初二数学期中复习自测题(几何至4.8代数至11.2)
人教版2024~2025学年八年级上册期中数学复习训练试题[含答案]
二、境空题:本大题共 6 小题,每小题 3 分,共 18 分,请将答案直接填在答题
纸中对应的横线上.
13.已知点 P(-2,1),则点 P 关于 x 轴对称的点的坐标是 .
14.如果将一副三角板按如图方式叠放,那么 1 等于
.
15.如图,D 在 BC 边上, EAC 40° , △ ABC ≌△ ADE ,则 B 的度数为
A.5
B.8
C.9
D.10
11.如图,在 V ABC 中, BAC 90°,AB 6,AC 8,BC 10,EF 垂直平分 BC ,点 P
为直线 EF 上的任意一点,则 AP + BP 的最小值是( )
A.6
B.7
C.8
D.10
12.如图,C 为线段 AE 上一动点(不与点 A,E 重合),在 AE 同侧分别作正三角形 ABC 和
2024-2025 学年第一学期人教版八年级期中数学复习训练试
卷(天津)
试卷满分:120 分 考试时间:100 分钟
一、选择题本大愿共 12 小题每小题 3 分共 36 分在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.下列图形中,不是轴对称图形的是( )
A.
B.
C.
D.
2.下列长度的三条线段中,能组成三角形的是( )
2
A. AF BF
B. AE
C. DBF + DFB 90°
D. BAF EBC
7.如图, Rt△ ABC 中, ACB 90°, A 55° ,将其折叠,使点 A 落在边 CB 上 A 处,折
痕为 CD ,则 ADB ( )
A. 40°
B. 30°
北师大版八年级下数学期中测试卷及答案
最新北师大版八年级下册数学期中测试卷一.选择题1. 到三角形三个顶点的距离相等的点是三角形()的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D.三条高2. 如果(1)1m x m 的解集为1x ,则m 的取值范围是()A. 0mB. 1mC. 1mD. m 是任意实数3. 如图所示,DE 是线段AB 的垂直平分线,下列结论一定成立的是()A. ED=CDB. ∠DAC=∠BC. ∠C>2∠BD. ∠B+∠ADE=90°4.不等式组20132xx x >,≥的解集是()A .x ≥8 B .x >2 C .0<x <2 D .2<x ≤85、已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是()A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝6. 如图,已知AB=AC ,∠A=36°,AC 的垂直平分线MN 交AB 于D ,AC 于M ,以下结论:①△BCD 是等腰三角形;②射线CD 是△ACB 的角平分线;③△BCD 的周长C △BCD =AB+BC ;④△ADM ≌△BCD 。
正确的有()A. ①②B. ①③C. ①②③D. ③④7.函数y =kx +b (k 、b 为常数,k0)的图象如图所示,则关于x 的不等式kx+b>0的解集为().A .x>0B .x<0C .x<2D .x>2 8. 下列各组图形中,图形甲变成图形乙,既能用平移,又能用旋转的是()A. B.C. D.9. 初三的几位同学拍了一张合影作为留念,已知拍一张底片需要5元,洗一张相片需要0.5元。
拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为()A. 至多6人B. 至少6人C. 至多5人D. 至少5人10.如图,已知直线y 1=x+m 与y 2=kx ﹣1相交于点P (﹣1,1),则关于x 的不等式x+m >kx ﹣1的解集在数轴上表示正确的是()A . B . C .D .二、填空题(每小题3分,共21分)1.不等式2x -3≥x 的解集是.2.若关于x 的不等式(1-a )x >2可化为x <a 12,则a 的取值范围是.3. 一元一次不等式组32010x x 的解集是 .4.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是。
八年级下册数学期中测试卷及答案(新人教版)
初二网权威发布八年级下册数学期中测试卷及答案新人教版,更多八年级下册数学期中测试卷及答案新人教版相关信息请访问一、选择题本大题共6小题,每小题2分,共12分1.下列图形中,是中心对称图形但不是轴对称的图形是.等边三角形.正方形.圆.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解、不是中心对称图形,是轴对称的图形,故本选项错误;、是中心对称图形,也是轴对称的图形,故本选项错误;、是中心对称图形,也是轴对称的图形,故本选项错误;、是中心对称图形但不是轴对称的图形,故本选项正确.故选.2.下面有四种说法①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③打开电视机,正在播放关于篮球巨星科比退役的相关新闻是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是.①②④.①②④.②③④.②④【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③打开电视机,正在播放关于篮球巨星科比退役的相关新闻是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选.3.下列各式从左到右的变形正确的是.=1.=.=+.=【考点】分式的基本性质.【分析】原式变形变形得到结果,即可作出判断.【解答】解、原式==1,正确;、原式=,错误;、原式为最简结果,错误;、原式=,错误,故选4.下列命题中,假命题是.对角线互相垂直且相等的四边形是正方形.对角线相等且互相平分的四边形是矩形.对角线互相垂直平分的四边形是菱形.对角线互相平分的四边形是平行四边形【考点】命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解对角线互相垂直平分且相等的四边形是正方形,所以为假命题;对角线相等且互相平分的四边形是矩形,所以为真命题;对角线互相垂直平分的四边形是菱形,所以为真命题;对角线互相平分的四边形为平行四边形,所以为真命题.故选.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是.频率就是概率.频率与试验次数无关.概率是随机的,与频率无关.随着试验次数的增加,频率一般会越来越接近概率【考点】利用频率估计概率;随机事件.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答即可.【解答】解∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴选项说法正确.故选.6.四边形中,对角线、相交于点,给出下列四个条件①∥;②=;③=;④=,从中任选两个条件,能使四边形为平行四边形的选法有.6种.5种.4种.3种【考点】平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形为平行四边形;①③可证明△≌△,进而得到=,可利用一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;①④可证明△≌△,进而得到=,可利用一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;∴有4种可能使四边形为平行四边形.故选.二、填空题共10小题,每小题2分,共20分7.若分式有意义,则的取值范围是≠﹣1;当=﹣1时,分式的值为0.【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分式有意义的条件可得1+≠0,再解即可;根据分式值为零的条件可得2﹣1=0,且﹣1≠0,再解即可.【解答】解由题意得1+≠0,解得≠﹣1;由题意得2﹣1=0,且﹣1≠0,解得=﹣1,故答案为≠﹣1;﹣1.8.已知▱中,∠比∠小20°,那么∠=80°.【考点】平行四边形的性质.【分析】根据∠+∠=180°,∠=∠﹣20°,解方程组即可解决问题.【解答】解∵四边形是平行四边形,∴∥,∠=∠,∴∠+∠=180°,又∵∠=∠﹣20°,∴∠=80°,∠=100°,∴∠=∠=80°.故答案为80°.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件求摸到白球的概率.【考点】可能性的大小;随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为=<,故答案为求摸到白球的概率.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为04.【考点】频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解根据题意可得第1、2、3、4组数据的个数分别是2、8、15、5,共2+8+15+5=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=04.故答案为20,04.11.如图,在矩形中,对角线、交于点,已知∠=60°,=8,则的长为4.【考点】矩形的性质.【分析】由矩形的性质可得到=,于是可证明△为等边三角形,于是可求得=4,然后依据勾股定理可求得的长.【解答】解∵四边形为矩形,∴===4.∵=,∠=60°,∴△为等边三角形.∴=4.在△中,==4.故答案为4.12.如图,将▱折叠,使点、分别落在点、处点、都在所在的直线上,折痕为,若∠=50°,则∠=65°.【考点】平行四边形的性质.【分析】由平行四边形与折叠的性质,易得∥∥,然后根据平行线的性质,即可求得∠=∠=∠,又由平角的定义,根据∠=50°,求得∠的度数,然后可求得∠的度数.【解答】解∵四边形是平行四边形,∴∥,根据折叠的性质可得∥,∠=∠,∴∥∥,∴∠=∠=∠,∵∠=50°,∴∠=180°﹣∠=130°,∴∠=∠=∠=65°,故答案为65.13.如图,在菱形中,与相交于点,点是的中点,=3,则菱形的周长是24.【考点】菱形的性质.【分析】根据菱形的性质可得⊥,===,再根据直角三角形的性质可得=2,进而得到长,然后可算出菱形的周长.【解答】解∵四边形是菱形,∴⊥,===,∵点是的中点,∴=2,∵=3,∴=6,∴菱形的周长是4×6=24,故答案为2414.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法答案不,如两组对角分别相等的四边形是平行四边形等.【考点】平行四边形的判定.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解答案不,如两组对角分别相等的四边形是平行四边形等;理由∵∠=∠,∠=∠,∠+∠+∠+∠=360°,∴∠+∠=180°,∠+∠=180°,∴∥,∥,∴四边行是平行四边形.故答案为答案不,如两组对角分别相等的四边形是平行四边形等.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】中点四边形;矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解由于、、、分别是、、、的中点,根据三角形中位线定理得∥∥,∥∥,∴四边形是平行四边形,∵四边形是矩形,即⊥,∴⊥,故答案为对角线互相垂直.16.已知在平面直角坐标系中,点、、、的坐标依次为﹣1,0,,,﹣1,10,﹣7,,且≤.若以、、、四个点为顶点的四边形是菱形,则的值是2,5,18.【考点】菱形的判定;坐标与图形性质.【分析】利用菱形的性质结合,点坐标进而得出符合题意的的值.【解答】解如图所示当﹣7,2,′﹣7,5时,都可以得到以、、、四个点为顶点的四边形是菱形,同理可得当﹣7,8则对应点的坐标为;﹣7,18可以得到以、、、四个点为顶点的四边形是菱形,故的值为2,5,18.故答案为2,5,18.三、解答题本大题共10小题,共68分17.计算1•2﹣﹣3.【考点】分式的混合运算.【分析】1先约分,再计算即可;2化为同分母的分式,再进行相加即可.【解答】解1原式=﹣;2原式=﹣﹣===﹣2.18.先化简,再求值÷﹣1,然后从2,1,﹣1,﹣2中选一个你认为合适的数作为的值代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的的值代入进行计算即可.【解答】解原式=÷=•=﹣,当=﹣2时,原式=﹣=1.19.矩形定义,有一个角是直角的平行四边形是矩形.已知如图,▱中,且=.求证▱是矩形.【考点】矩形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质结合全等三角形的判定与性质得出∠=∠=90°,再利用矩形的判定方法得出答案.【解答】证明∵四边形是平行四边形,∴=,∥,在△和△中,∴△≌△,∴∠=∠,∵∥,∴∠=∠=90°,∴▱是矩形.20.如图,线段绕点顺时针旋转一定的角度得到线段11点的对应点为1.1请用直尺和圆规作出旋转中心不写作法,保留作图痕迹;2连接、1、、1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】作图-旋转变换.【分析】1连接1、1,再分别作1、1中垂线,两中垂线交点即为点;2根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解1如图,点即为所求;2=1、∠1=∠1.21.在▱中,、分别是、的中点,与相交于点,与相交于点.1求证四边形是平行四边形;2若四边形是矩形,则▱应满足什么条件?不需要证明【考点】平行四边形的判定与性质;矩形的判定.【分析】1通过证明两组对边分别平行,可得四边形是平行四边形;2当平行四边形是矩形,并且=2时,先证明四边形是正方形,得出有一个内角等于90°,从而证明菱形为一个矩形.【解答】解1∵四边形是平行四边形,∴∥,=,∵是中点,是中点,∴=,∴四边形是平行四边形,∴∥.同理可得∥,∴四边形是平行四边形;2当平行四边形是矩形,并且=2时,平行四边形是矩形.∵,分别为,的中点,且=,∴=,且∥,∴四边形为平行四边形,∴=,又∵=2,为中点,则=2,于是有==,这时,====,∠=∠=90°,∴四边形是正方形,∴==,⊥,∠=90°,∴此时,平行四边形是矩形.22.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表频数分布表中部分划记被污染渍盖住1本次调查的个体是每名学生的上学方式;2求扇形统计图中,乘私家车部分对应的圆心角的度数;3请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?【考点】频数率分布表;用样本估计总体;扇形统计图.【分析】1每一个调查对象称为个体,据此求解;2首先求得私家车部分所占的百分比,然后乘以周角即可求得圆心角的度数;3用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解1本次调查的个体是每名学生的上学方式;21﹣15﹣29﹣30﹣6×360°=72°;答乘私家车部分对应的圆心角的度数为72°;31000×15+29=440人.答估计该校1000名学生中,选择骑车和步行上学的一共有440人.23.已知如图,在四边形中,∥,对角线的垂直平分线与边、分别相交于点、.求证1∠1=∠2.2四边形是菱形.【考点】菱形的判定;线段垂直平分线的性质.【分析】1由平行线的性质内错角相等即可证明;2由于知道了垂直平分,因此只要证出四边形是平行四边形即可得出是菱形的结论.【解答】证明1∵∥,∴∠1=∠2;2∵是对角线的垂直平分线,∴=,⊥,∵∥,∴∠=∠,在△和△中,,∴△≌△,∴=,∴四边形是平行四边形,又∵⊥,∴四边形是菱形.24.如图①,已知△是等腰三角形,∠=90°,点是的中点,作正方形,使点、分别在和上,连接、.1试猜想线段和的关系为;2如图②,将正方形绕点按逆时针方向旋转α0°<α≤90°,判断1中的结论是否仍然成立,证明你的结论.【考点】四边形综合题.【分析】1由等腰直角三角形的性质及正方形的性质就可以得出△≌△就可以得出结论;2如图2,连接,由等腰直角三角形的性质及正方形的性质就可以得出△≌△就可以得出结论.【解答】解1=.理由∵△是等腰直角三角形,∠=90°,点是的中点,∴⊥,=,∴∠=∠=90°.∵四边形是正方形,∴=.在△和△中,,∴△≌△,∴=;2成立=.理由如图②,连接,∵在△中,为斜边中点,∴=,⊥,∴∠+∠=90°.∵四边形为正方形,∴=,且∠=90°,∴∠+∠=90°,∴∠=∠.在△和△中,,∴△≌△,∴=.25.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度放热水的是升分,放冷水的速度是升分,下面有两种放水方式方式一先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二前一半时间让热水龙头注放,后一半时间让冷水龙头注放.1在方式一中设浴缸容积为升,则先开热水,热水注满浴缸一半所需的时间为分;2两种方式中,哪种方式更节省时间?请说明理由.【考点】分式的混合运算.【分析】1根据题意即可得到结论;2首先浴缸容积为,然后求出方式一和方式二注满时间为、′,最后作差比较.【解答】解1先开热水注满浴缸一半所需的时间为分;故答案为;2方式一设浴缸容积为,注满时间为,依题意,得=+,方式二同样设浴缸容积为,注满总时间为′,依题意得′+′=所以′=,故﹣′=+﹣==, 分类讨论Ⅰ当=时,﹣′=0,即=′Ⅱ当≠时,>0,即>′综上所述 1 当放热水速度与放冷水速度不相等时,选择方式二节约时间.2 当 两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水 的时间相等.26.在正方形中,、是对角线上的两点.1 如图①,=,连接并 延长,交于点,连接并延长,交于点,连接、.求证①四边形为菱形 ②△≌△.2 如图②,≠,连接并延长交于点,连接并延长交于点.连 接、,若∠=105°,∠=115°,则∠﹢∠的度数是80 °.【考点】四边形综合题.【分析】1①如图①中,连接交于, 先证明四边形是平行四边形,再根据⊥即可证明.②先证明四边形是 平行四边形,得到∠=∠,再证明=,∠=∠即可解决问题.2 分别求 出∠、∠即可解决问题.【解答】1①证明如图①中,连接交于.∵ 四边形是正方形,∴=,=,⊥,∵=,∴=,∵=,∴四边形是平行四 边形,∵⊥,∴四边形是菱形.②证明∵四边形是菱形,∴∥,=, ∠=∠,∴∠=∠,∵∥,∴四边形是平行四边形,∴∠=∠,在△和 △中,,∴△≌△.2 如图②中,∵四边形是正方形,∴∠=∠,=, 在△和△中,,∴△≌△,∴∠=∠=115°,同理可证∠=∠=105°, ∵∠=180°﹣∠=65°,∴∠=∠﹣∠=50°,∴∠=105°﹣75°=30°, ∴∠﹢∠=30°+50°=80°.故答案为 80.【八年级下册数学期中测 试卷及答案新人教版】。
参考答案2024-2025学年度第二学期初二数学期中阶段质量检测试题参考答案
2024-2025学年度第一学期初二数学学科期中阶段质量反馈参考答案一、单项选择(30分,每题3分)1-5 CADBD 6-10ABBAA二、填空题(18分,每题3分)11.±312.三角形的稳定性13.814.815.16.4三、解答题(72分)17.(1) (1)53(共10分,每问5分,第一步化简乘方、开方正确2分)18. (共12分,(1)每空1分,(2)8分)(1)①;②;③;④.(2)延长至点,使得,连接,延长至点,使得,连接,,...................................................................................................辅助线1分,在△和△中,,△△,,..............................................................................................................................3分同理△△,3-52B B '∠=∠12BD BC =12B D BC ''''=SAS ADE DE DA =BE A D ''E 'D E D A ''''=B E ''AD A D ='' AE A E ∴=''ADC EDB AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩∴ADC ≅()EDB SAS AC BE ∴=A D C '''≅()E D B SAS ''',,,............................................................................................................................4分在△和△中,,△△,,同理,,.................................................................................................................6分在△和△中,,△△.............................................................................. .....................8分19. (共4)分方法一:如图,连接并延长,.......................................................... .....................1分在中,,在中,,, (2)分A CB E ''''∴=AC A C '=' BE B E ''∴=BAE B A E '''AB A B BE B E EA E A ''=⎧⎪''=⎨⎪''=⎩∴BAE ≅()B A E SSS '''BAD B A D ∴∠=∠'''CAD C A D ∠=∠'''BAC B A C ∴∠=∠'''ABC A B C '''AB A B BAC B A C AC A C ''=⎧⎪'''∠=∠⎨⎪''=⎩∴ABC ≅()A B C SAS '''AC ADC ∆1D DAC ∠=∠+∠ABC ∆2B BAC ∠=∠+∠12140BCD D B BAC DAC D B A ∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠=︒李叔叔量得,就可以断定这个零件不合格......................................1分方法二:如图,延长交于,,,,,李叔叔量得,就可以断定这个零件不合格.20. (共10分,(1)4分,(2)6分)(1)如图,点即为所求;(2)连接,由作图可知,为的垂直平分线,则,设 ,则,..............................................1分,在中,由勾股定理得:,..............................................2分即......................................................................................................5分解得:,答:深圳号驱逐舰行驶的航程的长为. (6)分∴142BCD ∠=︒DC AB M 180180903060AMD A D ∠=︒-∠-∠=︒-︒-︒=︒ 180********CMB AMD ∴∠=︒-∠=︒-︒=︒1801802012040MCB B CMB ∴∠=︒-∠-∠=︒-︒-︒=︒180********DCB MCB ∴∠=︒-∠=︒-︒=︒∴142BCD ∠=︒C BC CD AB BC AC =BC AC x ==nmile (90)OC x nmile =-OA OB⊥ 90O ∴∠=︒Rt OBC ∆222BO OC BC +=22230(90)x x +-=50x =BC 50nmile21. (共9分,(1)3分,(2)3分,点描对1个给1分(3)3分)22.(共5分)解:如图,设C ′D 与AC 交于点O ,∵∠C=35°,∴由折叠可得∠C ′=∠C=35°,.....................................................................................1分∵∠1=∠DOC+∠C ,∠1=106°,∴∠DOC=∠1-∠C=106°-35°=71°, (3)分∵∠DOC=∠2+∠C ′,∴∠2=∠DOC-∠C ′=71°-35°=36°..............................................................................5分23.(共10分,(1)6分,(2)4分)(1)截取AC=CE 给2分;平行尺规作图:利用角的关系或做全等,有痕迹作对都可给4分(2)解:,,............................................................................................................1分在和中,,,............................................................................................................3分,即的长就是、之间的距离...............................................................4分//DE AB A E ∴∠=∠ABC ∆EDC ∆A E ACB ECD BC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABC EDC AAS ∴∆≅∆DE AB ∴=DE A B24.(共12分,(1)2分,(2)8分,(3)2分)解:(2)结论成立............................................................................1分证明:四边形是正方形,,............................................................................2分在和中,,..,即....................................................................................................................5分在和中,,.,...............................................................................................7分,,,.(8分).........................................................................................................8分 ABCD BA AD DC ∴==90BAD ADC ∠=∠=︒EAD ∆FDC ∆EA FD ED FC AD DC =⎧⎪=⎨⎪=⎩EAD FDC ∴∆≅∆EAD FDC ∴∠=∠EAD DAB FDC CDA ∴∠+∠=∠+∠BAE ADF ∠=∠BAE ∆ADF ∆BA AD BAE ADF AE DF =⎧⎪∠=∠⎨⎪=⎩BAE ADF ∴∆≅∆BE AF ∴=ABE DAF ∠=∠⋯90DAF BAF ∠+∠=︒ 90ABE BAF ∴∠+∠=︒90AMB ∴∠=︒AF BE ∴⊥⋯。
2023-2024学年北京市第八中学八年级上学期期中考试数学试卷含详解精选全文完整版
北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.2.下列运算正确的是()A.336x x x += B.2510x x x ⋅= C.()3666x x = D.()22422x x =3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.47.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a -- D.(,40)a -8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y≥ B.x y≤ C.x y< D.x y>9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A .19AB << B.313AB << C.513AB << D.913AB <<10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cmAB A B ''==2乙4cmBC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③二、填空题(每题3分,共24分)11.计算:()01π-=_____.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.13.已知3m a =,4n a =,则2m n a +的值是_________.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a babc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.北京八中2023—2024学年度第一学期期中练习题年级:初二科目:数学一、选择题(每题2分,共20分)在下列各题的四个备选答案中,只有一个....是正确的.1.下面四个图形中,是轴对称图形的是()A. B. C. D.【答案】D【分析】根据轴对称图形的定义判断即可.【详解】∵不是轴对称图形,∴A 不符合题意;∵不是轴对称图形,∴B 不符合题意;∵不是轴对称图形,∴C 不符合题意;∵是轴对称图形,∴D 符合题意;故选D .【点睛】本题考查了轴对称图形即沿直线折叠,直线两旁的部分能够完全重合的图形,熟记定义是解题的关键.2.下列运算正确的是()A.336x x x +=B.2510x x x ⋅= C.()3666x x = D.()22422x x =【答案】C【分析】本题考查了合并同类项,幂的乘方,同底数幂的乘法,积的乘方.根据合并同类项法则,同底数幂的乘法法则,幂的乘方法则,积的乘方法则进行判断即可.【详解】解:A 、33362x x x x +=≠,选项错误,不符合题意;B 、21075x x x x ⋅=≠,选项错误,不符合题意;C 、()3666x x =,选项正确,符合题意;D 、()2244242x x x =≠,选项错误,不符合题意.故选:C .3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A.ASAB.AASC.SASD.SSS【答案】A【分析】根据图形可知两角及夹边是已知条件即可判断.【详解】解:由图可知,左下角和右下角可测量,为已知条件,两角的夹边也可测量,为已知条件,故可根据ASA 得到与原图形全等的三角形,故选:A .【点睛】本题考查全等三角形的的判定定理,掌握全等三角形的的判定定理是关键.4.下列说法错误..的是()A.直角三角形两锐角互余B.直角边、斜边分别相等的两个直角三角形全等C.如果两个三角形全等,则它们一定是关于某条直线成轴对称D.与线段两个端点距离相等的点在这条线段的垂直平分线上【答案】C【分析】本题考查了直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定.根据直角三角形的性质,全等三角形的判定和性质,垂直平分线的判定等知识,一一判断即可.【详解】解:A 、直角三角形两锐角互余,故A 不符合题意;B 、直角边、斜边分别相等的两个直角三角形全等,故B 不符合题意;C 、如果两个三角形全等,则它们不一定是关于某条直线成轴对称,故C 符合题意;D 、与线段两个端点距离相等的点在这条线段的垂直平分线上,故D 不符合题意.故选:C .5.如图,已知DBE BCA ≌△△,85DBE C =∠=︒∠,55BDE ∠=︒,则EBC ∠的度数等于()A.30︒B.25︒C.35︒D.40︒【答案】A【分析】本题考查三角形全等的性质、三角形内角和的应用,根据DBE BCA ≌△△可得55ABC BDE ∠=∠=︒,再根据DBE ABC EBC =∠-∠∠即可求解.【详解】解:∵DBE BCA ≌△△,∴55ABC BDE ∠=∠=︒,∵85DBE C =∠=︒∠,∴30DB EBC E ABC -∠=︒∠=∠,故选:A .6.使()()2x p x -+展开整理后不含x 项,则p 的值为()A.1B.2C.3D.4【答案】B【分析】本题主要考查多项式乘多项式.根据多项式乘多项式的运算法则可进行把含x 的多项式进行展开,然后再根据题意可求解.【详解】解:()()()2222222x p x x px x p x p x p -+=-+-=+--,∵展开后不含x 项,∴20p -=,解得:2p =;故选:B .7.如图是战机在空中展示的轴对称队形.以飞机B ,C 所在直线为x 轴、队形的对称轴为y 轴,建立平面直角坐标系.若飞机E 的坐标为(40,a ),则飞机D 的坐标为()A.(40,)a -B.(40,)a -C.(40,)a --D.(,40)a -【答案】B【分析】直接利用关于y 轴对称,纵坐标相同,横坐标互为相反数,进而得出答案.【详解】解:根据题意,点E 与点D 关于y 轴对称,∵飞机E 的坐标为(40,a ),∴飞机D 的坐标为(-40,a ),故选:B .【点睛】此题主要考查了关于y 轴对称点的性质,正确记忆横纵坐标的符号关系是解题关键.8.已知2x a ab =-,2y ab b =-,x 与y 的大小关系是()A.x y ≥B.x y≤ C.x y< D.x y>【答案】A【分析】本题主要考查完全平方公式、比较大小.利用作差法即可比较大小关系.【详解】解:已知2x a ab =-,2y ab b =-,则()22a a x yb ab b-=---22a ab ab b =-+-()20a b =-≥,所以x y ≥.故选:A .9.在ABC 中,5AC =,中线4=AD ,那么边AB 的取值范围为()A.19AB <<B.313AB << C.513AB << D.913AB <<【答案】B【分析】作辅助线(延长AD 至E ,使4DE AD ==,连接BE )构建全等三角形BDE ADC △≌△,然后由全等三角形的对应边相等知5BE AC ==;而三角形的两边之和大于第三边、两边之差小于第三边,据此可以求得AB 的取值范围.【详解】解:延长AD 至E ,使4DE AD ==,连接BE ,则8AE =,∵AD 是边BC 上的中线,D 是中点,∴BD CD =,又∵,DE AD BDE ADC =∠=∠,∴()BDE ADC SAS ≌,∴5BE AC ==,由三角形三边关系,得AE BE AB AE BE -<<+,即8585AB -<<+,∴313AB <<.故选:B .【点睛】本题主要考查了全等三角形的判定与性质、三角形三边关系等知识,解题关键是正确作出辅助线构造全等三角形,运用全等三角形的性质判定对应线段相等.10.甲、乙两位同学进行一种数学游戏.游戏规则是:两人轮流ABC 及A B C ''' 对应的边或角添加等量条件(点A ',B ',C '分别是点A ,B ,C 的对应点),某轮添加条件后,若能判定ABC 与A B C ''' 全等,则当轮添加条件者失败,另一人获胜.轮次行动者添加条件1甲2cm AB A B ''==2乙4cm BC B C ''==3甲…上表记录了两人游戏的部分过程,则下列说法正确的是()①若第3轮甲添加5cm AC A C ''==,则乙获胜;②若甲想获胜,第3轮可以添加条件30C C '==︒∠∠:③若乙想获胜,可修改第2轮添加条件为90A A '∠=∠=︒.A.①②B.①③C.②③D.①②③【答案】B 【分析】本题考查全等三角形的判定定理.根据全等三角形的判定定理逐一分析判断即可.【详解】解:①∵如果甲添加5cm AC A C ''==,又∵2cm AB A B ''==,4cm BC B C ''==,∴()SSS ABC A B C '''△≌△,∴乙获胜,故结论①正确;②∵如果甲添加30C C '==︒∠∠,又12AB BC =,反证法,假设90CAB ∠≠︒,那么在AC 上存在另一点D ,使得∠90CDB =︒,则在Rt CDB △中30︒角的对边为斜边的一半,即是12cm 2BD BC ==,又因为一点到直线的垂直线段长度最短,且交点唯一,那么A 与D 应重合,90CDB CAB ∠=∠=︒,∴ABC 是直角三角形,且90A ∠=︒,∴这两个三角形的三边长度就确定下来,且必然对应相等,∴这两个三角形全等,故甲会输,故结论②错误,③如果第二轮条件修改为90A A '∠=∠=︒,则第3轮甲无论添加任何对应的边或角的等量条件,都能判定A ABC B C '''≌△△,则甲失败,乙获胜,故说法正确,符合题意.故选:B .二、填空题(每题3分,共24分)11.计算:()01π-=_____.【答案】1【分析】根据零指数幂的意义即可求出答案.【详解】∵10π-≠,∴()011π-=,故答案为1.【点睛】本题考查零指数幂的意义,解题的关键是熟练运用零指数幂的意义,本题属于基础题型.12.若一个多边形的内角和等于1260°,它是_____边形,从这个多边形的一个顶点出发共有_____条对角线.【答案】①.九②.27【分析】根据多边形内角和公式得到多边形边数,根据多边形对角线的条数的计算公式进行计算即可得到答案.【详解】设这个多边形的边数为n ,∴(n ﹣2)×180°=1260°,解得n =9,∴这个多边形为九边形;∴对角线的条数=(93)92-⨯=27条.故答案为九;27【点睛】本题考查多边形内角和、多边形对角线的条数,解题的关键是掌握多边形内角和、多边形对角线的条数的计算.13.已知3m a =,4n a =,则2m n a +的值是_________.【答案】36【分析】根据()222m n m n mn a a a a a +==g g 求解即可得到答案.【详解】解:∵3m a =,4n a =∴()()22223436m n m n mn a a a a a +===⨯=g g ,故答案为:36.【点睛】本题主要考查了幂的乘方的逆运算,同底数幂乘法的逆运算,解题的关键在于能够熟练掌握相关计算法则进行求解.14.如图,将一把含有45︒角的三角尺的直角顶点放在一张宽3cm 的纸带边沿上,另一个顶点放在纸带的另一边沿上,测得三角尺的一直角边与纸带的一边所在的直线成30︒,则三角尺的直角边的长为______cm .【答案】6【分析】本题考查了含30度角的直角三角形的性质.如图,作AH CD ⊥于H ,根据含30度角的直角三角形的性质求解即可.【详解】解:如图,作AH CD ⊥于H ,∵三角板的一边与纸带的一边所在的直线成30︒角,即30ACH ∠=︒,3cm AH =,∴等腰直角三角形的直角边()26cm BC AC AH ===,故答案为:6.15.等腰三角形的一个内角为50︒,则它的顶角的度数为___________.【答案】80︒或50︒【分析】分50︒的内角是等腰三角形的底角或顶角两种情况,利用三角形内角和定理求解.【详解】解:当50︒的内角是等腰三角形的底角时,它的顶角的度数为:180505080︒-︒-︒=︒;当50︒的内角是等腰三角形的顶角时,它的底角的度数为:()118050652⨯︒-︒=︒,符合要求;故答案为:80︒或50︒.【点睛】本题考查等腰三角形的定义、三角形内角和定理,解题的关键是注意分情况讨论,避免漏解.16.如图,6cm AB AC ==,DB DC =,若60ABC ∠=︒,则BE =______cm .【答案】3【分析】本题考查了垂直平分线的判定与性质、等边三角形的判定与性质;先根据AB AC =,DB DC =,得AD 是BC 的垂直平分线,进而证明ABC 是等边三角形,即可求解.【详解】解:∵AB AC =,DB DC =,∴AD 是BC 的垂直平分线,∴AD BC ⊥,BE CE =,∵60ABC ∠=︒,AB AC =,∴60ACB ∠=︒,∴60BAC ∠=︒,∴ABC 是等边三角形,∴6cm BC AB AC ===,∴13cm 2BE BC ==,故答案为:3.17.如图,在ABC 中,,||AB AC AB CD =,过点B 作BE AC ⊥于E ,BD CD ⊥于D ,8,3,CD BD ABE == 的周长为_________.【答案】11【分析】根据角平分线的性质得出BE BD =,再证明Rt Rt (HL)BEC BDC ≌,得出CE CD =即可求解.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵||AB CD ,∴ABC BCD ∠=∠,∴BCD ACB ∠=∠,∴CB 平分ACD ∠,∵BD CD ⊥,BE AC ⊥,∴BE BD =,∵BC BC =,∴Rt Rt (HL)BEC BDC ≌,∴CE CD =,∵ABE 的周长AE BE AB =++,∵AB AC =,即ABE 的周长=CA AE BE CE BE CD ++=+=8311BD +=+=,故答案为:11.【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,熟练掌握角平分线的性质是解题的关键.18.已知在长方形纸片ABCD 中,6AB =,5AD =,现将两个边长分别为a 和b 的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片中均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ;若213-=S S 时,则1b -值为______.【答案】2【分析】本题主要考查整式的混合运算的实际应用.利用面积的和差关系,分别表示出1S 和2S ,再表示出21S S -,结合213-=S S ,即可求解.【详解】∵四边形ABCD 是长方形,∴6AB CD ==,5AD BC ==,∵2216(5)()(6)30666306S a a b a a a b a ab b a ab =-+--=-+--+=--+,225(6)()(5)30555S a a b a a a b a ab =-+-⋅-=-+--+,∵213-=S S ,∴()212230555306S b S -+--=----++2230555306a a b a ab b a ab=-+--+-++-b =,∵213-=S S ,∴3b =,∴12-=b .故答案是:2.三、解答题(19题每题4分,共16分;20,21,23每题6分,22题5分;24题8分;25题9分;解答题共56分).19.计算(1)()22124a b abc -⋅;(2)()()325n n -+;(3)()()22x y x y ----;(4)()()32222362x y x y xy xy -+÷.【答案】(1)53a b c(2)231310n n +-(3)2244x xy y ++(4)2332x y xy -+【分析】本题考查了整式的混合运算.(1)先计算积的乘方,再计算单项式的乘法即可;(2)利用多项式乘多项式的运算法则即可求解.(3)利用完全平方公式计算即可;(4)利用多项式除单项式的运算法则即可求解.【小问1详解】解:()22124a b abc -⋅24144a b abc =⋅53a b c =;【小问2详解】解:()()325n n -+2321510n n n -+-=231310n n =+-;【小问3详解】解:()()22x y x y ----()22x y =--2244x xy y =++;【小问4详解】解:()()32222362x y x y xy xy -+÷()()()3222223262x y xy x y xy xy xy =÷-÷+÷2332x y xy =-+.20.先化简,再求值:2(21)6(1)(32)(32)a a a a a -++-+-,其中2220230a a +-=.【答案】225a a ++,2028【分析】此题主要考查了整式的混合运算-化简求值.直接利用乘法公式以及整式的混合运算法则化简,再利用已知变形代入即可.【详解】解:2(21)6(1)(32)(32)a a a a a -++-+-2224416694a a a a a =-+++-+,225a a =++,∵2220230a a +-=,∴222023a a +=,∴原式202352028=+=.21.如图,在△ABC 和△CED 中,AB ∥CD ,AB =CE ,AC =CD .求证:∠B =∠E .【答案】证明见解析.【详解】试卷分析:根据AB//CD 得出∠DCA=∠CAB ,结合AB=CE ,AC=CD 得出△CAB ≌△DCE ,从而得出答案.试卷解析:∵AB//CD ,∴∠DCA=∠CAB 又∵AB=CE ,AC=CD ,∴△CAB ≌△DCE ∴∠B=∠E.考点:(1)平行线的性质;(2)三角形全等的判定与性质22.作图并填空.在ABC 中,(1)利用尺规作出BC 的垂直平分线,交BC 于D ,连接AD ;(2)画出ADC △的高CH ,CH 与BD 的大小关系为______;(3)画出ADC △的角平分线DM 交AC 点M ,若60ABC S =△,10DCM S =△,设AD a =,DC b =,则:a b =______.【答案】(1)见解析(2)CH BD<(3)2:1【分析】本题考查了作图−基本作图,角平分线的性质.(1)利用基本作图,作BC 的垂直平分线;(2)根据斜边大于直角边以及线段中点的意义即可求解;(3)作ME CD ⊥于点E ,MF AD ⊥于点F ,利用角平分线的性质求得ME MF =,利用面积法即可求解.【小问1详解】解:如图,直线l 为所作;【小问2详解】解:ADC △的高CH 如图所示,∵CH DH ⊥,∴90H ∠=︒,∴CH CD <,∵BC 的垂直平分线,交BC 于D ,∴BD CD =,∴CH BD <,故答案为:CH BD <;【小问3详解】解:ADC △的角平分线DM 如图所示,作ME CD ⊥于点E ,MF AD ⊥于点F,∵BD CD =,60ABC S =△,∴1302ADC ABC S S == ,∵10DCM S =△,∴20ADM S =△,∵DM 是ADC ∠的角平分线,ME CD ⊥,MF AD ⊥,∴ME MF =,∵12022a AD MF MF ⨯=⨯=,11022b CD MF MF ⨯=⨯=,∴40220a MF b ME ==,∴:2:1a b =故答案为:2:1.23.如图,在平面直角坐标系xOy 中,ABC 三个顶点分别为()2,6A -,()5,1B -,()3,1C .点B 与点C 关于直线l 对称(1)画出直线l ,写出点A 关于l 的对称点A '坐标;(2)则A BC ' 的面积为______;(3)若点P 在直线l 上,90BPC ∠=︒,直接写出点P 坐标.【答案】(1)直线l 见解析,点A 关于l 的对称点A '坐标为()06,;(2)20(3)点P 的坐标为()1,5-和()1,3--.【分析】本题主要考查了坐标与图形,等腰直角三角形的性质和判定,垂直平分线的性质.(1)根据点B 与点C 的坐标求出中点坐标D ,然后过点D 作BC 的垂线即可得出直线l ;(2)根据三角形面积公式求出结果即可;(3)分两种情况:当P 在直线BC 上方时,当P 在直线BC 下方时,分别求出结果即可.【小问1详解】解:∵()5,1B -,()3,1C ,∴中点D 的坐标为()1,1-,过点D 作BC 的垂线,即为所求作的直线l ,如图所示:;∴点A 关于l 的对称点A '坐标为()06,;【小问2详解】解:如图,()1861202A BC S '=⨯⨯-= ;故答案为:20;【小问3详解】解:∵B 与点C 关于直线l 对称,∴直线l 垂直平分BC ,∵点P 在直线l 上,∴BP CP =,∵PD BC ⊥,∴PD 平分BPC ∠,∵90BPC ∠=︒,∴190452BPD CPD ∠=∠=⨯︒=︒,∴BPD △为等腰直角三角形,∴142PD BD BC ===,当P 在直线BC 上方时,如图所示:此时点P 的纵坐标为:145+=,∴此时点P 的坐标为()15-,;当P 在直线BC 下方时,如图所示:此时点P 的纵坐标为:143-=-,∴此时点P 的坐标为()1,3--;综上分析可知,点P 的坐标为()1,5-和()1,3--.24.如图,ABC 是等边三角形,D 为BC 的中点,BE AB ⊥交AD 的延长线于点E ,点F 在AE 上,且AF BE =,连接CF 、CE .求证:(1)ACF BCE ∠=∠:(2)CF EF =.【答案】(1)见解析(2)见解析【分析】(1)先根据条件得到AD 是ABC 的中线,同时是角平分线,高线,再结合BE AB ⊥利用角之间的变换得到EBD CAD ∠=∠,从而证明()SAS CAF CBE ≌,即可得到结论;(2)先根据垂直平分线的性质得到CE BE =,进而得到CE CF =,再根据三角形外角的性质得到60CFD CAF ACF ∠=∠+∠=︒即可证明CFE 是等边三角形,即可得到结论.【小问1详解】证明:∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,AC BC =,∴AD BC ⊥,CAD BAD ∠=∠,∴90DBA BAD ∠+∠=︒,∵BE AB ⊥,∴90DBA EBD ∠+∠=︒,∴EBD BAD ∠=∠,∴EBD CAD ∠=∠,∵AF BE =,AC BC =,∴()SAS CAF CBE ≌,∴ACF BCE ∠=∠;【小问2详解】证明:∵ABC 是等边三角形,∴AC AB =,∴AD 是BC 的垂直平分线,∵点E 在AD 的延长线上,∴CE BE =,由(1)得:()SAS CAF CBE ≌,∴CF BE =,CF AF =,∴CE CF =,∵ABC 是等边三角形,D 为BC 的中点,∴AD 是ABC 的中线,同时是角平分线,高线,∴1302CAD CAB ACF ∠=∠=︒=∠,∴60CFD CAF ACF ∠=∠+∠=︒,∴CFE 是等边三角形,∴CF EF =;【点睛】本题考查了等边三角形的判定与性质,垂直平分线的性质,三角形全等的判定与性质,三角形外角性质,看到等边三角形要想到三线合一,一般证明两个角相等都会用到三角形全等.25.如图,在ABC 中,120180BAC ︒<<︒,AB AC =.AD BC ⊥于点D .以AC 为边作等边ACE △,直线BE 交直线AD 于点F .连接CF 交AE 于M .(1)求证:FEA FCA ∠=∠:(2)探索FE ,FA ,FC 之间的数量关系,并证明你的结论.【答案】(1)见解析(2)2FE FA FD +=,见解析【分析】(1)由等边三角形的性质及等腰三角形的性质,求得FEA FBA ∠=∠,根据线段垂直平分线的性质求得ABE ACF ∠=∠,据此可得出答案;(2)在FC 上截取FN ,使FN FE =,连接EN ,根据等边三角形的性质得出60EFM ∠=︒,根据等边三角形的判定得出EFN 是等边三角形,求出60FEN ∠=︒,EN EF =,求出AEF CEN ∠=∠,根据SAS 推出EFA ENC △≌,根据全等得出FA NC =,求出2FC FD =,即可得出答案.【小问1详解】证明:AD 为边BC 的垂直平分线,AB AC ∴=,ACE Q V 为等边三角形,AC AE ∴=,AB AE =∴,FEA FBA ∴∠=∠;∵直线AD 垂直平分BC ,AB AC ∴=,FB FC =,ABC ACB FBC FCB ∴∠=∠∠=∠,,FBC ABC FCB ACB ∴∠-∠=∠-∠,即ABE ACF ∠=∠,ABE AEF ∠=∠ ,∴FEA FBA ∠=∠;【小问2详解】解:2FE FA FD +=,证明:在FC 上截取FN ,使FN FE =,连接EN ,如图2,由(1)得:AEF ACF ∠=∠,FME CMA ∠=∠ ,EFC CAE ∴∠=∠,等边三角形ACE 中,60CAE ∠=︒,60EFC ∴∠=︒.FN FE = ,EFN ∴ 是等边三角形,60FEN ∴∠=︒,EN EF =,ACE Q V 为等边三角形,60AEC ∴∠=︒,EA EC =,FEN AEC ∴∠=∠,FEN MEN AEC MEN ∴∠-∠=∠-∠,即AEF CEN ∠=∠,在EFA △和ENC ∠中,EF EN AEF CEN EA EC =⎧⎪∠=∠⎨⎪=⎩,()SAS EFA ENC ∴ ≌,FA NC ∴=,FE FA FN NC FC ∴+=+=,60EFC FBC FCB ∠=∠+∠=︒ ,FBC FCB ∠=∠,160302FCB ∴∠=⨯︒=︒,AD BC ⊥ ,90FDC ∴∠=︒,2FC FD ∴=,2FE FA FD ∴+=.【点睛】本题是三角形综合题,考查了等腰三角形的性质,等边三角形的性质和判定,含30︒角的直角三角形的性质,全等三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.四、附加题(26题4分,27题6分,共10分)26.小明同学用四张长为x ,宽为y 的长方形卡片,拼出如图所示的包含两个正方形的图形(任意两张相邻的卡片之间没有重叠,没有空隙).(1)通过计算小正方形面积,可推出()2x y +,xy ,()2x y -三者之间的等量关系式为______;(2)利用(1)中的结论,试求:当()()3002001996x x --=时,求()22500x -的值.【答案】(1)()()224x y x y xy-=+-(2)()22500x -的值是2016.【分析】本题主要考查几何图形与整式乘法.(1)直接利用图象面积得出答案;(2)利用多项式乘法将已知条件变形,即可求出答案.【小问1详解】解:由题意得,小正方形的面积=大正方形的面积4-个长方形的面积和,()()224x y x y xy ∴-=+-,故答案为:()()224x y x y xy -=+-;【小问2详解】解:设300A x =-,200B x =-,∴100A B +=-,2500A B x -=-,1996AB =,∴22()()4A B A B AB -=+-,∴()()222500100419962016x -=--⨯=,故()22500x -的值是2016.27.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴、直线l 的“二次对称点”.(1)已知点()A 3,5,直线l 是经过()0,2且平行于x 轴的一条直线,点A '为点A 关于y 轴,直线l 的“二次对称点”,则点A '的坐标为______;(2)如图1,正方形ABCD 的顶点坐标分别是()0,1A ,()0,3B ,()2,3C ,()2,1D ;点E 的坐标为()1,1,若点M 为正方形ABCD (不含边界)内一点,点M '为点M 关于y 轴,直线OE 的“二次对称点”,则点M '的横坐标x 的取值范围是______;(3)如图2,(),0T t (0t ≥)是x 轴上的动点,线段RS 经过点T ,且点R 、点S 的坐标分别是(),1R t ,(),1S t -,直线l 经过()0,1且与x 轴夹角为60︒,在点T 的运动过程中,若线段RS 上存在点N ,使得点N '是点N 关于y 轴,直线l 的“二次对称点”,且点N '在y 轴上,则点N '纵坐标y 的取值范围是______.【答案】(1)()3,1--(2)13x <<(3)31N y '-≤≤【分析】(1)根据“二次对称点”的定义求解即可;(2)由题意,直线OE 的解析式为y x =,点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,由直线OE 的解析式为y x =,得M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标即是关于y 轴的纵坐标,,由此可得结论;(3)如图2中,当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,如图3中,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.求出这两种特殊位置N '的坐标,可得结论.【小问1详解】解∶点()A 3,5关于y 轴的对称点为()13,5A -,∵直线l 是经过()0,2且平行于x 轴的一条直线,∴点()13,5A -关于直线l 的对称点为()3,1A '--;故答案为:()3,1--【小问2详解】解∶如图,设直线OE 的解析式为y kx =,∵点E 的坐标为()1,1,∴1k =,∴直线OE 的解析式为y x =,∵()0,1A ,()0,3B ,()2,3C ,()2,1D ,∴点M 关于y 轴对称的点的轴坐标的取值范围为13y <<,∴点M 关于y 轴,直线OE 的“二次对称点”点M '的横坐标x 的取值范围是13x <<,故答案为:13x <<;【小问3详解】解∶如图2,设点N 关于y 轴的对称点为点N ''当点N 与S 重合,且N '在y 轴上时,连接SN ''交直线于点K ,交y 轴于点J ,连接KN ',设直线l 交x 轴于点D ,交y 轴于点C ,∵,60CDO ∠=︒OD KJ ∥,OD OC ⊥,∴60CKJ CDO ∠=∠=︒,30KCJ ∠=︒∵N '和N ''关于直线l 对称,∴18060120CKN CKN ︒'''∠=∠=︒-︒=,∴1801203030KN J KCJ '∠=︒-︒-︒=︒=∠,∴KC KN '=,∵KJ CN '⊥,∴2CJ JN '==,∴3ON '=,∴此时点()0,3N '-,如图3,当点T 与原点重合,N 与()01,重合时,N '和N ''都与()01,重合,此时()01N ',.根据题意得:0t ≥,观察图象得:满足条件的N '的纵坐标为31N y '-≤≤.故答案为:31N y '-≤≤【点睛】本题属于四边形综合题,考查了正方形的性质,轴对称变换,一次函数的性质等知识,解题的关键是学会寻找特殊位置,解决问题,属于中考压轴题.。
2024年最新人教版初二数学(下册)期中试卷及答案(各版本)
2024年最新人教版初二数学(下册)期中试卷及答案(各版本)一、选择题:每题1分,共5分1. 一个三角形的两边分别是8和15,第三边的长度可能是:A. 7B. 23C. 17D. 102. 下列各数中,最大的数是:A. 3/4B. 0C. 2/3D. 1/23. 一个等边三角形的周长是24,那么它的面积是:A. 36B. 48C. 64D. 724. 一个数的平方根是9,那么这个数是:A. 81B. 90C. 144D. 185. 下列各数中,最小的数是:A. 5/6B. 1/3C. 1/2D. 2/3二、判断题:每题1分,共5分1. 任何两个奇数之和都是偶数。
()2. 0的任何次幂都是0。
()3. 两个负数相乘的结果是正数。
()4. 任何一个大于2的偶数都可以表示为两个质数之和。
()5. 平方根和立方根都只有一个。
()三、填空题:每题1分,共5分1. 一个正方形的边长是6,那么它的面积是______。
2. 3的平方根是______。
3. 两个质数的最小公倍数是它们的______。
4. 如果一个数的平方是64,那么这个数的立方根是______。
5. 2/3和3/4中,较大的数是______。
四、简答题:每题2分,共10分1. 请简述勾股定理。
2. 请解释什么是算术平方根。
3. 请解释什么是质数。
4. 请解释什么是等边三角形。
5. 请解释什么是因数分解。
五、应用题:每题2分,共10分1. 一个长方形的长是10,宽是6,求它的面积。
2. 一个数的平方是36,求这个数的平方根。
3. 求12和18的最大公约数。
4. 一个正方形的面积是81,求它的边长。
5. 求1/2和1/3的和。
六、分析题:每题5分,共10分1. 有一个长方形的长是10,宽是5,求它的对角线长度。
2. 有一个立方体的体积是64,求它的表面积。
七、实践操作题:每题5分,共10分1. 请用直尺和圆规画一个等边三角形。
2. 请用直尺和圆规画一个正方形。
八年级上册数学期中考试题
八年级上册数学期中考试题八年级数学期中考试的日子日益临近,感觉复习得不错的你,一定要再接再厉,发挥自己最大的潜力,下面是小编为大家精心整理的八年级上册数学期中考试题,仅供参考。
八年级上册数学期中考试题目一.选择题:(每题2分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.162.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于( )A.50°B.75°C.100°D.125°3.一个多边形的每个内角均为150°,则这个多边形是( )A.九边形B.十边形C.十二边形D.十五边形4.如图1,将三角形的一个角折叠,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α、∠β之间的关系是( )A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)5.如图2,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( )A.SASB.ASAC.AASD.SSS6.如图3,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7.如图4,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是( )A.a>1B.a=1C.a<1D.以上都有可能8.观察下列图形,是轴对称图形的是( )9.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是( )A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB10.如图5,等腰△ABC中,AB=AC,∠A=50°,CD⊥AB于D,则∠DCB等于( )A.30°B.25°C.15°D.20°11.如图6,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )A.110°B.125°C.130°D.155°12.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( )A.1个B.2个C.3个D.4个得分阅卷人二、细心填一填:(每小题2分,共20分)13.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于 .14.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF= .15.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是 .16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD=55°,则∠BAC= .17.如图7,带箭头的两条直线互相平行,其中一条直线经过正五边形的一个顶点,若∠1=45°,则∠2=.18.如图8,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(2a,a-9),则a的值为 .19.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC 的度数是 .20.在△ABC中,AC=BC=m,AB=n,∠ ACB=120°,则△ABC的面积是(用含m,n的式子表示).21.如图9,Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB于D,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=_______cm.22.如图10,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为.得分阅卷人三、认真解一解:(共56分)23.(本题5分)如图11,在△ABC中,∠C=∠ABC= ∠A,BD是边AC上的高.求∠DBC的度数.24.(本题6分)如图12,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.(本题6分)如图13,在∠ABC的内部有一点P,点P到M,N 两点的距离相等且到∠ABC两边的距离也相等.请用尺规作图作出点P,不写作法,保留痕迹.26.(本题6分)如图14,在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;(2)若点P为平面内不与C重合的一点,△PAB与△ABC全等,请写出点P的坐标.27.(本题6分)如图15,在△ABC中, AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠C的度数.28.(本题6分)如图16,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC求证:点O在∠BAC的平分线上.29.(本题6分)如图17,△ABC是等边三角形,BD是中线,过点D 作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.30.(本题7分)如图18,∠A=∠B,CE∥DA,CE交AB于E.(1)求证:△CEB是等腰三角形;(2)若AB∥CD,求证:AD=BC.31.(本题8分)如图19,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.(1)求∠BCH的度数;(2)求证:CE=BH.八年级上册数学期中考试题参考答案一.选择题:(每题2分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C B B C B A C B C D二.填空题:(每题2分)13、7.5;14、4;15、(2,-3);16、30°或100°;17、27°;18、3;19、120°;20、 ;21、2;22、(-4,-1)三.解答题:23、解:设∠A=x,则∠C=∠ABC= x,∵BD是边AC上的高∴∠ADB=∠CDB=90°………………………………1分∴∠ABD=90°-∠A=90°-x∠CBD=90°-∠C=90°- x………………………2分∴90°-x+90°- x= x……………………………3分解得x=45°………………………………………………4分∴∠CB D=90°-∠C=90°- x=22.5°………………5分24、证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………………………………2分在△ABC和△DEF中∴△ABC≌△DEF………………………………………4分∴AC=DF………………………………………………6分25、连接MN作中垂线3分,作角平分线2分,结论1分.26、解:(1)图2分,坐标1分A1(4,1),B1(1,1),C1(4,3);(2)3分,坐标为(-2,3),(-2,-1),(-4,-1)27、解:设∠C=x∵AB=AC∴∠B=∠C=x………………………………………………1分∵AD=DC∴∠DAC=∠C=x……………………………………………2分∴∠BDA=∠DAC+∠C=2x…………………………………3分∵AB=BD∴∠BAD=∠BDA=2x………………………………………4分在△ABD中,∠B∠BAD+∠BDA=x+2x+2x=180°解得x=36°∴∠C=36°……………………………………………………6分28、证明:∵BE、CD是△ABC的两条高∴OD⊥AB,OE⊥AC,∠BDO=∠CEO=90°……………1分在△BDO和△CEO中∴△BDO≌△CEO…………………………………………4分∴OD=OE……………………………………………………5分又∵OD⊥A B,OE⊥AC∴点O在∠BAC的平分线上………………………………6分29、解:∵△ABC是等边三角形,BD是中线∴∠A=∠ACB=60°,AC=BC,AD=CD= AC…………1分∵ DE⊥AB于E∴∠ADE=90°-∠A=30°……………………………………2分∴CD=AD=2AE=2……………………………………………3分∴∠CDF=∠ADE=30°∴∠F=∠ACB-∠CDF=30°…………………………………4分∴∠CDF=∠F∴DC=CF………………………………………………………5分∴BF=BCCF=2AD+AD=6…………………………………6分30、证明:(1)∵CE∥DA∴∠A=∠CEB…………………………………………………1分∵∠A=∠B∴∠CEB=∠B…………………………………………………2分∴CE=CB∴△CEB是等腰三角形…………………………………………3分(2)连接DE∵CE∥DA,AB∥CD∴∠ADE=∠CED,∠AED=∠CDE…………………………4分在△ADE和△CED中∴△ADE≌△CED…………………………………………5分∴AD=CE…………………………………………………6分∵CE=CB∴AD=CB…………………………………………………7分31、解:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠B=45°………………………………………1分∵AE是△ABC的角平分线∴∠CAE= ∠CAB=22.5°∴∠AEC=90°-∠CAE=67.5°………………………………2分∵CH⊥AE于G∴∠CGE=90°∴∠GCE=90°-∠AEC=22.5°……………………………3分(2)证明:∵∠ACB=90°,AC=BC,CD是△ABC的高∴∠ACD= ∠ACB=45°∴∠CFE=∠AEC+∠ACD=67.5°………………………4分∴∠CFE=∠AEC∴CF=CE……………………………………………………5分在△ACF和△CBH中∴△ACF≌△CBH…………………………………………6分∴CF=BH…………………………………………………7分∴CE=BH…………………………………………………6分八年级上数学期中试卷。
2023-2024学年全国初中八年级上数学人教版期中考卷(含答案解析)
20232024学年全国初中八年级上数学人教版期中考卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题3分,共15分)1. 下列选项中,哪个是勾股定理的逆定理?A. 直角三角形两直角边的平方和等于斜边的平方B. 任意三角形两边的平方和等于第三边的平方C. 直角三角形斜边的平方等于两直角边的平方和D. 任意三角形两边的平方和等于第三边的平方2. 在平面直角坐标系中,点P(2,3)关于y轴的对称点是?A. P(2,3)B. P(2,3)C. P(2,3)D. P(2,3)3. 下列哪个是等差数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,254. 下列哪个是等比数列?A. 2,4,6,8,10B. 3,6,12,24,48C. 1,3,9,27,81D. 5,10,15,20,255. 在一个等差数列中,首项为5,公差为3,第10项是多少?A. 32B. 35C. 38D. 406. 在一个等比数列中,首项为2,公比为3,第4项是多少?A. 18B. 27C. 36D. 457. 下列哪个是勾股数?A. 3,4,5B. 5,6,7C. 8,9,10D. 12,13,14二、填空题(每题4分,共20分)1. 下列数列中,第n项是__________。
2. 在平面直角坐标系中,点P(2,3)关于x轴的对称点是__________。
3. 在一个等差数列中,首项为5,公差为3,第10项是__________。
4. 在一个等比数列中,首项为2,公比为3,第4项是__________。
5. 下列数列中,第n项是__________。
三、判断题(每题3分,共15分)1. 直角三角形两直角边的平方和等于斜边的平方是勾股定理。
()2. 任意三角形两边的平方和等于第三边的平方是勾股定理的逆定理。
()3. 等差数列的任意两项之差是常数。
2024-2025学年北师大版八年级数学上册期中复习试卷
2024-2025学年北师大版八年级数学上册期中复习试卷一、单选题1,217,0.73∙∙-,3.140,10.12112111211112…,π中,无理数的个数有()A .1个B .2个C .3个D .4个2.下列哪个点在一次函数y =121x +的图象上()A .(21),B .(2)0,C .()21-,D .()20-,3.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为()A .4B .8C .16D .644.已知点P (m +3,2m +4)在x 轴上,那么点P 的坐标为()A .(-1,0)B .(1,0)C .(-2,0)D .(2,0)5.△ABC 的三条边分别为a ,b ,c ,下列条件不能判断△ABC 是直角三角形的是()A .a 2+b 2=c 2B .∠A =∠B +∠CC .∠A ∶∠B ∶∠C =3∶4∶5D .a =5,b=12,c =136.下列各式的计算中,正确的是()A =B =C D=-7.在函数y x 的取值范围是()A .x ≥1B .x ≤1且x ≠0C .x ≥0且x ≠1D .x ≠0且x ≠18.已知直角三角形两边的长为3和4,则此三角形的周长为()A .12B .C .12或D .以上都不对9.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm10.化简二次根式)B C DA11.如图1,点G为BC边的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边运动,运动路径为G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列结论正确的个数有()①图1中BC长4cm;②图1中DE的长是6cm;③图2中点M表示4秒时的y值为24cm2;④图2中的点N表示12秒时y值为15cm2.A.4个B.3个C.2个D.1个12.如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD的度数为()A .150°B .135°C .120°D .108°二、填空题13.-27的立方根为,的平方根为,的倒数为.14.已知函数y=(k+1)x+k²-1.当k 时,它是一次函数;当k时,它是正比例函数.15.如图,若在象棋盘上建立平面直角坐标系,使“帅”的坐标为()1,2--,“马”的坐标为()2,2-,则“兵”的坐标为.三、解答题16.计算:(2)(3)(4))21--17.如图1所示,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2所示,如果梯子的顶端下滑了8米,那么梯子的底部在水平方向滑动了多少米?18.如图,已知()0,4A ,()2,2B -,()3,0C .(1)作ABC V 关于x 轴对称的111A B C △;(2)写出点1A ______,1B ______,1C ______的坐标;(3)111A B C △的面积111A B C S =△______.19.如图所示,长方体ABCD A B C D -''''中,4cm AB BC ==,2cm AA '=,E 是B C ''的中点,一只蚂蚁从点A 出发,沿长方体表面爬到E 点,求蚂蚁走的最短路径.20.如图,表示小王骑自行车和小李骑摩托车者沿相同的路线由甲地到乙地行驶过程的函数图象,两地相距80千米,请根据图象解决下列问题:(1)哪一个人出发早?早多长时间?哪一个人早到达目的地?早多长时间?(2)求出两个人在途中行驶的速度是多少?(3)分别求出表示自行车和摩托车行驶过程的函数关系式..21作法:①在数轴上点A,B,C分别表示2-,0,分别以点A,B为圆心,AB长为半径-,1画弧,两弧交于点D;②连接CD,以点C为圆心,CD长为半径画弧,交数轴正半轴于点.P.则点P的形状,并说明理由;(1)判断ACD(2)说明点P。
2024-2025八年级上期中数学试卷含答案
2024—2025学年上期期中学业水平评估八年级数学试卷(时间:100分钟满分:120分)一、选择题(共10小题)1.下列各数中,是无理数的是()A .πB .3.14C .0D .212.已知P (-2,1),则点P 所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.估计14的值应在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.如果12-+=a x y 是正比例函数,则a 的值是()A .-2B .0C .21D .21-5.在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,下列条件中,不能判断△ABC 是直角三角形的是()A .13125===c b a ,,B .∠A -∠B=∠CC .∠A :∠B :∠C =3:4:5D .222cb a -=6.如图,一次函数132y x =-+的图象与坐标轴的交点为A 和B ,下列说法中正确的是()A .点()21-,在直线AB 上B .y 随x 的增大而增大C .当0x >时,3y <D .方程1302x -+=的解为3x =7.意大利著名画家达.芬奇用如图所示的方法证明了勾股定理.若设图1中空白部分的面积为1S ,图3中空白部分的面积为2S ,则下列表示1S ,2S 的等式成立的是()A .abb a S 2221++=B .abc S +=22C .ab b a S 21221++=D .ab c S 2122+=第7题图第6题图8.为避开周五放学时学校门口的交通拥堵,乐乐和爸爸商定了一个学校附近的集合地点,爸爸开车从家出发提前到集合地点等待,乐乐放学后从学校出发步行到达集合地,爸爸接到乐乐后再返回家中,假设汽车行进过程中始终保持匀速行驶,二人出发时间()min t 与距家路程()km S 的函数关系图象如图所示,下列说法中不正确的是()A .学校距家的距离为10.6kmB .爸爸比乐乐提前5min 到达集合地点C .乐乐步行的速度为100min/m D .爸爸返程时的速度为45hkm /9.如图所示,(22A ,0),32AB =,以点A 为圆心,AB 长为半径画弧交x 轴负半轴于点C ,则点C 的坐标为()A .(32,0)B .(2,0)C .(2-,0)D .(32-,0)10.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点1A (0,1)、2A (1,1)、3A (1,0)、4A (2,0)...,那么点2024A 的坐标为()A .(1012,0)B .(1012,1)C .(2024,0)D .(2024,1)二、填空题(共5小题)11.2-的相反数是__________.12.若正比例函数kx y =的图象经过点(1,-2),则k 的值为_________.13.已知点A(m +2,-3),B(-2,n -4)关于y 轴对称,则m -n 的值为___________.14.包装纸箱是我们生活中常见的物品.如图1,创意DIY 小组的同学将一个10cm ×30cm ×40cm 的长方体纸箱裁去一部分(虚线为裁剪线),得到图2所示的简易书架.若一只蜘蛛从该书架的顶点A 出发,沿书架内壁爬行到顶点B 处,则它爬行的最短距离为___________cm .15.如图,在△ABC 中,∠C=90°,AC=3,AB=5,点D 是BC 边上的一点(不与B、C 重合),连接AD,将△ACD 沿AD 折叠,使点C 落在点E 处,当△BDE 是直角三角形时,CD 的长为_________.第15题图第10题图第9题图第8题图三、解答题(本大题共8小题)16.计算(1)38520-⨯;(2)31227+.17.围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.如图是某围棋棋盘的局部,若棋盘是由边长均为1的小正方形组成的,棋盘上A 、B 两颗棋子的坐标分别为A (-2,4),B (1,2)(1)根据题意,画出相应的平面直角坐标系;(2)分别写出C 、D 两颗棋子的坐标;(3)有一颗黑色棋子E 的坐标为(3,-1),请在图中画出黑色棋子E .18.已知a 的立方等于-27,b 的算术平方根为5.(1)求a 、b 的值;(2)求a b 8-的平方根.19.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE,他们进行了如下操作:①测得水平距离BD的长为15米;②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降12米,则他应该往回收线多少米?20.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13;(3)如图3,∠BCD是不是直角?请说明理由.21.某鲜花销售公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只付销售提成;方案二:底薪加销售提成.如图中的射线1l ,射线2l 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资1y (单位:元)和2y (单位:元)与其当月鲜花销售量x (单位:千克)(x ≥0)的函数关系.(1)方案一:每千克提成是________元;方案二:每千克提成是__________元;(2)分别求1y 、2y 与x 的函数关系式;(3)若该公式销售人员小明今年3月份的鲜花销售量是70千克,那么他采用哪种方案获得的报酬会更多一些?22.我们规定用()b a ,表示一个数对,给出如下定义:记:3a m =,()0>b b n -=,将()n m ,和()m n ,称为数对()b a ,的一对“开方对称数对”.例:数对(8,25)的开方对称数对为(2,-5)和(-5,2).(1)数对(27,4)的开方对称数对为___________和_____________;(2)若数对()6,x 的一个开方对称数对是⎪⎭⎫⎝⎛-216,,求x 的值;(3)若数对()b a ,的一个开方对称数对是(-4,-5),求a 、b 的值.23.【探索发现】如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线DE 经过点C ,过A 作AD ⊥DE 于点D .过B 作BE ⊥DE 于点E ,则△BEC ≌△CDA ,我们称这种全等模型为“k 型全等”.(不需要证明)【迁移应用】已知:直线3+=kx y (k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点.(1)如图2.当k =23-时,在第一象限构造等腰直角△ABE ,∠ABE =90°;①直接写出OA =_________,OB =__________;②求点E 的坐标;(2)如图3,当k 的取值变化,点A 随之在x 轴负半轴上运动时,在y 轴左侧过点B 作BN ⊥AB ,并且BN =AB ,连接ON ,问△OBN 的面积是否为定值,请说明理由;(3)【拓展应用】如图4,当k =-2时,直线l :y =-3与y 轴交于点D ,点P (n ,3-)、Q 分别是直线l 和直线AB 上的动点,点C 在x 轴上的坐标为(4,0),当△PQC 是以CQ 为斜边的等腰直角三角形时,请直接写出点Q 的坐标.2024--2025学年上期八年级期中考试数学参考答案一.选择题(共10小题,每小题3分,共30分)1.A,2.B,3.C,4.C,5.C,6.C,7.B,8.D,9.C,10.A.二.填空题(共5小题,每小题3分,共15分)11.2;12.-2;13.-1;14.50;15.3或23.三.解答题(本大题共8小题,共75分)16.(10分)解:(1)原式=2520-⨯=2100-=10-2=8.(5分)l图4(2)原式=31227+=33233+=335=5.(10分)17.(9分)解:(1)建立如图所示的直角坐标系;(3分)(2)点C 的坐标(2,1),点D 的坐标(-2,-1);(7分)(3)如图,点E 即为所求.(9分)18.(9分)解:(1)∵a 的立方等于-27,∴3273-=-=a ,(2分)∵b 的算术平方根为5,∴b =25;(4分)(2)∵3-=a ,b =25,∴a b 8-=25-8×(-3)=49,(6分)∵()4972=±,∴49的平方根是±7,∴a b 8-平方根是±7.(9分)19.(9分)解:(1)在Rt △CDB 中,由勾股定理,得400152522222=-=-=BD BC CD ,所以CD=20(负值舍去).(3分)所以CE =CD +DE =20+1.6=21.6(米).答:风筝的垂直高度CE 为21.6米.(5分)(2)如图,由题意,得CM=12,,DM=8,∴(米)171582222=+=+=BD DM BM ,∴BC-BM=25-17=8(米),∴他应该往回收线8米(9分).20.(1)解:略;(3分)(2)略;(6分)(3)连接BD ,202=BC ,52=CD ,252=BD ,∴222BD CD BC =+,∴∠BCD =90°,是直角.(9分)21.(9分)解:(1)30,10;(2分)(2)设x k y 11=,根据题意得120401=k ,解得1k =30,∴1y =30x (x ≥0);设b x k y +=22,根据题意得⎩⎨⎧=+=1200408002b k b ,解得⎩⎨⎧==800102b k ,∴800102+=x y (x ≥0).(6分)(3)当x =70时,21001=y ;15002=y ;∵2100>1500,∴采用方案一获得的报酬会更多一些(9分)22.(10分)解:(1)(3,-2),(-2,3)(2分)(2)∵数对()6,x 的一个开方对称数对是⎪⎭⎫ ⎝⎛-216,,∴81213=⎪⎭⎫ ⎝⎛=x .(6分)(3)数对()b a ,的一个开方对称数对是(-4,-5),当3a =-4,b -=-5时,解得a =-64,b =25;当3a =-5,b -=-4时,解得a =-125,b =16.(10分)23.(10分)解:(1)①2,3;(2分)②作ED ⊥OB 于D ,∴∠BDE =∠AOB =90°,∴∠2+∠3=90°,∵△ABE 是以B 为直角顶点的等腰直角三角形,∴AB =BE ,∠ABE =90°,∴∠1+∠2=90°,∴∠1=∠3,∴△BED ≌△ABO (AAS ),∴DE =OB =3,BD =OA =2,∴OD =OB +BD =5,∴点E 的坐标为(3,5);(4分)(2)当k 变化时,△OBN 的面积是定值,29=OBN S △,理由如下:∵当k 变化时,点A 随之在x 轴负半轴上运动时,∴k >0,过点N 作NM ⊥OB 于M ,∴∠NMB =∠AOB =90°,∵∠1+∠3=90°,∵BN ⊥AB ,∴∠ABN =90°,∴∠1+∠2=90°,∴∠2=∠3,∵BN =BA ,∠NMB =∠AOB =90°,∴△BMN ≌△AOB (AAS ).∴MN =OB =3,∴29332121=⨯⨯=⋅⨯=MN OB S OBN △∴k 变化时,△OBN 的面积是定值,29=OBN S △;(8分)(3)点Q 的坐标为⎪⎭⎫⎝⎛-317313,或(5,﹣7).(10分)。
八年级数学期中考试试卷【含答案】
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
初二数学期中考试试卷(含答案)精选全文
可编辑修改精选全文完整版初二数学期中考试试卷(含答案)初二数学期中考试试卷(含答案)一、选择题:共40分1. 下列哪一个选项是正确的?()A. 三角形的内角和为90度B. 直角三角形的两条直角边的边长之和大于斜边的边长C. 平行四边形的对边垂直D. 两条相互垂直的直线一定相交于一点答案:B2. 若一个数的个位数和十位数相加等于十位数,百位数的值为3,则该数是()A. 210B. 123C. 132D. 102答案:C3. 当x取什么值时,方程2x - 5 = -7的解唯一?()A. 1B. -1C. 4D. -4答案:A4. 在一个比赛中,小明以每小时40公里的速度骑自行车行驶,他经过3小时后,还剩下120公里的路程未行驶。
这个比赛的总路程是()A. 240公里B. 320公里C. 400公里D. 480公里答案:C5. 若a:b = 3:5,b:c = 2:7,则a:c =()A. 3:5B. 6:7C. 3:35D. 6:35答案:B二、填空题:共30分1. 一个角度的补角是135°,那么这个角度的度数是_______。
答案:452. 单价为40元的商品,现在打7折,最终的价格是_______元。
答案:283. 把一个正方形的边长增加1cm,它的面积增加_________平方厘米。
答案:24. 若一个数的3/5是80,那个数是_______。
答案:1205. 若x的值满足x ÷ 2 = 5,那么x是_______。
答案:10三、解答题:共30分1. 一个三位数,个位数字是它的和的2倍,十位数字比个位数字大2,百位数字比十位数字大2,求这个三位数是多少。
答案:假设这个三位数为abc,根据题意得到以下等式:个位数字: a = 2(b + c)十位数字: b = c + 2百位数字: c = b + 2代入第二个等式得:b = (c + 2)再代入第三个等式得:c = ((c + 2) + 2),化简得:c = c + 4显然,上述等式没有解,因此这个三位数不存在。
八年级期中测试卷数学【含答案】
八年级期中测试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 的值是多少?A. 8B. 9C. 10D. 113. 下列哪个数是素数?A. 12B. 13C. 15D. 184. 一个等边三角形的内角是多少度?A. 30°B. 45°C. 60°D. 90°5. 如果一个圆的半径是5cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 方程 2x + 3 = 7 的解是 x = 2。
()2. 任何两个奇数相加的和都是偶数。
()3. 一个等腰三角形的两个底角相等。
()4. 圆的周长和它的直径成正比。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 如果一个数加上5等于10,那么这个数是______。
2. 一个正方形的边长是6cm,那么这个正方形的面积是______平方厘米。
3. 2的平方根是______。
4. 如果一个事件是必然事件,那么这个事件发生的概率是______。
5. 在直角坐标系中,点(3, 4)的横坐标是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是算术平均数?如何计算一组数据的算术平均数?3. 请解释什么是概率,并给出一个概率的例子。
4. 请简述平行线的性质。
5. 请解释什么是等差数列,并给出一个等差数列的例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的面积。
2. 如果一辆汽车以60km/h的速度行驶,行驶了3小时,请计算这辆汽车行驶的总距离。
3. 一个班级有40名学生,其中有20名学生喜欢打篮球,请计算喜欢打篮球的学生所占的百分比。
2023-2024学年人教版八年级下学期期中数学试题
2023-2024学年人教版八年级下学期期中数学试题1.下列运算正确的是()A.B.C.D.2.已知,化简()A.B.C.D.3.如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形与正方形,连接.若正方形的面积为6,,则的长为()A.6B.5C.D.4.如图的数轴上,点,对应的实数分别为1,3,线段于点,且长为1个单位长度.若以点为圆心,长为半径的弧交数轴于0和1之间的点,则点表示的实数为()A.B.C.D.5.已知,且,则的值为()A.B.C.D.6.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为5m,梯子的顶端B到地面的距离为12m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于6m,同时梯子的顶端B下降至B',那么BB'()A.小于1m B.大于1m C.等于1m D.小于或等于1m7.关于四边形ABCD:①两组对边分别相等;②一组对边平行且相等;③一组对边平行且另一组对边相等;④两条对角线相等.以上四种条件中,可以判定四边形ABCD是平行四边形的有().A.①②③④B.①③④C.①②D.③④8.如图,在中,点E,点F分别是和的中点,平分交于点D,若,则边的长为()A.0.5B.1C.1.5D.29.如图,菱形的对角线相交于点,点为边上一动点(不与点重合),于点点,若,,则的最小值为()A.3B.2C.D.10.如图,中,cm,,动点E从A出发,以2cm/s的速度沿向点B运动,动点F从点C出发,以1cm/s的速度沿着向D运动,当点E 到达点B时,两个点同时停止.则的长为10cm时点E的运动时间是()A.6s B.6s或10s C.8s D.8s或12s11.若,求的算术平方根________.12.要使得代数式有意义,那么的取值范围是______.13.如图,某自动感应门的正上方A处装着一个感应器,离地米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门米的地方时(米),感应门自动打开,则______米.14.如图,中,是中点,平分,则________.15.如图,在四边形中,,平分,且,点P为边中点,,则的面积为_______.16.如图,在中,,分别以为直角边作等腰直角、,若,与的面积和为8,则的面积为__________________.17.计算:(1)(2)18.阅读材料,并解决问题:定义:将分母中的根号化去的过程叫做分母有理化.如:将分母有理化,解:原式.运用以上方法解决问题:已知:,.(1)化简m,n;(2)求的值.19.如图,有一张四边形纸片ABCD,AB⊥BC.经测得AB=9cm,BC=12cm,CD=8cm,AD=17cm.(1)求A、C两点之间的距离.(2)求这张纸片的面积.20.如图,在中,,平分交于点,过点作交于点,,垂足为点.(1)求证:;(2)若,,求的长.21.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男子拽着绳子另一端向右走,绳端从C移动到E,绳子始终绷紧且绳长保持不变.(1)若米,米,米,求男子需向右移动的距离;(结果保留根号)(2)此人以米每秒的速度收绳,请通过计算回答,该男子能否在秒内将船从A处移动到岸边点F的位置?22.如图,点为平行四边形的边上的一点,连接并延长,使,连接并延长,使,连接为的中点,连接.(1)求证:四边形为平行四边形;(2)连接,交于点,若,求的长度.23.如图,E、F是对角线上两点,且.(1)求证:四边形是平行四边形;(2)连接,若,,,求的长.24.如图,已知正方形,,点M在边上,射线交于点E,交射线于点F,过点C作,交于点P.(1)求证:.(2)判断的形状,并说明理由.(3)作的中点N,连结,若,求的长.25.如图甲,在中,为锐角,点D为射线上一动点,连接,以为一边且在的右边作正方形,解答下列问题:(1)如果,,①当点D在线段上时(与点B不重合),如图乙,线段、之间的位置关系为,数量关系为.②当点D在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果,,点D在线段上运动,试探究,当满足一个什么条件时,(点C、F重合除外)?并说明理由.。
重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)
重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。
2024年最新人教版初二数学(下册)期中考卷及答案(各版本)
2024年最新人教版初二数学(下册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4 = 7x 2B. 2x 5 = 3x + 5C. 4x + 6 = 2x 8D. 5x 3 = 3x + 64. 下列各数中,绝对值最小的是()A. 3B. 0C. 2D. 55. 下列各数中,是正数的是()A. 4B. 0C. 3D. 76. 下列各数中,是整数的是()A. 2.5B. 0C. 3/4D. 4.67. 下列各数中,是分数的是()A. 2B. 0C. 3/4D. 58. 下列各数中,是负数的是()A. 2B. 0C. 3/4D. 49. 下列各数中,是偶数的是()A. 3B. 0C. 5D. 810. 下列各数中,是奇数的是()A. 2B. 0C. 3D. 4二、填空题(每题3分,共30分)1. 一个数的立方根是±2,这个数是________。
2. 下列各数中,不是有理数的是________。
3. 下列等式中,正确的是________。
4. 下列各数中,绝对值最小的是________。
5. 下列各数中,是正数的是________。
6. 下列各数中,是整数的是________。
7. 下列各数中,是分数的是________。
8. 下列各数中,是负数的是________。
9. 下列各数中,是偶数的是________。
10. 下列各数中,是奇数的是________。
三、解答题(每题10分,共30分)1. 解方程:3x + 4 = 7x 2。
2. 解方程:2x 5 = 3x + 5。
3. 解方程:4x + 6 = 2x 8。
四、证明题(每题10分,共20分)1. 证明:3x + 4 = 7x 2。
2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(考试版A4)
2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。
5.难度系数:0.69。
第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.3.下列长度的各组线段可以组成三角形的是( )A .2,3,5B .5,7,4C .4,4,8D .2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?( )A .六边形B .七边形C .八边形D .十边形5.下列说法,正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .到三角形二个顶点距离相等的点是三边垂直平分线的交点C .三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°8.如图,在中,AB AC =,6BC =,且面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .129.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级数学期中复习自测题(几何至4.8代数至11.2)
1. 填空题(每小题2分,共24分): (1) 81的算术平方根是 3 . (2) 在实数0,8,9,
2
π,3
8,3.1415926……中有理数有 3 。
(3) 查表得 1.35=1.162, 13.5=3. 674,则0.0135= 0.1162 。
(4) 如图,BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边
形,还需要增加的一个条件是 BE=DF (或BF=DE 或AECF ⊥BD ) (填上你认为正确的一个即可)。
(5) 若429x =, 则x =±1.5 。
(6) 在菱形ABCD 中,对角线AC 、BD 交于O 点,若∠OBC=∠BAC,则菱形的四个内角的度数分别为 90° (7) 对角线长为8cm 的正方形的面积为 。
32cm 2
(8) 如果直角三角形的一条直角边的长是12cm ,斜边上的中线长等于10cm ,则另一条直角边的长
是 16 cm 。
(9) 矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为 4或12 cm 2。
(10)
5x -有意义的条件是 x ≤5
(11) 如图,l 是四形形ABCD 的对称轴,如果AD ∥BC ,有下列结论:①AB ∥CD ②AB =BC ③AB ⊥BC
④AO =OC 其中正确的结论是 ①② ④ 。
(把你认为正确..的结论的序号都填上) (12) 有12个同样大小的正方形纸板放在同一桌面上,它们能拼成不同形状的矩形 3 个。
2. (每小题2分,共20分)选择题: (1) n 边形的n 个内角与某一外角的和等于1350°,则n 为( C )
(A )7 (B )8 (C )9 (D )10 (2) 不能判定四边形ABCD 为平行四边形的题设是( C )
(A ) AB 平行且等于CD 。
(B )∠A=∠C ,∠B=∠D 。
(C )AB=AD ,BC=CD 。
(D )AB=CD ,AD=BC 。
(3) 能判定一个四边形是平行四边形的条件是( B )
(A )一组对边平行,另一组对边相等(B )一组对边平行,一组对角相等 (C )一组对边平行,两条对角线相等(D )两条对角线垂直且相等 (4) 已知矩形的两条对角线的夹角为60°,一条对角线的长为4,则矩形的周长为
( B )A .
B .
C .
D .
(5) 下面性质中矩形有而菱形没有的是( C )
(A ) 邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 (6) 将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积。
则这样的折纸
方法共有( D )(A )1种 (B )2种 (C )4种 (D )无数种 (7) 下列各式正确的是( C ) (A )164=± (B )114
293= (C )()2
55-= (D )()
2
11
2222
2
-=-⨯
= (8) 如图,菱形ABCD ,AB=13,AE ⊥BC 于E ,EC=8,则此菱形的面积为( B ) (A )
78 (B )156 (C )60 (D )96 (9) 如图 ,在矩形ABCD 中,横向阴影部分是矩形,另阴影部分是平行四边形,依照图
中标注的数据,计算图中空白部分的面积是( B )
A . 2bc ab ac c -++
B .2ab bc ac c --+
C .2a ab bc ac ++-
D .22b bc a ab -+-
(10) 如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C
所表示的数是( C )(A )2-1 (B )1-2 (C )2-2 (D )2-2
二、解答题(本题共2小题,每题5分,共10分)
D
A E
B
C
F 1(4)
1(11)
第一(10)题图
2
20题图 B
A C 1
?
A
B E
C
D
第一(8)题
A
B
C D
c
c
a
b
第一(9)题
1.计算:
()()
2
22
3
212712433-⎛⎫⎛⎫
+-⨯---
- ⎪ ⎪⎝⎭⎝⎭
解:原式=3+1×4-32-4=7-9-4=-6
2.已知2
25a -与2
44b b -+互为相反数,求ab 的值。
解:∵2
25a -与2
44b b -+互为相反数,2
25a -≥0,2
44b b -+≥0
∴2
25a -=0,2
44b b -+=0,即225a -=0,244b b -+=0,得5a =±,2b = ∴ab 5210=±⨯=±
三、解答题(本题共2小题,每题7分,共14分)
3.如图所示,△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA
的平分线于点E ,交∠BCA 的外角平分线于点F 。
(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论。
(1)证明:∵MN ∥BC ∴∠OEC =∠BCE
∵MN 交∠BCA 的平分线于点E , ∴∠BCE =
4.已知:如图,ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足是E 、F 。
求证:四边形AECF 为平行四边形。
四、解答题(本题共2小题,每题8分,共16分)
5.已知:如图,正方形ABCD 的周长为4a ,四边形EFGH 的四个顶点E 、
F 、
G 、
H 分别在AB 、BC 、CD 、DA 上滑动,在滑动过程中,始终有EH ∥BD ∥FG ,且EH =FG ,那么四边形EFGH 的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由. 解: 6.已
知:如图,四边形ABCD 是菱
形,F 是AB 上一点,DF 交AC 于E 。
求证:∠AFD =∠CBE
五、解答题(本题共2小题,每题8分,共16分)
7.如图,矩形ABCD 中,O 是AC 与BD的交点,过O 点的直EF 与AB 、CD 的延长线分别交于E 、F 。
(1)求证:△BOE ≌△DOF (2)当EF 与AC 满足么条件时,四边形AECF 是棱形,并明你的结论。
A M M N M F
M C M B
M
E M O M A
B M
C M
E M
F M D M
第三、5题
A
B C D
E
F D
F
A E C B
O 第7题
8.如图.在△ABC中,AB=AC,D是BC的中点.DE⊥AB,DF⊥AC,垂足分别是E、F。
求证:⑴△BDE≌△CDF;⑵∠A=90°时,四边形AEDF是正方形.
第五、8题。