同济大学期末考试试题
同济大学2020年第1学期高等数学期末考试试卷
2020-2021学年第一学期 高等数学期末考试同济大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x xx →= 。
2.曲线2x xe e y -+=在点(0,1)处的曲率是 。
3.设()f x 可导,[]ln ()y f x =,则dy = 。
4.不定积分⎰=。
5.反常积分60x e dx +∞-⎰= 。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数,则A.B.C.D.2.设曲线如图示,则函数在区间内( ).A.有一个极大值点和一个极小值点B.没有极大值点,也没有极小值点C.有两个极小值点D.有两个极大值点3.极限().A.B.C.D.4.函数的图形如图示,则().A.是该函数的一个极小值点,且为最小值点B.是该函数的一个极小值点,但不是为最小值点C.是该函数的一个极大值点2020-2021学年第一学期 高等数学期末考试D.不是该函数的一个极值点5.若定积分( ). A. B.C. D. 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求极限 ()011lim x x x e x x e →---。
2. 设函数1sin 2 ,0(), ,0 x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。
3. 设参数方程()1sin cos x t t y t t =-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dydx 。
4.设方程2290y xy -+=确定隐函数()y y x =,求d d yx 。
5.求函数321x y x =-的单调区间,极值和拐点。
6.计算定积分1ln ex xdx ⎰。
7.求不定积分3。
四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.设函数f (x )在[0, 1]上连续,在(0, 1)内可导,且,证明:方程在(0, 1)内至少有一个实根。
高等数学同济(下册)期末考试题与答案5套
高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。
同济大学版高等数学期末考试试卷
《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。
高等数学同济版下册期末考四套试题及答案
高等数学同济版(下册)期末考试试卷(一) 一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。
2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x的符号为 。
3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。
4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。
5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。
6、微分方程xyx y dx dy tan +=的通解为 。
7、方程04)4(=-y y 的通解为 。
8、级数∑∞=+1)1(1n n n 的和为 。
二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim 2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。
2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。
3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰202013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ20213cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ20013cos sin dr r d d 。
同济大学大一高等数学期末试题精确答案
同济大学大一高等数学期末试题精确答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若x y z ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y y B xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f).212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分) 1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!nxn x e n ∞==∑,则x xe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,z y∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
高等数学同济版下册期末考四套试题及答案
高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。
2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。
3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。
4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。
5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。
6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。
7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。
8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。
同济大学高等数学上期末试卷(2套)
《高等数学》上 期末试卷(基础卷)一.填空题(本题满分15分,每小题3分)1.极限π2ln sin lim1sin x xx →=-________.2.设()ln 1arctan x t y t t⎧=+⎨=-⎩,则1d |d t yx ==________.3. 曲线323y x x =+在 x = 1 处对应的切线方程为: .4. 333)e d xx x x -+=⎰(________.5. 常系数齐次线性微分方程6130y y y '''++=的通解是 ________. 二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。
1.设()1,0sin ,0x x f x x x x-≤⎧⎪=⎨>⎪⎩,则0x =为()f x 的_______.A . 可去间断点 B. 跳跃间断点 C. 无穷间断点 D. 连续点2.设()()()()123f x x x x x =---,则()f x ''在()0,3上恰有_______零点.A. 1个B. 2个C. 3个D. 4个3. 当0x →时,cos x x x -与sin cos x x x -是 无穷小.A.等价B.同阶C.高阶D.低阶 4. 函数()(ln ln f x x a =-是 .A. 偶函数B. 奇函数C. 非奇非偶函数D. 奇偶性取决于a 值5. 微分方程d e d x yy x= 的通解为 .A .e x y C = B. e e xy C = C . x C y ln =; D.ln e x y C x =+.三.计算题(本题满分24 分,共4小题,每小题满分6分)1.求I x =⎰.2.30ln cos d limxx t t x+→⎰.3. 函数)(x y y =由方程e cos x y y =+确定,求d d yx. 4. 求tan sin 2y y x x '+=的通解.四.(本题10分)设平面区域D由曲线y =直线 1x = 及0y =所围成, 求区域D 的面积,以及该区域绕y 轴旋转所成旋转体的体积V .五.(本题10分)求内接于椭圆12222=+by a x 而面积最大的矩形的各边之长..六.(本题10分)设函数()x bx ax x f ++=23在1=x 取得极大值5, (1)求常数a 和b ; (2)求函数()x f 的极小值. 七.(本题10分)求函数2361(3)xy x =++的单调区间,凹凸区间、拐点和渐近线,并画出函数的图形.八.(本题6分)设()f x 二阶可导,且()00f =,()0f x ''>,证明:()f x x在 ()0,+∞上单调增加.《高等数学》上 期末试卷(综合卷)一.填空题(本题满分15分,每小题3分) 1. 极限()cot 0lim 12xx x →+=________.2. 设()f x 可导,并且()()112lim3x f f x x→--=,则()1f '=________.3. 设2e et tx t y t -⎧=-⎨=+⎩,求22d d y x =________. 4.设()23f '=,则函数()22y f x =在1x =处的微分为________. 5.(5π5πln d x x -⎡=⎢⎣⎰________.二.选择题(本题满分15分,每小题3分)下列每小题给出4个答案, 其中只有一个是正确的,请将正确答案的编号填入括号内。
同济大学大一_高等数学期末试题_(精确答案)
课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)C 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在D 2.若x y z ln =,则dz 等于().ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC yydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + C 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰B 4. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处().A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定A 5.曲线222x y z z x y -+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = -1.2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =___I =10(,)yee dyf x y dx ⎰⎰__________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 →→→-+-k j i 242 .4. 已知0!n xn x e n ∞==∑,则xxe -=1(1)!n n n x n +∞=-∑ .5. 函数332233z x y x y =+--的极小值点是 (2,2).三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x=, 求z x ∂∂,zy ∂∂.解:222y x y x z +-=∂∂; (3分)y z ∂∂=xyarctan +22y x xy +2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.解:记切点0(,,)x y z 则切平面的法向量为0002(2,3,)n x y z =满足:00023232x y z==- ,切点为:(1,1,2)-或(1,1,2)-- (3分),切平面:23299x y z or -+=- ( 4分), 法线方程分别为:112232x y z +-+==-或者112232x y z -+-==- ( 6分)3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
同济大学大一_高等数学期末试题_(精确答案)
课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题(共15分,每小题3分)1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y y B xln ln ln .ln x xy yC y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 212cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = . 2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x =, 求z x ∂∂,zy∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量132l i j =+方向的方向导数。
同济大学大一-高等数学期末试题-(精确答案)
课程名称:《高等数学》试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次:适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不得分则在小题大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。
课程名称:高等数学A (考试性质:期末统考(A 卷)一、单选题1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( )A .(,)f x y 在P 连续B .(,)f x y 在P 可微C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim (,)x y x y f x y →存在2.若xyz ln =,则dz 等于( ).ln ln ln ln .x x y y y y A x y + ln ln .x y yB xln ln ln .ln x xy yC y ydx dy x+ ln ln ln ln .x x y y y x D dx dy x y + 3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f ). 2120cos .(cos ,sin ,)A d dr f r r z dz πθθθθ⎰⎰⎰ 21200cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰21202cos .(cos ,sin ,)C d rdr f r r z dz πθπθθθ-⎰⎰⎰ 21cos .(cos ,sin ,)xD d rdr f r r z dz πθθθ⎰⎰⎰4. 4.若1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1)二、填空题(共15分,每小题3分)1.设220x y xyz +-=,则'(1,1)x z = .2.交 换ln 1(,)exI dx f x y dy =⎰⎰的积分次序后,I =_____________________.3.设22z xy u -=,则u 在点)1,1,2(-M 处的梯度为 .4. 已知0!n xn x e n ∞==∑,则xxe -= .5. 函数332233z x y x y =+--的极小值点是 . 三、解答题(共54分,每小题6--7分)1.(本小题满分6分)设arctan y z y x =, 求z x∂∂,zy ∂∂.2.(本小题满分6分)求椭球面222239x y z ++=的平行于平面23210x y z -++=的切平面方程,并求切点处的法线方程.3. (本小题满分7分)求函数22z x y =+在点(1,2)处沿向量122l i j =+r r r方向的方向导数。
同济大学2010-2011学年《普通化学》期末试卷及参考答案
同济大学《普通化学》2020—2021年期末考试试题一、选择题(每小题2 分,共20 分)1.在同一元素原子中,下列轨道为等价轨道的是……………………( )A.3s、3p、3dB. 1s、2s、3sC.3d xy、3d yz 、3d z22.下列物质的晶体结构中既有共价键又有大 键和分子间力的是……( )A. 金刚砂;B. 碘;C.石墨;D.石英。
3.为有利于反应2NH3(g)+CO2(g) CO(NH2)2(aq)+H2O(l) (Δr H mӨ<0)向右进行,理论上采用的反应条件是…………………………………………( )A.低温高压B.高温高压C.低温低压D.高温低压4. 已知φӨ (I2/I-)=0.535V,φӨ (H2O2/H2O )=1.776V,φӨ (Cl2/Cl-) =1.358V,φӨ(Na+/Na)= –2.76V ,则这几对电对中氧化性最强的是……………( )A.Na+B.H2O2 C.Cl2 D.I25.某温度时,反应H2(g) + Br2(g) = 2HBr(g)的标准平衡常数KӨ=4×10-2,则反应HBr(g) = 1/2H2(g) +1/2 Br2(g)的标准常数KӨ等于…………………()A.1/4×10-2B.1/(4×10-2)1/2C. 4×10-26.下列分子中,中心原子成键是以sp3 不等性杂化的是……………( )A.BeCl2 B.PH3 C.BF3 D.CH47.H2 分子之间的作用力有………………………………………………………( )A.氢键B.取向力C.诱导力D.色散力8.下列各组量子数中,合理的是………………………………………………( )A.(3,1,—2,—1/2)B.(4,0,2,1/2)C.(5,—3,—3,1/2)D.(3,2,2,1/2)9.下列几种物质中△f G m Ө(298K)为零的是………………………………… ( )A.Br2(g) B.Br-(aq) C.Br2(l) D.Br2(aq)10.下列何种函数不是状态函数………………………………………………()A.U B.H C.P D.W二、填空题(每空1 分,共30 分)1.原子核外出现第一个2p 电子、3d 电子、4f 电子的元素,分别处于第周期;第周期;第周期。
同济大学高等数学期末考试试卷(含答案)
同济大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1.点是函数的间断点.
A、正确
B、不正确
【答案】A
2.设函数,则().
A、
B、
C、
D、
【答案】C
3.设函数,则.
A、正确
B、不正确
【答案】A
4.设函数,,则函数.
A、正确
B、不正确
【答案】A
5.极限().
A、
B、
C、
D、
【答案】C
6.设曲线如图示,则在内
( ).
A、没有极大值点
B、有一个极大值点
C、有两个极大值点
D、有三个极大值点
【答案】B
7.微分方程满足的特解是().
A、
B、
C、
D、
【答案】C
8.函数在点处连续.
A、正确
B、不正确
【答案】A
9.().
A、
B、
C、
D、
【答案】C
10.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
11.极限.
A、正确
B、不正确
【答案】A
12.不定积分 ( ).
A、
B、
C、
D、
【答案】A
13..
A、正确
B、不正确
【答案】B
14.函数的图形如图示,则函数 ( ).
A、有四个极大值
B、有两个极大值
C、有一个极大值
D、没有极大值
【答案】C
15.是偶函数.
A、正确
B、不正确
【答案】A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析(上)期末试题 得分_________
姓名_________
1. 计算(每小题6分,共36分) 学号_________
(1)⎰++∞→x
x t t dt 1)
1(lim
(2)
dx xe x ⎰
--1
1
|
|
(3)
121lim ++∞→+++p p
p p n n n (4) 00,01)(2
='=--+=⎰x y t y x dt e y e x y y 求满足设 (5)
h
x f h x f x f h 2)
()3(lim
,1)(000
0--='→则
(6) ⎰dx x
x 2
cos cos ln 2 写出下列命题的分析表述(8分) (1) f '(x )在x 0的极限不是A . (2) {a n }是基本数列.
3 (8分)指出下列命题之间的关系:
(1) f (x )在点0x 局部有界;(2) f (x )在点0x 极限存在;
(3) f (x )在点0x 可导;(4) f (x )在点0x 连续;(5) f (x )在点0x 有定义.
4. (8分)讨论函数⎪⎪⎩⎪
⎪⎨⎧<=>--=⎰
cos 10,
20
,1)
1(2sin )(20
22
x tdt x x x e e x f x
x
x 的连续性, 若有间断点, 是哪种间断点? 给出函数的连续区间.
5. (12分)设x 1>0, x n +1=ln(1+x n )(n=1,2,⋅⋅⋅), 证明 ).(2~)(;0lim )(∞→=∞→n n
x ii x i n n n
6. (8分)设函数f (x ), g (x )在闭区间[a , b ]上连续, 证明存在ξ∈(a , b ),
使⎰⎰ξ
ξξ=ξa b dx x f g dx x g f )()()()(=ξ.
7. (8分)用闭区间套定理证明零点存在定理.
8. (10分)设D 1, D 2为曲线y = x 2与直线y=tx 围成的图形, 问当t 为何值时, D 1, D 2绕x 轴旋转所得旋转体体积之和达到最小值?
数学分析(上)期末试题 得分_________
姓名_________
2. 计算(每小题6分,共36分) 学号_________ (1) )
1ln(arctan lim 30x x
x x +-→
(2) ⎰
+)
1(2
x x dx (3) ,1
0 22
=⎪⎩⎪
⎨⎧==⎰t t u t
dx dy du e y e x 求设
(4) 设⎪⎪⎩⎪
⎪⎨⎧<+≥+=0
11011
)(x e x x
x f x
, 求⎰-2
)1(dx x f .
(5) 已知)(x f 连续,且满足方程⎰
⎰
-+=x
dx x f x x x dt t f 0
1
24)()(,试求)(x f 的
表达式.
(6) 求心形线)20( )cos 1(πθθ≤≤-=a r 的弧长 3 写出下列命题的分析表述(8分)
(1) f '(x )在x 0的极限不是A . (2) f '(x )在区间I 上一致连续..
4 (8分)指出下列命题之间的关系:
(1) f (x )在点0x 局部有界;(2) f (x )在点0x 极限存在;
(3) f (x )在点0x 可导;(4) f (x )在点0x 连续;(5) f (x )在点0x 有定义.
4. (10分)讨论函数⎪⎪⎩⎪
⎪⎨⎧<=>--=⎰
cos 10,
20
,1)
1(2sin )(2
22
x tdt x x x e e x f x x
x 的连续性, 若有间断点, 是哪种间断点? 给出函数的连续区间.
5 (12分)设2
01π
<
<x , x n +1=sin x n (n=1,2,⋅⋅⋅), 证明
).( 3~ )( ;0lim }{ )(2
∞→=∞
→n n
x ii x x i n n n n 收敛且
6 (8分)设函数f (x )在闭区间[a , b ]上连续, 在ξ∈(a , b )上可微, 且 f (a )=0,
()0b
a
f x dx =⎰
.证明存在ξ∈(a , b ), 使()0f ξ'=.
7 (8分)用闭区间套定理证明零点存在定理.
8(8分)求抛物线)(a x x y -=与直线x y =所围平面图形的面积
)0(>a .
《数学分析(中)》期终试卷(A 卷) 2004,7
一 选择填空 (每小题4分,共28分) 1. 函数⎩
⎨
⎧≤≤--<<=01 11
0 )(x x x x x f 的Fourier 级数在点x=2处收敛于
____________________________.
2. 若∑+∞
=1n n a 收敛,则级数∑+∞
=+1)1
(n n n a ______;级数∑+∞
=-1
)1(n n n a _____.
A 一定收敛
B 一定发散
C 不能确定
3. 设函数)(x f 在],[ππ-连续,则下列一定正确的是___________. A )(x f 的Fourier 级数点态收敛于)(x f .
B )(x f 的Fourier 级数平方收敛于)(x f .
C )(x f 的Fourier 级数一致收敛于)(x f .
D )(x f 的Fourier 级数在 ],[],[ππ-⊂d c 上可逐项积分并收敛于⎰d
c dx x f )(. 4. 集合n S R ⊂是紧集当且仅当________________________________. 5. 函数y x x f 2)(2+=在点(1,2)处沿方向______________的方向导
数取最大值, 最大值为__________________________. 6. n R 中点列}{n x 是基本点列当且仅当______________________ _________________________________________________________.
7. 空间曲线⎪⎩⎪⎨⎧=-+=++0
36
2
22222z y x z y x 在点(1,1,2)处的切线方程为 _________________________________________________________________.
二 解答题(每小题10分,共60分) 1 求幂级数∑+∞
=--12
1
)
1(n n
n x n 的收敛域与和函数,并求级数∑+∞
=02
2
n n n 的
和。
2 设F 是可微函数,),(y x f z =是由0),(=--bz cy az cx F 所确定的隐函数,求 y
z b x z a
∂∂+∂∂。
3 确定函数∑+∞
=-=1
1
)1()(n x
n
n x f 的定义域及其在定义域上的连续性和可微性。
4 判断反常积分⎰+∞
02sin dx x x p )(R ∈p 的敛散性(包括发散、绝对
收敛与条件收敛)。
5 讨论函数⎪⎩⎪⎨⎧=+≠++=0
0 0 )(2
22
22
2y x y x y x xy x f 在点(0,0)的连续性、
可偏导性和可微性。
6 求曲面122
2222=++c
z b y a x 在第一卦限的切平面,使得该切平面与
三个坐标平面围成的四面体体积最小。
三 证明(每题6分,共12分) 1 若函数
),(y x f 在点),(0b a P 连续且0),(>b a f ,则
),,(),( ,0 0δδP O y x ∈∀>∃ 有 0),(>y x f 。
2 若集合D 中存在数列{x n },使得0)(lim ≠+∞
→n n n x u ,则级数∑+∞
=0
)
(n n n x u 在D 上非一致收敛。
补充题(10分):设∑
-=+=1
0)(1)(n i n n
i
x f n x f , 其中f 为连续函数. 证明: )(x f n 在任何闭区间[a,b]上一致收敛。