代数式用作差法比较大小
比较两个代数式大小
比较两个代数式大小不等式这一章节有一类题型,告诉两个字母的范围,比较由这些字母组成的代数式的大小关系.简单的代数式的比较,大多数同学都会,可是复杂的代数式怎么比较呢?很多同学不知道怎么下手,复杂的代数式的比较,我们这儿给大家总结了三种方法:作差法,作商法,放缩法.相信学了这几种方法后,同学们遇到这类问题便可以如同瓮中捉鳖了.基本方法比较两个不等式的大小我们总结了三种方法.作差法:如a-b>0,那么a>b;如果a-b<0,那么a<b.这是最基本的方法,其它的一些比较方法均是由此推导出来的.作商法:如果>1,那么a<b;这种比放缩法:如果到:老大比老三大。
体验题1如果体验思路因体验过程∵∴5-a<5-b简单的代数式可以,我们再看一个复杂一些的。
看看我们的方法行不行?体验题2体验题2如1>a>b>0 ,试比较ab,ab2,b2a的大小关系.体验思路本题很明显,ab>0,ab2>0,ab2>0.因此,我们既可以选择作差法,也可以选择作商法.体验过程方法一,作差法.∵ab-ab2=ab(1-b)>0, ∴ ab>a2b∵ab-a2b=ab(1-a)>0, ∴ ab>a2b∵ab2-a2b=ab(b-a)<0, ∴ab2<a2b∴ab> a2b>ab2方法二,作商法.∵1>a>b>0, ∴ab>0,ab 2>0,b 2a>0. ∵21ab ab b=>1, ∴ab>ab 2. ∵21ab a b a =>1, ∴ab>a 2b. ∵22ab b a b a=<1, ∴ab 2<a 2b. ∴ab> a 2b>ab 2体验题3体验题3如果体验思路 ∵体验过程 ∵a<b<0, ∵b a 11--b a b a 题是分数形式的代数式,且上述代数式与0的大小关系已知.另外,易确b a,2a b ,2b a 与1的大小关系,故也可考虑放缩法.∵1>a>b>0, ∴a b >1, b a <1, ∴a b >b a; ∴2a b =a b .a>a b .1=a b>1 (这一步中间过程将a 放缩到1) ∴2b a =b a .b<b a .1=b a<1. (这一步中间过程将b 放缩到1)∴2ba<ba<ab<2ab方法二:作商法∵22bbaa ab=<1,∴ba<ab∵22baab=33ba<1, ∴2ba<2ab,∵2 a ba b∵2 b a b a∴2ba<小结:作差法,..毕竟实践出真知!祝你成功!实践题实践题1 如果a+2b>a+b+1,比较a与b的大小关系 .实践题2 有一个两位数,个位上的数是a,十位上的数是b,如果把这两位数的个位与十位上的数对调,新得到的两位数大于原来的两位数,那么a与b 哪个大?实践题答案实践题1实践详解∵a+2b-(a+b+1)=a-(b+1)>0,所以a>b+1b+1>b∴a>b实践题2实践详解原来的两位数是10b+a,新的两位数是10a+b, ∵10a+b-(10b+a)=9(b-a)<0,∴b<a。
用作差法比较大小(教案)
阅读与思考用作差法比较大小教学目标1、理解作差法比较大小的依据。
2、掌握作差法比较大小的一般步骤3、能利用作差法比较大小解决实际问题教学设计一、课题引入1.计算下列减法算式的结果:3-2= 5-4= 6-5=2-3= 6-7= 5-9=1-1= 5-5= 3-3=2.小组讨论,从算式中发现规律第一组算式:被减数比减数大,得数为正数(大于零);第二组算式:被减数比减数小,得数为正数(小于零);第三组算式:被减数比减数大,得数为正数(等于零)。
二、探究新知提问1.从上述规律中大家能得到怎样的启示呢?(从上述规律中,我们可以归纳出一种比较两个数或两个代数式的大小的方法。
)作差法比较大小:如果a-b>0,则a>b;如果a-b<0,则a<b;如果a-b=0,则a=b.提问2.作差法比较大小应当经历那些步骤?运用求差法比较大小的一般步骤是:(1)作差;(2)根据差的情况确定被减数与减数的大小.三、实例巩固【例1】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>4/5,所以x最小的正整数值为1.【例2】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一张全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=2.7a,光明旅行社的收费为3a×80%=2.4a.因为2.7a-2.4a=0.3a>0,所以实际上光明旅行社的收费较低.【反思】若两家旅行社的票价不相同,我们能否比较出哪个旅行社的费用低呢?.四、课堂小结1.什么作差法比较大小2. 作差法比较大小具体操作步骤。
作差法比较大小
例2 国庆期间,我准备带一家三口去美丽的狮子峰旅行,咨询 时了解到东方旅行社规定:若父母各买一张全票则孩子可以按 全票的七折购票;而光明旅行社则规定:三人均可按团体票计 价,即按全票的80%收费.若两家旅行社的票价a元/人,请帮 老师比较一下,实际哪家收费较低呢? 【思考与分析】要比较哪家旅行社的收费低,我们可以先用含 有a的式子表示出两家旅行社需要的费用,然后求出两个式子的 差,再根据已知条件判断这个差的符号即可比较出哪个旅行社 的费用低.
教学目标
知识与技能
1、当a-b>0时,一定有a>b 。当a-b=0时,一定有a=b。当a-b<0时,一定有a<b。 2、把要比较的对象数量化,再求它们的差,根据差的正负判断对象的大小
过程与方法
1、 通过创设情景,让学生在寻找问题解决的过程中认知用求差法比较大小。 2、通过观察 猜想 类比 归纳让学生感受到用求差法比较大小的实用性与通法性。
3、运用新知
问题2 你能回答前面的用料问题吗?
解:(4x+8y)-(3x+9y )=x -y 由于A型钢板比B型钢板面积大,即x>y 所以x-y >0 即:(4x+8y)-(3x+9y )>0 故4x+8y > 3x+9y 所以应该选用第二种方案.
1.课堂上,老师让同学们制作几种几何体,张丽同学用了3张A4纸,
7张B5纸;李明同学用了2张A4纸,8张B5纸.设每张A4纸的面积为x,
每张B5纸的面积为y,且x >y,请你分析谁用的纸面积最大. 2.制作甲食品需要A、B两种原料且有种配料方式,方式1需要A原 料600g,B原料500g;方式2需要A原料400g,B原料300g,每克A原料 费用比B原料高,从商家的角度考虑,应选那种方式?
作差法与作商法比较大小精选文档
当0<a<1时,a<1a.
5
2、比较代数式的大小
把整体看着 实数轴上的
一个 a
把整体看着实数轴 上的一个 b
? 例:试比较 6x2 +3x+5与5x2+3x+的2 大小
?解: 6x2 +3x+5– ( 5x 2+3x+2)
作差
= 6x2 +3x+5– 5x2-3x-2
整理变形
=x2+3
Q
2 x
?
0
?
2 x
?
3
?
3
?
0
∴2x2 +3x+5 –( 5x2+3x+2)>0
定号
∴2x2 +3x+5 > 5x2+3x+2
下结论
6
类型三 利用作商法比较大小
[例3] 设a>0,b>0,且a≠b,比较aabb与abba的大
小.
[分析]
因为a >0,b>0,所以我们只要比较
aabb abba
与1的
大小即可.
7
[ 解]
a a
abbbba=a
a
-b·bb-
a
=(ab)a
-b,
当a >b>0时, ab>1,且 a -b>0,∴ (ab)a -b>1.
即aabb>abba;
当b>a >0时, 0<ab<1,且 a -b<0,
∴(ab)a -b>1.即a a bb>a b ba .
综上知: aabb>abba.
作差法与作商法比较大小
因为a>0,b>0,所以我们只要比较
aabb abba
与1的
大小即可.
精选ppt
7
[解] aaabbbba=aa-b·bb-a=(ab)a-b, 当a>b>0时,ab>1,且a-b>0,∴(ab)a-b>1. 即aabb>abba; 当b>a>0时,0<ab<1,且a-b<0, ∴(ab)a-b>1.即aabb>abba. 综上知:aabb>abba.
A.M>N
B.M=N
C.M<N
D.与x有关
精选ppt
10
3.设M=a2,N=-a-1,则M,N的大小关系为 ________.
解析:M-N=a2+a+1=(a+12)2+34>0 ∴M>N
答案:M>N
精选ppt
11
精选ppt
8
变式训练3 若a>0,比较aa与3a的大小. 解:a3aa=(a3)a 当0<a<3时,0<a3<1, 则(a3)a<1,aa<3a; 当a=3时,a3=1,(a3)a=1,aa=3a; 当a>3时,a3>1,(a3)a>1,aa>3a.
精选ppt
9
1.设M=x2,N=x-1,则M与N的大小关系为( )
类型二 利用作差法比较大小 [例2] 已知a>b>c>0,试比较a-b c与b-a c的大小.
精选ppt
1
[解] a-b c-b-a c=aa-c-abbb-c =a2-aca-bb2+bc=a2-b2a-b a-bc =a-baab+b-c. 因为a>b>c>0,所以a-b>0,ab>0,a+b-c>0. 所以a-baab+b-c>0,即a-b c>b-a c.
不等式的基本性质
不等式的基本性质编稿:周尚达审稿:张扬责编:辛文升目标认知学习目标:理解并掌握不等式的性质,理解不等关系、感受在显示时节和日常生活中存在着大量的不等关系、了解不等式(组)的实际背景.能用不等式的基本性质比较代数式的大小。
重点:不等式的性质及运用,用不等式的基本性质比较代数式的大小。
难点:不等式性质的应用。
学习策略:①不等式的基本性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,注重性质的推导过程,弄清每条性质的条件与结论,注意条件与结论之间的关系。
②要比较两个式子的大小,通常只需将他们作差即可。
如果差的符号不确定,就需要对其差进行讨论。
③要证的不等式或者需要比较大小的式子含“幂”或“指数”,常采用作商比较法。
知识要点梳理知识点一:不等式的概念用不等号()表示不等关系的式子叫不等式.知识点二:不等式的性质1、不等式的基本性质:①对称性:②传递性:③可加性:()④可乘性:如果,则2、不等式的运算性质:①可加法则:②可乘法则:③可乘方性:④可开方性:知识点三:比较大小的方法1、作差法:任意两个式子、,可以作差后比较差与0的大小关系,从而得到与的大小关系,这种比较大小的方法称为作差比较法。
作差比较法的理论依据:①;②;③。
2、作商法:任意两个式子,如果、,可以作商后比较商与1的关系,从而得到与的大小关系。
作商差比较法的理论依据:若、,则有①;②;③.注意:作商比较法一般适合含“幂”、“指数”的式子比较大小。
3、中间量法:若且,则(实质是不等式的传递性).一般选择0或1为中间量.4、利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.规律方法指导1、作差比较法的主要步骤:①作差;②变形(分解因式,配方等);③判断差的符号;如果差的符号不确定,就需要对其差进行讨论。
④下结论。
注意:这里“判断差的符号”是目的,“变形”是关键过程。
2、作商比较法的主要步骤:①判断要比较两式的符号都为正;②作商;③变形;④判断商与1的大小关系;如果商与1的大小关系不确定,就需要对其商进行讨论。
代数式用作差法比较大小
1、将姚明和李连杰的身高标示在数轴上 观察他们的大小关系
李连杰身高 姚明身高
2.29-1.69=0.60>0 归纳: a-b>0 a-b=0 a-b<0
0
1.69 2.29
2.29>1.69 提示:运用了实数 减法运算符号法则
a>b a=b a<b
ab0 a b ab0 ab ab0ຫໍສະໝຸດ ab ab0 ab定号 下结论
3、思考:
①上述例题代数式有一个怎么样的特点? 答:都是整式
②结合上述例题概括下解题的一般步骤?
答:作差
变形
定号
下结论
合并同类项,
因式分解,配
③上述例题的解法名称是什么?
方等等
答:作差法
2、比较代数式的大小
把整体看着 实数轴上的
一个 a
把整体看着实数轴 上的一个 b
• 例:试比较6x2 +3x+5与5x2+3x+2的大小
•解: 6x2 +3x+5 –( 5x2+3x+2)
作差
= 6x2 +3x+5 –5x2-3x-2
整理变形
=x2+3
2 x 0
2 x 330
∴2x2 +3x+5 –( 5x2+3x+2)>0 ∴2x2 +3x+5 > 5x2+3x+2
作差法与作商法比较大小
[读教材· 填要点] 比较法证明不等式可分为作差比较法和作商比较法两种 作差比较法 作商比较法 a 要证明 a>b,只要证明 要证明 a>b>0,只要证明 b>1 定 a-b>0 b 义 要证明 a<b,只要证明 >1 要证明 b>a>0,只要证明 a a-b<0
logaa-1+logaa+1 2 <[ ] 2 logaa2-1 2 =[ ]. 2 ∵a>2,∴0<loga(a2-1)<logaa2=2. logaa2-1 2 logaa2 2 ∴[ ] <( ) = 1, 2 2 logaa-1 即 <1. loga+1a ∵log(a+1)a>0,∴loga(a-1)<log(a+1)a.
证明:∵x>-1, ∴1+x>0, 1+x>0, x+1+1 x ∵ 1+x-(1+ )= 1+x- 2 2 x+ 1 1 = x+1- - 2 2 1 =- [(x+1)-2 x+1+1] 2 1 =- ( x+1-1)2≤0, 2 x ∴ 1+x≤1+ . 2
[通一类]
三、例题讲解 2 求证 : x 3 3x. 例1 证明: x 2
子)与1的大小关系.
[悟一法] (1)作差比较法中,变形具有承上启下的作用,变形的目 的在于判断差的符号,而不用考虑差能否化简或值是多少. (2)变形所用的方法要具体情况具体分析,可以配方,可 以因式分解,可以运用一切有效的恒等变形的方法. (3)因式分解是常用的变形手段,为了便于判断“差式”的 符号,常将“差式”变形为一个常数,或几个因式积的形式,
作差法与作商法比较大小
=(a-1)2+(b+1)2≥0,
∴a2+b2≥2(a-b-1).
(2)bc2+ca2+ab2-(b2c+c2a+a2b) =(bc2-c2a)+(ca2-b2c)+(ab2-a2b) =c2(b-a)+c(a-b)(a+b)+ab(b-a)
=(b-a)(c2-ac-bc+ab)
=(b-a)(c-a)(c-b), ∵a>b>c,∴b-a<0,c-a<0,c-b<0. ∴(b-a)(c-a)(c-b)<0. ∴bc2+ca2+ab2<b2c+c2a+a2b.
四、练习
1.求证a 3b 2b(a b).
2 2
证明:
a 3b 2b(a b)
2 2
a 2ab b
2
2
(a b) 0
2
a 3b 2b(a b).
2 2
四、练习
2.求证a b 2 2a 2b. 2 2 证明: (a b 2) (2a 2b) 2 2 (a 2a 1) (b 2b 1)
)
3.设M=a2,N=-a-1,则M,N的大小关系为 ________. 12 3 解析:M-N=a +a+1=(a+2) +4>0
2
∴M>N
答案:M>N
[研一题]
[例2] 已知a>2,求证:loga(a-1)<log(a+1)a.
[精讲详析] 本题考查作商比较法的应用,解答本题需 要先判断不等式两侧代数式的符号, 然后再用作商法比较左 右两侧的大小. ∵a>2,∴a-1>1. ∴loga(a-1)>0,log(a+1)a>0, logaa-1 由于 =loga(a-1)· loga(a+1) loga+1a
解答不等式问题的几个技巧
解题宝典不等式问题侧重于考查同学们的分析与逻辑推理能力.常见的不等式问题有:(1)比较两个代数式的大小;(2)证明某个不等式成立;(3)由含参不等式恒成立求参数的取值范围.下面结合几道例题,谈一谈解答不等式问题的几个技巧.一、作差运用作差法解答不等式问题,需将要比较的两个代数式相减,并将所得到的差与0进行比较.有时所得的差式较为复杂,此时需采用移项、分解因式、通分、约分、平方等方式,将差式简化,以快速比较出其与零的大小.例1.设a,b为实数,比较a2+b2与ab+a+b-1的大小.解:将a2+b2与ab+a+b-1相减得,a2+b2-(ab+a+b-1)=12(2a2+2b2-2ab-2a-2b+2)=12[](a-b)2+(a-1)2+(b-1)2,因为(a-b)2≥0,(a-1)2≥0,(b-1)2≥0,所以a2+b2-(ab+a+b-1)≥0,所以a2+b2≥ab+a+b-1,当且仅当a=b=1时取等号.将要比较的两式作差,并运用完全平方公式进行配方,即可运用作差法快速比较出两个代数式的大小.在解题时,要注意取等号的情形,确保取等号时的条件成立且满足题意.二、作商运用作商法解答不等式问题,需将要比较的两个代数式相除,并将所得到的商与1进行比较.在作商之前,要对两个代数式的正负进行讨论,只有在两式同号时,才能将其作商,运用作商法来比较二者的大小.若分母有可能为零,则要注意对此特殊情况进行单独讨论.例2.已知a=1816,b=1618,试比较a与b的大小关系.解:∵a=1816>0,b=1618>0,∴a b=18161618=(1816)16×1162=(98)1616=16<1,∴a<b.作商法适合于比较两个单项式的大小.在化简商式时,要选择合适的公式、运算法则,如指数幂运算法则、换底公式等进行运算,以将商式化为便于和1比较的形式.三、放缩放缩法是解答不等式问题的一种重要方法.若已知关系式与目标式之间的差异较大,则需将其中一个式子进行适当的放缩,如扩大分子、缩小分母、去掉部分项、增加常数项等,使其与另一个式子靠拢,从而解答问题.有时需找到一个合适的中间量,以利用不等式的传递性建立已知关系式和目标式之间的联系.例3.若a>b>0,c<d<0,|b|>|c|,证明:b+c(a-c)2<a+d(b-d)2.证明:因为b+c>0,0<1(a-c)2<1(b-d)2,所以b+c(a-c)2<b+c(b-d)2,因为0<b+c<a+d,1(b-d)2>0,所以b+c(b-d)2<a+d(b-d)2,所以b+c(a-c)2<b+c(b-d)2<a+d(a-c)2,即b+c(a-c)2<a+d(b-d)2.不等号前后的两个式子之间的差异较大,但是结构一致,于是分别根据已知条件和不等式的性质将不等式左右两边的式子b+c(a-c)2、a+d(b-d)2放缩,使得b+c(a-c)2<b+c(b-d)2、b+c(b-d)2<a+d(b-d)2,再根据不等式的传递性证明结论.四、利用几何法运用几何法解答不等式问题,往往要挖掘代数式的几何意义,如将代数式x2看作抛物线,将ax2+by2看作圆,将ax+by看作同一条直线.画出几何图形,通过分析图形中点、直线、曲线的位置及其关系,找到使不等式成立的点的集合,即可解题.例4.证明:x12+y12+x22+y22≥(x1-x2)2+(y1-y2)2证明:设点A(x1,y1),B(x2,y2),则AO=x12+y12,BO=x22+y22,AB=(x1-x2)2+(y1-y2)2,因为三角形中两边之和大于第三边,即|AO|+|BO| >|AB|,周元祥38解题宝典所以x 12+y 12+x 22+y 22>(x 1-x 2)2+(y 1-y 2)2,当A ,B ,O 三点共线时,x 12+y 12+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,所以x 12+y 12+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.我们由该根式可联想到两点间的距离公式,于是设出A 、B 两点的坐标,即可将问题转化为证明|AO |+|BO |>|AB |,根据三角形两边之和大于第三边的性质来解题.运用几何法解题,需进行数形互化,结合几何图形来分析问题.五、运用基本不等式若a ,b >0a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式叫做基本不等式.在解答不等式问题时,可以根据不等式的结构特征进行适当的变形,如凑系数、常数代换、添项、去项等,以配凑出两式的和或积,以便能利用基本不等式证明不等式.运用基本不等式时,要确保“一正”“二定”“三相等”的条件成立.例5.已知正实数x ,y 满足2x +5y =20,若不等式10x +1y≥m 2+4m恒成立,求实数m 的取值范围.解:在2x +5y =20的左右同除以20,得x 10+y4=1,则10x +1y =æèçöø÷10x +1y æèçöø÷x 10+y 4=54+5y2x +x 10y ≥94,当且仅当x =203,y =43取等号.则m 2+4m ≤94,解得-92≤m ≤12.由于10x +1y 为分式,所以将已知关系式变形为x 10+1y=1,即可通过常数代换,将10x +1y 化为和式54+5y 2x +x10y .而5y 2x 、x 10y的积为定值,这样便可运用基本不等式求得10x +1y 的最小值,从而求得m 的取值范围.解答不等式问题的方法很多,我们需根据不等式的结构特征进行变形、代换,联系相关的公式、性质、定理等将问题转化为几何问题、最值问题、运算问题等,并选用合适的方法进行求解.(作者单位:安徽省宣城中学)二面角问题的常见命题形式有:(1)求二面角的大小或范围;(2)证明两个平面互相垂直;(3)根据二面角的大小求参数的取值范围.这类问题主要考查同学们的空间想象能力和运算能力.那么,解答这类问题有哪些方法呢?下面结合实例进行归纳总结.一、直接法直接法是指直接从题目的条件出发,通过合理的运算和严密的推理,得出正确的结果.我们知道,二面角的大小可用其平面角表示,因此求二面角的大小,关键是求其平面角的大小.在求二面角时,需先仔细审题,明确题目中点、线、面的位置关系,灵活运用三垂线定理、勾股定理、正余弦定理、夹角公式,根据二面角以及平面角的定义,作出并求出平面角,即可运用直接法快速求得问题的答案.例1.如图1,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直且平分SC ,分别交AC ,SC 于点D ,E ,且SA =AB ,SB =BC ,求二面角E -BD -C的大小.解:∵SB =BC ,E 是SC 的中点,∴SC ⊥BE ,∵SC ⊥DE ,BE ⊂平面BDE ,DE ⊂平面BDE ,∴SC ⊥平面BDE ,∵BD ⊂平面BDE ,∴SC ⊥BD ,∵SA ⊥底面ABC ,BD ⊂平面ABC ,∴SA ⊥BD ,又∵SC ⋂SA =S ,SC ⊂平面SAC ,SA ⊂平面SAC ,∴BD ⊥平面SAC ,又∵DC ⊂平面SAC ,DE ⊂平面SAC ,∴DC ⊥BD ,DE ⊥BD ,∴∠DEC 是所求二面角的平面角.∵SA ⊥底面ABC ,AB ⊂平面ABC ,AC ⊂平面ABC ,∴SA ⊥AB ,SA ⊥AC ,设SA =2,得AB =2,BC =SB =22,∵AB⊥BC ,∴AC =23,∴∠ACS =30°,又∵DE ⊥SC ,∴∠EDC =60°,林菊芳图139。
用求差法比较大小(教案)
用求差法比较大小重庆市綦江区土台学校刘丹丹一、教学目标1.掌握作差法比较大小的步骤,会用作差法比较两个简单代数式的大小。
2.通过对作差法比较大小步骤的探索,培养学生观察、思考和归纳的能力。
3.通过方案最优选择,培养学生勤俭节约的价值观。
二、教学重难点求差后,如何对差式进行适当变形并定号。
三、教学准备PPT、直尺四、教学过程(一)新课引入1.师问:同学们知道自己的身高吗?(教师取两个学生的升高数据。
)那么哪位同学要高一些呢?你是如何比较的?画数轴进行比较。
得到比较两个数的大小可以在数轴上进行比较。
2.问题:制作某产品有两种用料方案,方案1用4块A型钢板,8块B型钢板;方案2用3块A型钢板,9块B型钢板,A型钢板的面积比B型钢板大。
从省料的角度考虑,应选哪种方案?分析:设A型钢板的面积和B型钢板面积分别为x和y,于是,两种方案用料面积分别为4x+8y和3x+9y,那怎么来比较他们的大小呢?——引入新课3.明确本节课学习目标(二)探索新知1.作差法基本原理两个数量的大小可以通过它们的差来判断,若有两个数a和b,那么①a>b⇔a-b>0②a=b⇔a-b=0③a<b⇔a-b<0从左到右是不等式的性质,从右到左为作差法比较两个量大小。
2.例1.比较2x2-2x与x2-2x的大小。
解析:(2x2-2x)-(x2-2x)………………….作差=2x2-2x-x2+2x...............................整理变形=x2∵x2≧0...............................定号∴2x2-2x≧x2-2x...............................下结论师生共同完成,学生通过这道题,总结归纳出用作差法比较大小的一般步骤:作差→整理变形→定号→下结论练习1:比较2x2-2x-15和2x2-2x-8的大小。
学生自己练习,并要求学生上台板演,教师讲解。
比较两个代数式大小[技巧]
比较两个代数式大小不等式这一章节有一类题型,告诉两个字母的范围,比较由这些字母组成的代数式的大小关系.简单的代数式的比较,大多数同学都会,可是复杂的代数式怎么比较呢?很多同学不知道怎么下手,复杂的代数式的比较,我们这儿给大家总结了三种方法:作差法,作商法,放缩法.相信学了这几种方法后,同学们遇到这类问题便可以如同瓮中捉鳖了.基本方法比较两个不等式的大小我们总结了三种方法.作差法:如a-b>0,那么a>b;如果a-b<0,那么a<b.这是最基本的方法,其它的一些比较方法均是由此推导出来的.作商法:如果a>0,b>0并且b a >1,那么a>b; 如果a<0,b<0并且ba>1,那么a<b;这种比较方法需有一定的前提条件,就是必须知道各代数式与0的大小关系.放缩法:如果a>b,b>c,那么a>b>c.正如老大比老二大,老二比老三大,肯定可以得到:老大比老三大。
下面结合体验题来体验一下这三种方法,在中学所学的范围内,大部分代数式的比较大小我们都可以用这三种方法来比较大小.体验题1体验题1 如果a>b,试比较5-a,5-b 的大小关系。
体验思路因为我们无法判断5-a,5-b 与0的大小关系,故在此我们无法用作商法,我们只有选择作差法。
体验过程 ∵5-a-(5-b)=b-a<0∴5-a<5-b简单的代数式可以,我们再看一个复杂一些的。
看看我们的方法行不行?体验题2体验题2 如1>a>b>0 ,试比较ab,ab 2,b 2a 的大小关系.体验思路本题很明显,ab>0,ab 2>0,ab 2>0.因此,我们既可以选择作差法,也可以选择作商法.体验过程 方法一,作差法.∵ab-ab 2=ab(1-b)>0, ∴ ab>a 2b∵ab-a 2b=ab(1-a)>0, ∴ ab>a 2b ∵ab 2-a 2b=ab(b-a)<0, ∴ab 2<a 2b∴ab> a 2b>ab2方法二,作商法.∵1>a>b>0, ∴ab>0,ab 2>0,b 2a>0.∵21ab ab b =>1, ∴ab>ab 2.∵21ab a b a=>1, ∴ab>a 2b.∵22ab b a b a=<1, ∴ab 2<a 2b.∴ab> a 2b>ab2体验题3体验题3如果a<b<0,试比较a 1-,b1-的大小关系?体验思路∵a<b<0.∴a 1->0,b1->0.如果我们作差,也可以比较上述代数式的大小关系,但相对麻烦一些。
考点03 配方法、根的判别式以及根与系数关系的9考点归类-解析版 2023-2024学年九年级数学考
考点03 配方法、根的判别式以及根与系数关系的9考点归类1,配方法的应用的方法技巧(1)比较大小:配方法不但可以解一元二次方程,而且能求代数式的最值,还能用于比较代数式的大小.用配方法比较代数式的大小,主要是用作差法将代数式作差后得到的新代数式配方,根据新代数式与0的关系确定代数式的大小(2)求最值:用配方法求代数式的最值是将代数式配方为完全平方式与常数的和的形式,根据完全平方式的非负性确定代数式的最值;(3)未知系数的取值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(4)用配方法构造“非负数之和”解决问题:通过配完全平方式,利用“非负性”解决问题。
2,根的判别式的应用的方法【技巧】根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(1)判断根的情况:式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.(2)求字母的值或取值范围:根据判别式,确定与0的关系,直接代入解不等式即可。
(3)与三角形结合:一般会把根与三角形的边进行结合考察,考虑到三角形的三边关系能否构成三角形即可,有时候还会与等腰三角形结合。
(4)与一次函数结合:通过一次函数与方程和不等式的关系,观察图像即可。
3,根与系数的关系方法根与系数的关系:若x1,x2是一元二次方程ax²+bx+c=0(a≠0)的两根时,x1+x2=-ba ,x1x2=ca.考点1比较大小考点2求最值考点3未知系数的取值考点4用配方法构造“非负数之和”解决问题考点5判断根的情况考点6求字母的值或取值范围考点7与三角形结合考点8与一次函数结合考点9 根与系数的关系求变形式子考点1 利用配方法比较大小【详解】(1)224622x x x -+=-+(),所以当2x =时,代数式246x x -+有最小值,这个最值为2,故答案为:2-;2;2;小;2;(2)2123x x ---()222x x =-+2110x =-+()>则2123x x -->.【点睛】本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键,注意偶次方的非负性的应用.2.(2022秋·七年级单元测试)我们知道20a ≥,所以代数式2a 的最小值为0.学习了多项式乘法中的完全平方公式,可以逆用公式,即用()2222a ab b a b ±+=±来求一些多项式的最小值.例如,求263x x ++的最小值问题.解:∵()2226369636x x x x x ++=++-=+-,又∵()230x +≥,∴()2366x +-≥-,∴263x x ++的最小值为6-.请应用上述思想方法,解决下列问题:(1)探究:()2245____________x x x -+=+;(2)求224x x +的最小值.(3)比较代数式:21x -与23x -的大小.【答案】(1)2-,1(2)2-(3)21>23x x --【分析】(1)根据完全平方式的特征求解.(2)先配方,再求最值.(3)作差后配方比较大小即可.【详解】(1)解:22245441(2)1x x x x x -+=-++=-+.(2)222242(211)2(1)2x x x x x +=++-=+-,故答案为:2,2-(2)解:221612611x x x x --+=-+2692x x =-++()232x =-+()30,x -³Q()23220,x \-+³>21612.x x \->-(3)解:()222323x x x x -++=--+()22113x x =--+-+()214x =--+ ()210,x --£Q ()2144,x \--+£ ∴223x x -++的最大值为4.【点睛】本题考查的是配方法的应用,掌握“配方法的步骤与非负数的性质”是解本题的关键.考点2利用配方法求最值【分析】(1)根据完全平方式的特征求解;(2)先配方,再求最值;(3)作差后配方比较大小.【详解】(1)解:()2224644222x x x x x +=-++=-+-故当20x -=,即2x =时,代数式246x x -+最小值为2;(2)∵224250x x y y -+++=,则2244210x x y y -++++=,∴()()22210x y -++=,即20x -=,10y +=,∴2x =,1y =-,∴211x y +=-=;(3)()()2221232211x x x x x ---=-+=-+,∵()210x -≥,∴()2110x -+>,∴2123x x ->-.【点睛】本题考查配方法的应用,正确配方,充分利用平方的非负性是求解本题的关键.7.(2023春·陕西咸阳·八年级统考期末)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式: ²43a a ++.解:原式:²441(2)²1(21)(21)(3)(1)a a a a a a a =++-=+-=+++-=++②2246M a a =-+, 利用配方法求M 的最小值.解:2²462(²21)622(1)²4M a a a a a =-+=-++-=-+222(1)02(1)44a a -≥∴-+≥,,∴当1a =时,M 有最小值4.请根据上述材料解决下列问题:(1)用配方法因式分解²412x x --;(2)若 2441M x x =+-, 求M 的最小值.【答案】(1)(6)(2)x x -+考点3 利用配方法未知系数的取值∴2a =,1b =,∴1a b -=,故选A .【点睛】本题考查了解一元二次方程的方法—配方法,熟练一元二次方程的解法是解题的关键.10.(2023春·山东威海·八年级统考期末)用配方法解方程2610x x --=,若配方后结果为2()x m n -=,则n 的值为( )A .10-B .10C .3-D .9【答案】B【分析】利用配方法将方程2610x x --=配成2()x m n -=,然后求出n 的值即可.【详解】∵2610x x --=,∴261x x -=,∴26919x x -+=+,即2(3)10x -=, 10n ∴=.故选:B .【点睛】本题主要考查了利用配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.11.(2023秋·全国·九年级专题练习)用配方法解一元二次方程2630x x ++=时,将它化为2()x m n +=的形式,则m n -的值为( )A .6-B .3-C .0D .2【答案】B【分析】由2630x x ++=,配方可得()236x +=,进而可得m n ,的值,然后代入m n -,计算求解即可.【详解】解:∵2630x x ++=,∴2696x x ++=,∴()236x +=,∴3m =,6n =,∴3m n -=-,故选:B .【点睛】本题考查了配方法解一元二次方程,代数式求值.解题的关键在于正确的配方求出m n ,的值.考点4 用配方法构造“非负数之和”解决问题∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.14.(2023春·浙江·七年级专题练习)已知2248200++-+=,那么y x=()x y x yA.-16B.16C.-8D.8【答案】B【分析】利用配方法把已知条件变形为(x+2)2+(y-4)2=0,再根据非负数的性质得x+2=0,y-4=0,即可求出x与y的值,进一步代入求得答案即可.【详解】∵x2+4x+y2-8y+20=0,∴x2+4x+4+y2-8y+16=0,∴(x+2)2+(y-4)2=0,∴x+2=0,y-4=0,∴x=-2,y=4,∴x y=16.故选B.【点睛】此题考查配方法的应用,非负数的性质,掌握完全平方公式是解决问题的关键.15.(2023春·山东淄博·八年级统考期中)不论x、y为什么实数,代数式x2+y2+2x-4y+9的值()A.总不小于4B.总不小于9C.可为任何实数D.可能为负数【答案】A【分析】要把代数式x2+y2+2x-4y+9进行拆分重组凑完全平方式,来判断其值的范围即可.【详解】x2+y2+2x-4y+9=(x2+2x+1)+(y2-4y+4)+4=(x+1)2+(y-2)2+4,∵(x+1)2≥0,(y-2)2≥0,∴(x+1)2+(y-2)2+4≥4,考点5 利用根的判别式判断根的情况根.20.(2023·全国·九年级假期作业)若1x =是一元二次方程220(0)ax bx a -+=≠的一个根,那么方程220ax bx ++=的根的情况是( )A .有两个不相等的实数根B .有一个根是=1x -C .没有实数根D .有两个相等的实数根【答案】B【分析】先将1x =代入220(0)ax bx a -+=≠中得到20a b -+=,再根据一元二次方程根的判别式进行求解即可得出结论.【详解】解:∵1x =是一元二次方程220(0)ax bx a -+=≠的一个根,∴20a b -+=,即2b a =+,对于方程220ax bx ++=,∵242b a ∆=-⨯()228a a =+-()220a =-≥,∴方程220ax bx ++=有两个实数根,故选项A 、C 、D 错误,不符合题意;当=1x -时,2220ax bx a b ++=-+= ,即=1x -是方程220ax bx ++=的一个根,故选项B 正确,符合题意,故选:B .【点睛】本题考查了一元二次方程的解和根的判别式,解答的关键是理解一元二次方程的解的意义,掌握一元二次方程20ax bx c ++=根的情况与根的判别式24b ac ∆=-的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根.考点6 利用根的判别式求字母的值或取值范围故选:A .【点睛】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=-有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当0∆<时,方程无实数根.24.(2023春·吉林长春·八年级长春外国语学校校考期末)已知关于x 的一元二次方程()21210k x x --+=有两个实数根,则k 的取值范围是( )A .21k k ≤-≠且B .21k k ≤≠且C .21k k ≥-≠且D .2k ≥【答案】B【分析】根据方程有两个实数根,得出0∆≥且10k -≠,求出k 的取值范围,即可得出答案.【详解】解:由题意知,24441840b ac k k ∆=-=--=-≥(),且10k -≠,解得:2k ≤,且1k ≠,则k 的取值范围是2k ≤,且1k ≠,故选:B .【点睛】此题考查了根的判别式,(1)一元二次方程根的情况与判别式∆的关系:①0∆>⇔方程有两个不相等的实数根;②0∆=⇔方程有两个相等的实数根;③0∆⇔<方程没有实数根.(2)一元二次方程的二次项系数不为0.考点7 利用根的判别式与三角形结合【详解】(1)证明:2(2)42k k∆=+-⨯2448k k k=++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∴另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∴21(2)20k k -++=,∴1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.26.(2023春·广东河源·九年级校考开学考试)若方程(c 2+a 2)x +2(b 2-c 2)x +c 2-b 2=0有两个相等的实数根,且a ,b ,c 是三角形ABC 的三边,证明此三角形是等腰三角形.【答案】见解析【分析】先根据方程有两个相等的实数根得出△=0,再得出b 、c 的关系即可.【详解】解:Δ=[2(b 2-c 2)]2-4(c 2+a 2)(c 2-b 2)=4(b 2-c 2)(b 2-c 2+a 2+c 2)=4(b+c )(b-c )(b 2+a 2).∵方程有两个相等实根.∴Δ= 0,即4(b+c )(b-c )(b 2+a 2)=0.∵a ,b ,c 是三角形的三边,∴b+c≠0,a 2+b 2≠0,只有b-c=0,解得b=c .出判别式的值的情况,从而得到关于a、b、c及k的等式是解题的关键.28.(2011秋·江苏无锡·九年级统考期中)已知关于x的方程22a x bx c x-+++=有两个相等的实数(1)2(1)0根,试证明以a、b、c为三边的三角形是直角三角形.【答案】【详解】考点:根的判别式;勾股定理的逆定理.分析:先把方程变为一般式:(c-a)x2+2bx+a+c=0,由方程有两个相等的实数根,得到△=0,即△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,则有b2+c2-a2=0,即b2+c2=a2,根据勾股定理的逆定理可以证明以a、b、c 为三边的三角形是直角三角形.解答:证明:a(1-x2)+2bx+c(1+x2)=0去括号,整理为一般形式为:(c-a)x2+2bx+a+c=0,∵关于x的一元二次方程a(1-x2)+2bx+c(1+x2)=0有两个相等的实数根.∴△=0,即△=△=(2b)2-4(c-a)(a+c)=4(b2+c2-a2)=0,∴b2+c2-a2=0,即b2+c2=a2.∴以a、b、c为三边的三角形是直角三角形.点评:本题考查了一元二次方程的根的判别式和勾股定理的逆定理等知识.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.考点8 利用根的判别式与一次函数结合【分析】根据一元二次方程2210mx x --=无实数根得0m ≠且2(2)4(1)0m ∆=--⨯-<,即可得1m <-,又∵20b =>,可得一次函数2y mx =+的图象经过一、二、四象限,即可得.【详解】解:∵一元二次方程2210mx x --=无实数根,∴0m ≠且2(2)4(1)0m ∆=--⨯-<,440m +<,44m <-,1m <-,又∵20b =>,∴一次函数2y mx =+的图象经过一、二、四象限,∴一次函数2y mx =+的图象不经过第三象限,故选:C .【点睛】本题考查了一元二次方程的根的判别式,一次函数的图像性质,解题的关键是理解题意,掌握这些知识点.30.(2023·广东汕头·广东省汕头市聿怀初级中学校考三模)一元二次方程2240x x --=有两个实数根a ,b ,那么一次函数(1)y ab x a b =-++的图象一定不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【分析】根据根与系数的关系即可求出ab 与a b +的值,然后根据一次函数的图象与性质即可求出答案.【详解】解:由根与系数的关系可知:2a b +=,4ab =-,∴15ab -=∴一次函数解析式为:52y x =+,故一次函数的图象一定不经过第四象限.故选:D .【点睛】本题考查了一元二次方程,解题的关键是熟练运用根与系数的关系以及一次函数的图象与性质.31.(2020秋·贵州贵阳·九年级校考阶段练习)若关于x 的一元二次方程2210x x kb ++=-没有实数根,则一次函数y kx b =+的大致图象可能是( )A .B .C .D .【答案】A【分析】首先根据一元二次方程没有实数根确定k ,b 的取值范围,然后根据一次函数的性质确定其图象的位置.【详解】解:∵方程2210x x kb ++=-没有实数根,∴()4410kb ∆=-+<,解得:0kb >,即k b 、同号,当00k b >>,时,一次函数y kx b =+的图象过一,二,三象限,当00k b <<,时,一次函数y kx b =+的图象过二,三,四象限,故选:A .【点睛】本题考查了根的判别式及一次函数的图象的问题,解题的关键是根据一元二次方程的根的判别式确定k ,b 的取值范围,难度不大.32.(2023·安徽合肥·统考二模)关于x 的一元二次方程2210mx x --=无实数根,则一次函数y mx m =-的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】根据一元二次方程根与判别式的关系,求得m 的取值范围,再根据一次函数的图象与系数的关系求解即可.【详解】解:∵一元二次方程2210mx x --=无实数根∴224(2)4(1)0b ac m ∆=-=--⨯⨯-<,解得1m <-,由一次函数y mx m =-可得0k m =<,0b m =->,∴一次函数y mx m =-过一、二、四象限,不过第三象限,故选:C【点睛】此题考查了一元二次方程根与判别式的关系,以及一次函数图象与系数的关系,解题的关键是熟练掌握相关基础知识.考点9 利用根与系数的关系求变形式子。
每日一题型2比较大小作差比较法
题型2比较大小之作差比较法作差比较法的理论依据:a -b O= a ba-b=0u a=ba —b :: O := a :: b作差比较法的步骤:作差、变形、定号、下结论。
变形的方法:通分、因式分解、提取公因式、十字相乘、配方、分子分母有理化、平方后作 差等方法,同时注意每一步变形必须是等价变形。
变形的结果是因式积,完全平方式等形式。
变形的目的是为了判断差值的符号。
作差比较法适用于实数 (代数式)的大小不明显,作差后可化为积或商的形式的比较大小问 题。
回想高一学习定义法证明函数单调性的过程,分别是取值、作差、变形、定号、下结论。
两者之间大致相同。
例1已知a,b∙= R ',且a =b,试比较a 5+b 5和a 3b 2 a 2b 3的大小.解:a 5+b 5「a 3b 2「a 2b 3 = a 3(a 2 ~b 2)+b 3(b 2「a 2) = (a 2 -b 2)(a 3「b 3)=(a b)(a -b)(a -b)(a 2 ab b 2) = (a -b)2(a b) (a 1 b)2 ■ - b 212 4」因为 a,b R ',且a = b, 所以(a -b)2 O , ab O , (a 1b)2 3b 2 O , 2 4所以 a 5+b 5 - a 3b 2 -a 2b 3 O所以 a 5 +b 5 a 3b 2 a 2b 3 小结:此题采用提取公因式、因式分解、配方等变形方法1例2:设X ∙ R ,比较 ------ 与1 -x 的大小.X +1-(^X )=2 X当X =O 时, O1 +x=(1 -χ)x∙ι<Zχ1 2当-1.; X:::O 或X . 0 时,O1 +x1>(1 -X)X 1小结:此题采用通分,同时注意结合使式子有意义的隐含条件进行分类讨论例3•已知a丄1 ,试比较M= a • 1 -a和N = ... a - .. a -1的大小•解: M-N^(” a 1+、、a)(「'a . a -1)因为a _1 ,所以、.a -1 一、、a • 1 >0, ∙.. a • 1 + -、a >0,、、a ∙∙. a -1 >0,所以M - N 0 ,所以M ∙N •小结:此题采用分子有理化、通分等变形技巧来看看几道练习题:2 2 2 21、若X :::y :::0,试比较(X ∙ y )(x - y)与(X - y )(x y)的大小关系•2 12、若a R,p=a -a 1,q 2 ,比较P与q的大小关系•a +a +13、设a 5,试比较M =、a-3-〔a-4与N= a-4-∙∙. a-5的大小关系答案:1、(x2y2)(χ「y) > (χ2「y2)(X y)2、P —q,当且仅当a=0时,等号成立3、M<N_ J a -1 - J a+1题型2比较大小之作差比较法作差比较法的理论依据:a b OU a ba -b = 0 二a = ba -b O = a b作差比较法的步骤:作差、变形、定号、下结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、将姚明和李连杰的身高标示在数轴上 观察他们的大小关系
李连杰身高 姚明身高
2.29-1.69=0.60>0 归纳: a-b>0 a-b=0 a-b<0
0
1.69 2.29
2.29>1.69 提示:运用了实数 减法运算符号法则
a>b a=b a<b
ab0 a b ab0 ab ab0 ab ab0 ab
2、比较代数式的大小
把整体看着 实数轴上的
一个 a
把整体看着实数轴 上的一个 b
• 例:试比较6x2 +3x+5与5x2+3x+2的大小
•解: 6x2 +3x+5 –( 5x2+3x+2)
作差
= 6x2 +3x+5 –5x2-3x-2
整理变形
=x2+3
2;3x+5 –( 5x2+3x+2)>0 ∴2x2 +3x+5 > 5x2+3x+2
定号 下结论
3、思考:
①上述例题代数式有一个怎么样的特点? 答:都是整式
②结合上述例题概括下解题的一般步骤?
答:作差
变形
定号
下结论
合并同类项,
因式分解,配
③上述例题的解法名称是什么?
方等等
答:作差法