《基本不等式》第2课时教学设计
基本不等式教学设计(多篇)
基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。
《基本不等式》教学设计【高中数学人教A版必修1(新课标)】
《2.2基本不等式2a b +≤》教学设计 教材分析:“基本不等式”是必修1的重点内容,它是在系统学习了不等关系和不等式性质,掌握了不等式性质的基础上对不等式的进一步研究,同时也是为了以后学习选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用.利用基本不等式求最值在实际问题中应用广泛.同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质.教学目标【知识与技能】1.学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 【过程与方法】通过实例探究抽象基本不等式; 【情感、态度与价值观】通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.教学重难点【教学重点】2a b+≤的证明过程; 【教学难点】1.2a b+≤等号成立条件; 2.2a b+≤求最大值、最小值.教学过程1.课题导入前面我们利用完全平方公式得出了一类重要不等式:一般地,∀a,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立特别地,如果a >0,b >0,我们用√a ,√b 分别代替上式中的a ,b ,可得√ab ≤a+b 2①当且仅当a =b 时,等号成立.通常称不等式(1)为基本不等式(basicinequality ).其中,a+b 2叫做正数a ,b 的算术平均数,√ab 叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.思考:上面通过考察a 2+b 2=2ab 的特殊情形获得了基本不等式,能否直接利用不等式的性质推导出基本不等式呢?下面我们来分析一下.2.讲授新课1)2a b+≤特别的,如果a >0,b >0,我们用分别代替a 、b ,可得a b +≥,(a>0,b>0)2a b+≤2)2a b+≤用分析法证明:要证2a b+≥(1) 只要证 a +b ≥ (2) 要证(2),只要证 a +b -≥0 (3) 要证(3),只要证 (-)2≥0 (4) 显然,(4)是成立的.当且仅当a =b 时,(4)中的等号成立.探究1:在右图中,AB 是圆的直径,点C 是AB 上的一点,AC =a ,BC =b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .2a bab +的几何解释吗? 易证Rt △A CD ∽Rt △D CB ,那么CD 2=CA ·CB 即CD =ab . 这个圆的半径为2ba +,显然,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a =b 时,等号成立. 2a bab +≤几何意义是“半径不小于半弦”评述:1.如果把2ba +看作是正数a 、b 的等差中项,ab 看作是正数a 、b 的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.2. 在数学中,我们称2ba +为a 、b 的算术平均数,称ab 为a 、b 的几何平均数.本节定理还可叙述为:两个正数的算术平均数不小于它们的几何平均数.【设计意图】老师引导,学生自主探究得到结论并证明,锻炼了学生的自主研究能力和研究问题的逻辑分析能力.例1 已知x >0,求x +1x 的最小值.分析:求x +1x 的最小值,就是要求一个y 0(=x 0+1x ),使∀x >0,都有x +1x ≥y .观察x +1x ,发现x ∙1x =1.联系基本不等式,可以利用正数x 和1x 的算术平均数与几何平均数的关系得到y 0=2. 解:因为x >0,所以x +1x ≥2√x ∙1x =2当且仅当x =1x ,即x 2=1,x =1时,等号成立,因此所求的最小值为2.在本题的解答中,我们不仅明确了∀x >0,有x +1x ≥2,而且给出了“当且仅当x =1x ,即=1,x =1时,等号成立”,这是为了说明2是x +1x (x >0)的一个取值,想一想,当y 0<2时,x +1x =y 0成立吗?这时能说y .是x +1x (x >0)的最小值吗?例2已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值2√P;S2.(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值14证明:因为x,y都是正数,所以x+y≥√xy.2(1)当积xy等于定值P时,x+y≥√P,2所以x+y≥2√P,当且仅当x=y时,上式等号成立.于是,当x=y时,和x+y有最小值2√P.(2)当和x+y等于定值S时,√xy≤S,2所以xy≤1S2,4S2.当且仅当x=y时,上式等号成立.于是,当x=y时,积xy有最大值14例3(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?分析:(1)矩形菜园的面积是矩形的两邻边之积,于是问题转化为:矩形的邻边之积为定值,边长多大时周长最短.(2)矩形菜园的周长是矩形两邻边之和的2倍,于是问题转化为:矩形的邻边之和为定值,边长多大时面积最大.解:设矩形菜园的相邻两条边的长分别为xm,ym,篱笆的长度为2(x+y)m.(1)由已知得xy=100.由x+y2≥√xy,可得x+y≥2√xy=20,所以2(x+y)≥40,当且仅当x=y=10时,上式等号成立因此,当这个矩形菜园是边长为10m的正方形时,所用篱笆最短,最短篱笆的长度为40m.(2)由已知得2(x+y)=36,矩形菜园的面积为xym2.由√xy≤x+y2=182=9,可得xy≤81,当且仅当x=y=9时,上式等号成立.因此,当这个矩形菜园是边长为9m的正方形时,菜园的面积最大,最大面积是81m2. 例4某工厂要建造一个长方体形无盖贮水池,其容积为4800m2,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,那么怎样设计水池能使总造价最低?最低总造价是多少?分析:贮水池呈长方体形,它的高是3m,池底的边长没有确定.如果池底的边长确定了,那么水池的总造价也就确定了.因此,应当考察池底的边长取什么值时,水池的总造价最低. 解:设贮水池池底的相邻两条边的边长分别为xm,ym,水池的总造价为2元.根据题意,有z=150×48003+120(2×3x+2×3y)=240000+720(x+y).由容积为4800m3,可得3xy=4800,因此xy=1600.所以z ≥240000+720×2√xy ,当x =y =40时,上式等号成立,此时z =297600.所以,将贮水池的池底设计成边长为40m 的正方形时总造价最低,最低总造价是297600元. 【设计意图】例题讲解,学以致用. 3.随堂练习1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8abc 分析:对于此类题目,选择定理:ab ba ≥+2(a >0,b >0)灵活变形,可求得结果.解:∵a ,b ,c 都是正数 ∴a +b ≥2√ab >0 b +c ≥2√bc >0 c +a ≥2√ca >0∴(a +b )(b +c )(c +a )≥2√ab ·2√bc ·2√ca =8abc 即(a +b )(b +c )(c +a )≥8abc . 【设计意图】讲练结合,熟悉新知. 4.课时小结本节课,我们学习了重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(a+b 2),几何平均数(√ab )及它们的关系(a+b 2≥√ab ).它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:ab ≤a 2+b 22,ab ≤(a+b 2)2.我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题.在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等.教学反思:略。
3.4基本不等式第2课时精品教案
3.42a b+≤【课题】3.4.22a b+≤的应用 【教学目标】12a b+≤;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题22a b+≤,并会用此定理求某些函数的最大、最小值。
3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【教学重点】2a b+≤的应用 【教学难点】2a b+≤求最大值、最小值。
值是A.233 cm 2B.4 cm 2C.32 cm 2D.23 cm 2解析:设两段长分别为x cm ,(12-x ) cm ,则S =43(3x )2+43(312x -)2=183(x 2-12x +72)=183[(x -6)2+36]≥23. 答案:D 2. 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元? 解析:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得)1600(720240000xx l ++=29760040272024000016002720240000=⨯⨯+=⋅⨯+≥xx 当.2976000,40,1600有最小值时即l x xx ==因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元答案:当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元3一段长为L m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?解析:法一:设矩形菜园的宽为x m ,则长为(L-2x )m ,其中0<x <21,其面积S =x (L-2x )=21·2x (L-2x )≤218)222(22L x L x =-+当且仅当2x =L-2x ,即x =4L 时菜园面积最大,即菜园长2L m ,宽为4Lm 时菜园面积最大为82L m 2法二:设矩形的长为x m ,则宽为2xL -m ,面积 S =2)(2)(2x L x x L x -⋅=-≤82)2(22L x L x =-+(m 2)当且仅当x =L-x ,即x =2L (m )时,矩形的面积最大也就是菜园的长为2Lm ,宽为4L m 时,菜园的面积最大,最大面积为82L m 2答案:菜园的长为2Lm ,宽为4L m 时,菜园的面积最大,最大面积为82L m 24.建筑一个容积为8000 m 3、深6 m 的长方体蓄水池(无盖),池壁造价为a 元/米2,池底造价为2a 元/米2,把总造价y 元表示为底的一边长x m 的函数,其解析式为___________,定义域为___________.底边长为___________ m 时总造价最低是___________元.解析:设池底一边长x (m ),则其邻边长为x 68000(m ),池壁面积为2·6·x +2·6·x68000=12(x +x 68000)(m 2),池底面积为x ·x 68000=68000(m 2),根据题意可知蓄水池的总造价y (元)与池底一边长x (m )之间的函数关系式为y =12a (x +x 68000)+38000a .定义域为(0,+∞).x +x 68000≥2x x 68000⋅=34030(当且仅当x =x 68000即x =32030时取“=”).∴当底边长为32030 m 时造价最低,最低造价为(16030a +38000a )元. 答案:y =12a (x +x 68000)+38000a (0,+∞) 32030 16030a +38000a5.某汽车运输公司购买了一批豪华大客车投入客运,据市场分析,每辆客车营运的总利润y 万元与营运年数x (x ∈N )的关系为y =-x 2+12x -25,则每辆客车营运______________年可使其营运年平均利润最大.A.2B.4C.5D.6解析:设年平均利润为g (x ),则g (x )=x x x 25122-+-=12-(x +x 25).∵x +x25≥2x x 25⋅=10,∴当x =x25,即x =5时,g (x )max =2. 答案:C6如图,为处理含有某种杂质的污水,要制造一个底宽2米的无盖长方体的沉淀箱,污水从A 孔流入,经沉淀后从B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水中该杂质的质量份数与a 、b 的乘积ab 成反比现有制箱材料60平方米,问a 、b 各为多少米时,经沉淀后流出的水中该杂质的质量份数最小(A 、B 孔面积忽略不计)解析:法一:设y 为流出的水中杂质的质量份数,根据题意可知:y =abk,其中k >0且k 是比例系数依题意要使y 最小,只需求ab 的最大值由题设得:4b +2ab +2a =60 (a >0,b >0) 即a +2b +ab =30 (a >0,b >0)∵a +2b ≥2ab 2 ∴2ab ⋅2+ab ≤30 当且仅当a =2b 时取“=”号,ab 有最大值∴当a =2b 时有2ab ⋅2+ab =30,即b 2+2b -15=0解之得:b 1=3,b 2=-5(舍去)∴a =2b =6故当a =6米,b =3米时经沉淀后流出的水中杂质最少解析:法二:设y 为流出的水中杂质的质量份数,由题意可知:4b +2ab +2a =60(a >0,b >0)∴a +2b +ab =30 (a >0,b >0),∴b =aa+-230 (0<a <30) 由题设:y =abk,其中k >0且k 是比例系数,依题只需ab 取最大值 ∴y =264322302+-+-=+-=a a ka a a k ab k =⎥⎦⎤⎢⎣⎡+++-264)2(34a a k≥18264)2(234k a a k=+⨯+- ∴当且仅当a +2=264+a 时取“=”号,即a =6,b =3时ab 有最大值18 故当a =6米,b =3米时经沉淀后流出的水中杂质最少答案:当a =6米,b =3米时经沉淀后流出的水中杂质最少。
《基本不等式(第2课时)》教学设计
第三章 不等式3.4.2 基本不等式第二课时(王乙橙)一、教学目标1.核心素养: 通过学习基本不等式,提升学生的直观想象、数学运算与逻辑推理的能力.发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.2.学习目标(12a b+≤(2)熟练应用基本不等式求最值;(3)能够应用基本不等式解决一些简单的实际问题. 3.学习重点通过师生共同研究,进一步掌握基本不等式2a b+≤,并会用此不等式求最大、最小值. 4.学习难点基本不等式求最值中取等的条件;“一正二定三相等”中定值的运用.二、教学设计 (一)课前设计 1.预习任务任务1.基本不等式ab ≤a+b2及其应用,注意常用的一些结论:(1)a 2+1 2a (2)a +1a 2(a >0) (3)b a +a b 2(a,b 同号) (4)2___()2a b ab +2.预习自测1、已知x 、y 都是正数,xy =15,则x +y 的最小值为答案:2、已知x 、y 都是正数,x +y =15,则xy 的最大值为 答案:22543、已知x 、y >0,且x +y =1,则P =x +1x +y +1y 的最小值为 .答案:5 二、解答题3、设x 、y 满足x +4y =40,且x,y ∈R +,求lg x +lg y 的最大值. 解析:2,,4404040,10.lg lg lg(404)lg lg(404)lg 4(10)0,10.100(10)lg 4(10)lg 4lg1002210,5,20lg lg 2.x y R x y x y y x y y y y y y y y y y y y y y y y y x x y +∈+=∴=-><∴+=-+=-⋅=-><∴->-+⎡⎤∴-≤⨯==⎢⎥⎣⎦-===∴+即又等号成立时的最大值为(二)课堂设计 1.知识回顾比较两个不等式222a b ab +≥2a b+的异同点 2.问题探究问题探究一 如何利用函数单调性求最值●活动一 例1 已知函数f (x )=x +ax (a >0).(1)证明:f (x )在区间(0,a ]上为减函数,在[a ,+∞)上为增函数; (2)求f (x )在区间(0,+∞)上的最小值. 【解析】 (1)设x 2>x 1>0,则f (x 2)-f (x 1)=(x 2-x 1)+(a x 2-ax 1)=(x 2-x 1)+a (x 1-x 2)x 1x 2=(x 2-x 1)(1-ax 1x 2)=(x 2-x 1)x 1x 2(x 1x 2-a ),当0<x 1<x 2≤a 时,x 1x 2<a . ∴f (x 2)-f (x 1)<0,∴f (x 2)<f (x 1). 当x 2>x 1≥a 时,x 1x 2>a .∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1).故f (x )=x +ax (a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数. ∴函数f (x )=x +ax (a >0)的图像如图所示.(2)由(1)可知f (x )在(0,+∞)上的最小值f (x )min =f (a )=2a .【点拨】基本不等式a +b2≥ab (a ,b 均大于0)求最值(值域)时,必须具备“一正、二定、三相等”的条件.如果“相等”条件不具备就可能造成错解.为了解决这个问题,我们引进一个函数f (x )=x +ax (a >0),利用它的单调性来完善上述解法的不足,作为使基本不等式“完美”的补充. ●活动二 思考:函数y =x 2+2+1x 2+2的最小值是不是2?如不是,应为多少? 【解析】 不是,若用基本不等式求最小值,则需要条件:x 2+2=1x 2+2,即x 2=-1,但此式不成立.应用单调性求解:设t =x 2+2(t ≥2),则y =t +1t 在[2,+∞)上单调递增,∴最小值为2+12=322. ●活动三 思考:求函数y =sin x +4sin x ,x ∈(0,π)的最小值. 【解析】 令t =sin x ,∵x ∈(0,π),∴t ∈(0,1].由例1(1)知函数f (t )=t +4t 在t ∈(0,2]上是单调减函数,∴f (t )=t +4t 在t ∈(0,1]上也单调递减.∴f (t )≥f (1)=5,故y min =5.问题探究二 如何利用基本不等式求代数式的最值●活动一 思考:x >0,y >0,且x +2y =1,求1x +1y 的最小值. 【解析】 ∵x +2y =1,∴1x +1y =(1x +1y )·(x +2y )=3+x y +2y x ≥3+2x y ·2yx =3+2 2.当且仅当⎩⎪⎨⎪⎧x y =2y xx +2y =1,即⎩⎨⎧x =2-1y =1-22时取等号.故1x +1y 的最小值为3+2 2.●活动二 思考:x >0,y >0,且1x +9y =1,求x +y 的最小值.方法一 【思路分析】 减少元素个数.根据条件1x +9y =1解出y ,用只含x 的代数式表示y ,代数式x +y 转化为只含x 的函数,再考虑利用基本不等式求出最值. 【解析】 由 1x +9y =1,得x =yy -9.∵x >0,y >0,∴y >9. x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10. ∵y >9,∴y -9>0, ∴y -9+9y -9+10≥2(y -9)·9y -9+10=16,当且仅当y -9=9y -9,即y =12时取等号. 又1x +9y =1,则x =4.∴当x =4,y =12时,x +y 取最小值16.方法二 【思路分析】 在利用基本不等式求最值时,巧妙运用“1”的代换,也会给解决问题提供简捷的解法.【解析】∵1x+9y=1,∴x+y=(x+y)·(1x+9y)=10+yx+9xy.∵x>0,y>0,∴yx+9xy≥2yx·9xy=6.当且仅当yx=9xy,即y=3x时,取等号.又1x+9y=1,∴x=4,y=12.∴当x=4,y=12时,x+y取最小值16.【点拨】(1)要创造条件应用均值定理,和定积最大,积定和最小.多次应用时,必须保证每次取等号的条件相同,等号才可以传递到最后的最大(小)值.(2)注意“1”的代换技巧.(3)本题(1)易错解为:1=x+2y≥22xy,∴xy≤2 4.∴1x+1y≥2xy≥82=4 2.其错因是两次用基本不等式时等号不能同时成立.●活动三及时回馈:(1)已知1x+2y=1(x>0,y>0),求x+y的最小值.(2)已知正数x,y满足x+y=4,求1x+2y的最小值.【解析】(1)x+y=(x+y)·(1x+2y)=3+yx+2xy≥3+2 2.(2)1x+2y=(1x+2y)·x+y4=14(3+yx+2xy)≥3+224.问题探究三●活动一思考:若正数a、b满足ab=a+b+3,求:(1)ab的范围;(2)a+b的范围.【解析】(1)∵ab=a+b+3≥2ab+3,令t=ab>0,∴t2-2t-3≥0,∴(t-3)(t+1)≥0.∴t≥3,即ab≥3,∴ab≥9,当且仅当a=b=3时取等号.(2)∵ab =a +b +3,∴a +b +3≤(a +b2)2.令t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0. ∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号. 【点拨】利用方程的思想是解决此类问题的常规解法. 第②问也可用如下方法解之:由已知b =a +3a -1>0, ∴a -1>0,∴a +b =a +a +3a -1=a +a -1+4a -1=a +1+4a -1=(a -1)+4a -1+2≥6. ●活动二 思考:正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________.【解析】 由基本不等式得xy ≥22xy +6,令xy =t 得不等式t 2-22t -6≥0,解得t ≤-2(舍去)或者t ≥32,故xy 的最小值为18. 问题探究四 利用基本不等式证明不等式●活动一 思考:已知a,b,c,d 都是实数,且+=1,+=1,求证:≤1.【证明】 ∵a,b ,c ,d 都是实数,所以22222222222a cb d ac bd ac bd ac bd ++++++≤+≤+=又∵+=1,+=1,∴≤1.●活动二 思考:a ,b ,c 都是正数,求证:b +c a +c +a b +a +bc ≥6.【解析】 b +c a +c +a b +a +bc =b a +c a +c b +a b +a c +b c =(b a +a b )+(c a +a c )+(c b +b c ). ∵a >0,b >0,c >0,∴b a +a b ≥2b a ·a b =2.同理,c a +a c ≥2,c b +bc ≥2. ∴b +c a +c +a b +a +b c ≥6.【点拨】解题过程中,把数、式合理地分拆,或者恒等地配凑适当的数或式,这是代数变形常用的方法,也是一种解题的技巧.在本节中应用较多,请同学们仔细体会,总结并掌握规律.●活动三 思考:(1)已知a 、b 、c 都是正数,求证:ab (a +b )+bc (b +c )+ca (c +a )≥6abc . (2)已知a ,b ,c ∈R +,且a +b +c =1,求证:1a +1b +1c ≥9.【证明】(1) 左边=a (b 2+c 2)+b (c 2+a 2)+c (a 2+b 2)≥a ·2bc +b ·2ca +c ·2ab =6abc =右边,∴不等式成立. (2)∵a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+(b a +a b )+(c a +a c )+(c b +b c ) ≥3+2+2+2=9. 3.课堂总结 【思维导图】【重难点突破】利用均值不等式求最值时,应注意的问题(1)各项均为正数,特别是出现对数式、三角数式等形式时,要认真考虑. (2)求和的最小值需积为定值,求积的最大值需和为定值. (3)确保等号成立.以上三个条件缺一不可,可概括“一正、二定、三相等”. 4.随堂检测1.下列函数中,最小值为4的函数是( )A.y =x +4xB.y =sin x +4sin x C.y =e x +4e -x D.y =log 3x +log x 81 【知识点:基本不等式,取等条件】 解:C2.已知x >0,y >0,lg2x +lg8y =lg2则1x +13y 的最小值为( ) A.2 B.2 2 C.4 D.2 3【知识点:基本不等式,对数运算性质】 解:C3. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285C.5D.6 【知识点:基本不等式】解:C ∵x +3y =5xy ,∴15y +35x =1.∴3x +4y =(3x +4y )×1=(3x +4y )(15y +35x )=3x 5y +95+45+12y 5x ≥135+23x 5y ·12y5x =5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.4.已知两个正变量x ,y ,满足x +y =4,则使不等式1x +4y ≥m 恒成立的实数m 的取值范围是________.【知识点:基本不等式,恒成立】解:(-∞,94]5.设正数x ,y 满足log 2(x +y +3)=log 2x +log 2y ,则x +y 的取值范围是________.【知识点:基本不等式,对数运算性质】解:[6,+∞)(三)课后作业基础型自主突破1.若x,y∈R,且x+2y=5,则3x+9y的最小值()A.10B.6 3C.4 6D.18 3 【知识点:基本不等式,指数式】解:D2.已知函数y=x-4+9x+1(x>-1),当x=a时,y取得最小值b,则a+b=().A.-3B.2C.3D.8 【知识点:基本不等式,取等条件】解:y=x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得y=x+1+9x+1-5≥2x+1×9x+1-5=1,当且仅当x+1=9x+1,即(x+1)2=9,所以x+1=3,即x=2时取等号,所以a=2,b=1,a+b=3.答案 C3.若正实数a,b满足ab=2,则(1+2a)·(1+b)的最小值为_____.【知识点:基本不等式】解析(1+2a)(1+b)=5+2a+b≥5+22ab=9.当且仅当2a=b,即a=1,b=2时取等号.答案94.已知a>3,求a+4a-3的最小值为.【知识点:基本不等式,配凑】解:75.已知x>0,y>0,且2x+5y=20.(1)求u=lg x+lg y的最大值;(2)求1x+1y的最小值.【知识点:基本不等式】 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立. 因此有⎩⎨⎧ 2x +5y =20,2x =5y ,解得⎩⎨⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020, 当且仅当5y x =2xy 时,等号成立. 由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 能力型 师生共研1. (2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C.5 D.6 【知识点:基本不等式】解:C ∵x +3y =5xy ,∴15y +35x =1.∴3x +4y =(3x +4y )×1=(3x +4y )(15y +35x )=3x 5y +95+45+12y 5x ≥135+23x 5y ·12y5x =5,当且仅当3x 5y =12y 5x ,即x =1,y =12时等号成立.2.已知正实数a ,b 满足a +2b =1,则a 2+4b 2+1ab 的最小值为( )A.72B.4C.16136D.172【知识点:基本不等式】解:因为1=a +2b ≥22ab ,所以ab ≤18,当且仅当a =2b =12时取等号.又因为a 2+4b 2+1ab ≥2a 2·4b 2+1ab =4ab +1ab .令t =ab ,所以f (t )=4t +1t 在⎝ ⎛⎦⎥⎤0,18单调递减,所以f (t )min =f ⎝ ⎛⎭⎪⎫18=172.此时a =2b =12.答案 D3.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 【知识点:基本不等式】解 由已知,得xy =9-(x +3y ),即3xy =27-3(x +3y )≤⎝⎛⎭⎪⎫x +3y 22,令x +3y =t ,则t 2+12t -108≥0,解得t ≥6,即x +3y ≥6. 答案:64.设x ≥0,y ≥0,x 2+y 22=1,则x 1+y 2的最大值为________.【知识点:基本不等式】 解:∵x ≥0,y ≥0,x 2+y 22=1,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2×x 2+1+y 222=2×x 2+y 22+122=324,当且仅当x =32,y =22⎝ ⎛⎭⎪⎫即x 2=1+y 22时,x 1+y 2取得最大值324.探究型 多维突破1.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy 取得最小值时,x +2y -z 的最大值为( )A.0B.98C.2D.94 【知识点:基本不等式综合应用】解:含三个参数x ,y ,z ,消元,利用基本不等式及配方法求最值. z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x -3≥2x y ·4y x -3=1. 当且仅当x y =4yx ,即x =2y 时“=”成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2 (y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. 【答案】C2.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( )A.1B.6C.9D.16【知识点:基本不等式综合应用】解:方法一:因为1a +1b =1,所以a +b =ab ⇒(a -1)(b -1)=1, 所以1a -1+9b -1≥21a -1×9b -1=2×3=6. 方法二:因为1a +1b =1,所以a +b =ab , 所以1a -1+9b -1=b -1+9a -9ab -a -b +1=b +9a -10=(b +9a )⎝ ⎛⎭⎪⎫1a +1b -10≥16-10=6.方法三:因为1a +1b =1,所以a -1=1b -1,所以1a -1+9b -1=(b -1)+9b -1≥29=2×3=6. 答案:B自助餐1.设0,0a b >>,若2是22a b 与的等比中项,则11a b+的最小值为( )A.8B.4C.2D.1【知识点:基本不等式,等比数列】解:D2.(2013·重庆卷)(3-a)(a+6)(-6≤a≤3)的最大值为()A.9B.92 C.3 D.3 22【知识点:基本不等式】解:B因为-6≤a≤3,所以(3-a)(a+6)≤(3-a)+(a+6)2=92,当且仅当3-a=a+6,即a=-32时等号成立,故选B.3.设a>1,b>0,若a+b=2,则1a-1+2b的最小值为()A.3+2 2B.6C.4 2D.2 2【知识点:基本不等式】解:A4.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得a m a n=4a1,则1m+4n的最小值为()A.32 B.53 C.94 D.256【知识点:基本不等式,等比数列】解:由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得a1q6=a1q5+2a1q4,所以q2-q-2=0,解得q=2或q=-1(舍去). 因为a m a n=4a1,所以q m+n-2=16,所以2m+n-2=24,所以m+n=6,所以1m+4n=16(m+n)⎝⎛⎭⎪⎫1m+4n=16⎝⎛⎭⎪⎫5+nm+4mn≥16(5+4)=32.当且仅当nm=4mn时,等号成立,故1m+4n的最小值等于32.答案:A6.正数a,b满足1a+9b=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是()A.3,+∞)B.(-∞,3]C.(-∞,6]D.6,+∞)【知识点:基本不等式,恒成立】解:D7.已知x ,y 为正实数,3x +2y =10,3x +2y 的最大值为________.【知识点:基本不等式】 解:由a +b 2≤a 2+b 22,得3x +2y ≤ 2×(3x )2+(2y )2=2×3x +2y =25,当且仅当x =53,y =52时取等号. 答案:2 58.若不等式(x +y )⎝ ⎛⎭⎪⎫a x +4y ≥16对任意正实数x ,y 恒成立,则正实数a 的最小值为________.【知识点:基本不等式,恒成立】解:因为不等式(x +y )⎝ ⎛⎭⎪⎫a x +4y ≥16对任意正实数x ,y 恒成立,所以16≤⎣⎢⎡⎦⎥⎤(x +y )⎝ ⎛⎭⎪⎫a x +4y min .令f (x )=(x +y )⎝ ⎛⎭⎪⎫a x +4y (a >0),则f (x )=a +4+ay x +4xy ≥a +4+2ay x ·4xy =a +4+4a ,当且仅当x y =a2时取等号,所以a +4a +4≥16,解得a ≥4, 因此正实数a 的最小值为4. 答案:49.下列命题中正确的是________(填序号). ①y =2-3x -4x (x >0)的最大值是2-43; ②y =sin 2x +4sin 2x 的最小值是4; ③y =2-3x -4x (x <0)的最小值是2-4 3. 【知识点:基本不等式综合应用】解:①正确,因为y =2-3x -4x =2-⎝ ⎛⎭⎪⎫3x +4x ≤2-23x ·4x =2-4 3.当且仅当3x =4x ,即x =233时等号成立.②不正确,令sin2x=t,则0<t≤1,所以g(t)=t+4 t,显然g(t)在(0,1]上单调递减,故g(t)min=g(1)=1+4=5.③不正确,因为x<0,所以-x>0,最小值为2+43,而不是2-4 3. 答案:①10.已知a>b>c,若1a-b+1b-c≥na-c,求n的最大值.【知识点:基本不等式】解:方法一∵1a-b+1b-c≥na-c,且a>b>c,∴n≤a-ca-b+a-cb-c=(a-c)2(a-b)(b-c).∵对a、b、c上式都成立,∴n≤[(a-c)2(a-b)(b-c)]min.又∵(a-c)2(a-b)(b-c)≥(a-c)2[(a-b)+(b-c)2]2=4.∴n≤4,∴n的最大值为4.方法二∵a>b>c,∴a-ca-b+a-cb-c=(a-b)+(b-c)a-b+(a-b)+(b-c)b-c=2+b-ca-b+a-bb-c≥2+2=4.∴n≤4,∴n的最大值为4.11.(2015高考重庆)设,0,5a b a b>+=,.【知识点:基本不等式】解:23由222ab a b≤+两边同时加上22a b+得222()2()a b a b+≤+两边同时开方即得:a b+≤0,0a b>>且当且仅当a b=时取“=”),≤==13a b +=+,即73,22a b ==时,“=”成立). 12.为了净化空气,某科研小组根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10。
基本不等式教案
基本不等式(均值定理)2b a ab +≤,(>>)(教案)一、学习目标知识目标:理解均值不等式,并能运用均值不等式解决一些较为简单的问题.掌握平均值定理并能初步应用它求某些函数的最值.能力目标:培养学生探究能力以及分析问题、解决问题的能力.情感目标:通过理解平均值定理的使用条件,学生进一步认识现实世界中的量不等是普遍的,相等是局部的,对学生进行辩证唯物主义教育.通过问题的设置,培养学生善于思考、勤于动手的良好品质.二、重点:理解均值不等式.难点:均值不等式的应用. 三、学习过程: (引出新课)对任意两个正实数,数2a b+均数之间的不等关系可表述为:两个正实数的算术平均数不小于它的几何平均数。
我们把这一基本不等式称之为均值定理,因此又叫均值不等式(板书课题)符号表示为:若∈ ,2a b+问题:能证明吗?(作差法)问题: 能不能用几何方法证明上面的基本不等式呢? 下面我们给出均值不等式的一个几何直观解释:令正实数、为两条线段的长,用几何作图的方法作出长度为2a b+线段,然后比较这两条线段的长。
()作线段,使; ()以为直径作半圆 ()过点作⊥于,交半圆于 ()连接,, ,则 2a b +当≠时,>,即2a b+>当时,,即2a b+=均值不等式与不等式≥的关系如何? 区别:的范围不同。
联系:均值不等式是≥的特例。
小组讨论:判断以下几个均值不等式的应用是否正确?若不正确,说明理由。
() ∵1x ≥,当且仅当时等号成立,∴ 1x的最小值是.().解:()求函数1x (≥)的最小值.解: ∵>,∴1x≥,∴函数的最小值是.学生小组讨论得出求最值的条件:一正二定三相等一、配凑 . 凑系数例. 当04<<x 时,求y x x =-()82的最大值。
解析:由04<<x 知,820->x ,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
高中数学基本不等式(二)教案新课标人教A版必修5
小结:
通过例2及变式一、二阐明解决函数最值问题可以转化为二次函数解决,也可以通过基本不等式解决。例2构造和为定值而并非积为定值,强调如何构造定值要根据题设决定,从而使学生对不等式成立的条件有更深刻的认识。
小组讨论、合作交流促进学生积极地思考,体验构造定值的思维过程。
理清本节课的学习重点,养成归纳总结的学习习惯,为后续学习打下良好的基础。
教学难点
如何构造定值并保证利用基本不等式求最值时能满足三个条件.
教学过程
设计意图
一、情景引入:货物运输问题
进货结束后装车运回。所购大米需装3辆卡车,途径一座长为100米的大桥,假设卡车均以v(m/s)的速度匀速前进,并出于安全考虑规定每两辆卡车的间距不得小于 m(卡车长忽略不计),则全部卡车安全过桥最快需多少时间?
函数模型为:
二、例题讲解:
例1:
激发学生学习的积极性,在复习旧知识的基础上为新课教学做好必要的铺垫。
通过例1探索:
运用不等式“正值”的条件和“积为定值”的构造。
变式一、二引导学生完成,进一步理解一正二定的前提条件,通过学生反馈学生理解知识过程中出现的问题,强化学生对基本不等式成立条件的认识。
。
例2:
基本不等式(二)教案
课题
3.4基本不等式(二)
课型
习题课
授课教师
时间
教学目标
1、知识目标:进一步理解基本不等式成立的三个条件.
2、能力目标:熟练构造定值利用基本不等式求定值。.
3、德育目标:通过对基本不等式成立的条件的分析,养成严谨的科学态度,勇于提出问题。
教学重点
利用基本不等式求最值时必须满足三个条件:一正二定三相等.
三、练习巩固:
2.2 基本不等式 教学设计(1) Word版
2.2.2 基本不等式(第2课时)本节课是人教版普通高中课程标准实验教科书数学必修1第二章第二节《基本不等式》第2课时。
从内容上看是对基本不等式在实际问题中应用的学习,通过问题解决,发展学生数学抽象、数学运算、数学建模、逻辑推理等数学核心素养。
在学法上要指导学生:从实际问题中列出数量关系式,进而运用基本不等式解应用题,数学建模能力也是本节要体现的重要素养。
对例题的处理可让学生先思考,然后师生共同对解题思路进行概括总结,使学生更深刻地领会和掌握解应用题的方法和步骤。
1.重点:在实际问题中建立不等关系,并能正确运用基本不等式求最值;2.难点:注意运用不等式求最大(小)值的条件多媒体(一)、小试牛刀1.判断正误.(正确的打“√”,错误的打“×”)(1)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (2)若xy =4,则x +y 的最小值为4.( ) (3)函数f (x )=x 2+2x 2+1的最小值为22-1.( )答案:(1) × (2)× (3) √2.已知x +y =1且x >0,y >0,则1x +1y 的最小值是( )A .2B .3C .4D .6 解析:法一:1x +1y =x +y xy =1xy ≥1⎝⎛⎭⎫x +y 22=4,当且仅当x =y =12时取等号,法二:1x +1y =x +y x +x +y y =2+y x +x y ≥4,当且仅当x =y =12时取等号.答案:C(二)、探索新知问题1.用篱笆围成一个面积为100m 的矩形菜园,问这个矩形的长、 宽各为多少时,所用篱笆最短。
最短的篱笆是多少?解:(1)设矩形菜园的长为x m,宽为y m,则100,xy =篱笆的长为2(x y +)m由2x yxy +≥, 可得 2100x y +≥,2(x y +)40≥等号当且仅当10x y x y ===时成立,此时,因此,这个矩形的长、宽为10 m 时,所用篱笆最短,最短篱笆为40m结论1:两个正变量积为定值,则和有最小值,当且仅当两变量值相通过课堂小测,了解学生对基本不等式的掌握情况,暴露问题及时纠正。
高一数学必修一 教案 第2课时 基本不等式的应用
第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值 用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.答案 18解析 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18,当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 答案 20解析 总运费与总存储费用之和y =4x +400x ×4=4x +1 600x≥24x ·1 600x=160,当且仅当4x =1 600x,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 答案 8解析 年平均利润y x=-x +18-25x=-⎝⎛⎭⎪⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x=5时取“=”. 4.已知x >2,则x +4x -2的最小值为________. 答案 6 解析 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6. 当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y=1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y=1,∴x +y =⎝ ⎛⎭⎪⎫1x +9y (x +y )=y x +9x y+10≥6+10=16,当且仅当y x=9xy,又1x +9y=1,即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y=1,得(x -1)(y -9)=9(定值).由1x +9y=1可知x >1,y >9,∴x +y =(x -1)+(y -9)+10 ≥2x -1y -9+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2x x -8=x +2x -16+16x -8=(x -8)+16x -8+10≥2x -8×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立. ∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1.∴x +y =(x +y )⎝⎛⎭⎪⎫8x +2y=8y x +2xy+10≥28y x ·2xy+10=18.当且仅当8y x =2xy,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y的最小值是________.答案 9解析 ∵x +y =1, ∴1x +4y=(x +y )⎝ ⎛⎭⎪⎫1x +4y=1+4+y x+4x y.∵x >0,y >0,∴y x>0,4xy>0,∴y x+4x y≥2y x ·4xy=4, ∴5+y x+4xy≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4xy,即x =13,y =23时等号成立.∴⎝ ⎛⎭⎪⎫1x +4y min =9. 二、基本不等式在实际问题中的应用例 2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎪⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝ ⎛⎭⎪⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费)解 设该批产品的利润为y ,由题意知y =⎝⎛⎭⎪⎫2+20Q ·Q -2⎝ ⎛⎭⎪⎫Q +1Q -x=2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+x +1,0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+x +1≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1 000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1 000千克该产品需要的时间是1 000x,所以生产1 000千克该产品消耗的A 材料为y =1 000x(x 2+9)=1 000⎝ ⎛⎭⎪⎫x +9x ≥1 000×29=6 000,当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6 000千克.基本不等式在实际问题中的应用典例 围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2 m 的进出口,如图.已知旧墙的维修费用为45 元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360. 由已知xa =360,得a =360x,∴y =225x +3602x-360.∵x >0,∴225x +3602x≥2225×3602=10 800.∴y =225x +3602x-360≥10 440.当且仅当225x =3602x时,等号成立.即当x =24 m 时,修建围墙的总费用最小,最小总费用是10 440元.[素养提升] 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +a x(a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x的最大值是( )A .3B .3-2 2C .-1D .3-2 3答案 D解析 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎪⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4答案 B解析 x 2-x +1x -1=x x -1+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3, 当且仅当x -1=1x -1,即x =2时,等号成立. 3.将一根铁丝切割成三段做一个面积为2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5 m B .6.8 m C .7 m D .7.2 m 答案 C解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C. 4.已知正数a ,b 满足a +2b =2,则2a +1b的最小值为________.答案 4解析 2a +1b =⎝ ⎛⎭⎪⎫2a +1b ×12(a +2b )=12⎝⎛⎭⎪⎫4+a b +4b a≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4.5.设计用32 m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2 m ,则车厢的最大容积是________ m 3. 答案 16解析 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a2a +1.设a +1=t ,则V =2⎝ ⎛⎭⎪⎫20-2t -18t≤2⎝⎛⎭⎪⎫20-22t ·18t =16,当且仅当t =3,即a =2,b =4时等号成立.1.知识清单:(1)已知x ,y 是正数.①若x +y =S (和为定值),则当x =y 时,积xy 取得最大值. ②若x ·y =P (积为定值),则当x =y 时,和x +y 取得最小值. 即:“和定积最大,积定和最小”. (2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值. 3.常见误区:缺少等号成立的条件.1.已知正数x ,y 满足8x +1y=1,则x +2y 的最小值是( )A .18B .16C .8D .10 答案 A解析 x +2y =(x +2y )⎝ ⎛⎭⎪⎫8x +1y =10+16y x +x y ≥10+216=18,当且仅当16y x =x y,即x =4y =12时,等号成立.2.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5 答案 C解析 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ×(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54, 当且仅当2a b =2ba时,即a =b =18等号成立,∴9m ≤54,即m ≤6,故选C.3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设小王从甲地到乙地行驶的路程为s , ∵b >a >0,则v =2s s a +s b=2ab a +b <2ab2ab=ab , 又2ab a +b >2ab2b=a ,故选A. 4.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( ) A.23 B.223 C.33 D.233答案 B解析 由x 2+3xy -1=0,可得y =13⎝ ⎛⎭⎪⎫1x -x .又x >0,所以x +y =2x 3+13x≥229=223⎝ ⎛⎭⎪⎫当且仅当x =22时等号成立. 5.已知m >0,n >0,m +n =1且x =m +1m ,y =n +1n,则x +y 的最小值是( )A .4B .5C .8D .10 答案 B解析 依题意有x +y =m +n +1m +1n =1+m +n m +m +n n =3+n m +m n ≥3+2=5,当且仅当m =n =12时取等号.故选B.6.为净化水质,向一个游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg ·L -1) 随时间t (单位:h)的变化关系为C =20tt 2+4,则经过_______ h 后池水中该药品的浓度达到最大. 答案 2解析 C =20t t 2+4=20t +4t. 因为t >0,所以t +4t≥2t ·4t=4 ⎝ ⎛⎭⎪⎫当且仅当t =4t ,即t =2时等号成立. 所以C =20t +4t≤204=5,当且仅当t =4t , 即t =2时,C 取得最大值.7.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.答案 20解析 设矩形花园的宽为y ,则x 40=40-y 40,即y =40-x ,矩形花园的面积S =x (40-x )≤⎝ ⎛⎭⎪⎫x +40-x 22=400,当且仅当x =20时,取等号,即当x =20 m 时,面积最大.8.某汽车运输公司购买一批豪华大客车投入营运,据市场分析每辆车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)满足关系y =-x 2+12x -25,则每辆客车营运________年时,年平均利润最大. 答案 5解析 ∵y =-x 2+12x -25,∴年平均利润为y x =-x 2+12x -25x=-⎝⎛⎭⎪⎫x +25x +12≤-2x ·25x+12=2,当且仅当x =25x,即x =5时,等号成立.9.已知x >0,y >0且2x +5y =20.(1)求xy 的最大值; (2)求1x +1y的最小值.解 (1)∵2x +5y =20,x >0,y >0, ∴2x +5y ≥210xy , ∴210xy ≤20,即xy ≤10, 当且仅当x =5,y =2时,等号成立, ∴xy 的最大值为10.(2)1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·120(2x +5y ) =120⎝ ⎛⎭⎪⎫2+5+5y x +2x y =120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120(7+210), 当且仅当2x =5y 时,等号成立. ∴1x +1y 的最小值为120(7+210). 10.某人准备租一辆车从孝感出发去武汉,已知从出发点到目的地的距离为100 km ,按交通法规定:这段公路车速限制在40~100(单位:km/h)之间.假设目前油价为7.2元/L ,汽车的耗油率为⎝ ⎛⎭⎪⎫3+x 2360L/h ,其中x (单位:km/h)为汽车的行驶速度,耗油率指汽车每小时的耗油量.租车需付给司机每小时的工资为76.4元,不考虑其他费用,这次租车的总费用最少是多少?此时的车速x 是多少?(注:租车总费用=耗油费+司机的工资) 解 设总费用为y 元. 由题意,得y =76.4×100x +7.2×100x ×⎝ ⎛⎭⎪⎫3+x 2360=9 800x+2x (40≤x ≤100).因为y =9 800x+2x ≥219 600=280.当且仅当9 800x=2x ,即x =70时取等号.所以这次租车的总费用最少是280元,此时的车速为70 km/h.11.设0<x <1,则4x +11-x 的最小值为( )A .10B .9C .8 D.272答案 B解析 ∵0<x <1,∴1-x >0, 4x+11-x =[x +(1-x )]·⎝ ⎛⎭⎪⎫4x +11-x =4+41-x x +x 1-x +1≥5+241-xx·x1-x=5+2×2=9. 当且仅当41-xx=x1-x, 即x =23时,等号成立.∴4x +11-x的最小值为9. 12.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92 B.92 C.14D .-4答案 A解析 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝ ⎛⎭⎪⎫12a +2b ×(a +b )=52+⎝ ⎛⎭⎪⎫b 2a +2a b ≥52+2b 2a ×2a b =92,当且仅当b =2a ,即a =13,b =23时等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.13.一个矩形的周长为l ,面积为S ,则如下四组数对中,可作为数对(S ,l )的序号是( )①(1,4);②(6,8);③(7,12);④⎝ ⎛⎭⎪⎫3,12.A .①③B .①③④C .②④D .②③④答案 A解析 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy .对于①(1,4),则x +y =2,xy =1, 根据基本不等式满足xy ≤⎝⎛⎭⎪⎫x +y 22,符合题意;对于②(6,8),则x +y =4,xy =6, 根据基本不等式不满足xy ≤⎝⎛⎭⎪⎫x +y 22,不符合题意;对于③(7,12),则x +y =6,xy =7,根据基本不等式满足xy ≤⎝ ⎛⎭⎪⎫x +y 22,符合题意;对于④⎝ ⎛⎭⎪⎫3,12,则x +y =14,xy =3, 根据基本不等式不满足xy ≤⎝⎛⎭⎪⎫x +y 22,不符合题意.综合,可作为数对(S ,l )的序号是①③. 14.已知不等式2x +m +8x -1>0对任意的x >1恒成立,则实数m 的取值范围为________. 答案 {m |m >-10}解析 ∵2x +m +8x -1>0在x >1时恒成立, ∴m >-2x -8x -1=-2⎝ ⎛⎭⎪⎫x +4x -1=-2⎝⎛⎭⎪⎫x -1+4x -1+1, 又x >1时,x -1>0,x -1+4x -1+1≥2x -1·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立, ∴-2⎝⎛⎭⎪⎫x -1+4x -1+1≤-2×5=-10. ∴m >-10,∴实数m 的取值范围为{m |m >-10}.15.若不等式ax 2+1x 2+1≥2-3a3(a >0)恒成立,则实数a 的取值范围是________. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥19 解析 原不等式可转化为a (x 2+1)+1x 2+1≥23, 又a >0, 则a (x 2+1)+1x 2+1≥2a x 2+1·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1, 即a =1x 2+12时等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.16.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).那么该厂家2020年的促销费用为多少万元时,厂家的利润最大?最大利润为多少? 解 设2020年该产品利润为y , 由题意,可知当m =0时,x =1, ∴1=3-k ,解得k =2,∴x =3-2m +1, 又每件产品的销售价格为1.5×8+16xx元,∴y =x ⎝⎛⎭⎪⎫1.5×8+16x x-(8+16x +m )=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+m +1+29, ∵m ≥0,16m +1+(m +1)≥216=8, 当且仅当16m +1=m +1,即m =3时等号成立, ∴y ≤-8+29=21,∴y max =21.故该厂家2020年的促销费用为3万元时,厂家的利润最大,最大利润为21万元.。
基本不等式第二课时参考教学方案
1.运用基本不等式解决生活中的最值问题,发展数学建模素养;
2.能将某些生活中的最值问题转化为基本不等式两种最值模型中的一种,提高用模型思想解决问题的能力.
教学重点:用基本不等式解决生活中的最值问题.
教学难:判断生活中的最值问题是否属于能够用基本不等式最值模型解决的两类最值问题.
预设学生回答:基本不等式能解决以下两类最值问题:(1)如果正数x,y的积xy等于定值P,那么当x=y时,和x+y有最小值;(2)如果正数x,y的和x+y等于定值S,那么当x=y时,积xy有最大值.用基本不等式求最值时要注意满足三个条件:一正、二定、三相等.
设计意图:本节课的重点是用基本不等式解决生活中的最值问题.通过回顾知识,初步了解解决问题的思路和方向.有助于学生严密的逻辑思维、良好的认知结构的建立和完善.
师生活动:学生独立阅读题目,理解题意,教师提出问题:(1)水池的总造价和什么有关?(2)怎样设元,得到水池的总造价表达式?学生合作进行讨论,得到总造价的表达式.
预设的答案:设贮水池池底相邻两条边的边长分别为xm,ym,水池的总造价为z元,则 .
追问1:此问题可以用基本不等式的数学模型求解吗?为什么?
3.设矩形的长为a,宽为b,则由题意得2(a+b)=36,即a+b=18.
因为旋转形成的圆柱的侧面积为:2πab,所以要求侧面积最大,即求ab的最大值,由基本不等式得: ,当且仅当a=b=9时取等号.
故当矩形的长宽都为9时,旋转形成的圆柱的侧面积最大.
师生活动:学生自主反思总结,并回答问题,教师帮助梳理:先从实际问题中抽象出数量关系,列出代数式;思考问题是否与基本不等式的数学模型相匹配;然后,根据“一正、二定、三相等”的方法运算求解;最后,用求得的结果解释实际问题.
《基本不等式》一元二次函数、方程和不等式PPT教学课件(第二课时基本不等式的应用)
2 2 [x+2x≥2 x·2x=2 2,当
________.
且仅当 x= 2时,等号成立.]
栏目导航
9
3.设 x,y∈N*满足 x+y=20, 100 [∵x,y∈N*,∴20=x+
则 xy 的最大值为________.
y≥2 xy,
∴xy≤100.]
栏目导航
10
合作探究 提素养
栏目导航
11
(3)当 x>1 时,函数 y=x+x-1 1≥2 x-x 1,所以函数 y 的最小值是
2 x-x 1.(
)
栏目导航
[提示] (1)由 a+b≥2 ab可知正确. (2)由 ab≤a+2 b2=4 可知正确. (3) x-x 1不是常数,故错误.
[答案] (1)√ (2)√ (3)×
37
栏目导航
38
13
栏目导航
14
利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆 项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳 为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或 定积;若不等,一般用后面第三章§3.2 函数的基本性质中学习.
栏目导航
33
∵x>0,∴x+22x5≥2 x·22x5=30. 当且仅当 x=22x5,即 x=15 时,上式等号成立. ∴当 x=15 时,y 有最小值 2 000 元. 因此该楼房建为 15 层时,每平方米的平均综合费用最少.
《基本不等式》教学设计
《基本不等式》教学设计一、教材解读《基本不等式》在人教A 版高中数学必修第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。
本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。
同时本节课的内容也是之后基本不等式应用的必要基础。
是理论数学与应用数学结合的良好典范。
下面我们来分析一下本节教材。
(一)内容结构(1) 通过课题揭示重点。
从课题可以很清楚的知道我们将要学习的内容以及重点,所有内容都是围绕这个基本不等式展开。
(2) 实践出真知。
以一个实际问题来探究其中所蕴涵的相等或不等关系,充分体现了新课标所要求的培养学生创新精神及数学应用的意识。
通过探究,学生很容易得到结论:一般地,对于任意实数a ,b ,我们有222a b ab +≥,当且仅当a b =时,等号成立。
(3) 代换与证明。
通过代换思想,得到基本不等式0,0)2a b a b +≥>>,接着用分析法及数形结合法来证明基本不等式,体现了一题多解及证明不等式的基本方法。
这部分内容简单,学生基本可独立完成,对于培养学生的自学能力有积极作用。
(4) 课本提示概念。
在正文旁边有一个框图,说明了算术平均数与几何平均数的概念,由此可以总结出一条定理:一列正数的算术平均数不小于它的几何平均数。
这部分虽非重点,但对于拓展对基本不等式的认识是非常重要的,在教学中有必要提示一下。
(5) 实例揭示应用价值。
通过两个实例,体现了基本不等式在求最值时的价值,更进一步体现了“当且仅当时,等号成立”这一条件的重要性。
学生可以从中体会到“积定和最小”及“和定积最大”这两条基本的解题思路。
这两个例题使数学与生活不再那么遥远。
对于培养学生的数学应用意识功不可没。
(6) 习题进一步巩固所学。
共有四道习题,第一道强调了“当且仅当a b =时,等号成立”这一重要条件,是基本不等式的直接应用,难度较小;后面三道是基本不等式在实际生活中的应用,强调了数学与生活有着密切联系这一基本数学观。
《基本不等式》第二课时精品教案
教学重点难点应用理解基本不等式,学会用基本不等式 求函数最值及求最值应注意的条件。
教学过程
设计意图
活动一:知识回顾
(1)重要不等式_________________
(2)基本不等式__________________
活动二:问题探索
《基本不等式》应用教学设计
课型:新授课授课人:张露授课班级:高二(3)班
教学目标
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单问题;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照提出问题→剖析归纳证明→应用(最值的求法)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
小结:一般地,型如
活动三:课堂合作学习
活动四:能力训练
活动五:课后练习
总结:(1)从特殊到一般,总结方法,举一反三,提高能力。
(2)掌握配凑法
(3)基本不等式求最值条件:一正,二定,三等
活动六:作业书P100A组B组
活动一的设计意图让同学们快速进入课堂,复习均值不等式,特别注意等号
探究1设计意图:
通过类比,引导学生对均值不等式求最值应该注意哪些条件。
探究2设计意图
给出函数形式求最值,
掌握用不等式求函数最值中的拼凑技巧,意在介绍求最值中的“定掌握一定的技巧,让学生学会用均值不等式求解。同时意在介绍求最值中的“等”。
基本不等式教学设计(通用8篇)
基本不等式教学设计基本不等式教学设计(通用8篇)作为一名专为他人授业解惑的人民教师,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。
教学设计应该怎么写才好呢?以下是小编为大家收集的基本不等式教学设计(通用8篇),仅供参考,希望能够帮助到大家。
基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
基本不等式课程设计
基本不等式课程设计一、课程目标知识目标:1. 学生能理解并掌握基本不等式的概念,包括算术平均数-几何平均数不等式、均值不等式等。
2. 学生能够运用基本不等式解决实际问题,解释生活中的不等关系。
3. 学生掌握不等式的证明方法,能合理解释不等式成立的数学原理。
技能目标:1. 学生能够准确地运用符号语言表达不等式,并能在数轴上表示出来。
2. 学生通过具体案例,培养观察、分析、解决问题的能力,提高逻辑推理和数学证明技巧。
3. 学生能够运用基本不等式进行简单的数学建模,解决实际问题。
情感态度价值观目标:1. 学生培养对数学的兴趣,特别是对不等式的学习产生积极情感。
2. 学生在学习过程中,发展合作精神,学会分享解题思路和成果。
3. 学生通过不等式的学习,认识到数学的严谨性和应用的广泛性,增强解决实际问题的自信心。
课程性质分析:本课程属于高中数学范畴,以理论学习和实际应用相结合,着重培养学生的逻辑思维能力和解决实际问题的能力。
学生特点分析:高中生具有较强的逻辑推理能力和抽象思维能力,能够理解并应用不等式解决复杂问题。
教学要求:教学应结合学生特点,通过案例导入、理论讲解、互动讨论和实际应用,帮助学生达成课程目标,确保学生在理解不等式的基础上,能够灵活运用并解决实际问题。
二、教学内容1. 引言:通过生活中的实例引入不等式的概念,让学生感知不等式在现实中的应用。
- 教材章节:第一章 不等式与不等式组2. 算术平均数-几何平均数不等式(AM-GM不等式):- 定义、性质、证明和应用- 教材章节:1.2 算术平均数与几何平均数3. 均值不等式:- 包括算术平均数、几何平均数、调和平均数等- 教材章节:1.3 均值不等式及其应用4. 不等式的证明方法:- 比较法、分析法、综合法、反证法等- 教材章节:1.4 不等式的证明5. 不等式的应用:- 解决实际问题的数学建模- 教材章节:1.5 不等式的实际应用6. 综合练习与拓展:- 设计不同难度的习题,巩固所学知识- 拓展不等式在其他学科领域的应用教学内容安排与进度:第1课时:引言与不等式的概念第2课时:算术平均数-几何平均数不等式第3课时:均值不等式第4课时:不等式的证明方法第5课时:不等式的应用第6课时:综合练习与拓展教学内容确保科学性和系统性,结合教材章节,逐步引导学生掌握不等式的相关知识。
基本不等式(第2课时)(教学设计)高一数学系列(人教A版2019)
学习目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。
2.经历基本不等式的推导与证明过程,提升逻辑推理能力。
3.在猜想论证的过程中,体会数学的严谨性。
核心素养1. 通过实例,掌握基本不等式及应用,培养学生数学抽象的核心素养;2. 能够利用基本不等式求函数或代数式的最值,提升数学运算和逻辑推理的核心素养;3. 会利用基本不等式求解实际问题中的最值,强化数学运算的核心素养。
重点:利用基本不等式求最值;利用基本不等式解决实际应用问题.难点:基本不等式的应用;基本不等式求最值.学生在上一节学习了基本不等式的定义及简单应用,本节课是上一节内容的延伸,解决求最值过程中的易犯错误的处理方法,并求解了实际应用问题中的最值,所以学生学习本节内容还是比较有兴趣的,本节知识渗透了数学运算、逻辑推理、数学建模等核心素养,有利于培养学生良好的思维品质。
根据上一节课的知识,我们了解了基本不等式与最值的关系,如下:已知x,y都是正数,则xy等于定值P,那么当x=y时,和x+y有最小值_____.2.若和x+y是定值S,那么当x=y时,积xy有最大值_____.【想一想】下面这些结论是否正确? (1)若a >0,b >0,且a +b =16,则ab ≤64.( )(2)若ab =2,则a +b 的最小值为2 2.( )(3)当x >1时,函数y =x +1x -1≥2x x -1,所以函数y 的最小值是2xx -1.( )(4)若x ∈R ,则x 2+2+1x 2+2≥2.( )(1)正确;(2)错误;(3)错误;(4)错误.数学抽象的思维方式思考并解决问题的能力。
通过基本不等式求最值,使学生熟练掌握基本不等式求最值的方法,培养学生逻辑推理和数学运算的核心素养。
通过练习巩固本节所学知识,通过学生解决问题当且仅当a =2b =15时取等号.故当矩形的长为15 m ,宽为7.5 m 时,菜园的面积最大,最大面积为112.5 m 2.解:设底面的长为a ,宽为b ,则由题意得2ab =32,即ab =16.所以用纸面积为S =2ab +4a +4b =32+4(a +b )≥当且仅当a =b =4时取等号.即当底面的长和宽均为4时,用纸最少.解:设矩形的长为a ,宽为b ,则由题意得2(a +b )=36,即a +b =18.因为旋转形成的圆柱的侧面积为: ,所以要求侧面积最大,即求ab 的最大值,由基本不等式得当且仅当a =b =9时取等号.故当矩形的长宽都为9时,旋转形成的圆柱的侧面积最大.的能力,感悟其 中蕴含的数学思 想,增强学生的 应用意识。
高中数学《基本不等式》(2课时)教学设计
基本不等式(2课时)教学设计一、内容和内容解析1•内容:基本不等式的定义、几何解释、证明方法与应用.2.内容解析:相等关系、不等关系是数学中最基本的数量关系,是构建方程、不等式的基础•基本不等式是一种重要而基本的不等式类型,在中学数学知识体系中也是一个非常重要的、基础的内容基本不等式与很多重要的数学概念和性质相关.从数与运算的角度,•”是两个正数a,b的"算术平均数”,忘是两个正数a,b,的"几何平均数”•因此,不等式中涉及的是代数中的“基本量”和最基本的运算.从几何图形的角度,“周长相等的矩形中,正方形的面积最大”,“等圆中,弦长不大于直径”,等等,都是基本不等式的直观理解.其次,基本不等式的证明或推导方法很多,上面的分析也是基本不等式证明方法的来源•利用分析法,从数量关系的角度,利用不等式的性质来推导基本不等式;从平面几何图形的角度,借助几何直观,通过数形结合来探究不等式的几何解释;从函数的角度,通过构造函数,利用函数性质来证明基本不等式;等等.这些方法也是代数证明和推导的典型方法此外,基本不等式是几何平均数不大于算术平均数的最基本和最简单的情形,可以推广至n个正数的几何平均值不大于算术平均值基本不等式的代数结构也是数学模型思想的一个范例,借助这个模型可以求最大值和最小值.同时,在理解和应用基本不等式的过程中涉及变与不变、变量与常量,以及数形结合、数学模型等思想方法.因此,基本不等式的内容可以培养学生的逻辑推理、数学运算和数学建模素养.基于以上分析,确定本节课的教学重点:基本不等式的定义、几何解释和证明方法,用基本不等式解决简单的最值问题.本单元教学建议课时数:2课时.二、目标和目标解析1•目标:(1)理解基本不等式:f以‘丿,发展逻辑推理素养.(2)结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.2.目标解析:达成上述目标的标志是:(1)知道基本不等式的内容,明确基本不等式就是“两个正数的算术平均数不小于它们的几何平均数”;会利用不等式的性质证明基本不等式,能说明基本不等式的几何意义.(2)能结合具体实例,明确基本不等式的使用条件和注意事项,即“一正、二定、三相等”;能用基本不等式模型识别和理解实际问题,能用基本不等式求最大值或最小值;在解决具体问题的过程中,体会基本不等式的作用,提升数学运算、数学建模等核心素养.三、教学问题诊断分析由于学生缺少代数式证明的经验,所以基本不等式的证明是本节课的一个难点•基本不等式的几何解释也是学生不容易想到的,需要数形结合地去理解,所以这也是本节课的一个难点.此外,在利用基本不等式研究最值问题时,学生容易出现忽视使用条件,不验证等号是否成立,甚至出现没有确认和或积为定值就求“最值”等问题,这也是学生思维不够严谨的表现,因此基本不等式的证明和利用基本不等式求最值也是本节课的难点.四、教学支持条件分析在进行基本不等式的几何解释的教学时,为了帮助学生直观地观察图形中几何元素之间的动态关系,并将其转化为代数表示,可以利用信息技术制作一个动态图形,以帮助学生直观理解.五、教学过程设计第一课时(一)课时教学内容本节课的主要教学内容有:基本不等式的定义;基本不等式的证明;基本不等式的几何解释;运用基本不等式求最值;基本不等式求最值的两种模型.(二)课时教学目标Jab<"+"仏“>研1•理解基本不等式-,发展逻辑推理素养;2.了解基本不等式的几何解释;3.结合具体实例,用基本不等式解决简单的求最大值或最小值的问题,发展数学运算和数学建模素养.(三)教学重点与难点教学重点:基本不等式的定义及运用基本不等式解决简单的最值问题.教学难点为:基本不等式的证明和运用基本不等式求最值.(四)教学过程设计1•基本不等式的定义导入语:我们知道,乘法公式在代数式的运算中有重要作用•那么,是否也有一些不等式,它们在解决不等式问题时有着与乘法公式类似的作用呢?下面就来研究这个问题.问题1:提到两个数的乘法,在上一节我们利用完全平方差公式得出了一类重要不等式中含有ab乘法,是什么不等式?师虫活动一学生回忆*表述,对于任意实数M乩有冷如乳当且■仅当尸&时,等号成立一^追画不等式中戸』的取值范围是什么?特别地,如果口>IX b〉a我们用拓,血分别代替上式中的G孙可以得到怎样的式子丁师生活动’学生独立计算后回答•教师总结;对于任意实数QO,Q0,得到H b>2屈,:变形为应畔©当且仅当4时,等号成立」环等式中渉圧的是代数中的“基本•量"和最基本的运算,诵常我们称不等式①为基本不等式.其中空叫做正数G b的算术.2•平均数,極叫做①p的几何平均数一基本不等式表明两个正数的算术平均数不小于它们的几何平均数.设计意图’通过取上一节课得到的不等式^+^>2ab的特殊形式,得到基本不等式.屁冬字的定义「同日捲两个不等式之间建立联系.诵过分析基本不等式的代数结构特征;得到基本环等式的代数解释,初步加洙对基林等式的认识.2•基本不等式的证明问题2:上节课我们看到,证明不等关系,还可以运用不等式性质,你能否利用不等式的性质推导出基本不等式呢?预设方案一:学生根据两个实数大小关系的基本事实,用作差比较证明•教师给予肯定,是否还有其它证法?预设方案二:由于没有已知条件,学生不知从何入手追问1=你能否寻找一下此不等式成立的充分条件?也就是要证屈空爭,只需要证明件么,从而形成证明思路-师生活动’学生思考分析,要证極乞字①,只需证逅3旦②,从而霊要证2屈-疽-比0③,只要证—(需-靠)它00只要证祐-屈2乏0⑤即可.教师指出@—品心显然咸立,如果我们从此式出发,把上述过程倒过来,就直接推岀基本不等式了一追问2:上述证明中,每一步推理的依据是什么?师生活动:学生分别回答由⑤f④,由④f③,由③f②,由②f①的依据.追问3上述证明叫做“分析法"•你能归纳一下用分析法证明命题的思路吗?师生活动:学生讨论后回答•教师总结:分析法是一种"执果索因”的证明方法,即从要证明的纟吉论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.追问4:你能说说分析法的证明格式是怎样的吗?师生活动:学生思考后回答•教师总结:由于分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步的推理都用"要证……只要证……”的格式,当推导到一个明显成立的条件之后,指出"显然xxx成立”.追问5:基本不等式成立的条件是什么?如果a<0或bvO基本不等式是否成立?师生活动:学生通过证明发现,a,b均为非负数,如果a,b存在负数时,该不等式不成立•教师指出基本不等式的定义要求a,b均为正数.设计意图:根据不等式的性质,用分析法证明基本不等式,同时引导学生认识分析法的证明过程和证明格式,为学生高中阶段的推理和证明提供了更丰富的策略.3•基本不等式的几何解释问题土在图1中,酸是圆的直径,点匸是血上一点迟0=乩过点U作垂直于抠的弦DE,连接血加•你能利用这个图形,得出基本不等式的几何解释吗1师生活动:学生思考后回答,教师引导学生点结:从条件和基林等式出发,发现圆的半径长等于学,仞=姮•教师操作课件,点D在圆周上运动,学生观察QD杲弦DE的一半,CZ)的长一定小于等于半径,即CD—皿也就是基本不等式可以利用^圆中直径不小于任意一条弦"得到解释.当且仅2当弦门宜过圆心时,二者相等.设计意图’让学生自己寻找基本不等式的几何解释是非常困难的,因此这里给出了几何图形,弓|导学生将应和学与图中的几何元素建立起联系,再观察这些几何元素在变J H化中表现的知b 关系的规律,从而获得基本不等式的几何:F)@1追间缶在上述解答过程中,杲否必须说明血当且仅当*,即亍7—1时,等号成立疳?师生活动=学生讨论石回答.教师总結:这是为了说明V是代数式J.=X+1(A->O)X的一个取值,代数式的最小值必须是代数式能取到的值.请同学们想一想,当%V2时.,卄二土%成立吗?迦犠说卄是偲J{式Q0)的最才信3?X JC追问4:通过本例的解答,你能说说满足什么条件的代数式能够利用基本不等式求最值吗?师生活动:学生讨论后回答•教师总结:代数式能转化为两个正数的和或积的形式,它们的和或者积是一个定值,不等式中的等号能取到,通俗的说,就是“一正、二定、三相等”.设计意图:引导学生根据所求代数式的形式,判断是否能利用基本不等式解决问题,同时强调代数式的最值必须是代数式能取到的值,为学生求解代数式的最值问题提供示范•同时,在本题之后,引导学生总结能应用基本不等式求最值的代数式满足的条件.例2已知x,y都是正数,求证:(1)如果积xy等于定值P,那么当x=y时,和x+y有最小值;-S2(2)如果和x+y等于定值S,那么当x=y时,积xy有最大值'•师生活动:师生一起分析后,由学生思考并书写证明过程后展示,师生共同补充元善.追问:通过本题,你能说说用基本不等式能够解决什么样的问题吗?师生活动:学生思考后回答,教师总结:满足“两个正数的积为定值,当这两个数取什么值时,求它们的和的最小值”,或者“两个正数的和为定值,当这两个数取什么值时,求它们的积的最大值”的问题,能够用基本不等式解决•设计意图:在例1的基础上,再利用一道例题示范如何直接利用基本不等式解决问题,同时借此题的题干指出用基本不等式能够解决的两类问题,为用基本不等式解决实际问题创造了条件.(五)目标检测设计1. 仃);已知无>0,耒心十丄的最丿]谑及相应的工值;x⑵已知O GX I,^,<1-X)的最大值及相应的.T值.设计塾=考查学生利用基本不等式解决简单的最值I鱷的能力.2. 已知兀」都是正数,且工U中求证:⑴3—v耳设计意图:考查学生对基本不等式的理解,及运用“分析法”证明问题的能力.第二课时(一)课时教学内容利用基本不等式解决实际问题中最值问题.(二)课时教学目标1•运用基本不等式解决生活中的最值问题,发展数学建模素养;2.理解基本不等式的数学模型,提高学生模型思想解决问题的能力.(三)教学重点与难点教学重点:运用基本不等式的模型思想解决生活中的最值问题.教学难点:应用基本不等式解决实际问题.(四)教学过程设计1•复习引入问题1:基本不等式的内容是什么?它有何作用?如何利用基本不等式求最值?需要注意什么?师生活动:学生根据教师提出的问题梳理上节课的知识,教师对学生遇到的困难给予帮助•特别是强调利用基本不等式求最值的方法,即两个变量均为正数是前提,发现“定值”是关键,验证等号成立是求最值的必要条件,即运用“一正、二定、三相等”的方法可以解决最值问题.2•利用基本不等式解决生活问题导入语:运用数学知识解决生活中的最值问题,也就是最优化的问题,特别能体现数学应用价值•基本不等式是求最值的工具,特别是对求代数式的最值问题有重要的意义.问题2:(1)用篱笆围一个面积为100m2的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为36m的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?追问1:前面我们总结了能用基本不等式解决的两类最值问题本例的两个问题分别属于哪类问题吗?师生活动:学生思考后回答:属于。
2.2基本不等式(第二课时)教学设计
2.2基本不等式(第二课时)教学设计一、教材分析本节课是人教A版数学必修第一册第二章第二节《基本不等式》,共2课时,本节为第二课时。
本节课是在上一节学习了基本不等式的定义、几何解释、证明方法以及简单的应用基础上进行的,进一步学习基本不等式的应用,包括数学中的应用与实际中的应用,利用基本不等式解决简单的最值问题。
二、学情分析本章内容属于高中数学课程的预备知识部分,将帮助学生完成初高中数学学习的过渡,为学生整个高中阶段的数学学习提供学习心理、学习方式、知识技能等方面的准备。
学生在上一节学习了基本不等式的定义、几何解释、证明方法以及简单应用,本节课是上一节内容的延伸,利用基本不等式解决简单的最大(小)值问题,运用基本不等式解决生活中的应用问题,本节知识渗透了数学运算、逻辑推理、数学建模等核心素养,有利于培养学生良好的思维品质。
三、教学目标1. 会用基本不等式解决简单的最大(小)值问题2. 能够运用基本不等式解决生活中的应用问题四、教学重点、难点重点:用基本不等式解决简单的最大(小)值问题难点:运用基本不等式解决生活中的应用问题五、教法与学法分析1.教法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的变式教学方法。
课堂中应注重创设师生互动、生生互动的和谐氛围,加强引导学生通过自己的观察、思考等活动自主构建知识,引导学生自己归纳出本节课的核心:求和的最小值,要构造积为定值,积定和最小;求积的最大值,要构造和为定值,和定积最大。
同时通过例题引导学生归纳出利用基本不等式解决实际问题的步骤。
以问题引导学生的思维活动,使学生在问题带动下进行更加主动的思考,倡导合作学习与独立思考相结合,有效地调动学生思维。
2.学法指导启发学生学会配凑项、配凑系数、“1”的代换等等价变形,构造和是定值或者积是定值,利用不等式求最值,体会转化化归的数学思想,体会利用基本不等式求最值体现的是和积互化的过程。
六、课型课时、教学准备1.课型:新授课2.课时:1课时3.教学准备:多媒体、实物投影、展台、话筒等七、教学流程图引出课题(复习导入)知识链接(知识储备)探究一(例1(1)(2))探究二(例2(1)(2)、例3)当堂检测(变式、拓展提升)反思小结(课堂小结)3分钟5分钟10分15分7分钟5分钟八、教学内容及过程(一)引出课题多媒体动态展示思维导图:上一节课我们学习了基本不等式的定义、几何解释、证明方法以及简单的应用,这一节课我们进一步学习基本不等式的应用,基本不等式的应用包括数学中的应用与实际中的应用,这两种应用都是利用基本不等式解决简单的最值问题。
【新教材】2.2基本不等式教学设计
第二章一元二次函数、方程和不等式2.2 基本不等式(2共课时)(第1课时)教材分析:本节课是人教版普通高中课程标准实验教科书数学必修 1 第二章第二节《基本不等式》第1课时。
从内容上看学生原有知识的掌握情况为:初中的勾股定理知识及三角形相似的知识、圆的相关知识,会用作差比较法证明简单的不等式,所以在学法上要指导学生:从代数与几何的角度理解基本不等式。
引导学生学会观察几何图形,进行几何与代数的结合运用,培养数学结合的思想观点,发展学生数学抽象、直观想象、逻辑推理等数学核心素养。
教学目标与核心素养:教学重难点:1.教学重点:从不同角度探索不等式%ab<彳的证明过程,会用此不等式求某些简单函数的最值;2.教学难点:基本不等式a l b <.Obb等号成立条件;2课前准备:(一)、情景导学如图是在北京召开的第24界国际数学家大会 的会标,会标是根据中国古代数学家赵爽的 弦图设计的,赵爽是为了证明勾股定理而绘 制了弦图。
弦图既标志着中国古代的数学成就,又象一只转动的风车, 欢迎来自世界各地的数学家们。
教师引导学生从面积的关系去找相等关系或不等关系. 思考1:这图案中含有怎样的几何图形?思考2:你能发现图案中的相等关系或不等关系吗?(二)、探索新知 1.探究图形中的不等关系将图中的“风车”抽象成如图,在正方形ABCD 中有4个全 等的直角三角形.设直角三角形的两条直 长为 a, b (a /b ), 那么正方形的边长为%a 2+b 2 .这样,4个直角三角形的面积的和是2ab ,正方形的面积为多媒体 教学过程; 教学过程 教学设计意图核心素养目标 a 2 + b 2. 由于4个直角三角形的面积之和小于正方形的面积, 我们就得到了一个不等式:a 2+ b 2 > 2 ab . 当直角三角形变为等腰直角三角形,艮a=b 时, 正方形EFGH 缩为一个点,通过图形得到 了重要不等式的 几何解释,为了更 准确地感知和理 解,辑方面给出证明,通过介绍第24 届国际数学家大 会会标的背景, 进行设问,引导学 生观察分析,发现 图形中蕴藏的基 本不等式,培养学 生数学抽象和逻 辑推理的核心素 养,同时渗透数学 文化,和爱国主义 教育。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《基本不等式
2a b ab +≤》第2课时教学设计
授课类型:新授课
【教学目标】 1.知识与技能:进一步掌握基本不等式2
a b ab +≤
;会应用此不等式求某些函数的最值;能够解决一些简单的实际问题 2.过程与方法:通过两个例题的研究,进一步掌握基本不等式2a b ab +≤
,并会用此定理求某些函数的最大、最小值。
3.情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德。
【教学重点】 基本不等式2
a b ab +≤的应用 【教学难点】 利用基本不等式2
a b ab +≤求最大值、最小值。
【教学过程】
1.课题导入
1.重要不等式:
如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a
2.基本不等式:如果a,b 是正数,那么).""(2
号时取当且仅当==≥+b a ab b a b a b a ,
2
为+的算术平均数,称b a ab ,为 ab b
a a
b b a ≥+≥+2222和成立的条件是不同的:前者只要求a,b 都是实
数,而后者要求a,b 都是正数。
2.讲授新课
例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短。
最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
解:(1)设矩形菜园的长为x m ,宽为y m ,则xy=100,篱笆的长为2(x+y ) m 。
由2
x y xy +≥, 可得 2100x y +≥, 2()40x y +≥。
等号当且仅当x=y 时成立,此时
x=y=10.
因此,这个矩形的长、宽都为10m 时,所用的篱笆最短,最短的篱笆是40m.
(2)解法一:设矩形菜园的宽为x m ,则长为(36-2x )m ,其中0<x <2
1,其面积S =x (36-2x )=21·2x (36-2x )≤212
2236236()28
x x +-= 当且仅当2x =36-2x ,即x =9时菜园面积最大,即菜园长9m ,宽为9 m 时菜园面积最大为81 m 2
解法二:设矩形菜园的长为x m.,宽为y m ,则2(x+y)=36, x+y=18,矩形菜园的面积为xy m 2。
由
18922
x y xy +≤
==,可得 81xy ≤ 当且仅当x=y,即x=y=9时,等号成立。
因此,这个矩形的长、宽都为9m 时,菜园的面积最大,最大面积是81m 2 归纳:1.两个正数的和为定值时,它们的积有最大值,即若a ,b ∈R +,且a
+b =M ,M 为定值,则ab ≤4
2
M ,等号当且仅当a =b 时成立. 2.两个正数的积为定值时,它们的和有最小值,即若a ,b ∈R +,且ab =P ,P 为定值,则a +b ≥2P ,等号当且仅当a =b 时成立.
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理。
解:设水池底面一边的长度为x m ,水池的总造价为l 元,根据题意,得
)1600(720240000x
x l ++= 297600
4027202400001600
2720240000=⨯⨯+=⋅⨯+≥x
x 当.2976000,40,1600有最小值时即l x x
x ==
因此,当水池的底面是边长为40m 的正方形时,水池的总造价最低,最低总造价是297600元
评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件。
归纳:用均值不等式解决此类问题时,应按如下步骤进行:
(1)先理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数;
(2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题;
(3)在定义域内,求出函数的最大值或最小值;
(4)正确写出答案.
3.随堂练习
1.已知x ≠0,当x 取什么值时,x 2+
2
81x 的值最小?最小值是多少? 2.课本第113页的练习1、2、3、4 4.课时小结
本节课我们用两个正数的算术平均数与几何平均数的关系顺利解决了函数的一些最值问题。
在用均值不等式求函数的最值,是值得重视的一种方法,但在具体求解时,应注意考查下列三个条件:(1)函数的解析式中,各项均为正数;
(2)函数的解析式中,含变数的各项的和或积必须有一个为定值;(3)函数的解析式中,含变数的各项均相等,取得最值即用均值不等式求某些函数的最值时,应具备三个条件:一正二定三取等。
5.评价设计
课本第113页习题[A]组的第2、4题。