初中数学 矩形的性质与判定(1)
九年级数学(北师大版)上册教案:1.2矩形的性质与判定(1)
第一章特殊平行四边形1.2 矩形的性质与判定(一)教学目标知识与技能:了解矩形的有关概念,理解并掌握矩形的有关性质.过程与方法:经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重难点、关键重点:掌握矩形的性质,并学会应用.难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.教学准备教师准备:投影仪,收集有关矩形的图片,制作教具.学生准备:复习平行四边形性质,预习矩形这节内容.学法解析1.认知起点:已经学习了三角形、平行四边形、菱形,•积累了一定的经验的基础上学习本节课内容.2.知识线索:情境与操作→平行四边形→矩形→矩形性质.3.学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点.教学过程一、联系生活,形象感知【显示投影片】教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念.矩形定义:有一个角是直角的平行四边形叫做矩形.(也就是小学学习过的长方形).教师活动:介绍完矩形概念后,为了加深理解,也为了继续研究矩形的性质,拿出教具.同学生一起探究下面问题:问题1:改变平行四边形活动框架,将框架夹角∠α变为90°,•平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的从属关系?(教师提问)[来源:21世纪教育网学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质.[来源:学*科*网Z*X*问题2:既然它具有平行四边形的所有性质,•那么矩形是否具有它独特的性质呢?(教师提问)学生活动:由平行四边形对边平行以及刚才∠α变为90°,可以得到∠α的补角也是90°,从而得到:矩形的四个角都是直角.评析:实际上,在小学学生已经学过长方形四个角都是90°,这里学生不难理解.教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述).学生活动:观察发现:矩形的两条对角线相等。
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版
九年级数学上册 1.2 矩形的性质与判定(第1课时)教案(新版)北师大版九年级数学上册1.2矩形的性质与判定(第1课时)教案(新版)北师大版矩形的性质及判定教学目标(1)掌握矩形的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)初步运用矩形的定义和性质解决相关问题,进一步培养学生的分析能力和教学重点矩形性质定理的证明及应用教学难点“直角三角形斜边的中线等于斜边的一半”的推导及性质定理应用的教学过程:一、创设情境,引入新课老师:展示教具(平行四边形)并演示将平行四边形转化为菱形的过程当我们给平行四边形其他特殊条件时,我们会得到其他形状吗?例如,如果平行四边形的内角变成90度,你会发现什么特殊形状?学生:长方形师:原来是大家非常熟悉的图形,他还有个高大上的名字――矩形.板书课题老师:根据前面学习的菱形和平行四边形的过程,你想了解矩形的哪些方面?学生:矩形的定义:矩形的本质生:矩形边、角、对角线的特征.生:矩形的判定.生:……二、目标展示师:出示学习目标.生:默读学习目标.三、自主学习1.自主探究老师:根据以下自学指导,自学课本第11至12页讨论前的内容。
1.定义:有些被称为矩形12.矩形是平行四边形吗?3、如图,四边形abcd是矩形,试从它的边,角,对角线,对称性上写出性质.(小组讨论)侧面:角度:对角线:对称性:4、先写出特有的性质,然后独立思考证明过程,再与课本上的证明相比较.矩形特有的性质是:..处理方法:学生将自学与小组合作相结合,通过自学、猜想和推理三个步骤掌握矩形的性质,在小组学习过程中提问,其他学生讨论并回答【设计意图】本环节知识较为简单,有前面菱形性质的研究经验,又有比较坚实的三角形全等的知识基础,此处自学应该没有障碍,因此,为培养学生的自主学习能力及增大课堂容量,将此处设计为自主学习.定义:直角平行四边形是一个矩形。
矩形的四个角是直角。
初中数学《矩形的性质与判定》PPT课件_【北师大版】1
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
结论
由此得到矩形的判定定理: 对角线相等的平行四边形是矩形.
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
中考 试题
例
在四边形ABCD中,对角线AC与BD互相平分,
交点为O,在不添加任何辅助线的前提下,要使四边
形ABCD成为矩形,还需添加一个条件,这个条件可
以是 AC=BD ቤተ መጻሕፍቲ ባይዱ ∠ABC,∠CDA,∠BAD,∠BCD
图2-46
结论
三个角是直角的四边形,容易知道另一个角也 是直角,由此得到:
三个角是直角的四边形是矩形.
四边形中只有两个角 是直角,我想到了下边的图形:
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
动脑筋
从“矩形的对角线相等且互相平分”这一性质受 到启发,你能画出对角线长度为4cm的一个矩形吗? 这样的矩形有多少个?
因此点B和点C关于直线EF对称,点A和点D关于 直线EF对称,从而在关于直线EF的轴反射下,矩形 ABCD的像与它自身重合,因此矩形ABCD是轴对称 图形,直线EF是矩形ABCD的一条对称轴.
类似地,过点O作直线MN⊥AB,且分别与边 AB,DC相交于点M,N,则点M,N分别是边AB,
DC的中点,直线MN是矩形ABCD的一条对称轴.
初 中数学 《矩形 的性质 与判定 》优秀 课件北 师大版1 -精品 课件ppt (实用 版)
矩形的性质与判定(第1课时矩形的定义与性质)
中点,由此可联想到应用“直角三角形斜边上的中线等于斜
边的一半”这一定理.
解:连接EG,DG. ∵BD,CE是△ABC的高, ∴∠BDC=∠BEC=90°. ∵点G是BC的中点,
∴EG=12
BC,DG=
1 2
BC.
∴EG=DG.
又∵点F是DE的中点,
∴GF⊥DE.
课堂小结
矩形的定义:有一个角是直角的平行四边形.
在Rt△ABD中, 由勾股定理,得AB2+AD2=BD2 ,
∴ x2 82 x 42
解得x=6,则 AB=6cm. ∵AE×DB= AD×AB,解得 AE= 4.8cm.
“直角三角形斜边上的高”是一个基本图形,利用面积公式 ,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB= AD×AB.
证明:∵四边形ABCD是平行四边形, ∠C=90°, ∴∠A=∠C=90° ∠B+∠C=180 °, ∴∠B=180-∠C=90°, ∴∠D=∠B=90°, 即∠A=∠B=∠C=∠D=90°.
几何语言: ∵四边形ABCD是矩形, ∴∠A=∠B=∠C=∠D=90°.
矩形的对角线相等
A
D
已知:四边形ABCD是矩形,
AC.
在矩形ABCD中,找出相等的线段与相等的角.
A
D
相等的线段:
AB=CD AD=BC
AC=BD
OA=OC=OB=OD
11
=2
AC=
2
BD
B
O
C
相等的角:
∠DAB=∠ABC=∠BCD=∠CDA=90°
∠AOB=∠DOC ∠AOD=∠BOC
∠OAB=∠OBA=∠ODC=∠OCD
∠OAD=∠ODA=∠OBC=∠OCB
初中数学_矩形的性质与判定(第1课时)教学课件设计
矩形是特殊的平行四边形, 进一步思考它有哪些特殊的性质?
活动要求: 1.运用你手中的矩形纸片, 折一折、画一画、量一量 2.小组长汇总探究结果
探索的结论:(矩形特殊的性质): 角:四个角都是直角 对角线:对角线相等 对称性:轴对称图形
矩形的性质
1:矩形的四个角都是直角. 2:矩形的对角线相等.
探索的结论:
已知:如图,四边形ABCD是矩形,∠ABC=90°,
对角线AC与DB相交于点O.
A
D
求证:
O
B
C
(1)∠ABC=∠BCD=∠CDA=∠DAB=900.
(2)AC=DB
练习:
1. 下面性质中,矩形不一定具有的是( D) A.对角线相等 B.四个角都相等 C.是轴对称图形 D.对角线垂直
2. 已知矩形两邻边长分别为6和8,则矩形的对角 线长为___1_0___
议一议:
设矩形的对角线AC与BD交于点E,那么BE与 AC有什么大小关系?为什么?
A
D
A
E
B
C
E
B
C
BE与AC的大小关系变了吗?现在BE是 Rt△ABC中一条怎样的特殊线段?
由此可得推论:
直角三角形斜边上的中线等于斜边的一半
例题:在矩形ABCD中,两条对角线相交于
点O,∠AOD=120°,AB=1,求矩形对角线Leabharlann 的长ADO
B
C
我学会了… ; 我解决了……;
必做题:《同步学习》达标测试1-5题 选做题:《同步学习》达标测试6-8题
平行四边形有哪些性质?
1.2矩形的性质与判定 第1课时(教案)
北师大版九年级上第一章《特殊平行四边形》《矩形的性质与判定》(第1课时)教案课题矩形的性质单元第一章学科数学年级九年级学习目标1.知识与技能了解矩形的有关概念,理解并掌握矩形的有关性质.2.过程与方法经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.情感态度和价值观培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值.重点掌握矩形的性质,并学会应用.难点理解矩形的特殊性.教学过程教学环节教师活动学生活动设计意图导入新课教师说:“同学们,下面几幅图片中都含有一些平行四边形。
观察这些平行四边形,你能发现它们有什么样的共同特征?”引导学生发现:是平行四边形,且它们的四个角都相等,且都等于90度. 学生看黑板,观察图片,思考老师提出的问题观察图片,思考相关问题,能够给学生清晰的思考路径讲授新课矩形的定义:有一个角是直角的平行四边形叫做矩形。
矩形是特殊的平行四边形教师:同学们,开动脑筋,想一想,矩形是特殊的平行四边形,它具有一般平行四边形的所有性质。
你能列举一些这样的性质吗?点名学生回答教师问:你认为矩形还具有哪些特殊的性质?与同伴交流。
学生讨论,点名学生回答。
教师:同学们,拿出一张矩形纸片出来,我们来动学生听讲,并思考老师问的问题小组讨论矩形的性质,并举手回答老师问题学生动手跟着老师指导的思增强学生观察,总结能力,小组讨论能力学生自己观察得出结论,能够让学生更好地掌握新知识增强同学间的互动,交流,动手手试试看。
用矩形纸片折一折,回答下列问题:1)矩形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?教师点名学生回答问题。
得出结论:矩形是轴对称图形,有两条对称轴,分别是两条对边垂直平分线,两条对称轴互相垂直. 也是中心对称图形,对称中心是对角线的交点。
教师:同学们完成任务的能力很好哦,接下来,老师要提高问题难度了,谁来帮老师和同学们从边、角、对角线方面,观察或度量猜想矩形的特殊性质. ①边:对边平行且相等(与平行四边形相同),邻边互相垂直; ②角:四个角是直角; ③对角线:相等且互相平分.教师带领学生验证猜想结论 验证结论:已知:如图,在矩形ABCD 中,∠A=90°. 求证:(1)∠A=∠B=∠C=∠D=90°路,完成任务。
6.2 矩形的性质与判定(1)
6.2 矩形的性质与判定(1)主备人:贾爱琴 审核人:李卫国 班级:________ 姓名:________ 【学习目标】1.理解矩形的概念,以及它与平行四边形之间的关系.2.探索并证明矩形的性质定理.3.探索并证明性质定理:直角三角形的斜边上的中线等于斜边的一半. 【知识准备】根据平行四边形的性质和判定定理,完成下表【自学提示】1.自学书本12-14页,填空:_________________________的平行四边形叫做______. 注:矩形即我们所熟悉的________,是生活中常见的一种特殊的平行四边形.2.前面我们知道了平行四边形的性质,那矩形会有哪些性质呢? ⑴矩形是特殊的平行四边形,它具备平行四边形的所有性质. ⑵矩形与平行四边形比较又有其特殊的性质:矩形是轴对称图形,它有____条对称轴.分别是_______________________的两条直线. 特殊在“角”上的性质是_____________________________________________. 特殊在“对角线”上的性质是:_______________________________________. 3.直角三角形的性质定理:__________________________________________________________.练习:如图,在矩形ABCD 中,E ,F 分别是AC ,BC 上的点,在下列三个条件:⑴AE =CF⑵BE ∥DF ;⑶∠1=∠2中,选择其中一个,求证:BE =DF. (可用多种方法......)21FEDC BA【问题积累】在学习中还存在哪些疑问? 【共同释疑】(用多媒体出示)预习书本14页例1,完成下列题目已知如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=120°,AB=2.5,求矩形对角线的长.对应练习 【当堂测试】1.下列说法错误的是( ).A 、矩形的对角线互相平分B 、矩形的对角线相等C 、有一个角是直角的四边形是矩形D 、有一个角是直角的平行四边形叫做矩形 2.矩形具有而一般平行四边形不具有的性质是( ).A 、 对角线相等B 、 对边相等C 、 对角相等D 、 对角线互相平分 3.在△ABC 中,∠B =∠C ,AD ⊥BC ,E 、F 分别是AB 、AC 的中点, 求证:DE =DF4.(选做题)已知:如图3,矩形ABCD 中,BD AE ⊥于E求:CAE ∠的度数。
矩形的性质与判定(1)
面积.
A
解:∵四边形ABCD是平行四边形,
∴AC = 2OA,BD = 2OB,
∵△AOB是等边三角形
∴OA = OB,
B
∴AC =BD,
∴□ABCD是矩形.
在Rt△ABC中,
∵AB = 4cm,AC=2AO=8cm,
∴BC=
82 42 4 3(cm),
S ∴ □ABCD=AB·BC = 4×4 3 =16 3(cm2).
D O
C
P16随堂练习
已知:如图,在□ABCD中, M是AD
边的中点,且MB=MC。
求证:四边形ABCD是矩形。
A
M
D
B
C
谈一谈,今天你有何收获?
判定一个四边形是矩形的方法是:
ABCD ∠A=90°
ABCD AC = BD
ABCD 是矩形
∠A= ∠B= ∠C=90°
四边形ABCD 是矩形
1. 有一个内角是直角 的平行四边形是矩形.对角 线 相等 的平行四边形是矩形.有三个角是直角的 四边形是 矩形 形。
6、已知如图四边形ABCD中
AO=BO=CO=DO,
试说明四边形ABCD是矩形。
证明:∵
A
D
A∴OA=OB=OC=OC,O=DO
O
∴四BO边=形DEOFGH是平行四B边形
C
又∵AO+CO=BO+DO
即AC=BD
∴四边形ABCD是矩形
7、已知: 矩形ABCD的对角线AC、BD相交
于O,E、F、G、H分别是AO、BO、CO、
0
2
C
F
1
N D
∴∠2+∠4=90°即∠ECF=90°
矩形的性质与判定(一)
教学方法
任务驱动法
使
用教Biblioteka 材构想《矩形的性质与判定》一课属于初中平面几何重点知识。本节是在学习了平行四边形的性质与判定以及菱形的基础上,在掌握了证明平行四边形有关容及特殊平行四边形的一般研究方法后来学习的,它既是平行四边形的延伸,又为后面正方形的学习提供知识、方法的支持,为进一步研究其他图形奠定基础。依据新课标要求,《矩形的性质》不能只停留在知识教学上,而是要把经历探索图形的基本性质的过程,发展学生的基本的推理技能放在首要位置。矩形是的平行四边形中的一种特殊图形,在生活中有着广泛的应用,所以课本很多地方以图片形式呈现了矩形的“原型”,旨在唤起学生的生活经验,促进数学学习。
从对称性来说,矩形既是轴对称图形,又是中心对称图形。
课时教学流程
教 师 行 为
学 生 行 为
在直角三角形ABC中,你能找到它的一条特殊线段吗?你能发现它有什么特殊的性质吗?你能借助于矩形加以证明吗?
(2)教师板书推论及推理语言:定理:直角三角形斜边的中线等于斜边的一半.
(3)练一练
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线.
(3)在运动过程中四边形改变的是什么?
第二环节:分组讨论,探究新知
矩形是特殊的平行四边形,它还具有一些特殊性质。下面我们来进一步研究矩形的其他性质。
学生观察从平行四边形到矩形的变化过程,事实上是在学生已有的平行四边形相关认知的基础上建构,让他们认识到矩形是平行四边形,但却是角度特殊的平行四边形。从而自然得到矩形定义需满足两个条件。(1)平行四边形,(2)有一个角是直角。定义是本节的关键点,因此观察过程不能省略。
第1章1.2 矩形的性质与判定课件(1)九年级数学北师大版上册
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊Biblioteka 行四边形第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
11.如图,矩形 ABCD 的对角线 AC,BD 交于点 O,CE∥BD, DE∥AC.
(1)求证:四边形 CODE 为菱形;
MN.若 AB=2 2,BC=2 3,则图中阴影部分的面积为 2 6 .
9.如图,点 O 是矩形 ABCD 对角线 AC 的中点,点 M 是 AD
的中点,若 AB=5,AD=12,则四边形 ABOM 的周长为 20 .
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
3.直角三角形斜边上的中线等于斜边的 一半 .
1.如图,在矩形 ABCD 中(AD>AB),点 E 是 BC 上一点,且 DE
=DA,AF⊥DE,垂足为点 F.在下列结论中,不一定正确的是( B )
A.△AFD≌△DCE
B.AF=12AD
C.AB=AF
D.BE=AD-DF
2.如图,在矩形 ABCD 中,AC,BD 相交于点交 O,AE 平分
A. 3 第一章 特殊平行四边形
第一章 特殊平行四边形
B.2
C. 5
D. 6
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
第一章 特殊平行四边形
14.如图,在平面直角坐标系中,O 为原点,四边形 OABC
矩形的性质和判定(一)
教学设计备课日期: 2018 年4月 4 日课题矩形的性质和判定(一)1课时课型新授教材分析本节课学习矩形的性质和判定,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括问题的能力和审美意识的发展,进一步渗透了“转化、类比”等数学思想方法。
学情分析本节课本节课让学生在丰富的实践活动中,利用已有的知识解决问题,促使学生从感性认识向理性思维发展,从形象思维向抽象思维转型。
教学目标知识与技能目标:(1) 掌握矩形的的定义,理解矩形与平行四边形的关系。
(2)理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;(3)会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.过程与方法目标:(1)经历探索矩形的概念和性质的过程,发展学生合情推理的意识;(2)通过灵活运用矩形的性质解决有关问题,掌握几何思维方法,并渗透运动联系、从量变到质变的观点.情感与态度与价值观目标:(1)在观察、测量、猜想、归纳、推理的过程中,体验数学活动充满探索性和创造性,感受证明的必要性,培养严谨的推理能力,体会逻辑推理的思维价值。
(2) 通过小组合作展示活动,培养学生的合作精神和学习自信心。
(3)从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想。
教学重难点重点:运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.难点:灵活运用矩形的性质解决有关问题教学策略1、对比教学2、建立知识结构图教学资源Ppt课件班班通课时安排1课时上课时间4月13号5、8.4;7、8.5教学过程一、创设情景,导入新课活动内容:1、平行四边形具有哪些性质?2、探究矩形的定义。
利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,让学生注意观察。
在演示过程中让学生思考:(1)在运动过程中四边形还是平行四边形吗?(2)在运动过程中四边形不变的是什么?(3)在运动过程中四边形改变的是什么?不变:对边仍保持相等,对边仍分别平行,所以仍然是平行四边形变:角的大小(4)角的大小改变过程中有特殊值吗?这时的平行四边形是什么图形。
矩形的性质和判定1教学设计
《矩形的性质与判定》(1)教学设计教材来源:北师大版九年级数学(上)第一章第二节第一课时授课对象:九年级学生设计者荥阳市第一初级中学张炎赵亚萍一、内容和内容解析:《矩形的性质》一课属于初中平面几何重点知识。
本节是在学习了平行四边形的性质与判定以及菱形的性质与判定的基础上,在掌握了证明平行四边形有关内容菱形的一般研究方法后来学习的,它既是平行四边形的延伸,又为后面正方形的学习提供知识、方法的支持,为进一步研究其他图形奠定基础。
依据新课标要求,《矩形的性质》不能只停留在知识教学上,而是要把经历探索图形的基本性质的过程,发展学生的基本的推理技能放在首要位置。
矩形是平行四边形中的一种特殊图形,在生活中有着广泛的应用,所以课本很多地方以图片形式呈现了矩形的“原型”,旨在唤起学生的生活经验,促进数学学习。
二、目标和目标解析:课标要求:?理解矩形的概念,以及它与平行四边形的关系;探索并证明矩形的性质定理:矩形的四个角都是直角,对角线相等。
根据《课程标准》,依据教材内容和学生情况,确定本节课的学习目标为:(1) 通过一个活动的平行四边形教具演示,描述出矩形的定义,能说出矩形与平行四边形的关系。
(2) 通过小组合作观察,测量、猜想矩形的性质,并能进行推理证明;(3)会初步运用矩形的定义、性质来解决有关问题。
针对本节课的三个学习目标,评价任务如下评价任务一:用自己的语言描述矩形的定义,说出矩形与平行四边形的关系。
#评价任务二:准确说出矩形的性质并进行推导证明。
评价任务三:独立思考,完成例题及练习题三、教学问题诊断分析:1、学生的已有基础:学生在小学时对矩形已经有了初步的了解,这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。
2、学生面临的问题:本节是九年级的第一章第二节的内容,这个年龄段的学生已经具备自主探究和合作学习的能力,他们喜欢动手,喜欢思考一些有挑战性的问题,喜欢向别人展示自己的成果。
第1节 矩形的性质与判定(一)1
A
1
解析:根据对角线相等的平行四边
形是矩形;矩形的定义. 答案:① ④
D
B
2
C
2.如图,在△ABC中,AB=AC=8,AD是底边上的高,E为 AC的中点,则DE= .
解析: ∵四边形ABCD是矩形. ∴AC=BD,且
OA OC
A O
D
OA OD.
1 OB OD BD. 2
1 AC. 2
B
C
∵∠AOD=120°.
1800 1200 300. ∴∠ODA=∠OAD= 2
你认为例1还可以怎 么去解?
∵∠DAB=90°. ∴BD=2AB=2×2.5=5(cm).
解析:根据直角三角形斜边的中线
等于斜边的一半可得,DE等于AC的 一半,所以DE=4. 答案:4
4.已知:如图,四边形ABCD是由两个全等的正三角形ABD 和BCD组成的,M、N•分别为BC、AD的中点. 求证:四边形BMDN是矩形.
证明:在正三角形ABD和BCD中,M、N•分
别为BC、AD的中点. ∴BN⊥AD,DM⊥BC,∠DBC=60°,
∠BND=∠DMB=90°,∠NBD=30°.
∴∠NBM=90°. ∴四边形BMDN是矩形.
5、已知:如图,AC,BD是矩形ABCD的两条对角线,AC,BD相 交于点O,∠AOD=120°,AB=2.5cm.求矩形对角线的长. 解:∵四边形ABCD是矩形. ∴AC=BD,且 OA OC AC. 2 1 OB OD BD. 2 ∴OA=OD. ∵∠AOD=120°.
初中数学教学课例《矩形的性质与判定(第一课时)》教学设计及总结反思
参与到学习过程中,同时获得轻松愉快,成功的情感体 验.
矩形的概念是建立在平行四边形的概念的基础上, 借助于图形的运动变化,采用“特殊化”的方法得到的, 其变化过程体现了由“一般”到“特殊”的研究问题方 法.
在探索矩形的性质时加强类比思想的渗透,不断类 比菱形一课的探究方法,并通过学生的主动参与,动手 操作,观察思考,大胆表述以及教师的启发诱导使学生 顺利地掌握知识,突破重难点.
教学策略选 教师引导,学生交流的方式,分析问题并解决问题.
择与设计
教师充分利用多媒体课件通过实验操作法、直观演
示法和引导发现法相结合的教学方法,来启发学生思
考,在思考中体会数学概念形成的过程中所蕴含的数学
方法,使之获得内心感受;采取让学生独立思考,动手
实践,主动探索与合作交流的学法指导,使每位学生都
相评价、互相提问的积极性高,有参加探究活动的热情,
已经具备了初步的观察、操作、猜想、分析等活动经验,
具备了最基本的逻辑推理能力和有条理的表达能力.
突出重点措施:本课采取了情境设置,由学生自己
说出矩形定义,通过学生动手实验、观察、发现、猜想、
论证等环节,探究并证明矩形的性质定理.
突破难点策略:为了突破难点,采用学生独立思考,
教学上教师通过精心设计问题串,让学生在问题思 考中、实验操作中、交流合作中、启发引导中、对比分 析中、反思纠错中逐步抽象概括出矩形的概念和性质, 逐步完善自己的认识.
矩形的性质与判定(1)
课堂检测
1、下列性质中,矩形不一定具有的是( )
A.是中心对称图形 B.四个角都相等
C.是轴对称图形 D.对角线互相垂直
A
D
2、如图,在矩形ABCD中,对角线
AC,BD交于点O.已知∠AOB= 60°, 60° O
4 若已知 ∠DOC=120°,AD=6㎝,则AC= 12
㎝
第第二关二关
D
C
如图:四边形ABCD是矩形 1 若已知AB=8㎝,AD=6㎝,
则AC= 10 ㎝ OB=
O
E
A
5 ㎝ DE=
B
4.8 ㎝
2 若已知∠CAB=40°,则∠OCB= 50°
∠OBA= 40° ∠AOB= 100°∠AOD= 80°
A
D
O
B 公平,因为OA=OC=OB=OD C
投圈游戏
三位学生正在做投圈游戏,他们分别站在一个直角
三角形的三个顶点处,目标物放在斜边的中点处,这样
的队形对每个人公平吗?
A
A
D
O
O
B
C
B
C
请帮助说明?
矩形之歌
脸蛋方方是矩形,例如黑板和窗门. 对角线段皆相等,相互交叉且平分. 内有直角三角形,斜边中线半斜边. 若要牢记其定义,直角平行四边形.
练一练
D
C
O
• 四边形ABCD是矩形
1 若已知AB=8㎝,AD=6㎝,
A
B
则AC= 10 ㎝ OB= 5 ㎝
2 若已知∠CAB=40°,则∠OCB= 50°
∠OBA= 40° ∠AOB= 100° ∠AOD= 80°
北师版数学九年级上期末复习专题:矩形性质与判定(一)
北师版数学九年级上期末复习专题:矩形性质与判定(一)1.如图,矩形ABCD的四个顶点分别在直线l3,l4,l2,l1上.若直线l1∥l2∥l3∥l4且间距相等,AB=4,BC=3,则tanα的值为()A.B.C.D.2.如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A.1 B.C.2 D.43.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.4.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD 于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.185.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE 的值是()A.B.C.D.6.矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.7.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A处,则点C的对应点C1的坐标为()1A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)8.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5 B.4 C.D.9.如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=2,∠AEO=120°,则FC的长度为()A.1 B.2 C.D.10.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.11.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是()A.3cm B.6cm C.10cm D.12cm12.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC 平分∠BAD,其中能说明平行四边形ABCD是矩形的是()A.①B.②C.③D.④13.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND14.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形15.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB16.下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个17.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形18.下列命题错误的是()A.若a<1,则(a﹣1)=﹣B.若=a﹣3,则a≥3C.依次连接菱形各边中点得到的四边形是矩形D.的算术平方根是919.如图,在矩形ABCD中,AB>BC,点E,F,G,H分别是边DA,AB,BC,CD 的中点,连接EG,HF,则图中矩形的个数共有()A.5个B.8个C.9个D.11个20.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分参考答案1.解:作CF⊥l4于点F,交l3于点E,设CB交l3于点G,由已知可得,GE∥BF,CE=EF,∴△CEG∽△CFB,∴,∵,∴,∵BC=3,∴GB=,∵l3∥l4,∴∠α=∠GAB,∵四边形ABCD是矩形,AB=4,∴∠ABG=90°,∴tan∠BAG==,∴tanα的值为,故选:A.2.解:∵BE=2AE,DF=2FC,∴,=∵G、H分别是AC的三等分点∴,=∴∴EG∥BC∴,且BC=6∴EG=2,同理可得HF∥AD,HF=2∴四边形EHFG为平行四边形,且EG和HF间距离为1 ∴S四边形EHFG=2×1=2,故选:C.3.解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.4.解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=×2×8=8,∴S阴=8+8=16,(本题也可以证明两个阴影部分的面积相等,由此解决问题)故选:C.5.解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边BC的中点,∴BE=BC=AD,∴△BEF∽△DAF,∴=,∴EF=AF,∴EF=AE,∵点E是边BC的中点,由矩形的对称性得:AE=DE,∴EF=DE,设EF=x,则DE=3x,∴DF==2x,∴tan∠BDE===;故选:A.6.解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=PG=×=,故选:C.7.解:过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠3,则△A1OM∽△OC1N,∵OA=5,OC=3,∴OA1=5,A1M=3,∴OM=4,∴设NO=3x,则NC1=4x,OC1=3,则(3x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(﹣,).故选:A.8.解:∵四边形ABCD是矩形,∴∠D=90°,∵O是矩形ABCD的对角线AC的中点,OM∥AB,∴OM是△ADC的中位线,∵OM=3,∴DC=6,∵AD=BC=10,∴AC==2,∵∠ABC=90°,AO=CO,∴BO=AC=,故选:D.9.解:∵EF⊥BD,∠AEO=120°,∴∠EDO=30°,∠DEO=60°,∵四边形ABCD是矩形,∴∠OBF=∠OCF=30°,∠BFO=60°,∴∠FOC=60°﹣30°=30°,∴OF=CF,又∵Rt△BOF中,BO=BD=AC=,∴OF=tan30°×BO=1,∴CF=1,故选:A.10.解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.11.解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3,故选:A.12.解:A.AB=BC,邻边相等的平行四边形是菱形,故A不符合题意;B.AC=BD,对角线相等的平行四边形是矩形,故B符合题意;C.AC⊥BD,对角线互相垂直的平行四边形是菱形,故C不符合题意;D.AC平分∠BAD,对角线平分其每一组对角的平行四边形是菱形,故D不符合题意.故选:B.13.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.14.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.15.解:A、∠BAC=∠DCA,不能判断四边形ABCD是矩形;B、∠BAC=∠DAC,能判定四边形ABCD是菱形;不能判断四边形ABCD是矩形;C、∠BAC=∠ABD,能得出对角线相等,能判断四边形ABCD是矩形;D、∠BAC=∠ADB,不能判断四边形ABCD是矩形;故选:C.16.解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选:A.17.解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.18.解:A、若a<1,则(a﹣1)=﹣(1﹣a)=﹣=﹣,故此选项正确,不符合题意;B.若=a﹣3,根据二次根式的性质得出,a﹣3≥0,则a≥3,故此选项正确,不符合题意;C.根据菱形对角线互相垂直得出,依次连接菱形各边中点得到的四边形是矩形,故此选项正确,不符合题意;D.∵=9,∴9的算术平方根是3,故此选项错误,符合题意;故选:D.19.解:∵E,G分别是边DA,BC的中点,四边形ABCD是矩形,∴四边形DEGC、AEGB是矩形,同理四边形ADHF、BCHF是矩形,则图中四个小四边形是矩形,故图中矩形的个数共有9个,故选:C.20.解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选:B.。
《矩形的性质与判定》示范公开课教学设计【北师大版九年级数学上册】(第1课时)
第一章特殊的平行四边形1.2 矩形的性质与判定第1课时教学设计一、教学目标1.理解矩形的概念,了解它与平行四边形之间的关系.2.经历矩形性质定理的探索过程,进一步发展合情推理能力.3.能够用综合法证明矩形的性质定理,以及其他相关结论,进一步发展演绎推理能力.4.探索并掌握直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半.5.进一步体会探索与证明过程中所蕴含的抽象、推理等数学思想.二、教学重点及难点重点:掌握矩形的性质及“直角三角形斜边上的中线等于斜边的一半”.难点:矩形的性质的灵活应用.三、教学用具多媒体课件、直尺或三角板。
四、相关资源多张《生活中的矩形》图片,《平行四边形变矩形》动画,《矩形的性质》微课,《矩形的性质》图片.五、教学过程【情境引入】下面图片中都含有一些特殊的平行四边形.观察这些特殊的平行四边形,你能发现它们有什么样的共同特征吗?师生活动:教师出示问题及图片,学生观察图片并尝试回答问题.生:这些特殊的平行四边形中都有一个角是直角.这就是我们本节课要研究的矩形.设计意图:通过实际生活中的图片引入本课,激发学生学习本节课的兴趣.【探究新知】矩形的定义.矩形:有一个角是直角的平行四边形叫做矩形.矩形应满足的两个条件:(1)是平行四边形;(2)有一个角是直角.师生活动:教师讲解,并明确矩形应满足的两个条件.师:矩形是生活中常见的图形,你还能举出一些生活中矩形的例子吗?与同伴交流。
生:……设计意图:让学生感受到矩形在实际生活中的广泛应用.想一想:(1)矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,你能列举一些这样的性质吗?(2)矩形是轴对称图形吗?如果是,它有几条对称轴?师生活动:教师首先引导学生回忆一般平行四边形的性质,从而得出矩形的一般性质,然后再探究矩形的特殊性质.答:矩形的一般性质:具备平行四边形的所有性质.边:对边平行且相等.角:对角相等.对角线:对角线互相平分.中心对称性:是中心对称图形.矩形的特殊性质:矩形是轴对称图形,它有两条对称轴.教师追问:(3)矩形还有特殊性质吗?师生活动:教师追问,引导学生继续探究矩形的性质.发现:四个内角都是直角,两条对角线长度相等.猜想1:矩形的四个角都是直角.猜想2:矩形的对角线相等.试一试:你能证明一下上面猜想的正确性吗?师生活动:教师引导学生写出已知、求证并完成证明过程.猜想1的证明:已知:四边形ABCD是矩形,∠B=90°.求证:∠A=∠B=∠C=∠D=90°.证明:∵四边形ABCD是矩形,∠B=90°,又∵矩形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∠A+∠B=180°.∴∠A=∠B=∠C=∠D=90°,即矩形的四个角都是直角.性质1:矩形的四个角都是直角.几何语言:∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°.猜想2的证明:已知:AC与BD是矩形ABCD的对角线.求证:AC=BD.证明:∵四边形ABCD是矩形,∴AB=CD,∠ABC=∠DCB.又BC=CB,∴△ABC≌△DCB.∴AC=BD.性质2:矩形的对角线相等.几何语言:∵四边形ABCD是矩形,∴AC=BD.设计意图:培养学生发现规律的能力和逻辑推理能力.议一议:如图,矩形ABCD的对角线AC与BD交于点E,那么BE是Rt△ABC中一条怎样的特殊线段?它与AC有什么大小关系?由此你能得到怎样的结论?师生活动:教师出示问题,学生思考,教师找学生代表回答,最后得出答案.答:BE是斜边AC上的中线,BE=12 AC.得到的结论是:直角三角形斜边上的中线等于斜边的一半.尝试完成定理的证明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求矩形对角线的长.
A
D
解:∵四边形ABCD是矩形,
∴AC=BD,且OA OC 1 AC.
OB OD 1 BD.
2
2
OA OD.
O
B
C
你还有其他解法吗?
∵∠AOD=1200,
∴∠ODA=∠OAD= 1800
1200 2
300.
∵∠DAB=900,
∴BD=2AB=2×2.5=5(cm).
1、矩形定义:
∴AC=BD
∴ ABCD是矩形
∴BO=
பைடு நூலகம்
1 2 BD=
1 2 AC
学有所得
A
D
直角三角形的性质:
O
直角三角形斜边上的中线
等于斜边的一半.
B
C
即兴练一练: 已知一直角三角形两直角边分别为6和8,则其 斜边上的中线长为_____5___.
练习
已知:如图,AC,BD是矩形ABCD的两条对角
线,AC,BD相交于点O,∠AOD=1200,AB=2.5,
矩形
对边平行 四个角 对角线互相 中心对称图形 且相等 为直角 平分且相等 轴对称图形
这是矩形所
O
特有的性质
1. 矩形具有而一般平行四边形不具有的性质 是( )A . A、对角线相等 B、对边相等 C、对角相等 D、对角线互相平分
2、 矩形的一组邻边长分别是3cm和4cm, 则它的对角线长是 5 cm.
矩形的两组对边分别相等
O
B
C
数学语言
∵四边形ABCD是矩形
A B C D 90 角 矩形的四个角都是直角
∴AO∴∴A=AD∴CDAO=∥CB,B=CCOB,,DDCC=DDO=B∥AABB
0
对角线
矩形 的两条对角线相等 矩形的 两条对角线互相平分
边
角
对角线 对称性
平行四 对边平行 对角相等 对角线互 中心对 边形 且相等 邻角互补 相平分 称图形
有一个角是直角的平行四边形叫矩形
2、矩形
矩形的对边平行且相等 矩形的四个角均为直角 矩形的对角线互相平分且相等
3、直角三角形的一个重要性质:斜边上的中线 等于斜边的一半;
4、在矩形中进行有关计算或证明,常根据矩形的性 质将问题转化到直角三角形或等腰三角形中,利用 直角三角形或等腰三角形的有关性质 进行解题。
作业布置:
P13习题1.4 第2,3题
送给大家的祝福:
忧愁是可减的! 快乐是可加的! 在未来趋于正无穷大的日子里, 幸福是连续的! 对你的祝福是正数的绝对值, 它一定是大于零的! 祝你每天的快乐和幸福是连续 上升的折线统计图
谢谢!
例1: 如图,矩形ABCD的两条对角线相交
于点O,∠AOD=120°,AB=2.5,求矩形对
探索新知:
矩形是一个特殊的平行四边形,除了具有平行 四边形的所有性质外,还有哪些特殊性质呢?
A
D
B
C
猜想1:矩形的四个角都是直角.
猜想2:矩形的对角线相等.
定命理题: 矩形的四个角都是直角.
已知:如图,四边形ABCD是矩形 求证:∠A=∠B=∠C=∠D=90°
证明: ∵四边形ABCD是矩形
A
D
∴ ∠A=90°
试试:用文字叙述
直角三角形斜边上中线的性质 A┛
D
O
在矩形ABCD中
B
C
AO=CO=BO=DO= 1 AC= 1 BD
2
2
在Rt△ABD中,AO是斜边BD的中线 则有:AO= 1BD
2
直角三角形斜边上中线的性质 : 直角三角形斜边上的中线等于斜边的一半。
点击进入
营中热身
矩形具有而一般平行四边形不
又 ∵ 矩形ABCD是平行四边形
∴ ∠A=∠C ∠B = ∠D
B
C
∠A +∠B = 180°
∴ ∠A=∠B=∠C=∠D=90°
即矩形的四个角都是直角
命定题理: 矩形的对角线相等.
已知:如图,四边形ABCD是矩形 A
D
求证:AC = BD
证明:∵四边形ABCD是矩形.
∴∠ABC = ∠DCB = 90°
具有的性质是 ( C )
A.对角相等
B.对边相等 C.对角线相等
D.对角线互相平分
营中寻宝
D
C
O
已知:四边形ABCD是矩形
1.若已知AB=8㎝,AD=6㎝,
A
B
则AC=___1_0___ ㎝ OB=____5___ ㎝
角线的长?
A
D
解:∵ 四边形ABCD是矩形
o
∴AC与BD相等且互相平分
∴ OA=OB
B
C
∵ ∠AOD=120° ∴ ∠AOB=180°- 120°= 60°
∴ △AOB是等边三角形
∴ OA=AB=2.5
∴ 矩形的对角线长 AC=BD=2OA=5
方法小结: 如果矩形两对角 线的夹角是60°
或120°, 则其中必有等边三角形.
P12
推论:直角三角形斜边上的中线等于斜边的一半.
已知:在Rt△ABC中,∠ABC=900,BO是AC上的中线.
求证:
1
BO = 2 AC
A
证明: 延长BO至D,使OD=BO,
连接AD、DC.
∵BO是AC上的中线.
∴AO=OC
B
又∵BO=OD
D
O C
∴四边形ABCD是平行四边形.
∵∠ABC=900
P12议一议:
设矩形的对角线AC与BD交于点E,那么,BE 是Rt△ABC中一条怎样的特殊线段?
BE是Rt△ABC中斜边AC上的中线.
它与AC有什么大小关系?为什么?
BE等于AC的一半.
A
D
∵ AC=BD,BE=DE,
BE 1 BD. 2
BE 1 AC. 2
E
B
C
由此可得推论:
直角三角形斜边上的中线等于斜边的一半.
1、是平行四边形
2、有一个角为直角
选择题:下列哪个图形能够反映四边形、平行四边形、
矩形的关系
四边形 矩形 平行四边形
四边形 平行四边形 矩形
A
四边形
B
四边形
平行四边形 矩形
C
矩形 平行四边形
D
矩形的一般性质:
具备平行四边形所有的性质
A
D
O
B
C
边 对边平行且相等 角 对角相等 对角线 对角线互相平分
§1.2 矩形的定义、性质
矩形
平行四边形有哪些性质?
边
角 对角线 对称性
平行四 对边平行 对角相等 对角线互 中心对 边形 且相等 邻角互补 相平分 称图形
细心观察平行四边形内角的变化
矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形
学习新知
定义:有一个角是直角的平行 四边形叫做矩形.
AB=DC 在△ABC和△DCB中
﹛AB = DC ∠ABC=∠DCB
B
C
还有其他方
法吗?
BC = CB
∴AC = BD
∴△ABC≌△DCB(SAS) 即矩形的对角线相等
矩形特殊的性质
从角上看:
矩形的四个角都是直角. 从对角线上看:
矩形的两条对角线相等.
注:矩形还含有平行四边形的所有性质
A
D
矩形的两组对边分别平行 边