初一数学上册奥数题.docx

合集下载

(word完整版)初一奥数题集(带答案)

(word完整版)初一奥数题集(带答案)

1、2002)1(-的值 ( B )A. 2000B.1C.-1D.-20002、a 为有理数,则200011+a 的值不能是 ( C ) A.1 B.-1 C .0 D.-20003、()[]}{20072006200720062007----的值等于 ( B )A.-2007B.2009C.-2009D.20074、)1()1()1()1()1(-÷-⨯---+-的结果是 ( A )A.-1B.1C.0D.25、2008200720061)1()1(-÷-+-的结果是 ( A )A.0B.1C.-1D.26、计算)2()21(22-+-÷-的结果是 ( D ) A.2 B.1 C.-1 D.07、计算:.21825.3825.325.0825.141825.3⨯+⨯+-⨯ 8、计算:.311212311999212000212001212002-++-+-Λ9、计算:).138(113)521()75.0(5.2117-⨯÷-÷-⨯÷-11、计算:.363531998199992000⨯+⨯-练习:.22222222221098765432+--------.2)12(2221n n n n =-=-+ 6 12、计算: )9897983981()656361()4341(21++++++++++ΛΛ结果为:5.612249122121=⨯++⨯+Λ13、计算:.200720061431321211⨯++⨯+⨯+⨯Λ应用:)111(1)1(+-=+n n d n n d练习:.1051011171311391951⨯++⨯+⨯+⨯Λ13、计算:35217106253121147642321⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯. 结果为5214、求21-++x x 的最小值及取最小值时x 的取值范围.练习:已知实数c b a ,,满足,01b a c <<<<-且,a c b >>求b a c a c ---+-1的值.练习:1、计算2007200619991998)1()1()1()1(-+-++-+-Λ的值为 ( C )A.1B.-1C.0D.102、若m 为正整数,那么()[])1(11412---m m 的值 ( B ) A.一定是零 B.一定是偶数C.是整数但不一定是偶数D.不能确定3、若n 是大于1的整数,则2)(12)1(n n n p ---+=的值是 ( B )A.一定是偶数B.一定是奇数C.是偶数但不是2D.可以是奇数或偶数4、观察以下数表,第10行的各数之和为 ( C )14 36 7 813 12 11 1015 16 17 18 1926 25 24 23 22 21…A.980B.1190C.595D.4905、已知,200220012002200120022001200220012⨯++⨯+⨯+=Λa 20022002=b ,则a 与b 满足的关系是 ( C )A.2001+=b aB.2002+=b aC.b a =D.2002-=b a6、计算: .35217201241062531211471284642321⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯527、计算:.561742163015201412136121++++++83288、计算:.100321132112111+++++++++++ΛΛ9、计算: .999999999999999999999+++++10、计算)100011)(99911)(99811()411)(311)(211(10201970198019992000-------++-+-ΛΛ.610 11、已知,911,999909999==Q p 比较Q P ,的大小.Q p ==⨯⨯=⨯⨯=9099909999099119991199)911(12、设n 为正整数,计算:43424131323332312122211+++++++++++ .1112141424344nn n n n n n n n ++-++-+++++++++ΛΛΛ 2)1(21+=+++n n n Λ13、2007加上它的21得到一个数,再加上所得的数的31又得到一个数,再加上这次得到的41又得到一个数,… ,依次类推,一直加到上一次得数的20071,最后得到的数是多少? 2005003)200211()311()211(2002=+⨯⨯+⨯+⨯Λ14、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数,将这四个(每个数用且只用一次)进行加减四则运算与)321(4++⨯应视作相同方法的运算,现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24,运算式:(1)_______________________;(2)________________________;(3)________________________;15.黑板上写有1,2,3,…,1997,1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5,13和1998后,添加上6;若再擦掉6,6,38,添上0,等等。

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]

七年级数学奥数题[五篇模版]第一篇:七年级数学奥数题数学奥数1.下列判断正确的是()A.平角是一条直线 B.凡是直角都相等C.两个锐角的和一定是锐角D.角的大小与两条边的长短有关3.下列哪个角不能由一副三角板作出()A.105° B.12° C.175°D.135°4.若∠a=90°-m°,∠B=90°+m°,则∠a与∠B的关系是()A.互补B.互余 C.和为钝角 D.和为周角5.如图所示,∠AOC=90°∠COB=a,0D平分∠AOB则∠CD的度数为()6.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的()A.南偏西50°方向 B.南偏西40°方向 C.北偏东50°方向 D.北偏东40°方向7.如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是()A.1/2∠1B.1/2∠2C.1/2(∠1-∠2)D.1/2(∠1+∠2)8.将两块直角三角板的直角顶点重合,如图所示,若∠AOD=128,则∠BOC的度数是9.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是10.把一张长方形纸条按图中那样折叠后,若得到∠AOB=70°则∠BOG= 11.已知线段AB=8cm,延长AB至C,使AC=2AB,D是AB中点,则线段CD= 12.已知线段AB=acm,点A1平分AB,A2平分AA1,A3平分AA2,…,An平分AAn-1则AAn= 14.小明每天下午5:46回家,这时分针与时针所成的角的度数为度15.如果∠a=26°,那么∠a余角的补角等于16.已知∠AOB=30°,又自∠AOB的顶点0引射线0C.若∠AOC:∠AOB=43,那么∠BOC=17.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是 cm 18.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票(1)在A,B两站之间最多共有种不同的票价;共有种不同的车票(2)如果共有n(n≥3)个站点,则需要种不同的车票19.若∠A=20°18,∠B=20°1530°,∠C=2025°,则()A.∠A>∠B>∠CB.∠B>∠A>∠CC.∠A>∠C>∠BD.∠C>∠A>∠B 20.如图,直线AB、CD交于0点,且∠BOC=80°°,OE平分∠BOC,OF为OE 的反向延长线(1)求∠2和∠3的度数:(2)0F平分∠AOD吗?为什么?21.已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE。

初一上奥数试题及答案

初一上奥数试题及答案

初一上奥数试题及答案一、选择题(每题5分,共20分)1. 一个数的平方等于它本身,这个数是()。

A. 0B. 1C. 0和1D. 以上都不是答案:C2. 已知一个等差数列的首项是2,公差是3,那么这个数列的第5项是()。

A. 17B. 14C. 11D. 8答案:A3. 一个正整数,除以3余2,除以5余1,这个数最小是()。

A. 11B. 16C. 21D. 26答案:A4. 一个两位数,十位数字比个位数字大3,这个两位数是多少?()A. 41B. 52C. 63D. 74答案:C二、填空题(每题5分,共30分)1. 一个数的立方等于它本身,这个数是______。

答案:0,1,-12. 一个等差数列的前三项分别是2,5,8,那么这个数列的第10项是______。

答案:233. 一个正整数,除以4余1,除以6余3,这个数最小是______。

答案:314. 一个两位数,个位数字是十位数字的2倍,这个两位数是______。

答案:12,24,36,485. 一个三位数,百位数字是十位数字的2倍,十位数字是个位数字的2倍,这个三位数是______。

答案:112,224,336,4486. 一个数列,前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,这个数列的第10项是______。

答案:55三、解答题(每题25分,共50分)1. 一个等差数列的首项是1,公差是2,求这个数列的前20项的和。

答案:这个数列的前20项的和是210。

解析:根据等差数列求和公式,Sn = n * (a1 + an) / 2,其中Sn是前n项的和,n是项数,a1是首项,an是第n项。

首先求出第20项,an = a1 + (n - 1) * d,其中d是公差。

将已知条件代入公式,得到a20 = 1 + (20 - 1) * 2 = 39。

然后将已知条件代入求和公式,得到S20 = 20 * (1 + 39) / 2 = 210。

七年级上册数学趣味奥数

七年级上册数学趣味奥数

七年级上册数学趣味奥数问一:桌面上有14只杯子,3只杯口朝上,现在每次翻动4只杯子(把杯口朝上的翻为朝下,把杯口朝下的翻为朝上)。

问:能否经过若干次翻动后,,把杯口都朝下?若不能,那么每次翻动6只能做到吗?7只呢?问二:一个村子里面有50个人,每个人有一条狗。

现在知道村子里面有狗病了。

每天观察一次狗的情况,但是每个人只能观察到别的49条,看不到自己的狗,判断出自己的狗是病狗的时候,必须枪毙病狗,但是每个人只有权力枪毙自己的病狗。

第一天,没有枪声,第二天,还是没有枪声。

第三天,听见枪声了。

请问村子里有几条病狗?问三:黄先生、蓝先生和白先生一起吃午饭。

一位系的是黄领带,一位是蓝领带,一位是白领带。

“你们注意到没有,”系蓝领带的先生说,“虽然我们领带的颜色正好是我们三个人的姓,但我们当中没有一个人的领带颜色与他自己的姓相同?”“啊!你说得对极了!”黄先生惊呼道。

请问这三位先生的领带各是什么颜色?问四:有六个不同国籍的人,他们的名字分别为A,B,C,D,E和F;他们的国籍分别是美国、德国、英国、法国、俄罗斯和意大利(名字顺序与国籍顺序不一定一致),现已知:(1)A和美国人是医生;(2)E和俄罗斯人是教师;(3)C和德国人是技师;(4)B和F曾经当过兵,而德国人从没当过兵;(5)法国人比A年龄大,意大利人比C年龄大;(6)B同美国人下周要到英国去旅行,C同法国人下周要到瑞士去度假。

请判断A、B、C、D、E、F分别是哪国人?问五:你有两个桶。

容量分别为3升和5升,同时还有大量的水。

你怎么才能准确量出4升的水?问六:传说,有一个古罗马人临死时,给怀孕的妻子写了一份遗嘱:生下来的如果是儿子,就把遗产的2/3给儿子,母亲拿1/3;生下来的如果是女儿,就把遗产的1/3给女儿,母亲拿2/3。

结果这位妻子生了一男一女,怎样分配,才能接近遗嘱的要求呢?。

七年级奥数题训练十篇

七年级奥数题训练十篇

七年级奥数题训练十篇1.七年级奥数题训练篇一1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。

上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。

小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。

去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?5、某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟.当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?2.七年级奥数题训练篇二1、学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?2、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?3、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?4、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?5、一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?3.七年级奥数题训练篇三1.两袋玻璃球,每袋个数相等。

七年级上册人民教育出版社奥数题

七年级上册人民教育出版社奥数题

七年级上册人教版奥数题1.有两组数,第一组的平均数是12.8,第二组的平均数是10.2,而这两组的总平均数是12.02,那么第一组数与第二组数的具数之比是几?2.有两个圆,它们的面积之差是209平方厘米,已知小圆周长是大圆周长的9/10(10分之9).求大圆的面积是几?3.甲乙两个长方形的周长相等,甲长方形的长宽比是3:2,乙长方形的长宽比是7:5,那么甲、乙两个长方形的面积之比是几?4.一个长方形长宽只比为3:2,如果长减少450厘米,宽增加450厘米,长方形面积就减少22500平方厘米,求原来长方形面积是几?5.甲、乙、丙三个互相咬合的齿轮,若甲齿轮转5圈时,乙转7圈,丙转2圈,则这三个齿轮最少应分别是多少齿?6.张、王、李三人共有54元,张用了3/5,王用了3/4,李用了2/3,各买了一支同样的钢笔,那么张和李两人剩下的钱共有几元?7.甲乙丙三人共植树697棵,已知甲植树棵树的1/2等与乙植树棵树的2/5,甲植树棵树的1/3等与丙植树棵树的2/7,问甲乙丙3人各植树几?8.盒子里有两种不同颜色的棋子,黑色颗数的4/9等于白子颗数的5/6,已知黑子颗数比白子颗数多42颗,两种棋子各几颗?9.三种动物赛跑。

已知狐狸的速度是兔子的2/3,兔子的速度是松鼠的2倍,那么,狐狸、兔子、松鼠的速度比是几?若已知狐狸每一分钟比松鼠多跑14米,那么兔子半分钟比狐狸多跑几米?10.某学校远有跳绳40根,其中短绳根数与长绳根数的比是5:3,又买进一批短绳,这时短绳的根数占总数的75%。

问买进短绳几根?11.一个直角梯形的周长是72厘米,两底之和是腰之和的2.6倍,其中一条腰长为12厘米,这个体型面积是几?问题补充:12.一个长房形周长与一个正方形周长的比为6:5,长方形的长是宽的7/5倍。

求这个长方形面积与正方形面积比是几?13.某高速公路收费站对过往车辆没辆收费标准是:大客车10元,小客车6元,小轿车3元。

某日通过此站大、小客车之比是5:6,小客车与小轿车之比为4:7,共收费4700元,求小轿车通过的数量14.甲乙丙三进行1万米跑,当甲到达终点时,乙离终点还有2千米,丙离终点还有3千米,如果三人跑时速度不变,甲跑完全程用42分钟,那么乙丙跑完全程各用几分钟!15.汽车若干辆装运一批货物.如果每辆装3.5吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有几吨?汽车有几辆?答案1. 设第二组数量除一第二组数量值为x。

数学初一奥数题及答案

数学初一奥数题及答案

数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。

因此,第n项与第1项的差值是1+2+3+...+(n-1)。

答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。

所以第10项是2 + 45 = 47。

题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。

解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。

题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。

现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。

问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。

答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。

题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。

答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。

简单初一奥数题(10篇)

简单初一奥数题(10篇)

简单初一奥数题(10篇)1.简单初一奥数题篇一1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。

他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。

第一次两车在距B地7千米处相遇。

相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。

A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。

(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。

那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。

相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。

刘洋追上王明后两人多长时间再次相遇?2.简单初一奥数题篇二1.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?2.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?3.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?4.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。

七年级数学奥数题八套(附答案)

七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图所示,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简ab(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。

初一数学奥林匹克竞赛题(含答案)

初一数学奥林匹克竞赛题(含答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP +S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

初一数学上册奥数题及答案.doc

初一数学上册奥数题及答案.doc

初一数学上册奥数题及答案一、选择题(每题 1 分,共10 分)1 .如果a,b 都代表有理数,并且a+b=0,那么( )A.a,b 都是0.B.a,b 之一是0.C.a,b 互为相反数.D.a,b 互为倒数.2 .下面的说法中准确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3 .下面说法中不准确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4 .如果a,b 代表有理数,并且a+b 的值大于a-b 的值,那么( ) A.a,b 同号.B.a,b 异号.C.a>0.D.b>0.5 .大于-π并且不是自然数的整数有( )A.2 个.B.3 个.C.4 个.D.无数个.6 .有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不准确的说法的个数是( ) A.0 个.B.1 个.C.2 个.D.3 个.7 .a 代表有理数,那么, a 和-a 的大小关系是( )A.a 大于-a.B.a 小于-a.C.a 大于-a 或a 小于-a.D.a 不一定大于-a.8 .在解方程的过程中,为了使得到的方程和原方程同解,能够在原方程的两边( )A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9 .杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多.B.多了.C.少了.D.多少都可能.10 .轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10 分)2 .198919902-198919892=______.3. =________.4. 关于x 的方程的解是_________.5.1-2+3-4+5-6+7-8+⋯+4999-5000=______.6. 当x=-时,代数式(3x3 -5x2+6x-1) -(x3 -2x2+x-2)+( -2x3+3x2+1)的值是____.7.当a=-0.2 ,b=0.04时,代数式的值是______.8.含盐30%的盐水有60 千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9. 制造一批零件, 按计划18 天能够完成它的. 如果工作 4 天后, 工作效率提升了, 那么完成这批零件的一半,一共需要______天.1 0.现在 4 点5 分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A 提示:1 .令a=2,b=-2,满足2+(-2)=0,由此2 .x2,2x2,x3 都是单项式.两个单项式x3,x2 之和为x3+x2 是多项式,排除A.两个单项式x2,2x2 之和为3x2 是单项式,排除B.两个多项式x3+x2 与x3-x2 之和为2x3 是个单项式,排除C,所以选D.3.1 是最小的自然数, A 准确.能够找到正所以C“没有的负整数”的说法不准确.写出扩大自然数列,0,1,2,3,⋯,n,⋯,易知无非负数,D准确.所以不准确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0 在内)的整数只有-3,-2,-1,0 共4 个.选C.6.由12=1,13=1 可知甲、乙两种说法是准确的.由( -1)3=-1,可知丁也是准确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不准确.即丙不准确.在甲、乙、丙、丁四个说法中,只有丙 1 个说法不准确.所以选B.7 .令a=0,马上能够排除A、B、C,应选D.8 .对方程同解变形,要求方程两边同乘不等于0 的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x -1)(x -2)=0,其根为x=1 及x=2,不与原方程同解,排除B.若在方程x-2=0 两边加上同一个代数式去了原方程x=2 的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,所以选D.9 .设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a) ×(1+10%)=0.9×1.1 ×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10 .设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v >v0)则往返一次所用时间为因为v-v0>0,a+v0>a-v0,a+v>a-v 所以(a+v0)(a+v) >(a-v0)(a -v) ∴t0 -t <0,即t0 <t .所以河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.因为(2+1)(22+1)(24+1)(28+1)(216+1)=(2 -1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22 -1)(22+1)(24+1)(28+1)(216+1)=(24 -1)(24+1)(28+1)(216+1)=(28 -1)(28+1)(216+1)=(216 -1)(216+1)=232 -1.2(1+x) -(x -2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+⋯+4999-5000=(1-2)+(3 -4)+(5 -6)+(7 -8)+⋯+(4999-5000)=-2500.6.(3x3 -5x2+6x-1) -(x3 -2x2+x-2)+( -2x3+3x2+1)=5x+27.注意到:当a=-0.2 ,b=0.04时,a 2-b=(-0.2)2 -0.04=0,b+a+0.16=0.04 -0.2+0.16=0 .8.食盐30%的盐水60 千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x 克,即0.001x 千克,此时,6 0×30%=(0.001x) ×40%解得:x=45000(克).。

七年级数学奥数题八套(附答案)

七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内)1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是().(A)-|-3|3(B)-(-3)3(C)(-3)3(D)-332.“a的2倍与b的一半之和的平方,减去a、b两数平方和的4倍”用代数式表示应为()(A)2a+(1b2)-4(a+b)2(B)(2a+1b)2-a+4b222(c)(2a+1b)2-4(a2+b2)(D)(2a+1b)2-4(a2+b2)2223.若a是负数,则a+|-a|(),(A)是负数(B)是正数(C)是零(D)可能是正数,也可能是负数4.如果n是正整数,那么表示“任意负奇数”的代数式是().(A)2n+l(B)2n-l(C)-2n+l(D)-2n-l5.已知数轴上的三点A、B、C分别表示有理数a、1、-l,那么|a+1|表示().(A)A、B两点的距离(B)A、C两点的距离(C)A、B两点到原点的距离之和(D)A、C两点到原点的距离之和6.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数a、b、c、d,且d-2a=10,那么数轴的原点应是().(A)A点(B)B点(C)C点(D)D点7.已知a+b=0,a≠b,则化简b(a+1)+a(b+1)得().a b(A)2a(B)2b(C)+2(D)-28.已知m<0,-l<n<0,则m,mn,mn2由小到大排列的顺序是().(A)m,mn,mn2(B)mn,mn2,m(C)mn2,mn,m(D)m,mn2,mn二、填空题(每小题?分,共84分)9.计算:1a-(1a-4b-6c)+3(-2c+2b)=3210.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是梨梨梨型苹果苹果梨梨3028荔枝香蕉苹果梨20香蕉19香蕉荔枝苹果202530?14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是.15.在数轴上,点A、B分别表示-1和1,则线段AB的中点所表示的数35是.16.已知2a x b n-1与-3a2b2m(m是正整数)是同类项,那么(2m-n)x=17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2088,则王恒出生在年月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入 1 000 元,2000 年 12 月 3 日支取时本息和是 元,国家利息税税率是 20%,交纳利息税后还有元.19.有一列数 a ,a ,a ,a ,…,a ,其中1 234na =6×2+l;a =6×3+2;a =6×4+3;a =6×5+4;1 234则第 n 个数 a =;当 a =2001 时,n =.n n20.已知三角形的三个内角的和是 180°,如果一个三角形的三个内角的度数都 是小于 120 的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D二、9.一 a6+1 06,10.一 43.6,11.男生比女生多的人数,1 2.90,13.1 6,14.0.1 2 5,15.-115,16.1,17.1988;1.18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9 或 2,7 1,1 07(每填错一组另扣 2 分).七年级奥数试题(二)一、选择题1.已知 x=2 是关于 x 的方程 3x-2m=4 的根,则 m 的值是()(A)5(B)-5(C)1 (D)-12.已知 a+2=b-2= c =2001,且 a+b+c=2001k ,那么 k 的值为()。

七年级数学上奥数期末测试试题

七年级数学上奥数期末测试试题

七年级奥数班试题一、精心选一选:(每题5分,共30分)1.在2007(-1),3-1, -18(-1),18这四个有理数中,负数共有( ) A 1个 B 2个 C 3个 D 4个2. 若0)12(22=++-y x ,则22y x +的值是 A 83 B 21 C -81 D 417 3.为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费。

小明家六月份交水费33. 6元,则小明家六月份实际用水( )立方米A 18B 19C 20D 214.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d =ad-bc ,已知241x x -=18,则x=( ) A -1 B 2 C 3 D 45.已知代数式y x 2+的值是3,则代数式142++y x 的值是( )A. 1B. 4C. 7D. 不能确定6、方程2008200920083221=⨯++⨯+⨯x x x 的解是( ) A 、2006 B 、2007 C 、2008 D 、2009二、耐心填一填:(每题4分,共44分)7、22.5°= 度 分;12°24′= °8、若2(1)10x y ++-=,则20082009x y +=9、若433-m n b a 和2331b a -是同类项,则m = ,n = 。

10、若031)2(2=++-y x ,则x y = 。

11、如右图,OC ⊥OD ,∠1=35°,则∠2= °。

12、如图:点C 、D 在线段AB 上,AC=BD ,若AD=3cm ,则BC= cm 。

13、如果021)1(=+-m y m m 是关于y 的一元一次方程,则m = 。

14、某人上山的速度为a 千米/时,下山的速度为b 千米/时,则此人上山下山的整个路程的平均速度是 千米/时。

15、长度相等而粗细不同的两支蜡烛,其中一支可燃3小时,另一支可燃4小时。

(完整版)初一奥数题集(带答案解析)

(完整版)初一奥数题集(带答案解析)

1、( 1)2002 的值2、a 为有理数,则 11工的值不能是a 2000A. -2007B. 2009C.-2009D.20071 8、计算:2002 — 20011 2000- 199912丄 11 2 2 2 32 3A. 2000B.1C.-1D.-2000A.1B.-1C .0D.-20003、2007200620072006 2007 的值等于4、(1)( 1)1)( 1) ( 1)的结果是A.-1B.1C.0D.25、( 1) 20061严20081 的结果是A.0B.1C.-1D.2&计算 (2)2(2)的结果是A.2B.1C.-1D.0 7、计算: 3.825 -1.82540.25 3.825 3.8259、计算:-2.5 ( 0.75)113 1111、计算:32000 5 319999 6 31998.练习:227 282n2n(2 1) 2n.6 12、计算:-(-2 41 1结果为:——22 21495-632? 2〔0 2门1982 612.51 13、计算:一2006 2007.应用:dn(n 1)练习:5 91 19 13 13 171101 10513、计算: 1 2 3 2 4 6 7 14 211 3 52 6 10 7 21 352结果为-514、求x 1 x 2的最小值及取最小值时x的取值范围.练习:已知实数a,b,c满足1 c 0 a b,且b c a,求c 1 |a c |a b 的值.练习:1、计算(1)1998( 1)1999(1)2006( 1)2007的值为(C)A.1B.-1 C.OD.102、 若m 为正整数,那么4 A.—定是零C. 是整数但不一定是偶数3、 若n 是大于1的整数,贝U p A. 一定是偶数C.是偶数但不是2 4、观察以下数表,第10行的各数之和为 1 4 3 6 7 8 13 12 11 10 15 16 17 18 19 26 25 24 2322 211 m (m2 1)的值B. 一定是偶数 D.不能确定1 ( n)n (n 2 1)^的值是B.—定是奇数 D.可以是奇数或偶数B.1190C.595D.4905、已知a 2002 2001 2002 20012 2002足的关系是A. a b2001B.a b 2002C.a1 2 3 24 64 8 127 14 &计算:2001 2OO22001, b 2OO22002,则 a 与 b 满(C )bD.a b 200221 235. 57、计算:1 21 3— 4 丄 5 丄 6— 7丄.2836 12 20 30 42 56 8A.980 1 3 5 2 6 10 4 12 20 7 211 1 113、2007加上它的1得到一个数,再加上所得的数的1又得到一个数,再加上这次得到的1又2 3 4 得到一个数,…,依次类推,一直加到上一次得数的丄,最后得到的数是多少?200714、有一种“二十四点”的 游戏,其游戏规则是这样的:任取四个1至13之间的 自然数, 将这四个(每个数用且只用一次)进行加减四则运算与4 (1 2 3)应视作相同方法的运算,8、计算:112 12 3 123 1009、计算:9 99 9999999 99999 999999.10、 计算 (1 2000 1999 1980 197020 10 1 1 1 1 1-)(1 -)(1 -) (1 )(1 )(12 3 4 998999.10611、 已知9^,Q 巧,比较P,Q 的大小. 9 912、 (11 9)9T90799 999911 911 T9小9099990 设n 为正整数, 计算:114 n(n 2 112 3 3 3 4 4 4 1n 1) 22002 (1 1) (1 1)2 32005003现有四个有理数3, 4,-6,10.运用上述规则写出三种不同方法的运算,使其结果等于24, 运算式:(1) _______________________ ;(2) _______________________ ;(3) _______________________ ;15黑板上写有1,2,3,…,1997, 1998这1998个自然数,对它们进行操作,每次操作规则如下:擦掉写在黑板上的三个数后,再添写上所擦掉三个数之和的个位数字,例如:擦掉5, 13和1998后,添加上6;若再擦掉6, 6, 38,添上0,等等。

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.(4分)设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q≥a>bB .q ≥a>b≥pC .q ≥p≥a>bD .p ≥a>b≥q2.(4分)下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A . 3个B . 2个C . 1个D . 0个 3.(4分)a 为有理数,下列说法中,正确的是()A .(a+)2是正数B . a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于4.(4分)a ,b ,c 均为有理数.在下列:甲:若a >b ,则ac 2>bc 2.乙:若ac 2>bc 2,则a >b .两个结论中()A .甲、乙都真B .甲真,乙不真C .甲不真,乙真D .甲、乙都不真5.(4分)若a+b=3,ab=﹣1,则a 3+b 3的值是()A . 24B . 36C . 27D . 306.(4分)a 、b 、c 、m 都是有理数,且a+2b+3c=m ,a+b+2c=m ,那么b 与c 的关系是()A .互为相反数B .互为倒数C .相等D .无法确定7.(4分)两个10次多项式的和是()A . 20次多项式B . 10次多项式C . 100次多项式D .不高于10次的多项式8.(4分)在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A .奇数B .偶数C .负整数D .非负整数二、填空题(共8小题,每小题5分,满分40分)9.(5分)现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是 _________ 岁.10.(5分)1.23452+0.76552+2.469×0.7655=_________ .11.(5分)已知方程组,哥哥正确地解得,弟弟粗心地把c看错,解得,则abc= _________ .12.(5分)若,则= _________ .13.(5分)已知多项式2x4﹣3x3+ax2+7x+b能被x2+x﹣2整除,则的值是_________ .14.(5分)满足的值中,绝对值不超过11的哪些整数之和等于_________ .15.(5分)若三个连续偶数的和等于1992.则这三个偶数中最大的一个与最小的一个的平方差等于_________ .16.(5分)三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,,b,的形式,则a1992+b1993= _________ .三、解答题(共3小题,满分48分)17.(16分)将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.18.(16分)如果6x2﹣5xy﹣4y2﹣11x+22y+m可分解为两个一次因式的积,求m的值,并分解因式.19.(16分)设a、b、c、d都是正整数,且a2+b2=c2+d2,证明:a+b+c+d定是合数.初一奥林匹克数学竞赛训练试题集(01)参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.(4分)设a 、b 为正整数(a >b ),p 是a 、b 的最大公约数,q 是a 、b 的最小公倍数,则p ,q ,a ,b 的大小关系是()A .p ≥q≥a>bB .q ≥a>b≥pC .q ≥p≥a>bD .p ≥a>b≥q考点:约数与倍数.专题:分类讨论.分析:根据两个数的最大公约数与最小公倍数的关系判定即可.解答:解:∵(a ,b )=p 且[a ,b]=q ,∴p|a 且p|b ,即a|q 且b|q .∴q≥a>b≥p.故选B .点评:本题主要考查最大公约数与最小公倍数,两个数的最大公约数最小是一,最大是其中较小的数,两个数的最小公倍数最大是他们的积,最小是其中较大的数.2.(4分)下列四个等式:=0,ab=0,a 2=0,a 2+b 2=0中,可以断定a 必等于0的式子共有()A . 3个B . 2个C . 1个D . 0个考点:非负数的性质:偶次方;有理数的加法;有理数的乘法;有理数的除法.专题:计算题.分析:按照两数相除商是0,则除数一定是0;两数的积是0,那么其中的一个数必为0;两数的平方和是0,那么两数必都等于0;一个数的偶次方是0,那么这个数一定为0.由此可判断出本题的答案.解答:解:∵=0,b≠0,∴a 必为0,符合题意,故正确;又∵ab=0,b=0时成立,a 未必为0,不符合题意,故错误;又∵a 2=0,a 必定=0,符合题意,故正确;又∵a 2+b 2=0,则ab 必都等于0,故正确;∴必等于0的式子共有3个,故B 、C 、D 选项错误,故选A .点评:本题主要考查有理数加法、乘法、除法中的特殊结果0的出现原因.3.(4分)a 为有理数,下列说法中,正确的是()A .(a+)2是正数B . a 2+是正数C .﹣(a ﹣)2是负数D .﹣a 2+的值不小于考点:有理数的乘方.分析:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.02=0.解答:解:A、(a+)2可为0,错误;B、a2+是正数,正确;C、﹣(a﹣)2可为0,错误;D、﹣a2+的值应不大于,错误.故选B.点评:此题要注意全面考虑a的取值,特别是底数为0的情况不能忽视.4.(4分)a,b,c均为有理数.在下列:甲:若a>b,则ac2>bc2.乙:若ac2>bc2,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,乙真D.甲、乙都不真考点:不等式的性质.专题:常规题型.分析:若c=0,甲不正确.对于乙,隐含着条件c≠0,则c2>0,进而推出a>b,乙正确.解答:解:当c=0时,ac2=bc2,故甲不对;∵ac2>bc2,∴c≠0,∴c2>0,∴a>b,故乙正确.故选C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(4分)若a+b=3,ab=﹣1,则a3+b3的值是()A.24 B.36 C.27 D.30考点:立方公式.专题:计算题.分析:将a3+b3展开,然后代入题干中a+b及ab的值即可得出答案.解答:解:∵a3+b3=(a+b)(a2﹣ab+b2)=(a+b)[(a+b)2﹣3ab]∵(a+b)=3,ab=﹣1,∴原式=3×12=36.故选B.点评:本题考查立方公式的知识,比较简单,关键是掌握立方公式的展开形式.6.(4分)a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定考点:代数式.分析:由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.解答:解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选A.点评:本题考查了代数式的换算,比较简单,容易掌握.7.(4分)两个10次多项式的和是()A.20次多项式B.10次多项式C.100次多项式D.不高于10次的多项式考点:整式的加减.分析:多项式次数的定义:多项式中各单项式次数最高的次数,就是多项式的次数,合并同类项的法则:字母和字母的次数不变,系数相加作为结果的系数;根据这两方面解答本题.解答:解:根据多项式次数的定义,多项式中各单项式次数最高的项的次数就是多项式的次数,而同类项相加减时,系数相加减,字母和字母的次数不变,故多项式相加减时,次数不会高于10次.故选D.点评:本题考查了多项式次数的定义,合并同类项的法则,需要熟练掌握.8.(4分)在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数考点:奇数与偶数.专题:计算题.分析:根据在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变的性质即可得出答案.解答:解:由于在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变,这个性质对n 个整数也是正确的,因此,1,2,3,1991,1992的每一个数前面任意添加“+”或“﹣”号,其代数和的奇偶性与﹣1+2﹣3+4﹣5+6﹣7+8﹣1991+1992=996的奇偶性相同,是偶数,故选B.点评:本题考查了整数的奇偶性,难度一般,关键是掌握在整数a、b前任意添加“+”号或“﹣”号,其代数和的奇偶性不变.二、填空题(共8小题,每小题5分,满分40分)9.(5分)现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是24 岁.考点:一元一次方程的应用.专题:应用题;年龄问题.分析:要求哥哥现在的年龄,就要先设出未知数,利用9年前两个人之间的年龄关系作为相等关系“九年前弟弟的年龄,只是哥哥年龄的”和“现在弟弟的年龄恰好是哥哥年龄的”列方程求解即可.解答:解:设哥哥现在年龄为X,弟弟现在年龄为X,那么哥哥九年前的年龄为X﹣9,弟弟九年前的年龄为X﹣9.由题意得:X﹣9=(X﹣9)解得:X=24,所以哥哥现在的年龄是24岁.故填:24.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.10.(5分)1.23452+0.76552+2.469×0.7655= 4 .考点:完全平方公式.分析:本题可根据完全平方公式,设出a,b进行计算即可.解答:解:令x=1.2345,y=0.7655,则2xy=2.469×0.7655,1.23452+0.76552+2.469×0.7655,=(x+y)2,=(1.2345+0.7655)2,=22,=4.故答案为:4点评:本题考查完全平方公式的应用,找出相应关系即可.11.(5分)已知方程组,哥哥正确地解得,弟弟粗心地把c看错,解得,则abc= ﹣40 .考点:二元一次方程组的解.专题:计算题.分析:先把正确的解代入求出c的值,然后再把解代入ax+by=2即可得出答案.解答:解:把得代入方程组?,解得:c=﹣2,再把解代入ax+by=2,。

七年级上数学奥数题

七年级上数学奥数题

七年级上数学奥数题一、有理数运算相关。

1. 计算:(-1)+2+(-3)+4+·s+(-99)+100- 解析:- 我们可以将相邻的两项看作一组,即(-1 + 2)=1,(-3+4)=1,以此类推。

- 从1到100共有100个数,两两一组,可以分成100÷2 = 50组。

- 每组的结果都是1,所以原式的结果为50×1=50。

2. 计算:1 - 2 - 3+4 + 5-6 - 7+8+·s+97 - 98 - 99 + 100- 解析:- 把原式每四项看作一组,(1-2 - 3 + 4)=0,(5 - 6-7 + 8)=0,依此类推。

- 因为100÷4 = 25,所以原式共有25组。

- 每组结果为0,所以原式的结果为0。

3. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

- 去括号后可以发现中间项都可以消去,只剩下1-(1)/(100)=(99)/(100)。

二、整式相关。

4. 已知A = 3x^2-2x + 1,B = 5x^2-3x + 2,求2A - 3B。

- 解析:- 首先将A = 3x^2-2x + 1,B = 5x^2-3x + 2代入2A-3B。

- 2A-3B = 2(3x^2-2x + 1)-3(5x^2-3x + 2)。

- 展开式子得6x^2-4x + 2-(15x^2-9x + 6)。

- 去括号得6x^2-4x + 2 - 15x^2+9x - 6。

- 合并同类项得(6x^2-15x^2)+(9x - 4x)+(2 - 6)= - 9x^2+5x - 4。

初一数学上册奥数题

初一数学上册奥数题

初一数学奥数题一、填空题:1、计算:(1).求1*2分之一+2*3分之一+3*4分之一+4*5分之一……+2001*2002分之一的值2、下面有两串按某种规律排列的数,请按规律填上空缺的数。

(1)15,20,10,(),5,30,(),35。

3、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是_____43______。

4、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。

申=______;办=______;奥=______;运=______。

5、甲班有学生48人,其中1/2是女生;乙班有学生45人,其中1/3是女生,那么两班的男生共有___54___人。

6、配置3%的葡萄糖50千克,需要1%与6%的葡萄糖分别为______千克、______千克。

7、五个人都属龙,他们岁数的乘积是589225,这五个人的岁数和是__________。

8、加工一批零件,如果师傅先加工20天后,剩下的由徒弟再加工30天正好完成;如果徒弟先加工37天,剩下的由师傅再加工17天也正好完成。

现在师傅、徒弟一起加工若干天后,剩下的由徒弟再加工40天正好完成。

问:师傅和徒弟一起加工了_______天。

9、用两个同样长3厘米,宽2厘米,高1厘米的长方体,拼成一个大长方体,它的表面积最大是________平方厘米。

(即cm2)二、综合题:(每小题6分,共30分)1、某商店购买小狗和小熊玩具共80只,已卖出小狗只数的1/5,小熊只数的2/3,共计30只。

购进小狗和小熊的只数分别为多少只?2、有一本书,如果第一天读35页,以后每天都比前一天多读5页,结果最后一天只读35页,就读完了;还是这本书,如果第一天读45页,以后每天都比前一天多读5页,结果最后一天只读40页也读完了。

问:这本书有多少页?3、将一个表面是红色的长方体(3×4×5),切成若干个1×1×1的小立方体,问表面中只有一面是红色的小立方体和表面中没有红色的小立方体各有多少块?4、有红、黄、蓝、白、紫五种颜色珠子各一颗,分别放在编号为1、2、3、4、5号的五只箱内,A、B、C、D、E五人的猜想结果如下:A:2号内装紫色珠子,3号内装黄色珠子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学上册奥数题
姓名 :座号:班级:成绩:_______
一、选择题(每小题 3 分,共 15 分)
1、汽车的雨刷把玻璃上的雨水刷干净,是属于()的实际应用
A. 面动成体
B.线动成面
C.点动成线
D.以上答案都不对
2、b 为有理数,则下列结论正确的是()
A、| b| =b B 、| b| 是非负数 C 、| b| 是正数 D、-b 为负有理数
3、当a=2 时,代数式2a-3 的值为()
A . 3 B. 1 C. -1 D. 5
4、化简 -2a+( 2a-1 )的结果是()
2

5、与 mt 是同类项的是(
2
D.(mt)
二、填空题(每小题 3 分,共 30 分)
6、平面内两直线相交有 ______个交点,两平面相交形成______条直线
7、-5 的绝对值是 ______,相反数是 ______,倒数是 ______
b
8、|a |=1 , x 与 y 互为相反数,则( x+y)+2ab=______
9 、错误 ! 未找到引用源。

错误! 未找到引用源。

错误! 未找到引用源。

若|m+3|+(n-2)2=0,则m+n=________.
10、代数式 -2π ab2
3的系数是
________.
1 a+
2
3 3 2b-1
11、如果5x y与- 5x y 是同类项,则a-b=_____________________
1
12、2周角 =____度 =____平角 =____直角
13、的相反数的倒数的绝对值是_______
14、定义 a☆b=a2-b 2,则( -3 )☆ 5☆( -1 ) =______
15、绝对值大于或等于1,而小于 4 的所有负整数的和是 ____
三、解答题(本大题共55 分)
16、每小题 5 分
53 1 2225 1 3
( 1) ( 24-8-4+3) × 72( 2) -2 -(-6)×( -12)-1 ÷ ( -2)(3)2a+(4a-5b)-3(a-2b)
17、先化简,再求值:(5 分)
9x+6x2-3(x-2x 2), 其中 x=-2
18、根据俯视图,画出这个几何体的主视图和左视图。

(8分)
19、已知 a、b 互为相反数, c、 d 互为倒数, x 的绝对值等于 2,
求 x2-(a+b)+cd|x|+(a+b)2011+(-cd) 2012的值。

(10 分)
20、如果 2x+y=5,求代数式 -3 (2x+y)( 2x+y-4 ) +4x+2y 的值。

( 5 分)
21、初一级学生在 4 名数学老师的带领下去剑英纪念园游玩,公园的门票为每
人20 元,现有两种优惠方案,甲方案: 师生都按折收费。

乙方案:带队老师免费,学生按 8 折收费。

(12 分)
(3)如有 a 名学生,用代数式表示两种优惠方案各需多少元?
(4)当 a=80时,采用哪种方案优惠。

(5)当 a=120时,采用哪种方案优惠。

相关文档
最新文档