第四章 平面任意力系
第四章平面任意力系详解
![第四章平面任意力系详解](https://img.taocdn.com/s3/m/43eb4ebcf12d2af90242e6cd.png)
同样,有且只有三个独立的平衡方程
例1: 简支梁受力如图,已知F=300N, q=100N/m,
求A, B处的约束反力。
∑ 解:简支梁受力如图所示:
Fx = 0 ⇒ FAx = 0
F q
FAx A
CD
FAy 2m 2m
4m
∑ Fy = 0
FAy + FB − F − q ⋅ 4 = 0 (1)
B
∑MA =0
M
力的平移定理: 可以将作用于刚体上A点上的
力 F 平行移动到任一点O ,但必须附加一个力偶,
附加力偶的力偶矩等于原力 F 对 O 点之矩。
力的平移的逆过程
M
-F
F
F
r F
图中:
d = MO F
一个力偶矩和一个作用于同一平面的
力 F,可以进一步简化为一个力 。
二、平面任意力系向作用面内一点简化
y
刚体系平衡
系统满足刚体的平衡条件
3. 注意一些临界的力学条件:
刚好拉过台阶FNA = 0
FNA
F
翻倒的临界条件:FN 集中于角点。
FN
§4.3 刚体系的平衡
一、刚化原理
变形体在某一力系作用下处于平衡,若将处于平衡状
态时的变形体换成刚体(刚化),则平衡状态不变。
F
F
(a)
F
F
(b)
刚体的平衡条件是变形体平衡的必要条件
二、刚体系的平衡问题
y
F1 O F3
F1/ M1 M2 F2/
= F2
O M3 F3/
x=
Mo FR/
O
x
( ) ( ) ( ) r
r
r
M1 = M o F1 M 2 = M o F2 M 3 = M o F3
建筑力学-第4章 平面力系的简化与平衡方程.
![建筑力学-第4章 平面力系的简化与平衡方程.](https://img.taocdn.com/s3/m/39ee772916fc700aba68fc05.png)
平面固定端约束
=
=
≠
=
3、 平面任意力系的简化结果分析
=
FR 0 M O 0
合力
合力作用线过简化中心
FR 0 M O 0
合力
合力作用线距简化中心M O
FR
其中
MO d FR
M o FRd
M o ( FR ) M O M O ( Fi )
FR FR FR
q 20 kN
求: 固定端A处约束力.
, l 1m; F 400kN, m
解: 取T型刚架,画受力图. 1 其中 F1 q 3l 30kN 2 Fx 0 FAx F1 F sin 600 0 解得 FAx 316.4kN
F Ay P F cos 60 0 Fy 0 解得 FAy 300kN
A
M
解得
0
12 FBy 10 P 6 P 1 4P 2 2 P 5F 0
FBy 77.5kN
iy
F
解得
0 FAy FBy 2 P P 1P 2 0
FAy 72.5kN
取吊车梁,画受力图.
M
解得
D
0
8FE' 4P 1 2P 2 0
Fx 0
Fy 0
FAx FB 0
FAy P 1P 2 0
M
解得
A
0
FB 5 1.5 P 1 3.5 P 2 0
FAy 50kN
FB 31kN
FAx 31kN
例4-4 已知: P, q, a, M pa; 求: 支座A、B处的约束力. 解:取AB梁,画受力图.
工程力学第4章
![工程力学第4章](https://img.taocdn.com/s3/m/1ed4b022192e45361066f5f1.png)
(4) 结果分析或校核。
第4章 平面任意力系
例4-2 摇臂吊车如图4-9(a)所示。横梁AB的A端为固定 铰链支座,B端用拉杆BC与立柱相连。已知梁的重力G1=4kN, 载荷G2=12 kN,横梁长l=6m,α=30°,求当载荷距A端距 离x=4 m时, 拉杆BC的受力和铰支座A的约束反力。
第4章 平面任意力系
3. 平面力偶系是特殊的力系,根据力偶的性质,在基本方程 中的投影方程自然满足,所以只有一个方程,
MO (F) 0
第4章 平面任意力系
4.2.3
(1) 根据题意,选取适当的研究对象;对所选研究对 象进行受力分析并画受力图。
(2) 选取适当的直角坐标系。坐标轴应与较多的未知 反力平行或垂直。一般情况下,水平和垂直的坐标轴可以不画, 但其它特殊方向的坐标轴必须画出。
第4章 平面任意力系
(3) 该力系上述的三种简化结果,从形式上是不同的, 但都与原力系等效。所以,三种情况的简化结果是等效的。
第4章 平面任意力系
4.1.3 固定端约束
固定端约束是工程中一种常见的约束。如图4-6所示,夹紧 在卡盘上的工件(图(a)),固定在刀架上的车刀(图(b)), 嵌入墙中的雨罩(图(c))等都属于固定端约束。由约束的性质 可知, 固定端约束能限制物体沿任何方向的移动,也能限制物 体在约束处的转动。所以,固定端A处的约束反力可用两个正
主矢FR′的大小和方向分别为:
FR' (FRx )2 (FRy )2 2002 1502 250N
tan FRy 150 0.75
FRx 200
第4章 平面任意力系
第四章、平面任意力系
![第四章、平面任意力系](https://img.taocdn.com/s3/m/4f79e02accbff121dd3683e8.png)
分布力系说明
q
qB
A
L 2L/3 Q1 L/3
B
A L L/2 A Q L/2
B
A
L (a)三角形分布力
厚接分布力
B L (b)均匀分布力
在以后碰到分布力时,先进行简化处理,然后再求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1
已知:梁AD的支承及受力如图所示。
F = 500N, FA = 1000N, q = 1000N/m
A、B、C是平面内不共线的任意三点.
应当指出:投影轴和矩心是可以任意选取的。 在解决实际问题时适当选取矩心与投影轴可以简化计算。
一般地说,矩心应选多个力的交点,尤其是选
未知力的交点,投影轴则尽可能选取与该力系中多数力的 后接例题 作用线平行或垂直。
第四章 平面任意力系
理 论 力 学
§4- 5 平面平行力系的合成与平衡
即两个力矩式一个投影式,其中A、B是平面内任意两点。 但连线不能垂直投影轴 X 。 B A x
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
平衡方程
2、平面力系任意力系的平衡方程 B
A 即三个力矩式, C
(2)三力矩形式的平衡方程
∑MA (F)= 0,
∑MB (F)= 0 ∑MC (F)= 0
即距D点的距离为a/3。
应用平面力系平衡方程求解。
第四章 平面任意力系
理 论 力 学
§4- 4 平衡条件、平衡方程
例 4-1 ∑Fx = 0 ∑Fy= 0
步骤3:取坐标系Bxy,列平衡方程
FBx+ F = 0 FBy+ FC- Fp- FA= 0
平面任意力系
![平面任意力系](https://img.taocdn.com/s3/m/d84c1c45974bcf84b9d528ea81c758f5f61f290e.png)
C
D G
EF
75° 75°
A
B
§4.4 刚体系旳平衡
解: 取整个系统为研究对象:
MA= 0,
FB·AB-G·ADcos75°= 0
AD cos 75
FB=
G AB
=225 N
Fy = 0, FA + FB-G = 0
FA=600-225=375 N
C
D
G FA E F FB
75° 75°
平衡
平衡
平衡
不平衡
§4.4 刚体系旳平衡
二、刚体系旳平衡
求解刚体系平衡问题与求解单一刚体旳环节基本相同: 选择合适旳研究对象,画出其分离体图和受力图,列平衡 方程求解未知力。 不同之处:单一刚体平衡问题研究对象旳选择是唯一旳, 而刚体系则能够选用其中一种刚体,选用刚体系整体或者 某一部分为研究对象。研究对象选择旳灵活性,使得问题 旳解法往往有多种。
(1) FR'= 0 , MO= 0 (3) FR'= 0 , MO 0
(2) FR' 0 , MO= 0 (4) FR' 0 , MO 0
(1) FR'= 0 , MO= 0
(2) FR' 0 , MO= 0 用于简化中心旳主矢
原力系是一种平衡力系 原力系能够合成一种合力,即作
(3) FR'= 0 , MO 0 原力系合成一种力偶,合力偶矩 等于主矩
解:
y
取梁AB为研 FAy
q
究对象,建立坐 标系如图
A FAx
Fx = 0, FA x= 0
2a
MA(F) = 0,
FBy·4a-M-F·2a-q·2a·a = 0
工程力学-单辉祖、谢传锋-第四章-平面任意力系
![工程力学-单辉祖、谢传锋-第四章-平面任意力系](https://img.taocdn.com/s3/m/858005ea6137ee06eff918be.png)
其中平面汇交力系的合力为
F1 F2 F n F1 F2 Fn Fi FR
平面力偶系的合成结果为
M O M1 M 2 M n M O ( F1 ) M O ( F2 ) M O ( Fn ) M O ( Fi )
MO 0
( Fx )2 ( Fy )2 FR
MO MO (F i )
( Fx )2 ( Fy )2 FR
MO MO (F i )
平衡
Fxi 0 即:
Fyi 0
MO (F i ) 0
平面任意力系的平衡方程
即:平面任意力系平衡的解析条件是:力系中 所有各 力 在其作用面内两个任选的坐标轴上投 影的代数和分别 等于零 ,所有各力对 任一点 之矩的代数和等于零。
(1) F'R=0,MO≠0 平面任意力系简化为一个力偶的情形 原力系合成为合力偶。合力偶矩M等于原力系对简 化中心的主矩。
F5
MO MO (F )
A
F1 F4
F6 B F3
F2
C
D
四个力是否平衡?
此时,主矩与简化中心的位置无关。
(2) F'R ≠ 0,MO = 0 ; 平面任意力系简化为一个合力的情形 如果主矩等于零,主矢不等于零,则此时平面力系 简化为一合力,作用线恰好通过简化中心。
例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
Fx 0
FAx qb 0
A
a
P
q
b
P
MA
Fy 0
FAy P 0
MA (F ) 0 1 2 M A Pa qb 0 2
工程力学C-第4章 平面任意力系
![工程力学C-第4章 平面任意力系](https://img.taocdn.com/s3/m/1c5ed63a43323968011c92b6.png)
l 2
q( x) xdx 2l h 3 q( x)dx
0 l 0
l
例 题7:
均匀分布载荷 q =4kN/m ,自由端B作用有集 中力F = 5kN,与铅垂线夹角α=25°,梁长 l = 3m。求固定端的反力。 解: 梁AB ——研究对象
x
M A (Fi ) 0 : M Q l F cos l 0 (Q ql 4 3 12kN) A
2
1 2 M A Fl cos ql 31.59kN m 转向如图 2
F
F
xi
0:
0:
FAx F sin 0
FAx F sin 2.113kN
FAy Q F cos 0
实际方向与图中相反
yi
FAy Q F cos 16.53kN 方向如图
n
平衡方程
平面任意力系平衡的解析条件:所有各力在两个任选的坐标轴 上的投影的代数和分别等于零,以及各力对于任意一点矩的代 数和也等于零。
例 1:
固定端约束
既不能移动,又不能转动的约束—— 固定端约束 固定约束的特点
利用平面力系的简化结果,将端部的分布
力向端部的一点A点简化,得FA、MA。
FA MA
A
B
b
因此,P2必须满足:
Pe P l P (e b) 1 P2 ab a
FNA
FNB
例 题 6 细杆AB 搁置在两互相垂直的光滑斜面上,如图所 示。已知:杆重为P,重心C 在杆AB的中心,两 斜面的几何关系如图。求:杆静止时与水平面的 夹角θ和支点 A、B 的反力。 解: 细杆AB —— 研究对象 设杆AB长 l ,取图示坐标系。
第四章 平面力系
![第四章 平面力系](https://img.taocdn.com/s3/m/8727e0e0f8c75fbfc77db24f.png)
平面力系
认识平面力系
§4-1 平面任意力系向平面内一点简化
一 、 力线的平移 作用于刚体上的力 F 的作用线可等效地 平移到任意一点 O ,但须附加一力偶,此附 加力偶等于原力对 O 点的矩。
F’ M O F
F”
d
逆过程:
平面内的一个力和一个
力偶总可以等效地被同 平面内的一个力替换, 但作用线平移一段距离
3 1 N B P qa 4 2
NB ·4 a - M - P ·2 a - q ·2 a ·a = 0
∑X = 0 , ∑Y = 0 ,
XA = 0
YA - q ·2a - P + NB = 0
P 3 YA qa 4 2
∑X = 0, F F sin 60°-3lq/2 -XA=0 XA = 316.4 kN ∑Y = 0,Fcos 60 °-P + YA = 0 YA = -100 kN ∑MA( F ) = 0, M A -3 l 2 q / 2 - M + 3 l Fsin60°- F l sin 30°= 0 MA = -789.2 kNm
例3-2
A
, , 求该力系向
1m
F1 2 ( N)
1m
解:
1 X F1 2 F3 0 1 Y F2 F1 2 0
F1
F2
B
1m
D
3m C
M
F3
1m
即,主矢 R’= 0 , 这样可知主矩与简化中心 D 的位置无关,以 B 点为简化中心有: MD = MB = M - F3×1 = 1 N m ,主矩 MD = 1 N m
X
i 1 N
N
i
理论力学第4章-平面任意力系
![理论力学第4章-平面任意力系](https://img.taocdn.com/s3/m/6bdc04730c22590103029d88.png)
FAx
FAy MA
解:(1)取悬臂刚架为研究对象,受力图。
(2)列平衡方程
Fx 0
FAx F 0
Fy 0
FAy 3q 0
解之得
MA(F) 0
M A F 4 3q 1.5 0
FAx 5kN FAy 6kN M A 11 kN m(与假设相反)
4.5.2 平面平行力系的平衡方程 作用线分布在同一平面内且相互平行的力系,称为平 面平行力系。
MO (F ) 2 OAB面积
(1)当力F通过矩心O时,力对该矩心的力矩为零。 (2)当力F沿作用线移动时,不改变该力对任一点的矩。
力对点之矩的解析式:
MO (F ) Fd Fr sin( ) Fr sin cos Fr cos sin
Fr cos Fx
r cos x
Fr sin Fy
合力矢 作用线的方程。
MO FRx
O
38.66
F Ry
F R
(x, y) FRx
400 x + 500 y = 2726.7
O
FRy
FR
4.5 平面任意力系、平面平行力系平衡方程 4.5.1 平面任意力系的平衡方程 平面任意力系平衡的必要与充分条件为:力系的
主矢以及对作用面内任一点的主矩都等于零,即
r sin y
MO (F ) xFy yFx (4-4)
y
Fy
F
y
r O d
A Fx
x
x
4.2 力线平移定理
力线平移定理: 作用在刚体上A点的力F可以平行 移到任一点B,但必须同时附加一个力偶,此附加力 偶的矩等于原来的力F对B点的矩。
[证] 力 F
力系 F, F1, F1' 力F1 力偶(F, F1')
材料力学第4章 平面任意力系
![材料力学第4章 平面任意力系](https://img.taocdn.com/s3/m/a91b8c52a45177232f60a269.png)
MO
M1
M
2
M
n
(2-2)
MO (F1) MO (F2 ) MO (Fn ) MO (F )
由此可见,MO一般与简化中心的位置有关,它
反映了原力系中各力的作用线相对于点O的分布情
况,称为原力系对点O的主矩。
理论力学
静力学
平面任意力系
15
平面任意力系向作用面内任意一点简化,一般 可以得到一个力和一个力偶;该力作用于简化中心, 其大小及方向等于力系的主矢,该力偶之矩等于力 系对于简化中心的主矩。
(2)
理论力学
静力学
平面任意力系
37
例题
MA(F) 0
FT AB sin 300 P AD F AE 0
(3)
由(3)解得
FT
2P 3F 4sin 300
(2 4 3 10)kN m 4m 0.5
19
kN
以
FT
之值代入式(1)、
例如,铁轨给轮 子的力等。
理论力学
静力学
平面任意力系
28
几种分布荷载:
体分布荷载:荷载(力)分布在整个构件内部
各点上。例如,构件的自重等。 面分布荷载:分布在构件表面上。例如,风压
力、雪压力等。
线分布荷载:荷载分布在狭长范围内,如沿构
件的轴线分布。
理论力学
静力学
平面任意力系
29
荷载的单位
(1) 集中荷载的单位,即力的单位 (N,kN)。 分布荷载的大小用集度表示,指密集程度。
值为多少?
理论力学
静力学
平面任意力系
![平面任意力系](https://img.taocdn.com/s3/m/a79b1395daef5ef7ba0d3c6b.png)
F4 F1 F2
F3
O
x
平面平行力系平衡的必要与充分条件是:力系 中所有各力的代数和等于零,以及各力对平面内任 一点之矩的代数和等于零。
n
{∑
i =1 n i =1
∑Y
i
=0
M O ( Fi ) = 0
二力矩形式的平衡方程:
{∑
i =1 n i =1
∑M
n
A
( Fi ) = 0
M B ( Fi ) = 0
则
′ FR = (∑ X ) 2 + (∑ Y ) 2
′ FRy ∑Y θ = arctg = arctg ′ FRx ∑X
• 固定端约束 物体的一部分固嵌于另一物体的约束称为固 定端约束。 固定端约束的特点是既限制物体的移动又限 制物体的转动。
在外载荷的作用下,物体在固嵌部分所受的作 用力为一任意力系。 将此力系向连接处物体横截面的形心A简化,得 到一个力FA和一个力偶MA。 对于平面固定端约束,可用两个正交分力和一个 力偶矩表示。
平面任意力系的平衡方程:
∑ ∑ ∑
n n
n
X
i =1
i
= 0
i =1
Yi = 0 M
O
i =1
(Fi) = 0
所有各力在两个任选的坐标轴上投影的代数和 分别等于零,以及各力对于任意一点的矩的代数和 也等于零。
平衡方程的其它形式:
• 二力矩形式的平衡方程
∑ ∑ ∑
n n
n
M M X
i =1
A
(Fi) = 0 (Fi) = 0 = 0
F
600
y
l l
M
B
D P
3l
第四章平面任意力系
![第四章平面任意力系](https://img.taocdn.com/s3/m/593e3fa158fb770bf78a55f3.png)
R
42.01
R'
25kN
MA
d
A
1m
1m
20kN 60o
1m
B
30o
18kN
R
求力系的主矩
MA = 1×25 + 2 × 20sin60o - 3 × 18sin30o = 32.64 kN·m
d M A 32.64 0.777 m R 42.01
§4-3 平面一般力系的平衡条件与平衡方程
F'1 M2
M1 O ·
Mn F'n
主矢′:力系中各力的矢量和.
F'2 x
y F'R
O· MO x
n
F R
F 1
F 2
F n
F i
i 1
主矩:力系中各力对简化中心o点的矩的代数和称为该力
系对简化中心o点的主矩.
n
M o
M M 1
2
M n
M
o
(
F i
)
i1
上一页 返回首页 下一页
三、平面任意力系向作用面内任一点的简化
合力 合力 合力偶 平衡
合力作用线过简化中心 作用线距简化中心 M O FR
与简化中心的位置无关
与简化中心的位置无关
合力FR 是在主矢FR´的那一侧,则要根据主矩的正负号来确定 。
原则是合力对简化中心的距的转向要与主矩的转向一致 。
合力矩定理:
n
MO (FR ) mO (Fi )
i 1
即:平面任意力系的合力对作用面内任一点之矩等于 力系中各力对于同一点之矩的代数和。
解题技巧
①选研究对象
①选坐标轴最好是未知力投影轴;
工程力学课后习题答案第四章 平面任意力系
![工程力学课后习题答案第四章 平面任意力系](https://img.taocdn.com/s3/m/f7f67ac6050876323112124c.png)
第四章 平面任意力系习 题4.1F TyxOF N解:软绳AB 的延长线必过球的中心,力N F 在两个圆球圆心线连线上N F 和T F 的关系如图所示:AB 于y 轴夹角为θ 对小球的球心O 进行受力分析:0,s i n c o sT NXF F θθ==∑ 0,cos sin T N Y F F W θθ=+=∑ s i n R r R dθ+=+ c o s L r R dθ+=+()()()()22T R d L r F W R r L r ++=+++ ()()()()22N R d R r F W R r L r ++=+++4.2。
AyF AxF 解:对AB 杆件进行受力分析:120,sin cos022AL MW W L θθ=-=∑解得: 212a r c s i n WW θ=对整体进行受力分析,由:20,c o s 02A x X F W θ=-=∑210,sin 02A y YF W W θ=+-=∑ 22121Ay W W F W +=4.3 解:A yF A xF B yA xF A yF B yFBA xF A yF A xF AM(a )受力如图所示0,0.8cos 300AxX F =-=∑0,0.110.80.150.20ABy MF =⨯+⨯-=0,10.8sin 300AyBy Y FF =+--=∑, 1.1,0.3Ax By Ay F F KN F KN ===(b )受力如图所示0,0.40AxX F =+=∑0,0.820.5 1.60.40.720ABy MF =⨯-⨯-⨯-=∑0,20.50AyBy Y F F =+-+=∑ 0.4,0.26,0.24Ax By Ay F K N F K N F K N =-==(c )受力如图所示0,sin 300AxB X F F =-=∑0,383cos 300AB MF =+-=∑0,cos 3040AyB Y FF =+-=∑2.12, 4.23,0.3Ax By Ay F K N F K N F K N ===(d )受力如图所示()()133q x x =- 0,0Ax X F ==∑()()33010,3 1.53A y YF q x dx x dx K N ===-=∑⎰⎰()30,0AA M M xq x dx =+=∑⎰()3013 1.53AMx x dx K N m =-=-∙⎰4.4AyF解:立柱底部A 处的受力如图所示,取截面A 以上的立柱为研究对象0,0AxX F qh =+=∑ 20Ax F qh K N =-=-0,0AyY F G F =--=∑ 100Ay F G F K N =+=0,0hA A M M qxdx Fa =--=∑⎰ 211302AMqh F a K N m =+=⋅4.5解:设A ,B 处的受力如图所示, 整体分析,由:()210,2202AB y MaF qa W a W a e =----=∑415By F K N =0,20Ay By Y F F W qa =+--=∑ 1785A y F K N =取BC 部分为研究对象()0,0CBy Bx M aF F a W a e =+--=∑ 191Bx F K N =-再以整体为研究对象0,191Ax XF KN ==∑4.7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章平面任意力系一、判断题1.设平面一般力系向某点简化得到一合力。
如果另选适当的点简化,则力系可简化为一力偶。
对吗?(✖)2.如图所示,力F和力偶(F',F")对轮的作用相同,已知,F'=F"=F。
(✖)3.一般情况下,力系的主矩随简化中心的不同而变化。
(✔)4.平面问题中,固定端约束可提供两个约束力和一个约束力偶。
(✔)5.力系向简化中心简化,若R'=0,M b=0,即主矢、主矩都等于零,则原平面一般力系是一个平衡力系,对吗?(✔)6.力偶可以在作用面内任意转移,主矩一般与简化中心有关,两者间有矛盾,对吗?(✖)7.组合梁ABCD受均布载荷作用,如图所示,均布载荷集度为q,当求D处约束反力时,可将分布力简化为在BE中点的集中力3qa,对吗?(✖)8.桁架中,若在一个节点上有两根不共线的杆件,且无载荷或约束力作用于该节点,则此二杆内力均为零,对吗?(✔)9.力的平移定理的实质是,作用于刚体的一个力,可以在力的作用线的任意平面内,等效地分解为同平面内另一点的一个力和一个力偶;反过来,作用于刚体某平面内的一个力和一个力偶也可以合成为同平面内另一点的一个力,对吗?(✔)10.当向A点简化时,有R=0,M A≠0,说明原力系可以简化为一力偶,其力偶矩就为主矩M A,其与简化中心无关。
所以将R=0,M A≠0再向原力系作用面内任意点B简化,必得到R=0,M B=M A≠0的结果,对吗?(✔)二、选择题1.对任何一个平面力系()。
A.总可以用一个力与之平衡B.总可以用一个力偶与之平衡C.总可以用合适的两个力与之平衡D.总可以用一个力和一个力偶与之平衡2.如图所示,一平面力系向0点简化为一主矢R’和主矩M0,若进一步简化为一合力,则合力R为()。
M⁄R) B.合力矢R位于O合力矢R位于B(OB≠OC.合力矢R=R’位于B(OB=O M⁄R)D.合力矢R=R’位于A(OA=0M⁄R)3.如图所示,结构在D点作用一水平力F,大小为F=2kN,不计杆ABC的自重,则支座B 的约束反力为()A.R B≤2kNB.R B=2kNC.R B>2kND.R B=04.如图所示,一绞盘有三个等长的柄,长为L,相互夹角为120°,每个柄作用于柄的力P将该力系向BC连线的中点D简化,其结果为()A.R=P,M D=3PLB.R=0,M D=3PLC.R=20,M D=3PLD.R=0,M D=2PL5.悬臂梁的尺寸和载荷如图所示,它的约束反力为()。
A.Y A=q o L⁄2M A=q o L2⁄3(顺时针) B.Y A=q o L⁄2M A=q o L2⁄6(顺时针)C.Y A=q o L⁄2M A=q o L2⁄3(逆时针) D.Y A=q o L⁄2M A=q o L2⁄6(逆时针)6.如图所示为一端自由的悬梁臂AD,已知P=ql,a=45°,梁自重不计,求支座A的反力。
试判断用哪种平衡方程可解。
()A.∑Y=0,∑M A=0,∑M B=0B.∑X=0,∑Y=0,∑M A=0C.∑M A=0,∑M B=0,∑M C=0D.∑Y=0,∑M A=07.如图所示重量为G 的木棒,一端用铰链固定在顶板A 点,另一端用一与棒端始终垂直的力F 缓慢将木棒提起,F 和它对A 点之矩的变化情况是().A.力变小,力矩变小B.力变小,力矩变大C.力变大,力矩变大D.力变大,力矩变小8.若平面任意力系向某点简化后合力矩为零,则合力()。
A.一定为零 B.一定不为零 C.不一定为零 D.与合力矩相等9.一平面任意力系先后向平面内A 、B 两点简化,分别得到力系的主矢R A 、R B 和主矩M A 、M B ,它们之间的关系在一般情况下(A 、B 两点连线不在R A 或R B 的作用线上)应是()。
A.R A =R B ,M A =M B B.R A =R B ,M A ≠M B C.R A ≠R B ,M A =M B D.R A ≠R B ,M A ≠M B10.平面任意力系向平面内一点O 简化,下列属于平衡的是()。
A.M O ’=0,R’=0 B.M O ’≠0,R’=0 C.M O ’≠0,R’≠0 D.M O ’=0,R’≠0三、填空题1.平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个力等效。
2.平面任意力系向作用面内一点简化后得到一力和一力偶,若将再进一步合成,则可得到一个力。
3.平面任意力系向作用面任意一点简化后,若主矢为零,主矩为零,则原力系是平衡力系。
4.平面任意力系只要不平衡,则它就可以简化为一个合力矩或者简化为一个合力。
5.建立平面任意力系的二力矩式平衡方程应是:任意两点A 、B 为矩心列两个力矩方程,取x 轴为投影轴列投影方程,但A 、B 两点的连线应不能垂直于x 轴。
6.平面任意力系平衡方程可以表示成不同的形式,但不论哪种形式的独立方程应为3个。
7.平面任意力系的平衡方程,也可以是任取A 、B 两点为矩心而建成两个力矩方程,但是A 、B 两点的连线不能与力系的各力平行。
8.由于工程上很多构件的未知约束反力数目,多于能列出独立平衡方程的数目,所以未知约束力就不能全部有平衡方程求出,这样的问题称为超静定问题。
9.对于由n 个物体组成的物体系统来说,不论就系统还是就系统的部分或单个物体都可以写一些平衡方程,至多只有3n 个独立的平衡方程。
四、计算题1.在如图中AB 段作用有梯形分布力,试求该力系的合力及合力作用线的位置,并在图上标出。
解:建立x 轴,A 为坐标原点,设合力作用线通过C 点。
合力与原力系等效,合力的方向与原力系各力相同,大小等于原力系各力的代数和,合力对A 点的矩等于原力系各力对A 点的矩的代数和。
分布力系合力:l q q dx x l q q q dx x q R l l )(21)()(2112001+=-+==⎰⎰CB A x l q 2q 1合力作用线过AB 段C 点,如图所示,有l q q q q l q q xdx x l q q q AC R AC dx x xq l l)(32)(21)(0)(21122101210++=+-+==⨯-⎰⎰2.如图中两杆自重不计。
AB 杆的B 端挂有重G=600N 的物体,试求CD 杆的内力及A 的反力。
解:解除A,C 处约束,A 处约束反力为Xa ,Ya ,C 处的约束反力为Rc ,沿CD 杆轴。
以整个结构为研究对象如下图所示:y Y A2m 1m GBA DC X AxR C 建立平衡方程,有:0)(045sin ,0045cos ,0==︒+==︒+=∑∑∑F M R Y Y R X X DCA C A 060cos 160sin 260cos 2=︒⨯⨯-︒⨯⨯-︒⨯⨯-G X Y A A 解得X A =—329.41N ,Y A =270.59N,R C =465.86N3.如图,求图所示钢架支座A ,B 的反力,已知,M=2.5KN·m ,P 3=5KN 。
解:选钢架为研究对象,解除约束,画其受力图如·图所示建立钢架的平衡方程:∑=0X ,X A -P ×0.6=0∑=0Y ,Y B -P ×0.8+Y A =0∑=0)(F M C,M+X A ×2.5-Y A ×2=0解得X A =3kN,Y A =5kN,Y B =-1kN4.悬臂钢架受力图如图所示,已知,q=4kN⁄m.P=5KN ,F=4kN ,求固定端A 的约束反力。
解:选钢架位研究对象,接触A 处约束,画受力图如下图所示,建立钢架的平衡方程,有∑=0X ,X A +F=0∑=0Y ,Y A -q ×3-P=00)(=∑F M A ,M A-F ×2.5-P ×3-q ×3×1.5=0解得X A =﹣4kN ,Y A =17kN ,M A =43kN ·mM A Y AX Axq F C BAy5.水平梁的支撑和载荷如图所示。
已知,力为F ,力偶矩为M 的力偶,集度为q 的均布载荷,求支座A ,B 的反力。
解:如下图所示,解除A,B 处的约束,代以约束反力X A,Y A,Y B ,建立梁的平衡方程,有∑=0X ,X A =0∑=0Y ,Y A ﹢Y B ﹣F ﹣qa=00)(=∑F M A,0.5qa 2-M +2aY B -3aF=0解得X A =0Y B =a 21(M ﹢3aF -21qa 2)=21(3F +a M -21qa)Y A =-21(F +a M -25qa )y Y B qM FX A a Y A Da 2a C B A 6.梁的支撑和荷载如图所示,P=2000N ,线分布荷载最大值q=1000N /m ,不计梁重,求支座反力。
解:如下图所示,解除A ,B 处约束,代以约束反力X B ,Y B ,Y A ,线分布荷载用其合力R 来等效。
R 力线过AB 段中点,大小为1.5q 。
建立梁的平衡方程,有∑=0X ,X B =0∑=0Y ,Y B +Y A -R-P=0∑=0)(F M B ,P×1-R×1+Y A×2=0解得X B =0,Y A =﹣250N ,Y B =3750N yx RX B Y A YB 2m 1m 1mqD BA P 7.梯子的两部分AB 和AC 在A 点铰接,D 、E 两点用水平绳连接,如图所示。
梯子放在光滑水平面上,P 力作用位置如图中所示。
不计梯重,求绳的拉力S 。
解:以梯子整体为研究对象,共受N B ,N C ,P 三力作用而平衡,建立平衡方程,有∑=0Y ,N B +N C =P∑=0)(F M B ,N C×2lcosα-P[(l-a)cosα+lcosα]=0解得N C =l a l 22-P ,N B =la 2P 再选AB 为研究对象,取A 点为矩心,有S×h-N B ×lcosα=0解得S=haP 2cos α8.起重构架如图所示。
滑轮直径d=200mm ,钢丝绳的倾斜部分平行于杆BE ,吊起荷载Q=20KN ,其他重力不计。
求固定较支座A ,B 处的约束反力解:如图所示,解除A,B 处约束,建立整个构架的平衡方程有∑=0X ,X A +X B =0(1)∑=0Y ,Y A +Y B -Q =0(2)∑=0)(F M B ,-X A×600-Q ×1150=0(3)再选ACD 为研究对象,取D 为矩心,有-Y A ×800-2Q ×2d =0(4)联立式(1)(2)(3)(4)解得X A =-38.3KN,X B =38.3KNY A =-1.25KN,Y B =21.25KN9.由AC 和CD 构成的组合梁通过铰链C 铰接。