角形面积公式——之水平宽铅垂高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的面积公式计算较多,垂高面积公式会更加的方便. 公式呈现
如右图所示,过△ABC 三个顶点分别作x 线,其中过A ,C 两条垂线与x 轴交于点E ,F 线段EF 的长度称为△ABC 的水平宽,而过B 的垂线与边AC 交于点D ,线段BD 度,对应铅垂高取经过夹在中间的顶点(B
公式推导
如右图,过点A ,C 作铅垂高BD 上的高AG ,则有S △ABC =S △ABD +S △BCD =11
22
AG BD CH +g g =()12AG CH BD +g =1
2
EF BD g .
公式应用1——上下垂线
例1(适合八年级) 如图,已知边长为a 形E ABCD ,为AD 的中点,P 为CE 的中点,F 为中点,则△BFD 的面积是( ).
A .
281a B . 2161a C . 2
32
1a D .
说明:本题可以连结CF ,由△BCD 的面积减去与△CDF 利用三角形水平宽铅垂高面积公式求得.
解析:不妨以B 为原点,BC 为x 轴,BA 为y 轴建立平面直角坐标系,则点C 坐标为(a ,0),点D 坐标为(a ,a ),
∵E 为AD 的中点,∴点E 坐标为(
1
2a ,a ), ∵P 为CE 的中点,∴点P 坐标为(34a ,1
2a ),
∵F 为BP 的中点,∴点F 坐标为(38a ,1
4a ).
过F 点作BC 的垂线交BD 于点G ,则点G 的横
坐标为3
8
a ,又直线BD 的解析式为y x =,∴点
G 的纵坐标为3
8
a ,
∴△BDF 的铅垂高FG =38a -14a =1
8
a ,
∴S △BDF =21111
22816BC FG a a a ==g g .
公式应用2——左右垂线
例2(适合八年级) 如图,
直线13
y x =-
+与x 轴,y 轴分别交于点A ,B ,以线段AB 为直角
边在第一象限内作等腰直角△ABC ,且
∠BAC =90°.如果在第二象限内有一点P 1,2a ⎛⎫
⎪⎝⎭
,
且△ABP 的面积与Rt △ABC 的面积相等,求a 的值.
说明:本题常见解法有三,一是连结OP ,△ABP 的面积=△AOB 面积+△BOP 面积-△AOP 面积,然后用a 的代数式表示,与Rt △ABC
相等列方程求解;
二是将点C 沿AB 翻折到C ’位置,则△ABC △ABC ’面积相等,若△ABP 的面积与Rt △ABC P
相等,则可得PC ’三是考虑水平宽铅垂高公式来计算,但如果从A ,B ,P 三点向x 轴作垂线,较为复杂,不妨换个角度应用公式,即从A ,B ,P 向y 轴作垂
解.解析:过线,则OB 而PE 度)由AB 的解析式可以得OA ,OB =1,而P
的纵坐标为1
2
,所以E 为AB 的中点, 所以PE =-a 从而有11221222a ⎛⨯⨯=⨯⨯-+ ⎝⎭
, 解得42
a =-.
公式应用3——内外垂线
从例2可以看到,三条垂线不一定作向x 轴,也可以作向y 轴,仿公式用即可.一般地,水平宽取的是最外的两条直线的距离,但这个做法不是绝对的,有1
2
EF CG g . 简单推导:
S △ABC =S △ACG -S △BCG =
11
22
CG EH CG FH -g g =1
2
EF CG g . 说明:当取相邻两条垂线距离为水平宽时,第三条垂线将与第三边(AB )的延长线相交,此时顶点(C )到交点(G )的距离为铅垂高(CG ).
例3(适合九年级) 如图所示,直线l :y =3x +3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线过点B ,C 和D (3,0). (1)求直线BD 和抛物线的解析式.
(2)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N ,B ,D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.
(3)在抛物线上是否存在点P ,使S △PBD =6?若存在,求出点P 的坐标;若不存在,说明理由.
(4)点Q 使得CQ BQ 的值最大,若存在,请直接写出点Q 解析:本题只解(3),由已知条件可以得抛物线解析式为243y x x =-+,BD 解析式为
3y x =-+,由于问题中并未交待P 点在BD 的
上方或下方,故要分类讨论:
当P 在BD 下方时,如右上图,水平宽为OD =3,铅垂高为PE =2
2
4333x x x x x -++-=-; 当P 在BD 上方时,P 可能在左,也可以在右,但两者本质相同,如右下图,此时依然取OD =3
为水平宽,则铅垂高
PE =
2
23433x x x x x -+-+-=-+.
两种情况合起来就是21
3362
x x ⨯⨯-=,即
234x x -=±.
当234x x -=-时,方程无实数根,即P 在BD 下方时,不可能面积为6;
当234x x -=时,解得121,4x x =-=,
x
y
E
D
B
A C O
P
x
y E
D
B
C
O
P