一元二次方程易错点复习
一元二次方程难题、易错题
一元二次方程难题、易错题1.一元二次方程已知关于x的方程mx^2-3(m-1)x+2m-3=0,求证:m取任何实数时,方程总有实数根。
解析:根据一元二次方程的判别式,当判别式大于等于0时,方程有实数根。
将方程化简得到 mx^2-(3m-3)x+2m-3=0,判别式为 (3m-3)^2-8m(m-1) = m^2-2m+1 = (m-1)^2 ≥ 0,因此对于任何实数m,方程都有实数根。
已知关于x的一元二次方程ax^2+bx+1=0有两个相等的实数根,求ab^2-22(a-2)+b-4的值。
解析:由于方程有两个相等的实数根,根据一元二次方程的求根公式,可得到 b^2-4ac=0,即 b^2-4a=0.将b^2-4a代入ab^2-22(a-2)+b-4中,得到 ab^2-22(a-2)+b-4 = ab^2-22b+44+b-4 = ab^2-21b+40 = (ab-16)(b-5)。
因此,要求的值为(ab-16)(b-5)。
2.方程的实数根1)已知关于x的方程2x^2+kx-1=0,求证:方程有两个不相等的实数根。
解析:对于一元二次方程ax^2+bx+c=0,当判别式b^2-4ac>0时,方程有两个不相等的实数根。
将2x^2+kx-1=0的判别式代入得到k^2+8 ≥ 0,即对于任何实数k,方程都有两个不相等的实数根。
2)若方程2x^2+3x+1=0的一个根是-1,求另一个根及k 值。
解析:由于方程的一个根是-1,则另一个根为 -1/2.将-1和-1/2代入方程得到两个方程:2-3+k=0和4+3/2+k=0,解得k=-11/2.3.三角形形状已知a、b、c分别是△ABC的三边,其中a=1,c=4,且关于x的方程x^2-4x+b=0有两个相等的实数根,试判断△XXX的形状。
解析:根据三角形两边之和大于第三边的性质,可知bc,b+c>a,a+c>b,因此△ABC是一个等腰三角形。
方程与不等式之一元二次方程易错题汇编及答案解析
方程与不等式之一元二次方程易错题汇编及答案解析一、选择题1.已知关于X 的方程x 2 +bx+a=0有一个根是-a (a ≠0),则a-b 的值为( ) A .1B .2C .-1D .0 【答案】C【解析】【分析】由一元二次方程的根与系数的关系x 1•x 2=c a、以及已知条件求出方程的另一根是-1,然后将-1代入原方程,求a-b 的值即可.【详解】∵关于x 的方程x 2+bx+a=0的一个根是-a (a≠0),∴x 1•(-a )=a ,即x 1=-1,把x 1=-1代入原方程,得:1-b+a=0,∴a-b=-1.故选C .【点睛】本题主要考查了一元二次方程的解.解题关键是根据一元二次方程的根与系数的关系确定方程的一个根.2.若代数式226(3)1x x m x ++=+-,则m =( )A .-8B .9C .8D .-9【答案】C【解析】【分析】已知等式右边利用完全平方公式化简,利用多项式相等的条件求出m 的值即可.【详解】 226(3)1x x m x ++=+-=x 2+6x+8,可得m=8,故选:C.【点睛】此题考查配方法的应用,解题关键在于掌握计算公式.3.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①若b =ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则方程x 2﹣bx +ac =0也一定有两个不等的实数根;③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;④若x 0是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2ax 0+b )2,其中正确的( )A .只有①②③B .只有①②④C .①②③④D .只有③④【答案】B【解析】【分析】判断上述方程的根的情况,只要看根的判别式△=-24b ac 的值的符号就可以了.④难度较大,用到了求根公式表示0x .【详解】解:①若2b ac =,方程两边平方得b 2=4ac ,即b 2﹣4ac =0,所以方程ax 2+bx +c =0一定有两个相等的实数根;②若方程ax 2+bx +c =0有两个不等的实数根,则b 2﹣4ac >0方程x 2﹣bx +ac =0中根的判别式也是b 2﹣4ac >0,所以也一定有两个不等的实数根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac 2+bc +c =0成立,当c ≠0时ac +b +1=0成立;当c =0时ac +b +1=0不成立; ④若x 0是一元二次方程ax 2+bx +c =0的根,可得204b b ac x -±-=, 把x 0的值代入(2ax 0+b )2,可得b 2﹣4ac =(2ax 0+b )2,综上所述其中正确的①②④.故选:B .【点睛】此题主要考查了根的判别式及其应用.尤其是④难度较大,用到了求根公式表示0x ,整体代入求2204(2)b ac ax b -=+.总结:一元二次方程根的情况与判别式△的关系:(1)△0>⇔方程有两个不相等的实数根;(2)△0=⇔方程有两个相等的实数根;(3)△0<⇔方程没有实数根.4.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【解析】【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∴不论a 取何值,x ≤﹣3.故选D .【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.用配方法解方程2640x x ++=时,原方程变形为( )A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.7.某厂四月份生产零件100万个,第二季度共生产零件282万个.设该厂五、六月份平均每月的增长率为x ,那么x 满足的方程是( )A .100(1+x )2=282B .100+100(1+x )+100(1+x )2=282C .100(1+2x )=282D .100+100(1+x )+100(1+2x )=282【答案】B【解析】【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【详解】五月份的产量=100(1+x ),六月份的产量=1002(1)x +, 根据题意可得:100+100(1+x )+1002(1)x +=282.故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为2(1)a x b +=,a 为起始时间的有关数量,b 为终止时间的有关数量.8.李师傅去年开了一家商店,将每个月的盈亏情况都作了记录.今年1月份开始盈利,2月份盈利2000元,4月份盈利恰好2880元,若每月盈利的平均增长率都相同,这个平均增长率是( )A .20%B .22%C .25%D .44%【答案】A【解析】【分析】设这个平均增长率为x ,根据等量关系:2月份盈利额×(1+增长率)2=4月份的盈利额列出方程求解即可.【详解】设这个平均增长率为x ,根据题意得:2000(1+x )2=2880,解得:x 1=20%,x 2=-2.2(舍去).答:这个平均增长率为20%.故选A .【点睛】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x )2=后来的量,其中增长用+,减少用-,难度一般.9.某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价( )A .10%B .15%C .20%D .25%【答案】C【解析】【分析】根据原来售价是4000元,经过两次降价且降价百分率相同后销售单价为2560元,设两次降价的百分率为x ,一次降价为()40001x -,两次降价为()240001x -得出 ()240001x -=2560,算出x .【详解】解:设两次降价的百分率为x ,由题意得:4000(1﹣x )2=2560∴(1﹣x )2=256400∴1﹣x =±0.8∴x 1=1.8(舍),x 2=0.2=20%故选:C .【点睛】熟悉一元二次方程的增长率和下降率的相关题型,注意分析是一次增长(下降),还是二次增长(下降)问题.10.设α,β是方程2x 9x 10++=的两根,则()()22α2009α1β2009β1++++的值是( )A .0B .1C .2000D .4000000 【答案】D【解析】【分析】由已知方程的系数可得两根的关系(根据韦达定理或者叫根与系数的关系),再将所求代数式变形可求得代数式结果.【详解】解:∵α,β是方程2x 9x 10++=的两个实数根∴2211,910,9101αβααββ==++=++=g ∴()()()()2222α2009α1β2009β1α9α12000β9β120002000200040000004000000αβαβαβ++++=++++++===g 故选D.【点睛】(1)将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.(2)二次函数为2ax x 0(0)b c a ++=不等于的两个不同实数根:α,β满足=,b c a aαβαβ+-=g . 11.某商品原售价225元,经过连续两次降价后售价为196元,设平均每次降价的百分率为x ,则下面所列方程中正确的是( )A .22251196x (﹣)=B .21961225x (﹣)=C .22251196x (﹣)= D .21961225x (﹣)=【答案】A【解析】【分析】 可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=225,把相应数值代入即可求解.【详解】第一次降价后的价格为225×(1﹣x ),第二次降价后的价格为225×(1﹣x )×(1﹣x ),则225(1﹣x )2=196.故选A .【点睛】本题考查了一元二次方程的应用-增长率问题.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.13.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,那么a的取值范围是( ) A.a>1 B.a=1 C.a<1 D.a<1且a≠0【答案】D【解析】【分析】由于原方程是一元二次方程,首先应该确定的是a≠0;然后再根据原方程根的情况,利用根的判别式建立关于a的不等式,求出a的取值范围.【详解】解:由于原方程是二次方程,所以a≠0;∵原方程有两个不相等的实数根,∴△=b2-4ac=4-4a>0,解得a<1;综上,可得a≠0,且a<1;故选D.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,2018年比2017年产量的增长率为x,2018年底产量达到144吨,则x满足()A.100(1+x)2=144 B.100(1+8.1%)(1﹣x)=144C.100(1+8.1%)+x=144 D.100(1+8.1%)(1+x)=144【答案】D【解析】【分析】由题意知,2017年蔬菜产量为:100(1+8.1%),2018年蔬菜产量为:100(1+8.1%)(1+x),然后根据2018年底产量达到144吨列方程即可.【详解】解:∵某种植基地2016年蔬菜产量为100吨,2017年比2016年产量增长8.1%,∴2017年蔬菜产量为:100(1+8.1%),∵2018年比2017年产量的增长率为x,2018年底产量达到144吨,∴2018年蔬菜产量为:100(1+8.1%)(1+x)=144,故选D.【点睛】本题主要考查了由实际问题抽象出一元一次方程的应用,熟练掌握这些知识是解题的关键.15.已知关于x 的一元二次方程3x 2+4x ﹣5=0,下列说法正确的是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .没有实数根D .无法确定【答案】B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.16.已知关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1,x 2.若11x +21x =4m ,则m 的值是( ) A .2B .﹣1C .2或﹣1D .不存在 【答案】A【解析】【分析】先由二次项系数非零及根的判别式△>0,得出关于m 的不等式组,解之得出m 的取值范围,再根据根与系数的关系可得出x 1+x 2=2m m +,x 1x 2=14,结合1211+x x =4m ,即可求出m 的值.【详解】∵关于x 的一元二次方程mx 2﹣(m+2)x+4m =0有两个不相等的实数根x 1、x 2, ∴()202404m m m m ≠⎧⎪⎨∆=+-⋅>⎪⎩, 解得:m >﹣1且m≠0,∵x 1、x 2是方程mx 2﹣(m+2)x+4m =0的两个实数根, ∴x 1+x 2=2m m +,x 1x 2=14, ∵1211+x x =4m ,∴214m m +=4m , ∴m=2或﹣1,∵m >﹣1,∴m=2,故选A .【点睛】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:根据二次项系数非零及根的判别式△>0,找出关于m 的不等式组;牢记两根之和等于﹣b a 、两根之积等于c a.17.已知关于x 的一元二次方程20ax bx c ++=的根为2和3,则关于x 的一元二次方程20ax bx c --=的根为( ).A .2,3--B .6,1-C .2,3-D .1,6-【答案】B【解析】【分析】由2,3是一元二次方程ax 2+bx+c=0的两个实数根,可以得到如下四个等式: 2+3=-b a=-5,2×3=c a =6;再根据问题的需要,灵活变形. 【详解】 因为2和3是方程ax 2+bx+c=0的根,所以2+3=-b a ,2×3=c a ; 故一元二次方程ax 2-bx-c=0的根满足x 1x 2=-c a =-6①,x 1+x 2=-b =ab a -=5②; 将A 、B 、C 、D 的值代入①②式中,只有B 项满足.故答案选B.18.我校图书馆三月份借出图书70本,计划四、五月份共借出图书220本,设四、五月份借出的图书每月平均增长率为x ,则根据题意列出的方程是( )A .70(1+x )2=220B .70(1+x )+70(1+x )2=220C .70(1﹣x )2=220D .70+70(1+x )+70(1+x )2=220【答案】B【解析】【分析】根据题意,找出等量关系,列出方程即可.【详解】三月份借出图书70本四月份共借出图书量为70×(1+x )五月份共借出图书量为70×(1+x )2则70(1+x )+70(1+x )2=220.故选:B .【点睛】本题考查一元二次方程的应用,分析题干,列出方程是解题关键.19.关于x 的一元二次方程220x ax --=的根的情况( )A .有两个实数根B .有两个不相等的实数根C .没有实数根D .由a 的取值确定 【答案】B【解析】【分析】计算出方程的判别式为△=a 2+8,可知其大于0,可判断出方程根的情况.【详解】方程220x ax --=的判别式为280a ∆=+>,所以该方程有两个不相等的实数根, 故选:B .【点睛】本题主要考查一元二次方程根的判别式,掌握根的判别式与方程根的情况是解题的关键.20.以3和4为根的一元二次方程是( )A .27120x x -+=B .27120x x ++=C .27120x x +-=D .27120x x --=【答案】A【解析】【分析】分别求出各个选项中一元二次方程的两根之和与两根之积,进行判断即可.【详解】A 、在x 2﹣7x+12=0中,x 1+x 2=7,x 1x 2=12,此选项正确;B 、在x 2+7x+12=0中,x 1+x 2=﹣7,x 1x 2=12,此选项不正确;C 、在x 2+7x ﹣12=0中,x 1+x 2=7,x 1x 2=﹣12,此选项不正确;D、在x2﹣7x﹣12=0中,x1+x2=﹣7,x1x2=﹣12,此选项不正确;故选:A.【点睛】本题主要考查了根与系数的关系的知识,解答本题的关键是要掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba,x1•x2=ca.。
一元二次方程根的判别及根与系数的关系易错点剖析
根与系数关系的应用错例示例一元二次方程中根与系数的关系为:如果ax 2+bx +c =0(a ≠0)的两个根是x 1,x 2,那么x 1+x 2=-b a ,x 1 · x 2=ca.此结论成立的条件是“原方程存在两个根x 1和x 2”.一、例1 判断正误:方程:ax 2+bx +c =0(a ≠0)的两根之和为-ba.( )错解:对.正解:错误.因不知方程是否有根.二、例2 若方程x 2+(m 2 - l)x +l +m =0的两根互为相反数,则m 的值 为( )(A)l 或一1; (B)l ; (C)-l ; (D)0. 错解:选A .正解:选C .因当m =l 时,原方程无实根.三、例3 下列方程中,两根之和为13的方程是( )(A)3x 2-x +2=0; (B)3x 2+x +2=0; (C)x 2-13x +3=0; (D)6x 2 -2x 一1=0.错解:选A 或C .正解:选D .因方程A ,C 均无实根.四、例4 已知关于x 的方程x 2-(2m +1)x + (m +l)2=0的两个实数根的平方和为7,求m 的值.错解:设方程两根为x 1,x 2,则x 1+x 2=2m +l ,x 1·x 2=(m +1)2.∵x 12+x 22=7,∴(x 1+x 2)2-2x 1x 2=7,(2m +l) 2 -2(m +l)2=7.即2m 2=8,m =±2.正解:设方程两根为x 1,x 2,则x 1+x 2=2m +l ,x 1·x 2=(m +1)2.∵x 12+x 22=7,∴(x 1+x 2)2-2x 1x 2=7,(2m +l),2 -2(m +l)2=7.即2m 2=8,m =±2.当m =2时,原方程b 2-4ac <0,∴m =-2.五、例5 已知方程x 2 + 2(m -l)x +3m 2-11=0,问m 为何实数时,方程有两个根x 1、x 2,且x 1x 2+x 2x 1=-1.错解:由根与系数的关系有x I +x 2=-2(m -1) ,x 1·x 2=3m 2-11,∵x 1x 2+x 2x 1=-1,∴x 12+x 22x 1x 2=-1,∴(x 1+x 2)2-2x 1x 2x 1x 2=-1,∴[-2(m -1)]2-2(3m 2-11)3m 2-11=-1,即 m 2-8m +15=0,∴m 1=3,m 2=5.正解:由根与系数关系有x 1+x 2=-2(m -1) ,x 1·x 2=3m 2-11,∵x 1x 2+x 2x 1=-1,∴x 12+x 22x 1x 2=-1,∴(x 1+x 2)2-2x 1x 2x 1x 2=-1,∴[-2(m -1)]2-2(3m 2-11)3m 2-11=-1,即 m 2-8m +15=0,∴m 1=3,m 2=5.因m =3或5时,方程b 2-4ac <0,∴不存在m 使x 1x 2+x 2x 1=-1成立.六、忽视方程中的隐含条件例6 已知关于x 的方程(k -1)x 2+3=0有实数根,求k 的取值范围.错解: ∵方程有实数根,∴b 2-4ac =2-4(k -1)×3≥0,解得k ≤65. ∵k -1≠0,解得k ≠1.∴k 的取值范围是k ≤65且k ≠1.错解分析:一元二次方程的解题中考虑b 2-4ac ≥0及k -1≠0是必要的,但本题忽视了两点:一是方程可能是一元一次方程,也可能是一元二次方程,题中未明确是一元二次方程,因此应有k -1=0;二是忽视了隐含条件2k ≥0.七、不能正确使用根的判别式例7不解方程,判断方程根的情况:4x2-3x+1=2.错解:∵a=4,b=-3,c=1,∴b2-4ac=(-3)2-4×4×1=9-16=-7<0.∴原方程没有实数根.错解分析:使用根的判别式时,必须先将方程整理成ax2+bx+c=0(a≠0)的形式.正解:整理,得4x2-3x-1=0,∵a=4,b=-3,c=-1,∴b2-4ac=(-3)2-4×4×(-1)=9+16=25>0.∴原方程有两个不相等的实数根.一元二次方程错解示例一、例1a为何值时,方程a2x2+(2a-1)x+1=0有两个实数根?错解:∵ 方程有两个实数根∴ △≥0,即(2a-1)2-4a2≥0,.解得a≤14错解分析:当a=0时,原方程为一元一次方程-x+1=0,它只有一个实数根,不合题意.且a≠0.正确的答案应为a≤14二、例2已知a、b满足a2-2a-1=0,b2-2b-1=0,则a b=.b a错解:由题设可知a、b是方程x2-2x-1=0的两根,∴a +b =2,ab =-1,∴a b b a +=22a b ab +=2()2a b ab ab +-=421+-=-6.错解分析:在a ≠b 时,a 、b 是方程x 2-2x -1=0的两根;在a =b 时,ab b a+=1+1=2.故本题的正确答案应是-6或2.三、例3 已知α、β是方程x 2+5x +3=0的两个实数根,则的值为 .错解:设A =,两边平方得A 2=α2·βα+2αβ+β2·αβ=4αβ,∴A =αβ=3,∴所求式的值为错解分析:由题意可知.α+β=-5,αβ=3,由此可知α<0,β<0,因此0.所以正确的结论应为- 四、例4 已知关于x 的方程x 2-(2m -1)x +(m -3)2=0的两个实数根的平方和为25,求m 的值.错解:设两根为x 1、x 2,则x 1+x 2=2m -1,x 1x 2=(m -3)2,∵x 12+x 22=(x 1+x 2)2-2 x 1x 2=(2m -1)2-2(m -3)2=25,化简得m 2+4m -21=0,解得m 的值为3或-7.错解分析:当m =-7时,原方程为x 2+15x +100=0,此时,△=152-400<0,原方程无实数根,故m =-7应舍去,本题正确答案应为m =3.五、例5 已知x =-1是关于x k =的一个根,求以2k 和k +1为根的一元二次方程.错解:把x =-1=k ,解得k 1=2,k 2=-1.当k=2时,2k=4,k+1=3,以4、3为根的方程是y2-7y+12=0;当k=-1时,2k=-2,k+1=0,以-2、0为根的方程是y2+2y=0.错解分析:=k成立,显然k=-1应舍去.故本题的答案只有一个,y2-7y+12=0.六、例6 x1、x2是关于x的方程x2-(2m-1)x+(m2+2m-4)=0的两个实数根,求x12+x22的最小值.错解:由已知得x1+x2=2m-1,x1x2=m2+2m-4,∴x12+x22=(x1+x2)2-2 x1x2=(2m-1)2-2(m2+2m-4)=2m2-8m+9=2(m-2)2+1.∴当m=2时,x12+x22的最小值是1.错解分析:解法中忽略了“方程有实数根”这一条件.当m=2时,原方程为x2-3x+4=0,方程没有实数根.正确的解法还必须求出m的取值范围.∵原方程有两个实数根,∴△=(2m-1)2-4(m2+2m-4)≥0,即-12m+17≥0,∴m≤1712.∴当m=1712时,x12+x22的最小值是12172.七、例7 已知x1、x2是方程2x2-2kx+12k(k+4)=0的两个实数根,且满足等式 (x1-1)(x2-1)=109100,求k的值.错解: (x1-1)(x2-1)=x1x2-(x1+x2)+1=14k(k+4)-k+1=14k2+1,由已知条件得14k2+1=109100,k2=36100,k=±35.错解分析:∵x1、x2是方程的两个实数根,∴△≥0.即4k2-4k(k+4)≥0,化简得k≤0.故正确的答案应是k=-3.5与根的判别式有关的常见错解示例一、忽略二次项系数不为零例1已知关于x的一元二次方程mx2-4x+4=0有实数根,求m的取值范围.错解:∵ 方程有实数根,∴△=(-4)2-4×m×4≥0,解得m≤1.错解分析:一元二次方程mx2-4x+4=0有实数根的条件是:(1)二次项系数m≠0;(2)△≥0.错解只考虑了(2),而忽视了(1),即忽视了二次项系数不为零这一条件.故正确结果是:m≤1且m≠0.值得说明的是,若题中没有条件“一元二次”四个字,则前面的解法是正确的.这是为什么?请大家思考.二、忽略根的判别式例2已知关于x的一元二次方程x2-2(m-2)x+m2=0.问是否存在实数m,使方程的两个实数根的平方和等于56?若存在,求出m的值,若不存在,请说明理由.错解:设方程的两个实数根为x1,x2,则x1+x2=2(m-2),x1x2=m 2.∴x12+x22=(x1+x2)2-2x1x2=4(m -2)2-2m 2=2m 2-16m +16.若x 12+x 22=56,则有m 2-8m -20=0. 解得m 1=10,m 2=-2.故符合题意的实数m 存在,它的值为10或-2.错解分析:当m =10时,原方程x 2-16x +100=0,判别式△=(-16)2-4×100<0,故方程无实数根.因此,m =10应舍去.错误原因是忽视两根的判别式大于等于0这一条件.本题正确答案应为m =-2.三、忽略题设条件例3 当m 是什么整数时,关于x 的方程mx 2-4x +4=0①与x 2-4mx +4m 2-4m -5=0②的解都是整数?错解:由已知,得12222=16-16m 0,=(-4m)-4(4m -4m-5)0,∆≥⎧⎨∆≥⎩解得-54≤m ≤1.因此,满足条件的整数m 为-1,0,1.错解分析: 当m =-1时,方程①的解不是整数;当m =0时,方程①不是一元二次方程,方程②的解不是整数;当m =1时,两个方程的解都为整数,方程①的解是x 1=x 2=2,方程②的解是x 1=-1,x 2=5.显然,m =-1与m =0不合题意,应舍去.忽视了m 的取值应使所给两个方程的“解都是整数”这个重要的题设条件,正确答案为m =1.四、忽视隐含条件例4 已知关于x 的一元二次方程(1-2k )x 2-x -1=0有两个不相等的实数根,求k 的取值范围.错解:∵方程有两个不相等的实数根, ∴ △=(-)2+4(1-2k )>0, 解得k <2.∵ 1-2k ≠0,即k ≠12,∴ k 的取值范围是k <2且k ≠12.错解分析:这里忽视了一次项系数-须有意义,即k +1≥0这个隐含条件.正解:由题设可得2(4(12)0,10,120.⎧∆=-+->⎪+≥⎨⎪-≠⎩k k k 解得-1≤k <2且k ≠12.因此,k 的取值范围是-1≤k <2且k ≠12.五、忽略“方程有实根”的含义,导致字母系数取值范围缩小例5.已知关于x 的方程22(1)10kx k x k -++-=,当k 为何值时,方程有实数根? 错解:因为方程有实数根,所以Δ≥0,即[]22(1)4(1)0k k k -+--≥,解得k ≥-31.又因为0k ≠, 所以k ≥-31且0k ≠.错解分析:“方程有实根”在此题中应理解为:方程有一个实数根或有二个实数根,故此题应分一元一次方程与一元二次方程两种情况讨论:(1)当k =0时,原方程为一元一次方程-2x=1,其实根为x=12-,故k 可取0.(2)当k≠0时,原方程为一元二次方程,须满足Δ≥0,即k ≥-31且0k ≠,1. 综合(1)(2)知:k≥-3。
一元二次方程易错点
一元二次方程易错点
一元二次方程易错点主要有:
1. 未正确识别方程的形式:有时候题目给出的方程可能不是标
准的一元二次方程形式,容易误以为是其他类型的方程。
因此,要注
意检查方程中是否有二次项、一次项和常数项,确保正确识别方程类型。
2. 错误地标记未知数:在解一元二次方程时,常常用字母表示
未知数,如通常用x表示。
然而,在一些情况下,可能会错误地将其
他字母或符号当作未知数。
因此,应该仔细检查并确保正确标记未知数。
3. 求平方根时忽略正负号:在解一元二次方程时,通常需要使
用平方根。
但容易忽略平方根的正负号,导致忽略了可能存在的另一
个解。
解决这个问题的方法是在解方程时考虑两个解,一个是取正平
方根,另一个是取负平方根。
4. 运算错误导致计算结果出错:在解一元二次方程时,可能会
有繁琐的运算过程,容易出现计算错误。
例如,错误地计算平方项、
未正确对齐等。
为避免这些错误,应该仔细地进行每一步的运算、检
查计算过程和结果。
5. 未检查解是否符合题目条件:解一元二次方程后,得到的解
有时候需要符合题目中给出的条件。
如果未仔细检查解是否满足条件,可能会得到不正确的结果。
因此,在解完方程后,应该将解代入原方
程中检查是否成立。
以上就是一元二次方程易错点的一些常见问题,注意避免这些错误,能够提高解题的准确性。
第07讲 一元二次方程(易错点梳理+微练习)(原卷版)
第07讲一元二次方程易错点梳理易错点梳理易错点01忽略一元二次方程中0 a 这一条件在解与一元二次方程定义有关的问题时,一定要注意一元二次方程的二次项系数不等于0这一条件。
易错点02利用因式分解法解一元二次方程时出错(1)对因式分解法的基本思想理解不清,没有将方程化为两个一次因式相乘的形式;(2)在利用因式分解法解一元二次方程时忽略另一边要化成0;(3)产生丢根的现象,主要是因为在解方程时,出现方程两边不属于同解变形,解题时要注意方程两边不能同时除以一个含有未知数的项。
易错点03利用公式法解方程时未将方程化为一般形式在运用公式法解方程时,一定要先将方程化为一般形式,从而正确的确定c b a ,,,然后再代入公式。
易错点04根的判别式运用错误运用根的判别式判断一元二次方程的根的情况时,必须先把方程化为一般形式,正确的确定c b a ,,。
易错点05列方程解应用题时找错等量关系列方程解应用题的关键是找对等量关系,根据等量关系列方程。
例题分析考向01一元二次方程的有关概念例题1:(2021·山东聊城·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为()A .2或4B .0或4C .﹣2或0D .﹣2或2例题2:(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的例题3:(2013·浙江丽水·中考真题)一元二次方程()2x 616+=可转化为两个一元一次方程,其中一个一元一次方程是x 64+=,则另一个一元一次方程是()A .x 64-=-B .x 64-=C .x 64+=D .x 64+=-例题4:(2021·内蒙古赤峰·中考真题)一元二次方程2820x x --=,配方后可形为()A .()2418x -=B .()2414x -=C .()2864x -=D .()241x -=考向03一元二次方程根的判别式和根与系数的关系例题5:(2021·广西河池·中考真题)关于x 的一元二次方程220x mx m +--=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .实数根的个数由m 的值确定例题6:(2021·山东济宁·中考真题)已知m ,n 是一元二次方程220210x x +-=的两个实数根,则代数式22m m n ++的值等于()A .2019B .2020C .2021D .2022考向04列一元二次方程解应用题例题7:(2021·山东滨州·中考真题)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.(1)求该商品每次降价的百分率;(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?例题8:(2021·山西·中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).微练习一、单选题1.(2021·福建·厦门一中三模)对于一元二次方程20ax bx c ++=()0a ≠,下列说法:①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=()0a ≠必有两个不相等的实根;③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+.其中正确的有()A.1个B.2个C.3个D.4个2.(2021·黑龙江牡丹江·模拟预测)关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,则m 的值为()A.0B.±3C.3D.-33.(2021·广西玉林·一模)关于x 的一元二次方程:24ax bx c ++=的解与方程2540x x -+=的解相同,则a b c ++=()A.1B.2C.3D.44.(2021·河南涧西·三模)定义()224a b a a b =+-+★,例如()2373372428=+⨯-+=★,若方程0x m =★的一个根是1-,则此方程的另一个根是()A.2-B.3-C.4-D.5-5.(2021·广东·惠州一中一模)若m ,n 为方程2310x x --=的两根,则m n +的值为()A.1B.1-C.3-D.36.(2021·广东·西南中学三模)下列一元二次方程中,没有实数根的是()A.2x 2﹣4x +3=0B.x 2+4x ﹣1=0C.x 2﹣2x =0D.3x 2=5x ﹣27.(2021·陕西·西安市铁一中学模拟预测)抛物线222y x x a =++-与坐标轴有且仅有两个交点,则a 的值为()A.3B.2C.2或3-D.2或38.(2021·广东·珠海市紫荆中学三模)直线y x a =+经过第一、三、四象限,则关于x 的方程220x x a ++=实数解的个数是()A.0个B.1个C.2个D.以上都有可能9.(2021·四川省宜宾市第二中学校一模)受新冠影响,某股份有限公司在2020年3月份销售口罩的核心材料熔喷无纺布的收入为2.88万元,而在1月份的销售收入仅为2万元,那么该股份有限公司在2020年第一季度的销售收入月增长率为()A.0.2%B.-2.2%C.20%D.220%10.(2021·安徽·合肥市第四十五中学三模)每年春秋季节流感盛行,极具传染性如果一人得流感,不加干预,则经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x 人,则下列方程正确的是()A.2181x x ++=B.()2181x +=C.()21181x x +++=D.()()211181x x ++++=11.(2021·黑龙江佳木斯·三模)商场购进一批衬衣,进货单价为30元,按40元出售时,每天能售出500件.若每件涨价1元,则每天销售量就减少10件.为了尽快出手这批衬衣,而且还能每天获取8000元的利润,其售价应该定为()A.50元B.60元C.70元D.50元或70元12.(2021·河北桥东·二模)若x 比()1x -与()1x +的积小1,则关于x 的值,下列说法正确的是()A.不存在这样x 的值B.有两个相等的x 的值C.有两个不相等的x 的值D.无法确定二、填空题13.(2021·湖南师大附中博才实验中学二模)已知1x =是一元二次方程20x x c ++=的解,则c 的值是___________.14.(2021·广东·江门市第二中学二模)设a 为一元二次方程22520210x x +-=的一个实数根,则26152a a ++=______.15.(2021·内蒙古包头·三模)已知a 是方程260x x +-=的解,求22341121a a a a a -⎛⎫-+÷= ⎪+++⎝⎭_____________.16.(2021·内蒙古·呼和浩特市回民区教育局教科研室二模)方程x 2=x 的解为___.17.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)小丽在解一个三次方程x 3-2x +1=0时,发现有如下提示:观察方程可以发现有一个根为1,所以原方程可以转化为(x -1)(x 2+bx +c )=0.根据这个提示,请你写出这个方程的所有的解______.18.(2021·江苏·苏州市立达中学校二模)若关于x 的一元二次方程2(2)20mx m x +++=的根都是整数,则整数m 的最大值是________.三、解答题19.(2021·广东·深圳市宝安中学(集团)模拟预测)解下列方程.(1)()2233x x -=-.(2)22530x x -+=.20.(2021·陕西·西安益新中学模拟预测)解方程:2x (x ﹣3)+x =321.(2021·广东·铁一中学二模)解方程:()2131x x -=+22.(2021·浙江·杭州市丰潭中学二模)已知代数式5x 2﹣2x ,请按照下列要求分别求值:(1)当x =1时,代数式的值.(2)当5x 2﹣2x =0时,求x 的值.23.(2021·广东·珠海市文园中学三模)已知关于x 的一元二次方程2(21)210k x x -++=有实数根.(1)求k 的取值范围;(2)取12k =-,用配方法解这个一元二次方程.24.(2021·重庆实验外国语学校三模)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a%,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.25.(2021·辽宁·建昌县教师进修学校二模)某儿童玩具店销售一种玩具,每个进价为60元,现以每个100元销售,每天可售出20个,为了迎接六一儿童节,店长决定采取适当的降价措施,经市场调查发现:若每个玩具每降价1元,则每天多售出2个.设该玩具的销售单价为x(元),日销售量为y(个).(1)求y与x之间的函数关系式.(2)为了增加盈利,减少库存,且日销售利润要达到1200元,销售单价应定为多少元?(3)若销售单价不低于成本价,每个获利不高于成本价的30%,将该玩具的销售单价定为多少元时,玩具店每天销售该玩具获得的利润最大?最大利润是多少元?。
一元二次方程知识梳理和易错题
一元二次方程一、下列关于x 的方程,哪些是一元二次方程?如果不是,请在方程下写出理由。
1.(1)3522=+x ;(2)062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x2.关于x 的方程032)4()16(22=++++-m x m x m 当m______时,是一元二次方程,当m______时,是一元一次方程。
二、关于x 的方程()()02132=+----m x m x m 是一元二次方程,则二次项是 ,一次项系数是 ,常数项是 。
三、根的判别式的运用:1.若方程2(2)2(1)0m x m x m +-++=只有一个实数根,试判断方程2(1)220m x m x m +-+-=的根的情况。
2.当m 取什么值时,关于x 的方程0)22()12(222=++++m x m x 。
(1)有两个相等实根;(2)有两个不相等的实根;(3)没有实根。
3.m 为何值时,关于x 的方程()0324122=-+++m mx x m 的根满足下列情况:(1)有两个不相等的实数;(2)有两个相等的实数根;(3)没有实数根4.当m 为什么值时,关于x 的方程01)1(2)4(22=+++-x m x m(1)有两个实数根。
(2)有实数根。
注意:题2、3的区别、题3与4的区别。
5.关于x 的一元二次方程032)1(22=--+++m m x x m 有一个根是0,求m 的值6.如果关于x 的一元二次方程2690kx x -+=有两个实数根,求k 的取值范围7.当m 为何值时,方程032)1(2=+++-m mx x m 有两个实数根8.若一元二次方程02)12(22=+-+-x x x x k 有实数根, 求k 的取值范围小结:题5—8在解题中要注意什么?9.已知关于x 的一元二次方程20x m --=有两个不相等的实数根,求m 的取值范围10.关于x 的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围上述两题要注意什么?四、综合运用:1.已知12)1)(3(2222=++-+b a b a ,求22b a +的值.2.已知多项式22x 2xy y x y 1-+-+-的值为0,求x-y 的值3.如果012=--x x ,求2009223++-x x 的值4.若二次三项式2542+-kx x 是完全平方式,则 k 值为________.5.已知关于x 的一元二次方程02=++c bx x 的两根为2,121=-=x x ,则c bx x ++2分解因式的结果是______6.如果二次三项式k x x 2432+-在实数范围内总能分解成两个一次因式的积,求k 的取值范围7.已知关于x 的方程222(1)50x m x m ++++=有两个不相等的实数根,化简:|1|m -8.如果m 是实数,且不等式1)1(+>+m x m 的解集是x<1,那么关于x 的一元二次方程041)1(2=++-m x m mx 的根的情况如何?9.三角形的两边的长是3和4,第三边的长是方程035122=+-x x 的根,求三角形的周长10. 等腰三角形的周长是12,它的一边长是关于x 的方程2x 6x 80-+=的一个实数根,求它的腰长和底边长?11. 等腰△ABC 中,BC=8,AB,BC 的长是关于x 的方程0102=+-m x x 的两根,则三角形的周长是多少?12.已知关于方程21(21)4()02x k x k -++-=⑴求证:无论k 取何值,这个方程总有实数根; ⑵若等腰A B C ∆的一边长为4,另两边长b 、c 恰好是这个方程的两个实数根,求这个三角形的周长.。
一元二次方程、不等式(考点串讲课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
(2)利用二次函数的单调性比较大小,一定要将待比较的两数通过
二次函数的对称性转化到同一单调区间上比较.
4.二次函数最值问题的类型及解题思路
(1)类型:
①对称轴、区间都是给定的;
②对称轴动、区间固定;
③对称轴定、区间变动.
(2)解决这类问题的思路:抓住“三点一轴”数形结合,“三
例3 [多选/2023山东枣庄调研]已知关于 x 的不等式( x +2)( x -4)+ a <0( a <0)的解
集是( x 1, x 2),则(
ABD
)
A. x1+x2=2
B. x1x2<-8
C. -2<x1<x2<4
D. x2-x1>6
[解析] 解法一 ( x +2)( x -4)+ a <0即( x +2)( x -4)<- a ,作出 f ( x )=( x +2)( x -
=5或 t =-2(舍去);当 t < < t +2,即- < t < 时,函数 f ( x )min= f ( )=- ≠6.
2
2
2
2
4
综上所述, t =-4或 t =5.
命题拓展
[变条件]若函数 f ( x )= x 2-3 x -4在区间[ t , t +2]上的最大值为6,则实数 t = -2
=-1 时,A={1},满足题意.所以 a=0 或 a=±1,故选 D.
1
1
2.已知 P(m,n)是一次函数 y=- x+ 图象上的一个点,且函数 y=x2+mx+n 的两个零点的平方和等于
2
2
1,则 m+n=( B
A.3
)
B.1
C.1 或-错误!
一元二次方程总复习全章知识点梳理.
一元二次方程总复习考点 1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为 0,这样的方程叫一元二次方程.一般形式:ax 2+bx+c=0(a≠ 0 。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点 2:一元二次方程的解法1. 直接开平方法2. 配方法:3.公式法:4. 因式分解法:因式分解的方法:提公因式、公式法、十字相乘法、分组分解法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a ≠ 0.因当 a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定 a , b ,c 的值;②若 b 2 -4ac <0,则方程无解.★⑶利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4 2 =3 (x +4中,不能随便约去 x +4。
⑷注意:解一元二次方程时一般不使用配方法 (除特别要求外但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴ b 2-4ac ≥ 0⇔方程有两个不相等的实数根;⑵ b 2-4ac=0⇔方程有两个相等的实数根;⑶ b 2-4ac ≤ 0⇔方程没有实数根。
解题小诀窍:当题目中含有“两不等实数根” “两相等实数根” “没有实数根”时,往往首先考虑用b 2-4ac 解题。
主要用于求方程中未知系数的值或取值范围。
考点 3:根与系数的关系 :韦达定理对于方程 ax 2+bx+c=0(a≠ 0 利用韦达定理可以求一些代数式的值(式子变形。
解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。
二、经典考题剖析:【易错】下列方程是关于 x 的一元二次方程的是(A. 02=++c bx axB. 0652=++k x kC. 01232=++xx x D. 012 3(22=+++x x k 1、 (2009成都若关于 x 的方程 kx 2 -2x -1=0有两个不相等的实数根,则 k 的取值范围是(A.k>-1B. k>-1且k ≠ 0C. k<1D. k<1且k ≠ 02、解方程:(1 1(2 1(3-=-y y y y (20862=+-x x3、 (2009鄂州关于 x 的方程 kx 2+(k+2x+4k=0有两个不相等的实数根,(1求 k 的取值范围;(2是否存在实数 k 使方程的两个实数根的倒数和等于 0?若存在求出 k 的值;不存在说明理由。
一元二次方程易错题
一元二次方程易错题一、概念理解类1. 方程(m - 1)x^2+3x - 1=0是关于x的一元二次方程,则m的取值范围是()- 题目解析:- 对于一元二次方程的一般形式ax^2+bx + c = 0(a≠0)。
在方程(m - 1)x^2+3x - 1 = 0中,要使其为一元二次方程,二次项系数不能为0,即m - 1≠0,解得m≠1。
2. 下列方程中,是一元二次方程的是()- ①x^2+(1)/(x^2)=0;②ax^2+bx + c = 0;③(x - 1)(x + 2)=x^2-1;④3x^2-2xy - 5y^2=0;⑤x^2=0- 题目解析:- ①x^2+(1)/(x^2) = 0是分式方程,因为方程中含有分式(1)/(x^2),不符合一元二次方程整式方程的要求。
- ②ax^2+bx + c = 0,当a = 0时,它就不是一元二次方程,所以该方程不一定是一元二次方程。
- ③将(x - 1)(x + 2)=x^2-1展开得x^2+x - 2=x^2-1,化简后为x - 1 = 0,是一元一次方程,不是一元二次方程。
- ④3x^2-2xy - 5y^2=0含有两个未知数x和y,是二元二次方程,不是一元二次方程。
- ⑤x^2=0符合一元二次方程的定义ax^2+bx + c = 0(a≠0),这里a = 1,b = 0,c = 0,所以它是一元二次方程。
二、解方程类1. 解方程x^2-2x - 3 = 0- 题目解析:- 对于一元二次方程ax^2+bx + c = 0,这里a = 1,b=-2,c = - 3。
- 可以使用求根公式x=frac{-b±√(b^2)-4ac}{2a}。
- 先计算判别式Δ=b^2-4ac=<=ft(-2)^2-4×1×<=ft(-3)=4 + 12 = 16。
- 然后将其代入求根公式,x=(2±√(16))/(2)=(2±4)/(2),得到x_1=(2 +4)/(2)=3,x_2=(2-4)/(2)=-1。
初中数学一元二次方程知识点总结(含方法技巧归纳,易错辨析)
初中数学⼀元⼆次⽅程知识点总结(含⽅法技巧归纳,易错辨析)
考情分析⾼频考点考查频率所占分值
1.元⼆次⽅程的概念★7~12分
2.⼀元⼆次⽅程的解法★★★
3.⼀元⼆次⽅程根的判别式★★
4.⼀元⼆次⽅程根与系数的关系★
5.利⽤⼀元⼆次⽅程解决实际问题★★★
1⼀元⼆次⽅程的定义及⼀般形式
定义:等号两边都是整式,只含有⼀个未知数(⼀元),并且未知数的最⾼次数是2(⼆次)的⽅程,
叫作⼀元⼆次⽅程.
点拨
对定义的理解抓住三个条件:“⼀元”“⼆次”“整式⽅程”,缺⼀不可,同时强调⼆次项的系数不为0.
⽤公式法解⼀元⼆次⽅程的记忆⼝诀
要⽤公式解⽅程,⾸先化成⼀般式.
调整系数随其后,使其成为最简⽐.
确定参数
,计算⽅程判别式.
判别式值与零⽐,有⽆实根便得知.
若有实根套公式,若⽆实根要告之.
3因式分解法
通过因式分解,使⼀元⼆次⽅程化为两个⼀次式的乘积等于0的形式,再使这两个⼀次式分别等
于0,从⽽实现降次,这种解⼀元⼆次⽅程的⽅法叫作因式分懈法.
因式分解法体现了将⼀元⼆次⽅程“降次”转化为⼀元⼀次⽅程来解的思想,运⽤这种⽅法的步
骤:
(1)将所有项移到⽅程的左边,将⽅程的右边化为0;
(2)将⽅程左边分解为两个⼀次因式的乘积;
(3)令每个因式分别等于零,得到两个⼀元⼀次⽅程;
(4)解这两个⼀元⼀次⽅程,他们的解就是原⽅程的解.。
备战2023年高考数学考试易错题-易错点 一元二次不等式及一元二次方程
专题 一元二次不等式、一元二次不等式易错知识1.解分式不等式时要注意分母不能为零;2.“大于取两边,小于取中间”使用的前提条件是二次项系数大于零; 3.解决有关一元二次不等式恒成立问题要注意给定区间的开闭; 4. 有关一元二次方程根的分布条件列不全致错;5. 解一元二次不等式时要注意相应的一元二次方程两根的大小关系;易错分析一、忽视分式不等式中的分母不能为零致错1.不等式2x +1≤1的解集是________.【错解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得(x -1)(x +1)≥0,得x ≤-1或x ≥1,所以原不等式的解集为{x |xx ≤-1或x ≥1}.【错因】因为x +1为分母,所以x +1不等于零。
【正解】由2x +1≤1得2x +1-1≤0,得2-x -1x +1≤0,得x -1x +1≥0,得x -1=0或(x -1)(x +1)>0,得x =1或x <-1或x >1,得x <-1或x ≥1,所以原不等式的解集为{x |x <-1或x ≥1}.二、忽视一元二次不等式中的二次项系数不能为零致错2.若不等式mx 2+2mx -4<2x 2+4x 对任意x 都成立,则实数m 的取值范围是( )A .(-2,2)B .(2,+∞)C .(-2,2]D .[-2,2]一元二次不等式、一元二次不等式分式不等式忽视分母不为零解一元二次不等式忽视二次项系数的正负一元二次方程根的分布条件列举不全一元二次不等式恒成立忽视区间的开闭解一元二次不等式忽视两根的大小关系【错解】原不等式可整理为(2-m )x 2+(4-2m )x +4>0.若该不等式恒成立,必须满足⎩⎪⎨⎪⎧2-m >0,(4-2m )2-4×4(2-m )<0,解得-2<m <2.综上知实数m 的取值范围是(-2,2), 选A .【错因】没有对二次项系数m 讨论。
一元二次方程知识点和易错点总结
一元二次方程知识点总结考点一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
考点二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 提公式法,公式法(平方差公式,完全平方公式)5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。
专题01一元二次方程(3个知识点5大题型2个易错点中考2种考法)(原卷版)
专题01一元二次方程(3个知识点5大题型2个易错点中考2种考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1一元二次方程的定义(重点)知识点2一元二次方程的一般形式(重点)知识点3一元二次方程的解(重点)【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值题型二:根据一元二次方程的根求字母或代数式的值题型三:一元二次方程新定义问题题型四:对含字母的一元二次方程的系数的讨论题型五:一元二次方程与完全平方公式综合【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件易错点2在求一元二次方程的相关项及系数时,没有先将其化为一般形式【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值考法2根据实际问题列一元二次方程【方法五】成果评定法【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1一元二次方程的定义(重点)(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.例1.(2022秋•镇江期末)下列方程中,一定是一元二次方程的是()A.B.x2+2x+3=x(x+1)C.2x+3y=6D.x2﹣2x+3=0知识点2一元二次方程的一般形式(重点)(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.例2.(2022秋•建邺区期中)将方程(x﹣1)2=6化成一元二次方程的一般形式,正确的是()A.x2﹣2x+5=0B.x2﹣2x﹣5=0C.x2+2x﹣5=0D.x2+2x+5=0例3.(2022秋•镇江期中)将一元二次方程x(x+1)﹣2x=2化为一般形式,正确的是()A.x2﹣x=2B.x2+x+2=0C.x2﹣x+2=0D.x2﹣x﹣2=0例4.(2022秋•新北区校级月考)将方程3x(x﹣1)=2(x+2)+8化为一般形式为.例5.(2022秋•海州区校级月考)一元二次方程x2﹣2x﹣3=0的一次项系数是.例6.(2022秋•常州期中)若关于x一元二次方程(m+2)x2+5x+m2+3m+2=0的常数项为0,则m的值等于.例7.(2021秋•淮安区期中)若关于x的一元二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0.求m的值.知识点3一元二次方程的解(重点)(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).例8.(2021春•射阳县校级期末)已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.【方法二】实例探索法题型一:根据一元二次方程的定义求字母的值1.(2022秋•大丰区期末)如果(m﹣3)x2+5x﹣2=0是一元二次方程,则()A.m≠0B.m≠3C.m=0D.m=32.(2023•睢宁县校级开学)关于x的方程ax2﹣3x+3=0是一元二次方程,则a的取值范围是()A.a>0B.a≠0C.a=1D.a≥0题型二:根据一元二次方程的根求字母或代数式的值3.(2023•邗江区校级一模)已知m是方程x2﹣x﹣2=0的一个根,则2023﹣m2+m的值为()A.2023B.2022C.2021D.20204.(2022秋•邳州市期末)已知关于x的方程x2+bx+2=0的一个根为x=1,则实数b的值为()A.2B.﹣2C.3D.﹣35.(2023•邗江区一模)若关于x的方程x2﹣mx﹣2=0的一个根为3,则m的值为.6.(2023春•玄武区期中)若m是方程x2+x﹣1=0的一个根,则代数式2023﹣m2﹣m的值为.7.(2022秋•江阴市校级月考)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.8.(2022•广陵区校级开学)已知x是一元二次方程x2﹣8x﹣1=0的实数根,求代数式÷(x+3﹣)的值.题型三:一元二次方程新定义问题9.(2021秋•高港区期中)定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0,那么我们称这个方程为“凤凰方程”.(1)判断一元二次方程3x2﹣4x﹣7=0是否为凤凰方程,说明理由.(2)已知2x2﹣mx﹣n=0是关于x的凤凰方程,若m是此凤凰方程的一个根,求m的值.10.(2022秋•江阴市校级月考)定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x的一元二次方程x2﹣2x=0与x2+3x+m﹣1=0为“友好方程”,求m的值.11.(2017秋•句容市月考)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=,把x=,代入已知方程,得()2+﹣1=0.化简,得y2+2y﹣4=0,故所求方程为y2+2y﹣4=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x2+2x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.题型四:对含字母的一元二次方程的系数的讨论12.(2022春•建邺区期末)已知关于x的一元二次方程(x﹣1)(x﹣2)=m+1(m为常数).(1)若它的一个实数根是关于x的方程2(x﹣m)﹣4=0的根,求m的值;(2)若它的一个实数根是关于x的方程2(x﹣n)﹣4=0的根,求证:m+n≥﹣2.13.(2020秋•鼓楼区期中)方程是含有未知数的等式,使等式成立的未知数的值称为方程的“解”.方程的解的个数会有哪些可能呢?(1)根据“任何数的偶数次幂都是非负数”可知:关于x的方程x2+1=0的解的个数为0;(2)根据“几个数相乘,若有因数为0,则乘积为0”可知方程(x+1)(x﹣2)(x﹣3)=0的解不止一个,直接写出这个方程的所有解;(3)结合数轴,探索方程|x+1|+|x﹣3|=4的解的个数;(写出结论,并说明理由)(4)进一步可以发现,关于x的方程|x﹣m|+|x﹣3|=2m+1(m为常数)的解的个数随着m的变化而变化…请你继续探索,直接写出方程的解的个数与对应的m的取值情况.题型五:一元二次方程与完全平方公式综合14.(2020秋•句容市月考)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.【方法三】差异对比法易错点1忽略一元二次方程的二次项系数不等于0这个隐含条件15.(2021秋•襄城县期中)若关于x的一元二次方程(m﹣2)x2﹣6x+m2﹣3m+2=0的常数项为0,则m的值为.易错点2 在求一元二次方程的相关项及系数时,没有先将其化为一般形式16.(2022秋•沭阳县校级期末)一元二次方程2x2﹣1=4x化成一般形式后,常数项是﹣1,一次项系数是()A.2B.﹣2C.4D.﹣4【方法四】仿真实战法考法1根据方程的根求字母(或代数式)的值17.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个根是x=1,则m+n的值是.18.(2021•宿迁)若关于x的一元二次方程x2+ax﹣6=0的一个根是3,则a=.19.(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.20.(2022•遂宁)已知m为方程x2+3x﹣2022=0的根,那么m3+2m2﹣2025m+2022的值为()A.﹣2022B.0C.2022D.404421.(2022•资阳)若a是一元二次方程x2+2x﹣3=0的一个根,则2a2+4a的值是.考法2根据实际问题列一元二次方程22.(2022•衢州)将一个容积为360cm3的包装盒剪开铺平,纸样如图所示.利用容积列出图中x(cm)满足的一元二次方程:(不必化简).【方法五】成果评定法一、单选题1.(2022秋·江苏连云港·九年级校考阶段练习)一元二次方程2323x x -=的二次项系数、一次项系数、常2100px q +=,可列表如下:则方程A . 1.073-B . 1.089-C . 1.117-D . 1.123-二、填空题7.(2022秋·江苏连云港·九年级校考阶段练习)若关于x 的一元二次方程()2100ax bx a +-=≠有一根为三、解答题。
中考数学复习一元二次方程专项易错题含详细答案
【解析】
【分析】
(1)方程有两个不相等的实数根, ,代入求m取值范围即可,注意二次项系数≠0;
(2)将 代入原方程,求解即可.
【详解】
(1)由题意得: = ,解得 .
因为 ,即当 且 时,方程有两个不相等的实数根.
(2)把 带入得 ,解得 , .
试题解析:(1)∵Δ=4(k-1)2-4k2≥0,∴-8k+4≥0,∴k≤ ;
(2)∵x1+x2=2(k-1),x1x2=k2,∴2(k-1)=1-k2,
∴k1=1,k2=-3.
∵k≤ ,∴k=-3.
2.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.
(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?
由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n2+3n+2=-n+1,解得n=- ,但1-n= 不是整数,舍.
②若4n2+3n+2=2(n+2),解得n=0或n=- (舍),综上所述 Nhomakorabean=0.
5.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)两正方形面积之和为48时, , ,∵ ,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.
考点:1.一元二次方程的应用;2.几何图形问题.
3.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
第2章 一元二次方程 单元复习提升(易错与拓展)(原卷版)
第2章 一元二次方程 单元复习提升(易错与拓展)易错点01 一元二次方程的概念【指点迷津】注意a ≠0;化简到一元二次方程的一般式再做判断与解题. 典例1.下列方程是一元二次方程的是( )A .20ax bx c ++=B .2213(2)x x x 2+=-C .()()121x x +-=D .23210x y -+=跟踪训练1.若关于x 的方程()22210mm x x --++=是一元二次方程,则m 的值是( )A .3m =B .2m =C .2m =-D .2m =±【指点迷津】因式分解法解一元二次方程时等式右边要为0.典例2.解下列方程: (1)(3)(1)3--=x x (2)2220x x -++=跟踪训练1.一元二次方程()11x x x -=-的根是( ) A .121x x == B .121x x ==- C .11x =,20x = D .11x =-,20x =跟踪训练2.解方程: (1)23510x x -+=; (2)()()315x x +-=.易错点03 根据根的判别式求参数时忽视a ≠0【指点迷津】解一元二次方程及其相关应用时,不要忽视一元二次方程本身成立的条件,或者一些隐含条件.典例3.若关于 x 的一元二次方程2210kx x +-=有实数根,则实数k 的取值范围是( ) A .1k ≥- B .1k >- C .1k ≥-且0k ≠ D .1k >-且0k ≠跟踪训练1.已知关于x 的一元二次方程()21210a x x --+=有实数根,求a 的取值范围 .跟踪训练2.已知关于x 的一元二次方程()21310m x x -+-=有实数根,则m 的取值范围是 .【指点迷津】因式分解在解题时往往可以加快解题速度,节约考试时间.典例4.一个两位数是一个一位数的平方,把这个一位数放在这个两位数的左边所成的三位数,比把这个一位数放在这个两位数的右边所成的三位数大252,求这个两位数.跟踪训练1.某商场销售一批衬衫,进货价为每件40元,按每件50元出售,一个月内可售出500件.已知这种衬衫每件涨价1元,其销售量要减少10件.为了减少库存量,且在月内赚取8000元的利润,售价应定为每件多少元?跟踪训练2.如图,一农户要建一个矩形鸡舍,为了节省材料鸡舍的一边利用长为a 米的墙,另外三边用长为27米的建筑材料围成,为方便进出,在垂直墙的一边留下一个宽1米的门.设AB x =米时,鸡舍面积为S平方米.(1)求S 关于x 的函数表达式及x 的取值范围.(2)在(1)的条件下,当AB 为多少时,鸡舍的面积为90平方米? (3)若住房墙的长度足够长,问鸡舍面积能否达到100平方米?典例1.对于一元二次方程20(0)ax bx c a ++=≠,下列说法:①若a +b +c =0,则方程必有一根为x =1;①若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=无实根;①若方程20(0)ax bx c a ++=≠两根为1x ,2x 且满足120x x ≠≠,则方程20(0)cx bx a c ++=≠,必有实根11x ,21x ;①若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+其中正确的( ) A .①①B .①①C .①①①D .①①①跟踪训练1.下列给出的四个命题,真命题的有( )个①若方程()200ax bx c a ++=≠两根为-1和2,则20a c +=;①若2550a a -+=,则()211-=-a a ;①若240b ac -<,则方程()200ax bx c a ++=≠一定无解;①若方程20x px q ++=的两个实根中有且只有一个根为0,那么0p ≠,0q =.A .4个B .3个C .2个D .1个拓展02 根与系数的关系难点分析典例2.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有 (填序号). ①方程220x x --=是“倍根方程”;①若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=; ①若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;①若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.跟踪训练1.韦达是法国杰出的数学家,其贡献之一是发现了多项式方程根与系数的关系,如一元二次方程20(0)ax bx c a ++=≠的两实数根分别为12,x x ,则方程可写成()()12a x x x x 0--=,即()212120ax ak x x ax x -++=,容易发现根与系数的关系:1212,b cx x x x a a+=-=.设一元三次方程320(0)ax bx cx d a +++=≠三个非零实数根分别123,,x x x ,现给出以下结论:①123bx x x a++=-,①123bx x x a =-;①122331c x x x x x x a++=;①123111c x x x d ++=,其中正确的是 (写出所有正确结论的序号).典例3.如图1,在平面直角坐标系中,点A 的坐标为(80),,点B 的坐标是(06),,连接AB .若动点P 从点B 出发沿着线段BA 以5个单位每秒的速度向终点A 运动,设运动时间为t 秒.(1)求线段AB 的长.(2)连接OP ,当OBP 为等腰三角形时,过点P 作线段AB 的垂线与直线OB 交于点M ,求点M 的坐标; (3)已知N 点为AB 的中点,连接ON ,点P 关于直线ON 的对称点记为P '(如图2),在整个运动过程中,若P '点恰好落在AOB 内部(不含边界),请直接写出t 的取值范围. 跟踪训练1.探索发现 如图(1),在正方形ABCD 中,E 为BC 边上不与,B C 重合的点,过点,,A B C 三点分别作DE 的垂线,垂足分别为,,F H G .(1)求证:DF CG =;(2)求证:DF BH FH +=. 迁移拓展 如图(2),在正方形ABCD 中,E 为直线BC 上一点,过B 点作DE 的垂线,垂足为H ,若5,1AB BH ==,直接写出BE 的长.一、单选题1.下列是一元二次方程的是( )A .2320x x x -+=B .240x x -+=C .20ax bx c ++=D .2210y x --=2.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1或1-C .1-D .0.53.解方程()()2243343x x -=-)最适当的方法是( )A .直接开方法B .配方法C .公式法D .分解因式法4.下列方程中,有两个不相等的实数根的是( ) A .210x x -+= B .2230x x -+= C .210x x +-= D .240x += 5.用配方法解一元二次方程22760x x -+=,下面配方正确的是( ) A .271416x ⎛⎫-= ⎪⎝⎭ B .2797416x ⎛⎫-= ⎪⎝⎭C .273724x ⎛⎫-= ⎪⎝⎭D .271416x ⎛⎫+= ⎪⎝⎭6.方程2230x x +-=的解为11x =,23x =-,若方程()()22322330x x +++-=,它的解是( ). A .1213x x ==, B .1213x x ==-,C .1213x x =-=,D .12=1=3x x --,7.若关于x 的一元二次方程2210kx x +-=有实数根,则k 的取值范围是( )A .1k ≥-且0k ≠B .1k ≥-C .1k >-D .1k >-且0k ≠8.新能源汽车节能、环保,越来越受消费者喜爱,各种品牌相继投放市场,我国新能源汽车近几年销量全球第一,2020年销量为50.7万辆,销量逐年增加,到2022年销量为125.6万辆.设年平均增长率为x ,可列方程为( )A .250.7(1)125.6x +=B .2125.6(1)50.7x -=C .50.7(12)125.6x +=D .250.7(1)125.6x -=9.已知a ,b 是关于x 的一元二次方程22(23)0x m x m +++=的两个不相等的实数根,且满足111a b+=-,则m 的值是( ) A .﹣3或1B .3或﹣1C .3D .110.对于一元二次方程()200++=≠ax bx c a ,下列说法:①若0a b c -+=,则240b ac -≥;①若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ①若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ①若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+ 其中正确的:( )A .只有①B .只有①①C .①①①D .只有①①①二、填空题11.2570x x ++=的二次项系数是 、常数项是 .12.关于x 的方程()222530m m x x --+-=是一元二次方程,则m = .13.已知x 2-6x +8=0的两个根分别是等腰三角形的底和腰,则这个三角形的面积是 . 14.已知x 2=2x +15,则代数式22(2)(2)x x +--= .15.要组织一次篮球联赛,赛制为单循环比赛(每两队之间都赛一场),计划安排15场比赛,应邀请多少个队参加比赛?设应邀参加比赛的球队有x 个,则可以列方程为 .16.已知关于x 的方程()231210kx k x k +-+-=的解都是整数,则整数k 的值为 .17.已知:关于x 的方程a (x +k )2+2022=0的解是x 1=-2,x 2=1(a 、k 均为常数,a ≠0). (1)关于x 的方程a (x +k +2) 2+2022=0的根是 ; (2)关于x 的方程a (x +3k ) 2 +2022=0的根为 .18.已知一元二次方程()200ax bx c a ++=≠和它的两个实数根为12,x x ,下列说法: ①若a ,c 异号,则方程()200ax bx c a ++=≠一定有实数根; ①若25b ac >,则方程()200ax bx c a ++=≠一定有两异实根; ①若b a c =+,则方程()200ax bx c a ++=≠一定有两实数根;①若123a b c ===-,,,由根与系数的关系可得121223x x x x +=-=, 其中正确的结论是: (填序号).三、解答题19.用适当的方法解一元二次方程 (1)210.503x -=;(2)22()(2)2a x a x +=+;(3)22410x x --=;(4)2(12)(12)x x -=+.20.已知关于x 的方程()()232250m x m x m ---+-=.(1)当m 为何值时,方程只有一个实数根? (2)当m 为何值时,方程有两个相等的实数根? (3)当m 为何值时,方程有两个不相等的实数根? 21.已知关于x 的一元二次方程2(2)20(0)kx k x k +--=≠. (1)求证:不论k 为何值,这个方程都有两个实数根; (2)若此方程的两根均整数,求整数k 的值,22.已知:关于x 的方程()228440x m x m --+=,有两个不相等的实数根,(1)求实数m 的取值范围,(2)若方程的两个实数根12x x ,满足1212x x x x +=⋅,求出符合条件的m 的值.23.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12米的住房墙,另外三边用25米长的建筑材料围成的,为了方便进出,在垂直于住房墙的一边留一扇1米宽的门.当所围矩形与墙垂直的一边长为多少时,猪舍面积为80平方米?24.阅读材料题:我们知道20a ≥,所以代数式a 2的最小值为0,学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+±=来求一些多项式的最小值.例如:求263x x ++的最小值问题.解:①()2226369636x x x x x ++=++-=+﹣, 又①()230x +≥, ①()2366x +≥﹣﹣①263x x ++的最小值为﹣6.请应用上述思想方法,解决下列问题:(1)探究:246x x -+= ;(2)代数式28x x --有最 (填“大”或“小”)值为 ; (3)如图,长方形花圃一面靠墙(墙足够长),另外三面所围成的棚栏的总长是20m ,棚栏如何围能使花圃面积最大?最大面积是多少?25.当m ,n 为实数,且满足m nm n +=时,就称点,m P m n ⎛⎫⎪⎝⎭为“状元点”.已知点A (0,7)和点M 都在直线y x b =+上,点B ,C 是“状元点”,且B 在直线AM 上.(1)求b 的值及判断点F (2,6)是否为“状元点”; (2)请求出点B 的坐标;(3)若52AC ≤,求点C 的横坐标的取值范围.26.对于任意一个三位数k ,如果k 满足各个数位上的数字都不为零,且十位上的数字的平方等于百位上的数字与个位上的数字之积的4倍,那么称这个数为“喜鹊数”.例如:k =169,因为62=4×1×9,所以169是“喜鹊数”.(1)已知一个“喜鹊数”k =100a +10b +c (1≤a 、b 、c ≤9,其中a ,b ,c 为正整数),请直接写出a ,b ,c 所满足的关系式 ;判断241 “喜鹊数”(填“是”或“不是”),并写出一个“喜鹊数” ;(2)利用(1)中“喜鹊数”k 中的a ,b ,c 构造两个一元二次方程ax 2+bx +c =0①与cx 2+bx +a =0①,若x =m 是方程①的一个根,x =n 是方程①的一个根,求m 与n 满足的关系式;(3)在(2)中条件下,且m +n =﹣2,请直接写出满足条件的所有k 的值.。
第二十一章 一元二次方程 易错必考68题(10个考点)专练(解析版)
第二十一章 一元二次方程 易错必考68题(10个考点)专练易错必考题一、一元二次方程的一般形式1.(2023·全国·九年级专题练习)若关于x 的一元二次方程2(3)430m x x mx m +-+++=的常数项是6,则一次项是()A .x-B .1-C .x D .1【答案】A 【分析】根据一元二次方程定义可得36m +=,30m +¹,可得m 的值,再代入原方程,由此即可得结果.【详解】解:∵关于x 的一元二次方程2(3)430m x x mx m +-+++=的常数项是6,∴36m +=,30m +¹,解得:3m =,把3m =代入原方程可得2660x x -+=,∴一次项是x -,故选:A .【点睛】本题考查了一元二次方程的一般形式,解题的关键是熟练掌握一元二次方程的一般形式:一元二次方程的一般形式是20(0)ax bx c a ++=¹,其中,2ax 是二次项,bx 是一次项,c 是常数项.2.(2023春·八年级课时练习)将一元二次方程()11x x -=-化成()200ax bx c a ++=>的形式则a b c ++=.【答案】1【分析】直接利用一元二次方程的一般形式分析得出答案.【详解】解:将一元二次方程()11x x -=-化成一般形式20(0)ax bx c a ++=>之后,变为210x x -+=,故1,1,1a b c ==-=,1111a b c \++=-+=,故答案为:1.【点睛】此题主要考查了一元二次方程的一般形式,正确把握定义是解题关键.3.(2023·江苏·九年级假期作业)已知关于y 的一元二次方程()()223811my m my y y +-=-+,求出它各项的系数,并指出参数m 的取值范围.【答案】二次项系数是:28m -,一次项系数是:()31m --,常数项是:31m -;参数m 的取值范围是22m ¹±【分析】先将原方程化为一般式,再回答各项系数,根据“二次项系数不为零”可以求m 的取值范围.【详解】解:将原方程整理为一般形式,得:()()22383110m y m y m ---+-=,由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件280m -¹,即22m ¹±.可知它的各项系数分别是二次项系数是:28m -,一次项系数是:()31m --,常数项是:31m -.参数m 的取值范围是22m ¹±.【点睛】本题考查一元二次方程的一般式和系数、二次项系数不为零,掌握化一般式的方法是解题的关键.注意:在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题.易错必考题二、一元二次方程的解4.(2023春·吉林长春·八年级校考期末)如果关于x 的一元二次方程220ax bx ++=的一个解是1x =,则代数式2023a b --的值为( )A .2021-B .2021C .2025-D .2025【答案】D【分析】根据一元二次方程220ax bx ++=的一个解是1x =,得到20a b ++=即2a b +=-,代入计算即可.【详解】∵一元二次方程220ax bx ++=的一个解是1x =,∴20a b ++=,∴2a b +=-,∴2023202322025a b --=+=,故选D .【点睛】本题考查了一元二次方程的根,熟练掌握定义是解题的关键.5.(2023春·福建厦门·八年级厦门外国语学校校考期末)两个关于x 的一元二次方程20ax bx c ++=和20cx bx a ++=,其中a ,b ,c 是常数,且0a c +=,如果2x =是方程20ax bx c ++=的一个根,那么下列各数中,一定是方程20cx bx a ++=的根的是( )A .2B .2-C .1±D .1【答案】B【分析】利用方程根的定义去验证判断即可.【详解】∵0a ¹,0c ¹,0a c +=,∴a c=-∴1c a =-,∴20b c x x a a++=,210c b x x a a ++=,∴210b x x a +-=,210b x x a--=,∵2x =是方程20ax bx c ++=的一个根,∴2x =是方程210b x x a+-=的一个根,即32b a =-,∴2231102b x x x x a --=+-=,∴2x =-是方程210b x x a --=的一个根,即2x =-时方程20cx bx a ++=的一个根.故选:B .【点睛】本题考查了一元二次方程根的定义即使得方程两边相等的未知数的值,正确理解定义是解题的关键.6.(2023春·浙江金华·八年级统考期末)已知m 为方程2320230x x +-=的根,那么32220262023m m m +--的值为 .【答案】4046-【分析】先根据一元二次方程解的定义得到232023m m =-+,再用m 表示3m 得到()2220262023m m m +--,然后利用整体代入的方法计算.【详解】解:∵m 为方程2320230x x +-=的一个根,∴2320230m m +-=,∴232023m m =-+,∴()322220262023220262023m m m m m m +--=+--()()32023220262023m m m =-++--23620232023220262023m m m m =--++´--()33202392023m m =--+-+93202392023m m =-´-+4046=-,故答案为:4046-.【点睛】本题考查了一元二次方程的解,掌握整体代入的方法是解题关键.7.(2023春·浙江温州·八年级校考期中)已知a ,b ,c 是非零实数,关于x 的一元二次方程204c ax bx ++=,204b cx ax ++=,204a bx cx ++=,有公共解,则代数式2c a b ab b a--的值为 .【答案】2或1-【分析】设公共解为t ,根据一元二次方程根的定义得到204c at bt ++=,204b ct at ++=,204a bt ct ++=,三式相加可得:0abc ++=或12t =-,分别代入所求式可解答.【详解】解:设公共解为t ,则204c at bt ++=,204b ct at ++=,204a bt ct ++=,三式相加得()()204abc a b c t a b c t ++++++++=,即()2104a b c t t æö++++=ç÷èø,因为2211()042t t t ++=+³,所以0a b c ++=或12t =-,当0a b c ++=时,c a b =--,\原式222c a b ab--= 22222a ab b a b ab++--= 2=;当12t =-时,110424c a b -+=,110424b c a -+=,22c b a a b \=-=-,a b \=,\原式222244b ab a a b ab-+--=234b ab ab-= 22b b-= 1=-,综上,代数式2c a b ab b a--的值为2或1-.故答案为:2或1-.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,理解方程解的定义是解题的关键.8.(2023秋·江苏·九年级专题练习)已知x 是一元二次方程2810x x --=的实数根,求代数式24737123x x x x x +æö¸+-ç÷-+-èø的值.【答案】117【分析】利用一元二次方程的解可得出281x x -=,将其代入24737123x x x x x +æö¸+-ç÷-+-èø的化简结果中即可求出答案.【详解】解:∵x 是一元二次方程2810x x --=的实数根,∴281x x -=.24737123x x x x x +æö¸+-ç÷-+-èø()()247137233x x x x x x +=+---+-¸()()2497343x x x x x +--=¸---()()2416343x x x x x +-=¸---()()()()444343x x x x x x +-+=¸---()()()()433444x x x x x x +-=×--+-()()144x x =--21816x x =-+1116=+17∴代数式24737123x x x x x +æö¸+-ç÷-+-èø的值为117.【点睛】本题考查了一元二次方程的解、分式的化简等知识,熟练掌握一元二次方程的解的定义和分式的运算法则是解题的关键.9.(2023春·湖南长沙·八年级统考期末)请阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =,把2y x =代入已知方程,得21022y y æö+-=ç÷èø;化简,得2240y y +-=;故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”;请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程2320x x +-=,求一个一元二次方程,使它的根分别为已知方程根的相反数;(2)已知关于x 的一元二次方程()200ax bx c a -+=¹有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【答案】(1)2320y y --=(2)()200cy by a c -+=¹【分析】(1)设所求方程的根为y ,则y x =-,将x y =-代入已知方程2320x x +-=,化简即可得到答案;(2)设所求方程的根为y ,则1y x=,将其代入已知方程,然后化为一般形式即可得到答案.【详解】(1)解:设所求方程的根为y ,则y x =-,x y \=-,把x y =-代入已知方程2320x x +-=,得()()2320y y -+´--=,化简得,2320y y --=,\这个一元二次方程为:2320y y --=;(2)解:设所求方程的根为y ,则1y x=,y 把1x y=代入已知方程()200ax bx c a -+=¹,得2110a b c y y æö-×+=ç÷èø,去分母得,20a by cy -+=,若0c =,则20ax bx -=,于是方程()200ax bx c a -+=¹有一根为0,不符合题意,0c \¹,\所求方程为:()200cy by a c -+=¹.【点睛】本题考查了一元二次方程的解,解答该题的关键是弄清楚“换根法”的具体解题方法.易错必考题三、换元法解一元二次方程10.(2023秋·全国·九年级专题练习)若整数x ,y 使()()22221212x y x y +---=-成立,则满足条件的x ,y 的值有( )A .4对B .6对C .8对D .无数对【答案】C【分析】先化简()()22221212x y x y +---=-可得()()22221212x y x y éùéù+--+=-ëûëû,设22x y a +=,则()()1212a a --=-;然后求得a 的值,最后列举出符合题意的x ,y 的整数值即可解答.【详解】解:由()()22221212x y x y éùéù+--+=-ëûëû,设22x y a +=,则()()1212a a --=-,∴23100a a --=,即()()520a a -+=,解得:5a =或2a =-(舍弃),∴225x y +=.∴满足条件的x ,y 的整数值有:12x y =ìí=î,12x y =-ìí=î,12x y =ìí=-î,12x y =-ìí=-î,21x y =ìí=î,21x y =ìí=-î,21x y =-ìí=î,21x y =-ìí=-î,共8对.故选C .【点睛】本题主要考查了解一元二次方程、二元一次方程的解等知识点,掌握二元一次方程的解是解答本题的关键.11.(2023春·全国·八年级专题练习)用换元法解方程()()22212x x x x +++=时,如果设2x x y +=,那么原方程可变形为( )A .2120y y ++=B .2120y y --=C .2120y y -+=D .2120y y +-=【答案】D【分析】将原方程中的2x x +换成y ,再移项即可.【详解】解:根据题意,得212y y +=,即2120y y +-=;故选:D .【点睛】本题考查换元法解一元二次方程,换元法就是把某个式子看成一个整体,用一个字母去代替它,实行等量代换.12.(2023秋·全国·九年级专题练习)如果关于x 的方程20ax bx c ++=的解是11x =,23x =,那么关于y 的方程()21a y by c b -++=的解是 .【答案】12y =,24y =,【分析】根据关于x 的方程20ax bx c ++=的解是11x =,23x =,令关于y 的方程()()2110a y b y c -+-+=中1x y =-,即可得到112211y x y x -=ìí-=î,解这个方程组即可得到答案.【详解】解:∵()21a y by c b -++=,∴()()2110a y b y c -+-+=,Q 关于x 的方程20ax bx c ++=的解是11x =,23x =,令1x y =-,∴112211y x y x -=ìí-=î,∴1111y x -==或2213y x -==,解得12y =,24y =,故答案为:12y =,24y =.【点睛】本题考查换元法及一元二次方程解的定义,令关于y 的方程()()2110a y b y c -+-+=中1y x -=是解决问题的关键.13.(2023秋·全国·九年级专题练习)已知方程210210x x -+=的根为13x =,27x =,则方程2(21)10(21)210x x ---+=的根是.【答案】12x =,24x =【分析】设21x t -=,可得210210t t -+=,根据210210x x -+=的根为13x =,27x =,可得213x -=或217x -=,即可得到答案;【详解】解:设21x t -=,可得210210t t -+=,∵210210x x -+=的根为13x =,27x =,∴213x -=或217x -=,解得:12x =,24x =,故答案为12x =,24x =;【点睛】本题考查换元法求方程的解,解题的关键是设21x t -=,得到210210t t -+=,结合方程210210x x -+=的根为13x =,27x =.14.(2022秋·全国·九年级专题练习)阅读下列材料:问题:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =,把2y x =,代入已知方程,得21022y y æö+-=ç÷èø.化简,得2240y y +-=,故所求方程为2240y y +-=这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程2210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为 ;(2)已知关于x 的一元二次方程()200ax bx c a ++=¹有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【答案】(1)2210y y --=(2)20a by cy ++=()0c ¹【分析】(1)设所求方程的根为y ,则y x =-,所以x y =-,代入原方程即可得;(2)设所求方程的根为y ,则1y x =()0x ¹,于是1x y =()0y ¹,代入方程20ax bx c ++=整理即可得.【详解】(1)解:设所求方程的根为y ,则y x =-,所以x y =-,把x y =-代入方程2210x x +-=,得:2210y y --=,故答案为:2210y y --=;(2)解:设所求方程的根为y ,则1y x =()0x ¹,于是1x y=()0y ¹,把1x y =代入方程()200ax bx c a ++=¹,得2110a b c y y æöæö++=ç÷ç÷èøèø,去分母,得20a by cy ++=,若0c =,有20ax bx +=,于是,方程20ax bx c ++=有一个根为0,不合题意,∴0c ¹,故所求方程为20a by cy ++=()0c ¹.【点睛】本题主要考查一元二次方程的解,解题的关键是理解方程的解的定义和解题的方法.15.(2023秋·全国·九年级专题练习)阅读材料:为了解方程()22215140x x ---+=(),我们可以将21x -看作一个整体,设21x y -=,那么原方程可化为2540y y -+=①,解得121,4y y ==.当1y =,时,211x -=,∴22x =.∴2x =±;当4y =时,214x -=,∴25x =.∴5x =±.故原方程的解为12x =, 22x =-,35x =,45x =-.解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了降次的目的,体现了 的数学思想;(2)请利用以上知识解方程:()()222540x x x x +-++=;(3)请利用以上知识解方程:42340x x --=.【答案】(1)换元;转化(2)123411711715152222,,,x x x x -+---+--====(3)122,2x x ==-【分析】(1)利用换元法达到了降次的目的,体现了转化的数学思想;(2)利用换元法解方程即可;(3)利用换元法解方程即可.【详解】(1)解:利用了换元法,体现了转化思想;故答案为:换元,转化;(2)设2x x y +=,原方程可变为2540y y -+=,则()()410y y --=,∴40y -=或10y -=,∴124,1y y ==,当4y =时,24x x +=,解得1172x -±=,当1y =时,21x x +=,解得152x -±=,∴原方程的解为123411711715152222,,,x x x x -+---+--====;(3)设2y x =,原方程可变为2340y y --=,解得124,1y y ==-,∵20x ³,∴24x =,解得122,2x x ==-.【点睛】本题考查解一元二次方程.解题的关键是理解并掌握换元法解方程.易错必考题四、配方法的应用16.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n \=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.17.(2023秋·全国·九年级专题练习)关于x 的一元二次方程新定义:若关于x 的一元二次方程:21()0a x m n -+=与22()0a x m n -+=,称为“同族二次方程”.如22(3)40x -+=与23(3)40x -+=就是“同族二次方程”.现有关于x 的一元二次方程:22(1)10x -+=与2(2)(4)80a x b x ++-+=是“同族二次方程”.那么代数式22015ax bx -++取的最大值是( )A .2020B .2021C .2022D .2023【答案】A【分析】利用“同族二次方程”定义列出关系式,再利用多项式相等的条件列出关于a 与b 的方程组,求出方程组的解得到a 与b 的值,进而利用非负数的性质确定出代数式的最大值即可.【详解】解:∵22(3)40x -+=与23(3)40x -+=就是“同族二次方程”,∴22(2)(4)8(2)(1)1a x b x a x ++-+=+-+,即22(2)(4)8(2)2(2)3a x b x a x a x a ++-+=+-+++,∴2(2)438a b a -+=-ìí+=î解得510a b =ìí=-î∴22015ax bx -++=25105201x x -+-=25(1)2020x -++,则代数式22015ax bx -++能取的最大值是2020.故选:A .【点睛】此题考查了配方法的应用,非负数的性质,以及一元二次方程的定义,弄清题中的新定义是解本题的关键.18.(2023秋·江苏·九年级专题练习)实数x 和y 满足2212521640x xy y y -+++=,则22x y -= .【答案】384【分析】将已知等式左边第三项拆项后,重新结合利用完全平方公式变形后,利用两非负数之和为0,得到两非负数分别为0,求出x 与y 的值,代入所求式子中计算,即可求出值.【详解】解:∵()()()()222222212521641236161646420x xy y y x xy y y y x y y -+++=+++-+++-==,∴60x y +=且420y -=,解得:12y =,3x =-,则22139844x y ==--,故答案为:384.【点睛】此题考查了完全平方公式的应用,熟练掌握完全平方公式是解本题的关键.19.(2023秋·全国·九年级专题练习)设m 为整数,且420m <<,方程222(23)41480x m x m m --+-+=有两个不相等的整数根,则m 的值是 .【答案】12【分析】将方程化为2(23)21x m m -+=+,根据m 为整数,且方程有两个不相等的整数根即可求解.【详解】解:222(23)(23)21x m x m m --+-=+,\[]2(23)21x m m --=+,\2(23)21x m m -+=+,Q 420m <<,92141m \<+<,\2(23)21x m m -+=±+,Q m 为整数,且方程有两个不相等的整数根,\当2125m +=时,符合题意,解得:12m =;故答案:12.【点睛】本题考查了一元二次方程的配方法,求参数的整数问题,掌握方法是解题的关键.20.(2023春·安徽池州·八年级统考期中)【阅读材料】把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在因式分解、最值问题中都有着广泛的应用.例如:①用配方法因式分解:268a a ++. ②求2611x x ++的最小值.解:原式2691a a =++- 解:原式2692x x =+++2(3)1a =+- 2(3)2x =++.()()3131a a =+-++ 2(3)0x +³Q ,()()24a a =++ 2(3)22x \++³,即2611x ++的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:24a a ++_______________.(2)因式分解:21232a a -+.(3)求2443x x ++的最小值.【答案】(1)4(2)(4)(8)a a --(3)2【分析】(1)根据常数项等于一次项系数的一半的平方进行配方即可;(2)将32化成364-,前三项配成完全平方式,再利用平方差公式进行因式分解即可;(3)将式子进行配方,再利用平方的非负性即可求解.【详解】(1)解:∵()22442a a a ++=+,故答案为:4;(2)解:21232a a -+【答案】(1)8;(2)见解析;(3)252【分析】(1)利用配方法把22410x x ++变形为22(1)8x ++,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到22172()24x x x ++=++,则可判断220x x ++>,然后根据二次根式有意义的条件可判断无论x 取何实数,二次根式22x x ++都有意义;(3)利用三角形面积公式得到四边形ABCD 的面积12AC BD =××,由于10BD AC =-,则四边形ABCD 的面积()1102AC AC =××-,利用配方法得到四边形ABCD 的面积2125(5)22AC =--+,然后根据非负数的性质解决问题.【详解】解:(1)()2224102210x x x x ++=++()2221110x x =++-+ 22(1)8x =++,Q 无论x 取何实数,都有22(1)0x +³,2(1)88x \++³,即223x x ++的最小值为8;故答案为:8;(2)22172()24x x x ++=++,21()02x +³Q ,220x x \++>,\无论x 取何实数,二次根式22x x ++都有意义;(3)AC BD ^Q ,\四边形ABCD 的面积12AC BD =××,10AC BD +=Q ,10BD AC \=-,\四边形ABCD 的面积()1102AC AC =××- 2152AC AC =-+ 2125(5)22AC =--+21(5)02AC --£Q ,\当5AC =,四边形ABCD 的面积最大,最大值为252.【点睛】本题考查了配方法的应用:利用配方法把二次式变形为一个完全平方式和常数的和,然后利用非负数的性质确定代数式的最值.易错必考题五、一元二次方程中的因式分解22.(2022秋·上海普陀·八年级校考阶段练习)若关于x 的一元二次方程()221340a x x a a -+++-=的一个根是0,则a 的值是( )A .4a =-或1B .4a =-C .1a =D .0a =【答案】B【分析】根据一元二次方程的解的定义,把0x =代入()221340a x x a a -+++-=得2340a a +-=,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把0x =代入()221340a x x a a -+++-=,得2340a a +-=,解得1a =或4a =-,而10a -¹,所以a 的值为4-.故选:B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.23.(2023秋·全国·九年级专题练习)对于两个不相等的实数a ,b ,我们规定符号{}max ,a b 表示a ,b 中的较大值,如:{}max 3,55=,因此,{}max 3,53--=-;按照这个规定,若{}2max ,35x x x x -=--,则x 的值是( )A .5B .5或16-C .1-或16-D .5或16+【答案】B【分析】根据题意进行分类讨论,当0x >时,可得2450x x --=,求出x 的值即可;当0x <时,可得2250x x --=求出x 的值即可.【详解】解:当0x >时,则0x x >>-,∴{}2max ,35x x x x x -==--,即2450x x --=,解得:125,1x x ==-(不符合题意,舍去),当0x <时,则0x x ->>,∴{}2max ,35x x x x x -=-=--,即2250x x --=,解得:116x =+(不符合题意,舍去),216x =-,综上:x 的值是5或16-,故选:B .【点睛】本题主要考查了新定义下的运算和解一元二次方程,解题的关键是正确理解题目所给新定义的运算法则,熟练掌握解一元二次方程的方法和步骤.24.(2022秋·全国·九年级专题练习)阅读下列解方程()2923x x -=-的过程,并解决相关问题.解:将方程左边分解因式,得()()()3323x x x +-=-,…第一步方程两边都除以()3x -,得32x +=,…第二步解得=1x -…第三步①第一步方程左边分解因式的方法是 ,解方程的过程从第 步开始出现错误,错误的原因是 ;②请直接写出方程的根为.【答案】 公式法 二 3x -可能为0 13x =,21x =-【分析】①根据公式法因式分解、等式的基本性质判断即可;②利用因式分解法求解即可.【详解】解:①第一步方程左边分解因式的方法是公式法,解方程的过程从第二步开始出现错误,错误的原因是:3x -可能为0,故答案为:公式法,二,3x -可能为0;②∵()2923x x -=-,∴()()()3323x x x +-=-,∴()()()33230x x x +---=,则()()310x x -+=,∴30x -=或10x +=,解得13x =,21x =-,故答案为:13x =,21x =-.【点睛】本题考查因式分解,解一元二次方程.运用平方差公式进行因式分解是解题的关键.25.(2023秋·江苏·九年级专题练习)已知:0a ¹且0b ¹,221003a b ab +-=,那么a b a b +-的值等于 .【答案】2-或2【分析】先把已知条件化为2231030a ab b -+=,再利用因式分解法得到30a b -=或30a b -=,然后把3b a =或3a b =分别代入a b a b+-中计算即可.【详解】解:∵221003a b ab +-=,即2231030a ab b -+=,∴(3)(3)0a b a b --=,∴30a b -=或30a b -=,当30a b -=时,即33,23a b a a b a a b a a ++===---;当30a b -=时,即33,23a b b b a b b b a b ++=-==-,∴a b a b+-的值等于2-或2.故答案为:2-或2.【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).26.(2022春·湖南长沙·九年级统考期末)已知关于x 的一元二次方程2430x x k -+=有实数根.(1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程2(2)30m x x m -++-=与方程2430x x k -+=有一个相同的根,求此时m 的值.【答案】(1)43k £(2)95m =【分析】(1)一元二次方程有实数根,则0D ³,由此即可求解;(2)根据(1)中k 的取值范围求出k 的值,由此可求出方程2430x x k -+=的解,把x 的值代入一元二次方程2(2)30m x x m -++-=即可求解.【详解】(1)解:根据题意得:2(4)430k D =--´³,解得43k £,∴k 的取值范围43k £.(2)解:由(1)可知,43k £,∴k 的最大整数是1,∴方程2430x x k -+=可化为2430x x -+=,解得121,3x x ==,∵一元二次方程2(2)30m x x m -++-=与方程2430x x k -+=有一个相同的根,∴当1x =时,2130m m -++-=,解得2m =;当3x =时,(2)9330m m -´++-=,解得95m =,又20m -¹,∴95m =.【点睛】本题主要考查一元二次方程的知识,掌握一元一次方程的定义,有实根的计算方法,解一元二次方程的方法的知识是解题的关键.27.(2023春·江苏扬州·八年级统考期末)已知关于x 的一元二次方程22(21)0x m x m m -+++=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为1x ,()212x x x >,且213x x +为整数,求整数m 所有可能的值.【答案】(1)见解析(2)4-或2-或0或2【分析】(1)根据方程的系数结合根的判别式,可得出10D =>,进而可证出方程有两个不相等的实数根;(2)解方程求出方程的两根为m ,1m +,得出11343111x m x m m ++==+++,然后利用有理数的整除性确定m 的整数值.【详解】(1)解:证明:Q 22[(21)]4()10m m m D =-+-´+=>,\无论k 取何值,方程都有两个不相等的实数根;(2)22(21)0x m x m m -+++=Q ,即()[(1)]0x m x m --+=,解得:x m =或1x m =+.\一元二次方程22(21)0x m x m m -+++=的两根为m ,1m +,12x x >Q ,11x m \=+,\11343111x m x m m ++==+++,如果311m ++为整数,则4m =-或2-或0或2,\整数m 的所有可能的值为4-或2-或0或2.【点睛】本题考查了根的判别式、解一元二次方程,解题的关键是:(1)牢记“当△0>时,方程有两个不相等的实数根”;(2)利用解方程求出m 的整数值.易错必考题六、根据一元二次方程根的情况求参数28.(2023春·内蒙古巴彦淖尔·九年级校考期中)若关于x 的一元二次方程2160x mx ++=有两个不相等的实数根,则实数m 的值可以是( )A .8B .8-C .4D .10【答案】D【分析】根据一元二次方程有两个相等的实数根,运用根的判别式进行解答即可.【详解】解:∵关于x 的一元二次方程2160x bx ++=,有两个不相等的实数根,∴22441160b ac m D =-=-´´>,∴264m >,∴8b >或8b <-,故选:D .【点睛】本题考查了一元二次方程根的判别式,熟知关于x 的一元二次方程20(0)ax bx c a ++=¹,若240b ac D =->,则原方程有两个不相等的实数根;若240b ac D =-=,则原方程有两个相等的实数根;若240b ac D =-<,则原方程没有实数根.29.(2023春·山东泰安·八年级统考期末)若关于x 的一元二次方程()22230k x x -++=有两个不相等的实数根,则k 的取值范围( )A .73k £B .73k >C .73k <且2k ¹D .73k £且2k ¹【答案】C【分析】根据一元二次方程的定义和根的判别式的意义得到 20k -¹且224(2)30,k D =--´>然后解两个不等式得到它们的公共部分即可;【详解】解:根据题意得 20k -¹ 且()2Δ24230k =--´>,解得 73k < 且 2k ¹,故选:C .【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于k 的不等式是解此题 的关键30.(2023·辽宁阜新·校联考一模)若关于x 的方程29304kx x --=有实数根,则实数k 的取值范围是( ).A .0k ¹B .1k ³-且0k ¹C .1k ³-D .1k >-且0k ¹【答案】C【分析】根据一元二次方程根的判别式即可求出答案.【详解】解:由题意可知:当0k ¹时,990k D =+³,∴1k ³-,当0k =时,原方程是一元一次方程,有实数根,∴1k ³-故选:B .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ¹,,,为常数)的根的判别式24b ac D =-,理解根的判别式对应的根的三种情况是解题的关键.当0D >时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.31.(2023春·广东广州·九年级统考开学考试)已知关于x 的一元二次方程()()212204a x a x a --++=没有实数根,且a 满足25113a a -<ìí-£î,则a 的取值范围是( )A .2a £-B .23a<-C .223a<-£-D .233<a<-且2a ¹【答案】C【分析】由所给方程是一元二次方程可知20a -¹,由方程没有实数根可知Δ0<,再解不等组,找出交集即可.【详解】解:Q 关于x 的一元二次方程()()212204a x a x a --++=没有实数根,\()()212426404a a a a D =+--´=+<,20a -¹,\23a <-,2a ¹,Q a 满足25113a a -<ìí-£î,由251a -<得3a <,由13a -£得2a ³-,\23a -£<,\223a<-£-,故选C .【点睛】本题考查一元二次方程的根的判别式、解不等式组,解题的关键是掌握一元二次方程的根的判别式,即Δ0<时,方程没有实数根;Δ0=时,方程有两个相等的实数根;0D >时,方程有两个不等的实数根.32.(2023秋·黑龙江哈尔滨·九年级哈尔滨市第四十七中学校考开学考试)已知关于y 的一元二次方程2230ky y -+=有实根,则k 的取值范围是 .【答案】13k £且0k ¹.【分析】根据一元二次方程的定义和根的判别式的意义得到0k ¹且△22120k =->,然后求出两不等式的公共部分即可.【详解】解:当0k ¹时,方程是一元二次方程,则△2(2)120k =--³有实数根,解得13k £且0k ¹.故答案为13k £且0k ¹.【点睛】本题主要考查了一元二次方程的定义和根与△=-24b ac 有如下关系:当△0>时,方程有两个不相等的实数根;当△0=时,方程有两个相等的实数根;当△0<时,方程无实数根.33.(2023春·浙江杭州·八年级校联考阶段练习)已知关于x 的一元一次方程360x -=与一元二次方程20x bx c ++=有一个公共解,若关于x 的一元二次方程2(36)0x bx c x ++--=有两个相等的实数解,则b c +的值为.【答案】3-【分析】先解方程360x -=得2x =,再把2x =代入方程20x bx c ++=得420b c ++=,接着根据方程有两个相等的实数解,得到2(3)4(6)0b c D =--+=,然后通过解方程组求出b 、c ,从而得到b c +的值.【详解】解:解方程360x -=得2x =,Q 关于x 的一元一次方程360x -=与一元二次方程20x bx c ++=有一个公共解,2x \=为方程20x bx c ++=的解,420b c \++=,Q 关于x 的一元二次方程2(36)0x bx c x ++--=有两个相等的实数解,\2(3)4(6)0b c D =--+=,把24c b =--代入得2(3)4(246)0b b ----+=,解得121b b ==-,当1b =-时,242c =-=-,123b c \+=--=-.故答案为:3-.【点睛】本题主要考查了一元二次方程的解与根的判别式关系:一元二次方程20(0)ax bx c a ++=¹的根与24b ac D =-有如下关系:当0D >时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.34.(2023春·山东泰安·八年级校考阶段练习)已知关于x 的一元二次方程()21210a x x --+=有两个不相等的实数根,则a 的取值范围是 .【答案】2a <且1a ¹【分析】根据一元二次方程的定义结合根的判别式即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】解:Q 关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,\210Δ(2)4(1)0a a -¹ìí=--->î,解得:2a <且1a ¹.故答案为:2a <且1a ¹.【点睛】本题考查一元二次方程的定义、根的判别式以及解一元一次不等式组,根据一元二次方程的定义结合根的判别式列出关于a 的一元一次不等式组是解题的关键.35.(2023·辽宁抚顺·统考三模)若关于x 的方程2210kx x -+=有两个不相等的实数根,则k 的最大整数值是 .【答案】1-【分析】根据方程2210kx x -+=有两个不相等的实数根,得到()20,240k k ¹-->,确定符合题意的整数解即可.【详解】∵x 的方程2210kx x -+=有两个不相等的实数根,∴()20,240k k ¹-->,∴0,1k k ¹<,∵k 是整数,∴k 的最大整数值是1-,故答案为:1-.【点睛】本题考查了一元二次方程根的判别式,方程满足的条件,解不等式,熟练掌握根的判别式是解题的关键.36.(2022秋·上海普陀·八年级校考阶段练习)已知关于x 的方程24m x mx x m -=-.(1)有两个不相等的实数根,求m 的取值范围;(2)有两个相等的实数根,求m 的值,并求出此时方程的根;(3)有实根,求m 的最小整数值.【答案】(1)12m >-且0m ¹(2)12m =-,122x x ==-(3)0【分析】(1)分两种情况讨论:当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =->,求解即可;(2)当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =-=,求解即可;(3)当0m =时,24m x mx x m -=-变成0x =;当0m ¹时,24m x mx x m -=-是一元二次方程,根据方程根的情况可得2Δ40b ac =-³,求解即可.【详解】(1)解:24m x mx x m -=-,移项合并同类项得:2(1)04m x m x m -++=,当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´>ëû,解得:12m >-;当0m =时,24m x mx x m -=-变成0x =,只有一个实数根,不符合题意;∴m 的取值范围是12m >-且0m ¹;(2)解:当0m =时,24m x mx x m -=-变成0x =,只有一个实数根,不符合题意;当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´=ëû,解得:12m =-,把12m =-代入24m x mx x m -=-得:21110822x x ---=,整理得:2440x x ++=,解得:122x x ==-;(3)解:当0m =时,24m x mx x m -=-变成0x =,有一个实数根,符合题意,当0m ¹时,24m x mx x m -=-是一元二次方程,由题意得:()22Δ41404m b ac m m éù=-=-+-´´³ëû,解得:12m ³-,∴m 的最小整数值是0;【点睛】本题考查一元二次方程根的判别式,掌握24Δb ac =-与一元二次方程根的情况是解题的关键.37.(2023春·山东烟台·八年级统考期中)关于x 的一元二次方程2310kx x -+=有两个不相等的实数根.(1)求k 的取值范围.(2)是否存在k 的值,使k 为非负整数,且方程的两根均为有理数?若存在,请求出满足条件的k 的值;若不存在,请说明理由.。
(完整版)一元二次方程知识点和易错点总结
一元二次方程知识点总结知识结构梳理(1)含有 个未知数。
(2)未知数的最高次数是 1、概念 (3)是 方程。
(4)一元二次方程的一般形式是 。
(1) 法,适用于能化为)((0)2≥=+n n m x 的一元二次方程 (2) 法,即把方程变形为ab=0的形式,2、解法 (a ,b 为两个因式), 则a=0或(3) 法(4) 法,其中求根公式是 根的判别式当 时,方程有两个不相等的实数根。
(5) 当 时,方程有两个相等的实数根。
当 时,方程有没有的实数根。
可用于解某些求值 (1) 一元二次方程的应用 (2)(3)可用于解决实际问题的步骤 (4) (5)(6)知识点归类知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:1、一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是一元二次方程2、同时还要注意在判断时,需将方程化成一般形式。
例 下列关于x 的方程,哪些是一元二次方程?⑴3522=+x ;⑵062=-x x ;(3)5=+x x ;(4)02=-x ;(5)12)3(22+=-x x x知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
例1 已知关于x 的方程()()021122=-+--+x m x m m 是一元二次方程时,则=m知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
依题意得: 4x2 1081 80%
解得: x1 2 , x2 2(不合题意,舍去) 答:所截去小正方形的边长是 2cm.
引例3、如图,在宽为20m,长为32m的 矩形田地中央修筑同样宽的两条互相垂 直的道路,把矩形田地分成四个相同面 积的小田地,作为良种试验田,要使每 小块试验田的面积为135m2 ,道路的宽 应为多少?
(4) 当b2 4ac 0时,方程有实数根
1.不解方程,判断关于x的方程
x2 2ax 2a 1 0 的根的情况。
2.不解方程,判断方程 的根的情况。
3x2 (k 2)x k 1 0
一元二次方程根与系数的关系 (韦达定理)
若方程ax2 bx c 0(a 0)的两根为x1, x2 ,
普遍存在的问题
1. 忽视一元二次方程a≠0条件 2. 解方程能力差 3. 配方应用不到位 4. 不解方程,代入求值能力差 5. 根的判别式记忆且应用不好 6. 韦达定理应用不好,不考虑⊿≥0的条件 7. 应用题的分析理解能力不够.
1.若关于x的一元二次方程
(m 1)x2 5x m2 m 2 0
解得 x1 8, x2 10 (不合题意,舍去). 答:每轮传染中平均一个人传染了 8 个人.
一定要注意解得的根 是否符合题意
问题 2、(2008 年广东省中考题)如图,在长为 10cm,宽为 8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形 (图中阴影部分)面积是原矩形面积的 80%,求所截去小正 方形的边长?
问题 1、 5·12 汶川大地震举国同殇,本次地震灾区防疫措 施得力,没有发生传染病。 据调查,地震后若没有防疫措施, 最容易发生某种传染病,若有一人感染,经过两轮传染后将 共有 81 人感染,请计算这种传染病每轮传染中平均一个人传 染了几个人?
解:设每轮传染中平均一个人传染了 x 个人.
依题意得:1 x x1 x 81,
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
三、解答题:
1、已知关于x的方程 ( a2 – 3 ) x2 – ( a + 1 ) x + 1 = 0的两个 实数根互为倒数,求a的值.
2、在解方程x2+px+q=0时,小张看错了p,解得方程的根 为1与-3;小王看错了q,解得方程的根为4与-2。这个 方程的根应该是什么?
解: a 2,b 3,c 2
b2 4ac 32 4 2 2
9 16
25 0
x 3 25
22
3 25 4
即:x1
7,x2源自11 22x2 5x _________ 2(x ___)2 3x2 4x _________ 3(x ___)2
的常数项为0,则m=______.
2.若关于x的一元二次方程
(a 1)x2 2ax a 3
有两个实数根,则a的取值范围是________.
4(x+1)2 = 9(2x-5)2
(3x 2)2 4(3x 2) 4 0 3x(x 1) x 1 0
2x2 3x 2 0
则x1
x2
b a
, x1
x2
c a
《根与系数的关系》练习
一、填空:
1、已知方程 x2 3x 1 0 的两根是 x1, x2 ,则 x1 x2
,
x1 x2 =
。
2、已知方程 x2 kx 2 0 的一个根是1,则另一个根是 ,k
的 值是
.
3、若关于x的一元二次方程 x2+px+q=0的两根互为相反数,则 p=______;若两根互为倒数,则q=_____.
1.当代数式 x2 2x 5 的值为6时,代数式 1 x2 2 x 5 的值是多少? 33 2.已知 a2 a 1 0 ,则 a3 2a2 2010
的值是多少?
一元二次方程根的情况:
(1)当b2 4ac 0时,方程有两个不相等的实数根 (2) 当b2 4ac 0时,方程有两个相等的实数根 (3) 当b2 4ac 0时,方程没有实数根