重点高中立体几何证明平行的专题
立体几何中的平行问题总结
立体几何中的平行问题总结1. 空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;2. 平行直线(1)公理4 :平行于同一条直线的两条直线互相平行推理模式:.说明:(1)公理4表述的性质叫做空间平行线的传递性;(2)几何学中,通常用互相平行的直线表示空间里一个确定的方向;(3)如果空间图形的所有点都沿同一个方向移动相同的距离到的位置,则就说图形作了一次平移3. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等4. 直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类.它们的图形分别可表示为如下,符号分别可表示为,,.5. 线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:.证明:假设直线不平行于平面,∵,∴,若,则和矛盾,若,则和成异面直线,也和矛盾,∴.6. 线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式:.证明:∵,∴和没有公共点,又∵,∴和没有公共点;和都在内,且没有公共点,∴.7. 平行平面:如果两个平面没有公共点,那么这两个平面互相平行.图形表示:画两个平面平行时,通常把表示这两个平面的平行四边形的相邻两边分别画成平行的.8. 平行平面的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:,,,,.分析:这个定理从正面证(用定义)比较困难,所以考虑用反证法.启发:(1)如果平面和平面不平行,那么它们的位置关系怎样?(2)如果平面和平面相交,那么交线和平面中的直线与各有怎样的位置关系?(3)相交直线与都与交线平行,这合理吗?为什么?证明:假设,∵,,∴,同理.即在平面内过点有两条直线与平行,与公理4矛盾,∴假设不成立,∴.推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:.9. 平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:.证明:∵,∴没有公共点,又∵,∴.同理可得面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:.。
立体几何线面平行证明
立体几何线面平行证明要证明两个线面平行,一般可以通过以下几种方法来进行证明:方法一:使用平行线的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设线面A和线面B不平行,即存在一条线a与线面A不平行,又与线面B相交于一点P。
2.假设在线面A上存在一点Q,它与直线a上相交于一点R。
3.由于线a与线面B相交于P,所以线段PR必然属于线面B。
4.由于线a与线面A相交于R,所以线段PR必然属于线面A。
5.由于线面A和线面B都包含线段PR,所以它们必然相交。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法二:使用支撑面的性质假设我们有线面A和线面B,要证明A和B平行,可以通过以下步骤进行证明:1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.过直线a作平行于线面B的平面,该平面与线面A相交于线段QR。
3.由于直线a与线面B相交于点P,所以线段PR必然属于线面B。
4.由于平面上的任意两点可以确定一条直线,所以线段QR也属于线面B。
5.因此,线段QR同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
方法三:使用平行四边形的性质假设我们有线面A和线面B,要证明A和B平行1.假设在线面A上存在一条直线a,它与线面B相交于一点P。
2.在线面A上选择一点Q,并通过P点作一条平行于线面A的直线b。
3.连接直线a和直线b,得到平行四边形PQRD。
4.由于平行四边形的特性,相邻两边平行且长度相等,所以线段PD也是平行于线面A的,并且它必然属于线面B。
5.因此,线段PD同时属于线面A和线面B,所以它们不是平行的。
6.这与我们的假设相矛盾,因此假设不成立,即线面A和线面B是平行的。
以上三种方法是一些常用的证明线面平行的方法,根据实际问题的具体情况,可以选择适合的方法进行证明。
高中数学-立体几何位置关系-平行与垂直证明方法汇总
高中数学-立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。
主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。
高中数学立体几何平行、垂直位置关系证明题专项练习(带答案)
立体几何平行、垂直位置关系专练1、如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .2、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD .3、如图,正三棱柱ABC-A 1B 1C 1的高为6,其底面边长为2.已知点M ,N 分别是棱A 1C 1,AC 的中点,点D 是棱CC 1上靠近C 的三等分点.求证:(1)B 1M ∥平面A 1BN ;(2)AD ⊥平面A 1BN.4、如图,等边三角形ABC与直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M为AB的中点.(1)证明:CM⊥DE;(2)在边AC上找一点N,使CD∥平面BEN.5、如图,矩形ABCD所在平面与三角形ABE所在平面互相垂直,AE=AB,M,N,H分别为DE,AB,BE 的中点.求证:(1)MN∥平面BEC;(2)AH⊥CE.6、如图,在三棱台ABCDEF中,CF⊥平面DEF,AB⊥BC.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在请确定点G的位置;若不存在,请说明理由.7、在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.(1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.8、如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .9、【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .点,平面PAB ⊥底面ABCD ,90PAB ∠= .求证:(1)//PB 平面AEC ;(2)平面PAC ⊥平面ABCD .11、2.(2020·江苏省镇江高三二模)如图,三棱锥P ABC -中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC .()1求证://AC 平面PDE ;()2若2PD AC ==,PE =PBC ⊥平面ABC .12、(2020·江苏省建湖高级中学高三月考)如图,在四面体ABCD 中,,90AD BD ABC =∠= ,点,E F 分别为棱,AB AC 上的点,点G 为棱AD 的中点,且平面//EFG 平面BCD .(1)求证:12EF BC =;(2)求证:平面EFD ⊥平面ABC .点,PA ⊥平面ABCD .(1)求证://PB 平面AEC ;(2)若四边形ABCD 是矩形且PA AD =,求证:AE ⊥平面PCD .14、(2020·江苏省高三二模)如图,在三棱柱111ABC A B C -中,侧面11ABB A ⊥底面ABC ,AB AC ⊥,E ,F 分别是棱AB ,BC 的中点.求证:(1)11AC ∥平面1B EF ;(2)1AC B E ⊥.15、(2020·江苏省连云港高三)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,E 、F 分别为AD 、PB 的中点.(Ⅰ)求证:PE BC ⊥;(Ⅱ)求证:平面PAB ⊥平面PCD ;(Ⅲ)求证://EF 平面PCD .16、(2020·江苏省苏州高三)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B 1∥平面DEC 1;(2)BE ⊥C 1E .17、(2020·江苏省通州高三)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面1,2,1,,AB BC AA AC BC E F ⊥===分别是11,AC BC 的中点.(1)求证: 平面ABE ⊥平面11B BCC ;(2)求证:1C F ∥平面ABE ;18、(2020·江苏省高三三模)如图,三棱柱111ABC A B C -中,1BC B C =,O 为四边形11ACC A 对角线交点,F 为棱1BB 的中点,且AF ⊥平面11BCC B .(1)证明://OF 平面ABC ;(2)证明:四边形11ACC A 为矩形.参考答案1.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,2AD BC =,M 点在线段PD 上,且满足2MD PM =.(1)求证:AB PD ⊥;(2)求证://PB 平面MAC .【解析】(1)∵四棱锥P ABCD -中,PA ⊥平面ABCD ,AB 平面ABCD , ∴AB PA ⊥,又AB AD ⊥,,PA AD ⊂平面PAD ,PA AD A ⋂=, ∴AB ⊥面PAD .PD ⊂面PAD ,∴AB PD ⊥. (2)连结BD AC O ⋂=,连结MO , ∵//AD BC ,2AD BC =,2DO BO ∴=,∵在PBD ∆中,2DM MP =,2DO BO =∴//PB MO , 又PB ⊄面MAC ,MO ⊂面MAC ,∴//PB 面MAC .2.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,E 为PA 的中点,F 为BC 的中点,底面ABCD 是菱形,对角线AC ,BD 交于点O .求证:(1)平面//EFO 平面PCD ;(2)平面PAC ⊥平面PBD . 【详解】(1)因为在ΔPAC 中,E 为PA 的中点,O 为AC 的中点, 所以//EO PC又EO ⊄平面PCD ,PC ⊂平面PCD , 所以//EO 平面PCD同理可证,//FO 平面PCD ,又EO FO O = ,EO ⊂平面EFO ,FO ⊂平面EFO 所以平面//EFO 平面PCD .(2)因为PA ⊥平面ABCD ,BD ⊂平面ABCD , 所以PA BD ⊥因为底面ABCD 是菱形,所以AC BD ⊥,又,,PA AC A PA PAC AC PAC =⊂⊂ 平面平面所以BD ⊥平面PAC 。
专题20立体几何中的平行与垂直问题(解析版)
专题20 立体几何中的平行与垂直问题一、题型选讲题型一、线面平行与垂直知识点拨:证明直线与平面的平行与垂直问题,一定要熟练记忆直线与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
直线与平面的平行有两种方法:一是在面内找线;二是通过面面平行转化。
直线与平面垂直关键是找两条相交直线例1、(2019南通、泰州、扬州一调)如图,在四棱锥PABCD中,M, N分别为棱PA, PD的中点.已知侧面PAD丄底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN〃平面PBC;MD丄平面PAB.【证明】(1)在四棱锥P-ABCD中,M, N分别为棱PA, PD的中点,所以MN〃AD.(2分)又底面ABCD是矩形,所以BC〃AD.所以MN〃BC.(4分)又BC U平面PBC,MN Q平面PBC,所以MN〃平面PBC. (6分)(2)因为底面ABCD是矩形,所以AB丄AD.又侧面PAD丄底面ABCD,侧面PAD n底面ABCD=AD, AB U底面ABCD,所以AB丄侧面PAD.(8分)又MD U侧面PAD,所以AB丄MD.(10分)因为DA=DP,又M为AP的中点,从而MD丄PA. (12分)又PA,AB在平面PAB内,PA n AB=A,所以MD丄平面PAB.(14分)例2、(2019扬州期末)如图所示,在三棱柱ABCA1B1C1中,四边形AA1B1B为矩形,平面AA1B1B丄平面ABC,点E,F分别是侧面AA1B1B,BB1C1C对角线的交点.(1)求证:EF〃平面ABC;(2)求证:BB]丄AC.规范解答(1)在三棱柱ABCA1B1C1中,四边形AA1B1B,四边形BB1C1C均为平行四边形,E, F分别是侧面AA1B1B, BB1C1C对角线的交点,所以E, F分别是AB1,CB1的中点,所以EF〃AC.(4分)因为EF Q平面ABC, AC U平面ABC,所以EF〃平面ABC.(8分)(2)因为四边形AA1B1B为矩形,所以BB1丄AB.因为平面AA1B1B丄平面ABC,且平面AA1B1B n平面ABC=AB, BB1U平面AA1B1B, 所以BB1丄平面ABC.(12分)因为AC U平面ABC,所以BB1丄AC.(14分)例3、(2019南京、盐城二模)如图,在三棱柱ABCA1B1C1中,AB=AC, A1C丄BC], AB]丄BC1,D, E 分别是AB1和BC的中点.求证:(1)DE〃平面ACC1A1;(2)AE丄平面BCC1B1.A _________ c,规范解答⑴连结A1B,在三棱柱ABCA1B1C1中,AA1#BB1且AA1=BB1,所以四边形AA1B1B是平行四边形.又因为D是AB1的中点,所以D也是BA1的中点.(2分)在厶BA1C中,D和E分别是BA1和BC的中点,所以DE〃A]C.又因为DE G平面ACC1A1,A1C U平面ACC1A1,所以DE〃平面ACC1A1.(6分)(2)由(1)知DE〃A]C,因为A1C丄BC” 所以BC]丄DE.(8 分)又因为BC]丄AB1,AB1H DE=D,AB1,DE U平面ADE,所以BC1丄平面ADE.又因为AE U平在ADE,所以AE丄BC1.(10分)在厶ABC中,AB=AC,E是BC的中点,所以AE丄BC.(12分)因为AE丄BC1,AE丄BC,BC1H BC=B,BC1,BC U平面BCC1B1,所以AE丄平面BCC1B1. (14 分)例4、(2019苏锡常镇调研)如图,三棱锥DABC中,已知AC丄BC,AC丄DC,BC=DC,E,F 分别为BD,CD 的中点.求证:(1)EF〃平面ABC;(2)BD丄平面ACE.所以EF 〃平面ABC.(6分)(2)因为AC丄BC,AC丄DC,BC H DC = C,BC,DC U平面BCD所以AC丄平面BCD,(8分)因为BD U平面BCD,所以AC丄BD,(10分)因为DC=BC,E为BD的中点,所以CE丄BD,(12分)因为AC n CE = C, AC,CE U平面ACE,所以BD丄平面ACE.(14分)例5、(2019苏州三市、苏北四市二调)如图,在直三棱柱ABCA1B1C1中,侧面BCC1B1为正方形,A1B1 丄B1C1•设A1C与AC1交于点D, B1C与BC1交于点E.求证:(1) DE〃平面ABB1A1;(2) BC]丄平面A1B1C.规范解答(1)因为三棱柱ABCA1B1C1为直三棱柱,所以侧面ACC1A1为平行四边形.又A1C 与AC1 交于点D,所以D为AC]的中点,同理,E为BC]的中点•所以DE〃AB.(3分)又AB U平面ABB]A], DE G平面ABB]A], 所以DE〃平面ABB]A].(6分)(2)因为三棱柱ABCA]B]C]为直三棱柱,所以BB]丄平面A]B]C]. 又因为A]B]U平面A]B]C],所以BB]丄A]B i.(8分)又A]B]丄B]C], BB], B]C] U 平面BCC]B], BB]n B]C1=B1,所以A]B]丄平面BCC]B].(10 分)又因为BC]U平面BCC]B1,所以A]B丄BC].(12分)又因为侧面BCC]B1为正方形,所以BC]丄BQ.又A1B1n B1C=B1,A1B1,B1C U平面A1B1C, 所以BC1丄平面A1B1C.(14分)例6、(2017苏北四市一模)如图,在正三棱柱ABCA1B1C1中,已知D, E分别为BC, B1C1的中点,点F 在棱CC1上,且EF丄CD.求证:(1)直线A1E〃平面ADC1;⑴证法1连结ED,因为D, E分别为BC, B1C1的中点,所以B&/BD且B1E=BD, 所以四边形BBDE是平行四边形,(2分)所以BB/DE且BB1=DE. 又BB]〃AA]且BB]=AA], 所以AA/DE且AA1=DE, 所以四边形AA]ED是平行四边形,所以A]E〃AD.(4分)又因为AE G平面ADC, AD U平面ADC,所以直线AE〃平面ADC.(7分)1 1 1畀 ------ 1B证法2连结ED,连结A1C, EC分别交AC” DC1于点M, N,连结MM,则因为D, E分别为BC,B1C1的中点,所以C1E^CD且C、E=CD,所以四边形C1EDC是平行四边形,所以N是CE的中点.(2分)因为A1ACC1为平行四边形,所以M是A1C的中点,(4分)所以MN//A\E.又因为A]E G平面ADC,MN U平面ADC,,所以直线Af〃平面ADC、.(7分)(2)在正三棱柱ABCA1B1C1中,BB]丄平面ABC.又AD U平面ABC,所以AD丄BB、.又A ABC是正三角形,且D为BC的中点,所以AD丄BC.(9分)又BB,,BC U 平面BBCC,,BB1A BC=B,所以AD丄平面B,BCC,,又EF U平面BBCC,所以AD丄EF.(11分)又EF丄CD,CD,AD U平面ADC,,C,D A AD=D,所以直线EF丄平面ADC,.(14分)题型二、线面与面面平行与垂直证明平面与平面的平行与垂直问题,一定要熟练记忆平面与平面的平行与垂直判定定理和性质定理,切记不可缺条件。
高中立体几何证明线面平行的常见方法
高中立体几何证明线面平行的常见方法1.通过“平移”再利用平行四边形的性质题目1:四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点。
证明AF∥平面PCE。
证明:将四棱锥P-ABCD平移,使其底面平移到平面PCE上,得到四棱锥P'-A'B'C'D',其中A'B'C'D'与ABCD平行,且P'、E'、F'分别为A'B'、C'D'、A'D'的中点。
因为AF∥PD,所以AF'=PD'=C'F',又因为AD'=C'D'/2=AB'/2=AF'/2,所以AD'∥B'C'。
因此,根据平行四边形的性质,AF'∥B'C',即AF∥CE。
题目3:四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明EB∥平面PAD。
证明:连接PE,因为E为PC的中点,所以PE∥AD。
又因为CD⊥AD,所以CD∥PE。
又因为CD=2AB,所以AB∥PE。
因此,根据平行四边形的性质,EB∥PA,即EB∥平面PAD。
2.利用三角形中位线的性质题目4:四面体ABCD中,E、F、G、M分别是棱AD、CD、BD、BC的中点,证明AM∥平面EFG。
证明:连接EF、EG、FG,因为E、F、G分别为三角形BCD、ACD、ABD的中点,所以EF、EG、FG分别是这三个三角形的中位线。
因此,EF∥AD,EG∥BD,FG∥AC。
又因为M为BC的中点,所以AM∥FG。
因此,AM∥平面EFG。
3.利用平行四边形的性质题目7:正方体ABCD-A' B' C' D'中O为正方形ABCD的中心,M为B'B的中点,求证D'O∥平面A'BC'。
高中数学知识点总结(第八章 立体几何 第四节 直线、平面平行的判定与性质)
第四节 直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言 判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)∵l ∥a ,a ⊂α, l ⊄α,∴l ∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l ∥α,l ⊂β,α∩β=b ,∴l ∥b⎣⎢⎡⎦⎥⎤❶应用判定定理时,要注意“内”“外”“平行”三个条件必须都具备,缺一不可. 2.平面与平面平行的判定定理和性质定理文字语言 图形语言符号语言 判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a ∥β, b ∥β, a ∩b =P ,a ⊂α, b ⊂α, ∴α∥β 性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a ,β∩γ=b ,∴a ∥b⎣⎢⎢⎡⎦⎥⎥⎤❷如果一个平面内的两条相交直线分别平行于另一个平面的两条直线,那么这两个平面互相平行.符号表示:a ⊂α,b ⊂α,a ∩b =O ,a ′⊂β,b ′⊂β,a ∥a ′,b ∥b ′⇒α∥β.二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定[典例]如图,在直三棱柱ABCA1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.[证明]如图,连接A1C.在直三棱柱ABCA1B1C1中,侧面AA1C1C为平行四边形.又因为N为线段AC1的中点,所以A1C与AC1相交于点N,即A1C经过点N,且N为线段A1C的中点.因为M为线段A1B的中点,所以MN∥BC.又因为MN⊄平面BB1C1C,BC⊂平面BB1C1C,所以MN∥平面BB1C1C.考法(二)线面平行性质定理的应用[典例](2018·豫东名校联考)如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.[证明]在四棱柱ABCDA1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.[题组训练]1.(2018·浙江高考)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A ∵若m ⊄α,n ⊂α,且m ∥n ,由线面平行的判定定理知m ∥α,但若m ⊄α,n ⊂α,且m ∥α,则m 与n 有可能异面,∴“m ∥n ”是“m ∥α”的充分不必要条件.2.如图,在四棱锥P ABCD 中,AB ∥CD ,AB =2,CD =3,M 为PC 上一点,且PM =2MC .求证:BM ∥平面P AD .证明:法一:如图,过点M 作MN ∥CD 交PD 于点N ,连接AN . ∵PM =2MC ,∴MN =23CD .又AB =23CD ,且AB ∥CD ,∴AB 綊MN ,∴四边形ABMN 为平行四边形, ∴BM ∥AN .又BM ⊄平面P AD ,AN ⊂平面P AD , ∴BM ∥平面P AD .法二:如图,过点M 作MN ∥PD 交CD 于点N ,连接BN . ∵PM =2MC ,∴DN =2NC , 又AB ∥CD ,AB =23CD ,∴AB 綊DN ,∴四边形ABND 为平行四边形, ∴BN ∥AD .∵BN ⊂平面MBN ,MN ⊂平面MBN ,BN ∩MN =N , AD ⊂平面P AD ,PD ⊂平面P AD ,AD ∩PD =D , ∴平面MBN ∥平面P AD .∵BM ⊂平面MBN ,∴BM ∥平面P AD .3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴P A∥MO.又MO⊂平面BMD,P A⊄平面BMD,∴P A∥平面BMD.∵平面P AHG∩平面BMD=GH,P A⊂平面P AHG,∴P A∥GH.考点二平面与平面平行的判定与性质[典例]如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.[证明](1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.[变透练清]1.变结论在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C,AC1,设交点为M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵DM⊄平面A1BD1,A1B⊂平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1⊂平面AC1D,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF 的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图,连接AE,设DF与GN的交点为O,则AE必过DF与GN的交点O.连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点, 所以DE ∥GN .又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 中点,所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .[课时跟踪检测]A 级1.已知直线a 与直线b 平行,直线a 与平面α平行,则直线b 与α的关系为( ) A .平行 B .相交C .直线b 在平面α内D .平行或直线b 在平面α内解析:选D 依题意,直线a 必与平面α内的某直线平行,又a ∥b ,因此直线b 与平面α的位置关系是平行或直线b 在平面α内.2.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:选A 当直线a 在平面β内且过B 点时,不存在与a 平行的直线,故选A. 3.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CFFB 得AC ∥EF .又因为EF ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .4.(2019·重庆六校联考)设a ,b 是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 对于选项A ,若存在一条直线a ,a ∥α,a ∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a ,使得a ∥α,a ∥β,所以选项A 的内容是α∥β的一个必要条件;同理,选项B 、C 的内容也是α∥β的一个必要条件而不是充分条件;对于选项D ,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D 的内容是α∥β的一个充分条件.故选D.5.如图,透明塑料制成的长方体容器ABCD A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确命题的个数是( ) A .1 B .2 C .3D .4解析:选C 由题图,显然①是正确的,②是错误的; 对于③,∵A 1D 1∥BC ,BC ∥FG ,∴A 1D 1∥FG 且A 1D 1⊄平面EFGH ,FG ⊂平面EFGH , ∴A 1D 1∥平面EFGH (水面). ∴③是正确的;对于④,∵水是定量的(定体积V ), ∴S △BEF ·BC =V ,即12BE ·BF ·BC =V .∴BE ·BF =2VBC(定值),即④是正确的,故选C.6.如图,平面α∥平面β,△P AB 所在的平面与α,β分别交于CD ,AB ,若PC =2,CA =3,CD =1,则AB =________.解析:∵平面α∥平面β,∴CD ∥AB , 则PC P A =CD AB ,∴AB =P A ×CD PC =5×12=52.答案:527.设α,β,γ是三个平面,a ,b 是两条不同直线,有下列三个条件: ①a ∥γ,b ⊂β;②a ∥γ,b ∥β;③b ∥β,a ⊂γ.如果命题“α∩β=a ,b ⊂γ,且________,则a ∥b ”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③8.在三棱锥P ABC 中,PB =6,AC =3,G 为△P AC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交P A ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.10.(2019·南昌摸底调研)如图,在四棱锥P ABCD 中,∠ABC = ∠ACD =90°,∠BAC =∠CAD =60°,P A ⊥平面ABCD ,P A =2,AB =1.设M ,N 分别为PD ,AD 的中点.(1)求证:平面CMN ∥平面P AB ; (2)求三棱锥P ABM 的体积.解:(1)证明:∵M ,N 分别为PD ,AD 的中点, ∴MN ∥P A ,又MN ⊄平面P AB ,P A ⊂平面P AB , ∴MN ∥平面P AB .在Rt △ACD 中,∠CAD =60°,CN =AN , ∴∠ACN =60°.又∠BAC =60°,∴CN ∥AB . ∵CN ⊄平面P AB ,AB ⊂平面P AB , ∴CN ∥平面P AB . 又CN ∩MN =N , ∴平面CMN ∥平面P AB .(2)由(1)知,平面CMN ∥平面P AB ,∴点M 到平面P AB 的距离等于点C 到平面P AB 的距离.∵AB =1,∠ABC =90°,∠BAC =60°,∴BC =3,∴三棱锥P ABM 的体积V =V M P AB =V C P AB =V P ABC =13×12×1×3×2=33.B 级1.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)求证:MN ∥平面P AB ; (2)求四面体N BCM 的体积. 解:(1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN , 由N 为PC 的中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3,得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N BCM 的体积V N BCM =13×S △BCM ×P A 2=453.2.如图所示,几何体E ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD . (1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC . 证明:(1)如图所示,取BD 的中点O ,连接OC ,OE . ∵CB =CD ,∴CO ⊥BD . 又∵EC ⊥BD ,EC ∩CO =C ,∴BD⊥平面OEC,∴BD⊥EO.又∵O为BD中点.∴OE为BD的中垂线,∴BE=DE.(2)取BA的中点N,连接DN,MN.∵M为AE的中点,∴MN∥BE.∵△ABD为等边三角形,N为AB的中点,∴DN⊥AB.∵∠DCB=120°,DC=BC,∴∠OBC=30°,∴∠CBN=90°,即BC⊥AB,∴DN∥BC.∵DN∩MN=N,BC∩BE=B,∴平面MND∥平面BEC.又∵DM⊂平面MND,∴DM∥平面BEC.。
立体几何复习专题及答案-高中数学
立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
专题3:立体几何中平行关系的证明基础练习题
(1)连接 ,则 也为 的中点,由 可证 平面 ;
(2)存在, 为 的中点时,平面 平面 ,利用平面与平面平行的判定定理可证结论.
【详解】
(1)连接 ,则 也为 的中点,
因为 为 的中点,所以 为△ 的中位线,
所以 ,又 平面 , 平面 ,
所以 平
∴ 是 的中点,
又 是 的中点,
∴ ,
又 平面 , 平面 ,
∴ 平面 .
4.(1) 见解析;(2) 见解析;(3)见解析.
【分析】
(1)取BB1的中点M,连接HM、MC1,四边则HMC1D1是平行四边形,即可证明BF∥HD1;(2)取B1D1的中点O,易证四边形BEGO为平行四边形,故有OB∥GE,从而证明EG∥平面BB1D1D.(3)由正方体得BD∥B1D1,由四边形HBFD1是平行四边形,可得HD1∥BF,可证平面BDF∥平面B1D1H.
7.证明详见解析.
【解析】
【分析】
利用中位线,分别证明 ,由此证得平面内两条相交直线和另一个平面平行,从而证得两个平面平行.
【详解】
因为EF是△PAB的中位线,所以EF∥PA.
又EF 平面PAC,PA 平面PAC,所以EF∥平面PAC.
同理得EG∥平面PAC.
又EF 平面EFG,EG 平面EFG,EF∩EG=E,
5.(1)证明见解析;(2)
【分析】
(1)连接 ,通过证明 平面 与 平面 ,可得平面 平面 ;
(2)找到 为异面直线 和 所成角,求 即可.
【详解】
证明:(1)由题意可得,点 分别是 和 的中点,连接 ,
,
又 平面 平面 ,
平面 ,
同理: ,则 平面 ,
又 平面 平面 ,
立体几何专题复习(自己精心整理)
专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。
(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。
题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。
求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。
微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。
微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。
思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。
高中数学立体几何中平行垂直概念以及定理归纳
两平面平行,其中以平面内的任意一条直线必平行 Nhomakorabea另一平面。
两个平行平面中的一个平面与一条直线垂直,则另一平面也与此直线垂直。
线线垂直
线面垂直
面面垂直
定义:
定义:如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。
如果两条直线同垂直与一个平面,那么这两条直线平行(6.3)
判定:若平面外一条直线与此平面中的一条直线平行,则该直线与此平面平行。
判定:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质:两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
性质:如果平面外一条直线与此平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。
线线平行
线面平行
面面平行
定义:如果两条共面直线无公共点,则这两条直线平行。
定义:如果一条直线与一个平面没有交点,则这条直线与此平面平行。
定义:平面与平面之间没有交点,则这两个平面平行。
判定:同位角相等,两直线平行;
内错角相等,两直线平行;
同旁内角互补,两直线平行;
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
定义:两个平面相交,如果他们所成的二面角是直二面角,就说这两个平面互相垂直。
判定:
判定:如果一条直线与平面内的两条相交直线都垂直,那么该直线与此平面垂直。
判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质:
性质:如果两条直线同时垂直于一个平面,则这两条直线平行。
性质:如果两平面垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
立体几何3直线与平面的位置关系(平行、垂直、异面)-高考数学专题复习
立体几何—直线与平面的位置关系(平行、垂直、异面)知识精要1、证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2、证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。
3、证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角; (2)转化为线面垂直;(3) 转化为两平面的法向量平行。
4、 空间向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b 则:(1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 5、 夹角公式:设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.6、 异面直线间的距离 :||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离).7、点B 到平面α的距离:||||AB n d n ⋅=(n 为平面α的法向量,A α∈,AB 是α的一条斜线段). 热身练习:1、A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( C )()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈A l A l ,内不在()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合2、对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交. 其中,使三条直线共面的充分条件有 ( B )(1和4)()A 1个 ()B 2个 ()C 3个 ()D 4个3、在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点H G F E ,,,,如果EF 与HG 相交于一点M ,那么 ( A )()A M 一定在直线AC 上 ()B M 一定在直线BD 上 ()C M 可能在直线AC 上,也可能在直线BD 上 ()D M 既不在直线AC 上,也不在直线BD 上4、设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则,,满足( B ) (A ) 共线 (B ) 共面 (C ) 不共面 (D ) 可作为空间基向量 正确答案:B 错因:学生把向量看为直线。
立体几何-线面、面面平行的证明
QDCBAP理科数学复习专题 立体几何线面平行与面面平行专题复习【题型总结】题型一 小题:判断正误1. a 、b 、c 是直线,,,αβγ是平面,下列命题正确的是_____________ααββααβαβαγαγββααα////a ,//a //a //,//a ////a ,//a ////,////a //,//a //a //,//a b b b b c c b b 则⑥则⑤则④则③则②则①归纳:_______________________________________ 题型二 线面平行的判定1、如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,E 、F 分别是PB,PC的中点,求证:EF//面P AD归纳 3、已知:点是平行四边形ABCD 所在平面外一点, Q 是PA 的中点,求证:PC//平面BQD.归纳:C 1B 1A 1D 1DCDA 1C 1CB 1B3、在正方体中,E,F分别为C1D1和BC 的中点, 求证:FE//面BB1DD1归纳:小结1:证明线面平行的方法常常转化为面外线与面内线平行,而证明两线平行的方法常有: , , 题型二、面面平行的判定1、1111111//.ABCD A B C D AB D C BC -在正方体中,求证:平面平面11111111111,,:(1)//;(2)//.ABC A B C D AC BC AB D D AC B DA BC D -2、如图已知正三棱柱中,点为的中点求证平面为的中点,求证:平面平面题型四 面面平行的应用:用面面平行证线面平行1、如图,在直三棱柱111ABC A B C -中,已知AB AC =,,,M N P 分别为11,,BC CC BB 的中点,求证: 1//A N 平面AMP .【综合练习】 一、选择题1、直线和平面平行是指该直线与平面内的( )(A)一条直线不相交 (B)两条直线不相交 (C)无数条直线不相交(D)任意一条直线都不相交 2、已知a b ||,αα⊂,则必有( )()||(),A a b B a b 异面 (),C a b 相交 (),D a b 平行或异面3、若直线a,b 都与平面平行,则a 和b 的位置关系是( ) (A)平行 (B)相交 (C)异面 (D)平行或相交或是异面直线4.已知平面α、β和直线m ,给出条件:①m ∥α;②m ⊥α;③m ⊂α;④α⊥β;⑤α∥β.为使m ∥β,应选择下面四个选项中的 ( )A .①④B .①⑤C .②⑤D .③⑤5.下列命题正确的是 ( ) A 一直线与平面平行,则它与平面内任一直线平行B 一直线与平面平行,则平面内有且只有一个直线与已知直线平行C 一直线与平面平行,则平面内有无数直线与已知直线平行,它们在平面内彼此平行D 一直线与平面平行,则平面内任意直线都与已知直线异面 6. 以下命题(其中a ,b 表示直线,a 表示平面)①若a ∥b ,b Ìa,则a ∥a ②若a ∥a ,b ∥a ,则a ∥b ③若a ∥b ,b ∥a ,则a ∥a ④若a ∥a ,b Ìa,则a ∥b 其中正确命题的个数是 ( )A.0个B.1个C.2个D.3个二、解答题1.如图,E D ,分别是正三棱柱111ABC A B C -的棱1AA 、11B C 的中点, 求证:1//A E 平面1BDC ;2、如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC=1,点E 是PC 的中点,作EF PB 交PB 于点F.求证:PA ∥平面EBD ;3、在正方体ABCD —A1B1C1D1中,O 为面ABCD 的中心,P ,Q 分别为DD1和CC1的中点,证明: 面PAO//面BQD14、如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,AB=AC=1,∠BAC=90°,点D是棱B1C1的中点.求证:AB1∥平面A1DC;。
专题六 立体几何 第三讲 利用空间向量证明平行与垂直关系——2024届高考数学二轮复习
的值为( )
A. 11
6
√B. 11 6
C. 1
2
D. 1
3
设 D(x, y, z) ,则 AD (x 1, y 1, z 2), AB (2, 1, 3), DB (1 x, y, 1 z) . AD 2DB ,
x 1 2(1 x),
x
1 3
,
y
z
1 2
2 y, 2
2z.
y
z
1, 3 0,
D
1 3
,
1 3
,0
, CD
1 3
,
,
1
.
CD
AB,CD
AB
2
1 3
3(1
)
0,
11 6
.故选
B.
(二)核心知识整合
考点 2:向量法求线线角、线面角、面面角 1.向量法求空间角 (1)异面直线所成的角:设 a,b 分别为异面直线 a,b 的方向向量,
则两异面直线所成的角满足 cos = | a b | .
则 B(0,0,0) , A(1,0,1) ,C(0,1,1) ,N(1,1,0) ,因此 BA (1, 0,1) ,BC (0,1,1) ,BN (1,1,0) .设平面 ABC
的一个法向量为
n
(
x,
y,
z)
,则
n
BA
x
z
0,
令
x
1,得
n
(1,1,
1)
.易知三棱锥
S
ABC
的外
n BC y z 0
√A.-1
B.1
C.2
D.3
a c ,a c 2x 4 2 0 ,解得 x 1,又 b//c , 1 y 1 ,
高中立体几何证明平行的专题
FGG A B CD ECA BDE F DE B 1A 1C 1CM 立体几何——平行的证明【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;分析:取PC 的中点G ,连EG.,FG ,则易证AEGF 是平行四边形'【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。
(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ; &分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形;【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF -,,AD CD AD BA ⊥⊥//EB PAD 平面E F GM AD CD BD BC AM EFG 求证:E F BACDP (第1题图)AE;PEDCBAAB 1ABEF ⊥ABCD ABEF ABCD 090,BAD FAB BC ∠=∠=//=12AD BE //=12AF,G H ,FA FD BCHG ,,,C D F E ) 利用平行四边形的性质【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O21中点为PD E 求证:AE ∥平面PBC ; ~分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。
《立体几何中的平行与垂直关系》专题训练
一、单选题1.m 、n 是平面α外的两条直线,在m ∥α的前提下,m ∥n 是n ∥α的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α,β平行与同一个平面C.α内有两条相交直线与β内两条相交直线平行D.α,β垂直与同一个平面4.已知l ,m 是两条不同的直线,m //平面α,则().A.若l //m ,则l //αB.若l //α,则l //mC.若l ⊥m ,则l ⊥αD.若l ⊥α,则l ⊥m5.设α,β为两个平面,则α∥β的充要条件是().A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面6.如果用m ,n 表示不同直线,α,β,γ表示不同平面,下列叙述正确的是().A.若m //α,m //n ,则n //αB.若m //n ,m ⊂α,n ⊂β,则α//βC.若α⊥γ,β⊥γ,则α//βD.若m ⊥α,n ⊥α,则m //n7.如图1,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则下列四个结论:图1①三棱锥A -D 1PC 的体积不变;②A 1P //平面ACD 1;③DP ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的结论的个数是().A.1个B.2个C.3个D.4个8.如图2,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则().图2A.BM =EN ,且直线BM ,EN 是相交直线B.BM ≠EN ,且直线BM ,EN 是相交直线C.BM =EN ,且直线BM ,EN 是异面直线D.BM ≠EN ,且直线BM ,EN 是异面直线9.如下图所示的四个正方体中,A ,B 正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB //平面MNP 的图形的序号为().59A.①②B.②③C.③④D.①②③10.如图3,在直角梯形ABCD中,BC⊥CD,AB=BC=2,CD=4,E为CD中点,M,N分别为AD,BC的中点,将△ADE沿AE折起,使点D到D1,M到M1,在翻折过程中,有下列命题:图3①||M1M的最小值为1;②M1N//平面CD1E;③存在某个位置,使M1E⊥DE;④无论M1位于何位置,均有M1N⊥AE.其中正确命题的个数为().A.1B.2C.3D.4二、多选题11.已知α,β是两个不重合的平面,m,n是两条不重合的直线,则下列命题正确的是().A.若m//n,m⊥α,则n⊥αB.若m//α,α⋂β=n,则m//nC.若m⊥α,m⊥β,则α//βD.若m⊥α,m//n,n⊥β,则α//β12.已知菱形ABCD中,∠BAD=60°,AC与BD 相交于点O,将△ABD沿BD折起,使顶点A至点M,在折起的过程中,下列结论正确的是().A.BD⊥CMB.存在一个位置,使△CDM为等边三角形C.DM与BC不可能垂直D.直线DM与平面BCD所成的角的最大值为60°13.己知m、n为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是().A.若m//α,n//β且α//β,则m//nB.若m//n,m⊥α,n⊥β,则α//βC.若m//n,n⊂α,α//β,m⊄β,则m//βD.若m//n,n⊥α,α⊥β,则m//β14.如图4,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则().图4A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形15.已知四棱锥P-ABCD,底面ABCD为矩形,侧面PCD⊥平面ABCD,BC=23,CD=PC=PD=26.若点M为PC的中点,则下列说法正确的为().A.BM⊥平面PCDB.PA//面MBDC.四棱锥M-ABCD外接球的表面积为36πD.四棱锥M-ABCD的体积为6三、填空题16.如图5,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有_______.(把所有正确的序号都填上)图517.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_______.18.已知α,β是两个不同的平面,l,m是两条不同的直线,有如下四个命题:①若l⊥α,l⊥β,则α∥β;②若l⊥α,α⊥β,则l∥β;③若l∥α,l⊥β,则α⊥β;④若l∥α,α⊥β,则l⊥β.其中真命题为______(填所有真命题的序号).19.已知α,β是两个不同的平面,l,m是两条不同60,C⊥平面ABB.图622.如图7,在直三棱柱ABC为BC,AC的中点,AB=BC.(1)求证:A1B1∥平面DEC1;(2)求证:BE⊥C1E.23.如图8,在四棱锥P-ABCDPA,PD的中点.已知侧面PAD⊥是矩形,DA=DP.(1)求证:MN∥平面PBC;图8图9图11P-ABCD中,已知底BC=1,E,F分别是AB,;平面PDE.如图13,取PD中点G。
专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)
平行的证明
高中立体几何证明平行的专题训练立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:1通过平移;2利用三角形中位线的性质;3利用平行四边形的性质;4利用对应线段成比例;5利用面面平行,等等一•通过“平移”再利用平行四边形的性质1.如图,四棱锥P—ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点. 求证:AF LI平面PCE2、如图,已知直角梯形ABCD中,ABl_CD, AB _ BC, AB=1,BC = 2, CD=1+. 3,过A作AE _CD,垂足为E,G、F分别为AD、CE的中点,现将L ADE沿AE折叠,使得DE _ EC.I求证:BC _面CDE;n求证:FG L面BCD;3已知直三棱柱ABC—A1B1C1中,D, E, F分别为AA CC i, AB的中点,M为BE 的中点,AC _ BE求证:I CQ _ BC;n GDL 平面B1FM .4、如图所示,四棱锥PABCD底面是直角梯形,CD =2AB,E为PC的中点, 证明:EBLI面PAD・利用三角形中位线的性质5、如图,已知E、F、G、M 分别是四面体的棱AD、CD、BD、BC的中点,求证:AM //平面EFG。
6•如图,ABCD是正方形,0是正方形的中心,E是PC的中点。
求证:PAL平面BDEC7.如图,三棱柱ABC —ABC冲,D为AC的中点.求证:AB〃面BDG;8•如图,平面ABEF _平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,三•利用平行四边形的性质9.正方体ABCD ABGD ,中O 为正方形ABCD 的中心,M 为BR 的中点,求证:D ,O//平面ABC ,;10.在四棱锥 P-ABCD 中,ABLCD , AB 二 1 尹C 日PD 的中点,求证:AE_ 平面PBC ; APBC -AD , 1BE^AF’G’H 分别为FA,FD 的中点I 证明:四边形是平行四边形;n 四点是否共面?为什么?11.在如图所示的几何体中,四边形ABCD为平行四边形,.ACB=90:EA _平面ABCD EF//AB,FG //BC,EG//AC,AB =2EF1若M是线段AD的中点,求证:GM //平面ABFE;2若AC =BC =2AE,求二面角A- BF-C的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点高中立体几何证明平行的专题
————————————————————————————————作者:————————————————————————————————日期:
2
3
F
G
G A B C D E C
A B
D
E F D
E B 1
A 1
C 1C
A
B
F M 立体几何——平行的证明
【例1】如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分 别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;
分析:取PC 的中点G ,连EG .,FG ,则易证AEGF 是平行四边形
【例2】如图,已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =1,BC =2,CD =1
+3,过A 作AE ⊥CD ,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE ⊥EC 。
(Ⅰ)求证:BC ⊥面CDE ; (Ⅱ)求证:FG ∥面BCD ;
分析:取DB 的中点H ,连GH,HC 则易证FGHC 是平行四边形
【例3】已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC ⊥BE. 求证:
(Ⅰ)C 1D ⊥BC ; (Ⅱ)C 1D ∥平面B 1FM. 分析:连EA ,易证C 1EAD 是平行四边形,于是MF//EA
E F B A C D
P (第1
4
【例4】如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;
分析::取PD 的中点F ,连EF,AF 则易证ABEF 是平行四边形
(2) 利用三角形中位线的性质
【例5】如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。
分析:连MD 交GF 于H ,易证EH 是△AMD 的中位线
【例6】如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。
求证: PA ∥平面BDE
【例7】如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点.
求证:AB 1//面BDC 1;
分析:连B 1C 交BC 1于点E ,易证ED 是
△B 1AC 的中位线
A
B
C
D
E
F G M
5
P
E
D C
B
A
【例8】如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,
090,BAD FAB BC
∠=∠=//=
1
2
AD ,BE //=
1
2
AF ,,G H 分别为,FA FD 的中点 (Ⅰ)证明:四边形BCHG 是平行四边形; (Ⅱ),,,C D F E 四点是否共面?为什么?
(.3)
利用平行四边形的性质
【例9】正方体ABCD —A 1B 1C 1D 1中O 为正方形ABCD 的中心,M 为BB 1的中点, 求证: D 1O//平面A 1BC 1;
分析:连D 1B 1交A 1C 1于O 1点,易证四边形OBB 1O 1 是平行四边形
【例10】在四棱锥P-ABCD 中,AB ∥CD ,AB=2
1
DC ,中点为PD E .
求证:AE ∥平面PBC ;
分析:取PC 的中点F ,连EF 则易证ABFE 是平行四边形
【例11】在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF ∥AB,FG∥BC,EG∥AC.AB=2EF。
若M是线段AD的中点,求证:GM∥平面ABFE;
6
(I )证法一:
因为EF//AB ,FG//BC ,EG//AC ,90ACB ∠=︒, 所以90,EGF ABC ∠=︒∆∽.EFG ∆ 由于AB=2EF ,因此,BC=2FC , 连接AF ,由于FG//BC ,BC FG 2
1
=
在ABCD Y 中,M 是线段AD 的中点,则AM//BC ,且BC AM 2
1
=
因此FG//AM 且FG=AM ,所以四边形AFGM 为平行四边形,因此GM//FA 。
又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM//平面AB 。
(4)利用对应线段成比例
【例12】如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且SM AM =ND
BN
, 求证:MN ∥平面SDC
分析:过M 作ME//AD ,过N 作NF//AD 利用相似比易证MNFE 是平行四边形
【例13】如图正方形ABCD 与ABEF 交于AB ,M ,N 分别为AC 和BF 上的点且AM=FN 求证:MN ∥平面BEC
分析:过M 作MG//AB ,过N 作NH/AB 利用相似比易证MNHG 是平行四边形
A
F
E
B
C
D
M
N
【例14】如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M是BD的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若N是BC的中点,求证:AN∥平面CME;
(3)求证:平面BDE⊥平面BCD.
【例15】直四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥DC,AB=2AD =2DC=2,E为BD1的中点,F为AB中点.
(1)求证EF∥平面ADD1A1;
(2)求几何体DD1AA1EF的体积。
7。