一个数多几分之几的数是多少。
单位“1”的量×(1+ 几几)(分率)=是多少(分率对应的量)。
例如:学校有20个足球,篮球比足球多 1 4 ,篮球有多少个?足球的个数×(1+ 1 4 )=篮球的个数20×(1+ 1 4 )=25(个)答:篮球有25个。
方法三:求比一个数少几分之几的数是多少。
单位“1”的量×(1- 几几)(分率)=是多少(分率对应的量)。
例如:学校有20个足球,篮球比足球少 1 5 ,篮球有多少个?足球的个数×(1 — 1 5 )=篮球的个数20×(1 — 1 5 )=16(个)答:篮球有16个。
四:变异情况例如1:有一摞纸,共120张。
第一次用了它的 35 ,第二次用了它的 1 6 ,两次一共用了多少张纸?纸的总张数×( 35 + 1 6 )= 两次共用的张数120×( 35 + 1 6 )=92(张)答:两次共用92张。
例如2:有一摞纸,共120张。
第一次用了它的 35 ,第二次用了它的 1 6 ,第一次比第二次多用了多少张纸?纸的总张数×( 35 - 1 6 )= 多用的张数120×( 35 - 1 6 )=52(张)答:两次共用52张。
例3:小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的 1 2 。
小新体重是多少千克?(两个数量的和做为单位“1”的量)(小红体重 + 小云体重)× 1 2 = 小新体重(42 +40)× 1 2 = 41 (千克)答:小新体重41千克。
第二类练习题:求一个数的几分之几是多少。
1.一桶油10千克,用去了这桶油的4 5 ,用去了多少千克? 2.育民小学有男同学840人,女同学人数是男同学的4 7 ,这个学校有女同学多少人?3.一堆煤12吨,又运来它的1 4 ,又运来的煤是多少吨?4.教师公寓有三居室180套,二居室的套数是三居室的32,一居室的套数是二居室的4 1 。
教师公寓有一居室多少套?5.阳光小学有男生750人,女生人数是男生的5 4 ,这个学校有女生多少人?一共有学生多少人?6、某工厂去年计划生产机器2800台,实际多生产了1/4,实际生产了多少台?7、甲、乙两地相距64千米,一辆汽车从甲地开往乙地,走了全程的7/10,这辆汽车离乙地还有多远的路程?8、文具店有72个新书包,第一天卖出这批书包的1/3,第二天卖出的是第一天的1/2,第二天卖出书包多少个?第三类:已知一个数的几分之几是多少,求这个数。
这类问题特点是:已知一个分数与这个分数对应的实际数,求单位“1”的量。
(解这类应用题用除法,也可以用方程来解答)。
方法一:已知一个数的几分之几是多少,求这个数。
(分率对应的量)÷几几(分率)=单位“1”的量。
例如:一个儿童体内所含水分有28千克,占体重的4 5 。
这个儿童的体重有多少千克?体内水分的重量÷ 4 5 =体重28 ÷ 4 5 = 35(千克)答:这个儿童体重35千克。
方法二:已知比一个数多几分之几的数是多少,求这个数是多少?(分率对应的量)÷(1+ 几几)(分率)=单位“1”的量。
例如:学校有20个足球,足球比篮球多1 4 ,篮球有多少个?足球的个数÷(1+ 1 4 )=篮球的个数20÷(1+ 1 4 )=16(个)答:篮球有16个。
方法三:已知比一个数少几分之几的数是多少,求这个数是多少(分率对应的量)÷(1 –几几)(分率)=单位“1”的量例如:学校有20个足球,足球比篮球少 1 5 ,篮球有多少个?足球的个数÷(1—1 5 )=篮球的个数20÷(1—1 5 )=25(个)答:篮球有25个。
方法四:变异情况例1:某工程队修筑一条公路。
第一周修了这段公路的14 ,第二周修筑了这段公路的2 7 ,第二周比第一周多修了2千米。
这段公路全长多少千米?需要找相差数量对应的分率第二周比第一周多修的千米数÷( 27 — 1 4 )= 公路的全长2÷( 27 — 1 4 )=56(千米)答:这段公路全长56千米。
例2:一辆汽车从甲地开往乙地,第一小时行了全程的14 ,第二小时行了全程的518 ,两小时行了114 千米。
两地之间的公路长多少千米?已知数量对应的分率是两个分率的和两小时行的路程÷(14 + 5 18 )=两地之间的公路长度114÷(14 + 5 18 )=216(千米)答:两地之间的公路长216千米。
例3:水果店运一批水果。
第一次运了50千克,第二次运了70千克,两次正好运了这批水果的1 4 。
这批水果有多少千克?两个已知数量的和所对应的分率(第一次运的重量+第二次运的重量)÷1 4 = 这批水果的重量(50+70)÷1 4 =480(千克)答:这批水果480千克。
第三类练习题:已知一个数的几分之几是多少,求这个数。
1、一个数的65是12 5 ,求这个数。
算法:-------------------------2、五年级有学生270人,是四年级人数的91 ,四年级有多少人?算法:--------------------------------3、五年级有学生270人,比四年级多9 1 ,四年级有多少人?算术方法:-------------------------------4、一种彩电,现在每台售价1800元,是原来售价的101 ,原来每台售价多少元? 算法: ------------------5一种彩电,现在每台售价1800元,比原来降低了10 1 ,原来每台售价多少元? 算法:--------------------综合练习题1、五年级运砖150块,六年级运的是五年级的2/5,六年级运砖多少块?2、六年级运砖150块,六年级运的是五年级的2/5,五年级运砖多少块?3、五年级运砖150块,六年级比五年级多运2/5,六年级比五年级多运多少块?4、五年级运砖150块,比六年级少运2/5,六年级运了多少块砖?5、五年级运砖150块,比六年级多运1/2,六年级运砖多少块?6、某钢铁厂9月份生产钢铁4000吨,10月份生产的是9月份的7/8,11月份比10月份多生产1/8,11月份生产钢铁多少吨?7、一本书,每天看14页,5天后还剩下全书的3/8没有看,这本有多少页?一种商品现在48元,比原价降低了1/5,降低了多少元?8、某学校四月份用电160度,比三月份节约了1/9,三月份用电多少度,四月份比三月份节约用电多少度?9、某皮鞋厂本月生产皮鞋1800双,比上月增产1/8,上月生产多少双皮鞋?本月比上月多生产了多少双皮鞋?10、小明看一本书,第一天看了一半,第二天看了全书的1/4,还剩24页没有看,这本书有多少页?11、小明看一本240页的故事书,第一天看了3/8,第二天看了余下的2/5,还剩多少页没有看?12、有一桶油,第一次取出总数的1/4,第二次取出总数的2/5,第二次比第一次多取出7.5千克。