沪科版(2012)初中数学九年级上册 21.5 反比例函数----二次函数与反比例函数 课件品质课件

合集下载

九年级数学上第21章二次函数与反比例函数21.5反比例函数第2课时反比例函数的图象和性质教学沪科版

九年级数学上第21章二次函数与反比例函数21.5反比例函数第2课时反比例函数的图象和性质教学沪科版
的函数,则这个函数的图象大致是( C )
提示:在实际问题中图象只有一支曲线.
5.若关于x,y的函数 y k+1 图象位于第一、三象限,
x
则k的取值范围是___k_>_-__1__.
6、已知反比例函数 y 4 k x
(1)若函数的图象位于第一三象限,
则k___<_4_________; (2)若在每一象限内,y随x增大而增大,
.
y
6
5
y=—
-4 x
.4 3

... 2 1
x
-6-5-4-3-2--11 0 1 -2
2 .3 4.
.
5
6

-3 . -4
-5
-6
【结论】
形状: 反比例函数的图象是由两支曲线组成的. 因此称反比例函数的图象为双曲线.
位置: 函数 y 的4x 两支曲线分别位于第一、三象限内. 函数 y 的4两支曲线分别位于第二、四象限内.
A、y1>y2>y3
B、y2>y1>y3
C、y3>y1>y2
D、y3>y2>y1
思路点拨:
判断k的 正负

确定图象 所在象限

判断三点 所在象限

利用增减 性判断
9、已知圆柱的侧面积是10πcm2,若圆柱底面半径为rcm,
高为hcm,则h与r的函数图象大致是( C ).
h/cm
h/cm
h/cm
o
o
【跟踪训练】 -4
1.画出函数y = —x 的图象 【解析】1.列表:
x

-8
-4
-3
-2
-1

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1

沪科版数学九年级上册21.5《反比例函数》教学设计1一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,这部分内容是在学生已经掌握了函数概念、正比例函数的基础上进行的。

本节内容主要介绍反比例函数的定义、性质和图像,以及如何利用反比例函数解决实际问题。

教材通过具体的例子引导学生理解反比例函数的概念,并通过大量的练习让学生熟练掌握反比例函数的性质和图像。

二. 学情分析九年级的学生已经具备了一定的函数知识,对于正比例函数的概念和性质有一定的了解。

但是,反比例函数的概念和性质与正比例函数有很大的不同,学生可能难以理解和接受。

此外,学生的数学思维能力和解决问题的能力参差不齐,对于一些抽象的数学概念,部分学生可能难以理解。

三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。

2.能够绘制反比例函数的图像,并运用反比例函数解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.反比例函数的概念和性质。

2.反比例函数图像的绘制和运用。

五. 教学方法1.讲授法:讲解反比例函数的概念和性质,引导学生理解反比例函数的本质。

2.示例法:通过具体的例子,让学生学会如何绘制反比例函数的图像,并运用反比例函数解决实际问题。

3.讨论法:学生进行小组讨论,让学生在讨论中掌握反比例函数的知识,提高学生的合作能力。

六. 教学准备1.教学课件:制作反比例函数的教学课件,包括反比例函数的概念、性质、图像等方面的内容。

2.练习题:准备一些关于反比例函数的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾正比例函数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)讲解反比例函数的概念,引导学生理解反比例函数的本质。

通过具体的例子,让学生学会如何绘制反比例函数的图像。

3.操练(10分钟)让学生独立完成一些关于反比例函数的练习题,巩固所学知识。

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计

沪科版数学九年级上册21.5《反比例函数》教学设计一. 教材分析沪科版数学九年级上册21.5《反比例函数》是本册教材中的一个重要内容,它主要包括反比例函数的定义、性质和图象。

本节课的内容对于学生来说是比较抽象的,需要学生具备一定的函数概念和几何知识。

通过本节课的学习,使学生掌握反比例函数的基本概念、性质和图象,培养学生运用函数知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了函数的基本概念和一次函数、二次函数的知识,对于函数的图象和性质有一定的了解。

但是,对于反比例函数这一抽象的概念,学生可能难以理解。

因此,在教学过程中,需要关注学生的认知基础,引导学生通过观察、操作、思考、交流等活动,自主探索反比例函数的性质和图象,提高学生解决问题的能力。

三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图象,学会用反比例函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主学习的能力和合作意识。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新精神和实践能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图象的特点。

五. 教学方法1.情境教学法:通过生活实例引入反比例函数,激发学生的学习兴趣。

2.自主学习法:引导学生自主探索反比例函数的性质和图象,培养学生的自主学习能力。

3.合作学习法:学生进行小组讨论,培养学生的合作意识和团队精神。

4.实践教学法:让学生运用反比例函数解决实际问题,提高学生的实践能力。

六. 教学准备1.教学课件:制作反比例函数的课件,包括反比例函数的定义、性质、图象等内容。

2.教学素材:准备一些实际问题,让学生运用反比例函数解决。

3.教学设备:投影仪、计算机、黑板等。

七. 教学过程1.导入(5分钟)利用生活实例引入反比例函数的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解反比例函数的定义,引导学生通过观察、操作、思考等活动,探索反比例函数的性质和图象。

沪科版九年级数学上第21章二次函数与反比例函数教案

沪科版九年级数学上第21章二次函数与反比例函数教案

第21章二次函数与反比例函数主题二次函数与反比例函数课型新授课上课时间教学内容21.1 二次函数;21.2 二次函数的图象和性质;21.3 二次函数与一元二次方程;21.4 二次函数的应用;21.5 反比例函数;21.6 综合实践获取最大利润教材分析本章对二次函数和反比例函数的学习,进一步丰富了研究函数的内容和方法,搞好这部分内容的教学,对进入高中后,学生对初等函数的学习有重要的意义.教学目标1.知识与技能了解二次函数和反比例函数的意义;掌握二次函数和反比例函数图象的画法;理解二次函数顶点坐标及最大值和最小值的意义;会根据不同的条件, 确定二次函数或反比例函数的解析式,会用待定系数法;会把一些实际问题归结为二次函数或反比例函数问题,并会运用二次函数或反比例函数的性质加以解决.2.过程与方法(1)通过对实际问题情境的分析确定二次函数、反比例函数的表达式,并体会二次函数、反比例函数的意义;(2)会用描点法画出二次函数、反比例函数的图象,能从图象上认识二次函数、反比例函数的性质;(3)会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;(4)会利用二次函数的图象求一元二次方程的近似解;(5)能用反比例函数解决某些实际问题.3.情感、态度与价值观从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重难点重点:1.二次函数和反比例函数的概念.2.二次函数和反比例函数图象和性质,以及它们的应用.3.培养学生在解决实际问题时建立函数模型的意识,并掌握建立函数模型的技能.难点:1.二次函数和反比例函数图象和性质,以及它们的应用.2.解决实际问题时建立函数模型的意识,并掌握建立函数模型的技能.知识结构课题21.1 二次函数课时1课时上课时间教学目标1.知识与技能理解二次函数的概念,掌握二次函数一般形式.2.过程与方法通过对实际问题的探索,熟练地掌握列二次函数关系式和求自变量的取值范围.3.情感、态度与价值观注重参与,联系实际,丰富同学们的感性认识,培养同学们的良好的学习习惯.教学重难点重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.难点:熟练地列出二次函数关系式.教学活动设计二次设计课堂导入旧知回顾:一次函数的一般形式是y=kx+b(k≠0) ,一元二次方程的一般形式是ax2+bx+c=0(a≠0) ,为什么a≠0? 当a=0时,方程不是一元二次方程.导入新课:某正方形边长为x,面积为S,则其面积S与边长x之间的函数关系式是什么?它是一次函数吗?为什么?函数关系是S=x2,不是一次函数,为什么?探索新知合作探究自学指导知识模块一二次函数的概念阅读教材本课时的内容,回答以下问题:1.问题①中40 m是长方形的周长吗? 是,矩形面积S与其一边长x之间的函数关系式为S=x(20-x)(0<x<20) ,它是一次函数吗? 不是,原因: 右边不是x的一次式.2.问题②中,设增加x人,此时,共有15+x 个装配工,每人每天可少装配10x个玩具,因此每人每天只装配190-10x 个玩具,所以,增加人数后,每天装配玩具总数y可表示为y=(190-10x)(15+x) .这个函数是一次函数吗? 不是,原因: 右边不是x的一次式.知识模块二在实际问题中列二次函数的解析式【例题】列出下列函数的关系式.(1)一个圆柱的高等于底面半径的2倍,则它的表面积S与底面半径r之间的关系式为S=6πr2.(2)某工厂一种产品现在年产量是20件,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示? y=20(1+x)2.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作合作探究1.讨论探究小组讨论自学指导中出现疑问的地方.2.让学生归纳上面两个函数解析式具有哪些共同特征?3.思考:解决列函数关系式这一类题的步骤.教师指导1.易错点:二次函数是自变量的多项式,自变量的最高次数都是2,二次项系数不为0.2.归纳小结:一般地,表达式形如y=ax2+bx+c (a,b,c是常数,且a≠0)的函数叫做x的二次函数,其中x是自变量,a为二次项系数,b为一次项系数,c为常数项.3.方法规律:(1) 二次函数必须满足三个条件:①函数解析式必须是整式;②化简后自变量的最高次数必须是2;③二次项系数不为0.(2) 解决列函数关系式这一类题的步骤:①审清题意,②找等量关系,③列函数关系式.当堂训练1.函数y=-2x2+3x-1的二次项系数、一次项系数、常数项依次是( )(A)-2,3,1 (B)-2,3,-1 (C)2,3,1 (D)2,3,-12.将一根长为20 cm的铁丝弯成一个矩形框架,设矩形的一边长为x cm,面积为y cm2,则y与x之间的函数关系式为,其中自变量x的取值范围是.3.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为.板书设计21.1 二次函数知识模块一二次函数的概念知识模块二在实际问题中列二次函数的解析式教学反思课题21.2 二次函数的图象和性质课时第1课时上课时间教学目标1.知识与技能能够利用描点法作出y=ax2的图象,并能根据图象认识和理解y=ax2的图象和性质. 2.过程与方法经历画二次函数y=ax2的图象和探索性质的过程,获得利用图象研究函数性质的经验.3.情感、态度与价值观经历、探索二次函数y=ax2图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:会画y=ax2的图象,理解其性质.难点:结合图象理解抛物线开口方向,对称轴,顶点坐标及基本性质.教学活动设计二次设计课堂导入旧知回顾:(1)一次函数y=kx+b(k≠0)其图象是一条经过(0,b)的直线.特别地,正比例函数y=kx(k≠0)其图象是过原点的直线.(2)描点法画出一次函数的步骤,分为列表, 描点, 连线三个步骤.(3)我们把形如y=ax2+bx+c(a≠0) 的函数叫做二次函数.探索新知合作探究自学指导探究二次函数y=ax2图象性质阅读教材P5~6页的内容,回答以下问题:1.在画二次函数y=x2的图象时,自变量取了多少个值?经历了多少步?自变量取了7个值,经历了3步,分别是列表、描点、连线.2.二次函数y=x2的图象是一条抛物线,它的对称轴是y 轴,顶点(最低点)是(0,0) ,在对称轴的左侧,抛物线从左到右下降,在对称轴的右侧,抛物线从左到右上升,也就是说,当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.3.观察y=x2,y=2x2的图象,回答它们的开口方向,对称轴和顶点坐标.4.根据函数y=x2,y=2x2图象特点,总结y=ax2(a>0)的性质:最高或最低点,图象何时上升、下降.5.观察y=-x2,y=-2x2的图象,指出它们与y=x2,y=2x2图象的不同之处.6.(1)a>0与a<0时,函数y=ax2图象有什么不同?(2)|a|大小对开口大小有什么影响? 学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:y=ax2图象的两端是无限伸展的,画的时候要“出头”, a的绝对值越大,抛物线的开口越小.2.归纳小结:a的符号开口方向顶点坐标对称轴性质a>0向上(0,0)y轴x>0时,y随x的增大而;x<0时,y随x的增大而;x=0时,y有0a<0向下(0,0)y轴x>0时,y随x的增大而;x<0时,y随x的增大而;x=0时,y有03.方法规律:解决二次函数y=ax2的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑.当堂训练1.若(-5,2)在抛物线y=ax2上,则下列各点一定也在该抛物线上的是( )(A)(5,2) (B)(-2,-5)(C)(-5,-2) (D)(0,2)2.函数y=5x2的图象开口向,顶点是,对称轴是,当x 时,y随x的增大而增大.板书设计第1课时二次函数y=ax2的图象和性质探究二次函数y=ax2图象性质归纳性质教学反思课题21.2 二次函数的图象和性质课时第2课时上课时间教学目标1.知识与技能会用描点法画出二次函数y=ax2+k的图象.2.过程与方法经历画二次函数y=ax2+k的图象和探索性质的过程,获得利用图象研究函数性质的经验,体会数形结合的思想方法.3.情感、态度与价值观经历、探索二次函数y=ax2+k图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重点:二次函数y=ax2+k的图象和性质.重难点难点:函数y=ax2+k与y=ax2的相互关系.教学活动设计二次设计课堂导入旧知回顾:1.画函数图象利用描点法,其步骤为列表、描点、连线.2.二次函数y=ax2(a≠0)的图象是一条抛物线,a>0时,它的开口向上,对称轴是y轴,顶点坐标是原点(0,0) ;在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大;当x=0时,y取最小值.a<0时有什么变化呢?探索新知合作探究自学指导知识模块一二次函数y=ax2+k的图象阅读教材P11~12,完成下面内容:画出y=2x2+1,y=2x2-1图象,根据图象回答下列问题:(1)抛物线y=2x2+1,y=2x2-1开口方向向上,对称轴是y轴,顶点坐标分别为(0,1),(0,-1) .(2)抛物线y=2x2+1,y=2x2-1与y=2x2之间有什么关系?答:可以发现y=2x2+1是由y=2x2向上平移一个单位长度得到的,而y=2x2-1是由y=2x2向下平移1个单位长度得到的.知识模块二二次函数y=ax2+k的性质继续观察知识模块一中y=2x2+1,y=2x2-1图象,说说它们的增减性.答:两个图象都是当x<0时,y随x的增大而减小;当x>0时,y随x的增大而增大.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:抛物线y=ax2与 y=ax2+k平移规律,运用y=ax2+k的性质时要注意数形结合思想.2.归纳小结:(1)抛物线y=ax2+k的图象①抛物线y=ax2+k的图象,当a>0时,开口方向向上,对称轴是y轴,顶点坐标是(0,k) .②抛物线y=ax2沿着y轴上下平移可以得到y=ax2+k,当k>0时,y=ax2向上平移k 个单位就可以得到抛物线y=ax2+k;当k<0时,抛物线y=ax2向下平移k 个单位就可以得到抛物线y=ax2+k.(2)二次函数y=ax2+k的图象和性质①开口方向:当a>0时,开口向上,当a<0时,开口向下.②对称轴: y轴.③顶点坐标: (0,k) .④增减性:当a>0时,在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大;当a<0时,在对称轴左侧,y随x的增大而增大,在对称轴右侧,y 随x的增大而减小.⑤最值:当a>0时,抛物线有最低点,当x=0时,y有最小值是k ;当a<0时,抛物线有最高点,当x=0时,y有最大值是k .3.方法规律:解决二次函数y=ax2+k的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑.当堂训练1.抛物线y=-2x2+8的开口,对称轴为,顶点坐标是;当x 时,y有最值为;当x<0时,函数值随x的增大而;当x>0时,函数值随x的增大而.2.将抛物线y=x2+1向下平移2个单位,得到抛物线解析式为.3.已知二次函数y=(a-2)x2+a2-2的最高点是(0,2),则a的值为.4.抛物线y=ax2+c与y=-3x2-2的图象关于x轴对称,则a= ,c= .板书设计第2课时二次函数y=ax2+k的图象和性质探究二次函数y=ax2+k的图象归纳二次函数y=ax2+k的性质教学反思课题21.2 二次函数的图象和性质课时第3课时上课时间教学目标1.知识与技能使学生能利用描点法画出二次函数y=a(x+h)2的图象.2.过程与方法让学生经历二次函数y=a(x+h)2性质探究的过程,理解函数y=a(x+h)2的性质,理解二次函数y=a(x+h)2的图象与二次函数y=ax2的图象的关系.3.情感、态度与价值观经历、探索二次函数y=a(x+h)2图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:掌握二次函数y=a(x+h)2的图象和性质.难点:二次函数y=a(x+h)2的图象和性质的运用.教学活动设计二次设计课堂导入旧知回顾:1.y=ax2+k是由y=ax2平移|k| 个单位得到.2.二次函数y=x2+5的图象是一条抛物线,它的开口向上,对称轴是y 轴,顶点坐标是(0,5) ;在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当x= 0 时,y取最小值.探索新知合作探究自学指导知识模块二次函数y=a(x+h)2的图象与性质阅读教材P14~15,思考并填写课本中的问题,然后完成下列问题:抛物线y=(x-1)2和y=(x+1)2与y=x2之间有什么关系?【例1】抛物线y=(x-2)2的开口向上,对称轴是直线x=2 ,顶点坐标是(2,0) ,当x <2 时,y随x的增大而减小;当x =2 时,函数y取得最小值,值为0 .【例2】如果将抛物线y=3x2向右平移1个单位,那么所得的抛物线的表达式是( C ) (A)y=3x2-1 (B)y=3x2+1(C)y=3(x-1)2(D)y=3(x+1)2合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.续表探索新知合作探究教师指导1.易错点:对于二次函数的图象,只要|a|相等,则它们的形状相同,只是开口方向不同,且|a|越大,开口越小.2.归纳小结:(1)二次函数y=a(x+h)2(a≠0)的图象性质:开口方向:a>0时,开口向上,a<0时,开口向下,顶点(-h,0) ,对称轴x=-h .最值:a>0时,有最小值y=0 .当a<0时,有最大值y=0 .增减性:a>0且x>-h时,y随x的增大而增大;x<-h时,y随x的增大而减小;a<0且x>-h时,y随x的增大而减小,x<-h时,y随x的增大而增大.(2)y=ax2和y=a(x+h)2的图象有如下关系:y=ax2y=a(x+h)2.3.方法规律:(1)解决二次函数y=a(x+h)2(a≠0)的性质的问题要熟记性质,同时注意多运用数形结合的思想方法来考虑.(2)由抛物线y=ax2的图象通过平移得到y=a(x+h)2的图象,左右平移的规律是(四字口诀)左加右减.当堂训练1.抛物线y=(x-2)2的开口向,顶点为,对称轴是,当时,y随x增大而减小;当x= 时,y有最值为.2.抛物线y=2x2.若抛物线不动,把y轴向右平移3个单位,那么在新坐标系下抛物线解析式为.3.抛物线y=3(x-1)2图象上有A(-1,y1),B(,y2),C(2,y3)三点.则y1,y2,y3大小关系为.板书设计第3课时二次函数y=a(x+h)2的图象和性质探究二次函数y=a(x+h)2的图象归纳二次函数y=a(x+h)2的性质教学反思课题21.2 二次函数的图象和性质课时第4课时上课时间教学目标1.知识与技能使学生理解函数y=a(x+h)2+k的图象与函数y=ax2的图象之间的关系.会确定函数y=a(x+h)2+k的图象的开口方向、对称轴和顶点坐标.2.过程与方法让学生经历函数y=a(x+h)2+k性质的探索过程,理解函数y=a(x+h)2+k的性质.3.情感、态度与价值观经历、探索二次函数y=a(x+h)2+k图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:二次函数y=a(x+h)2+k的图象与性质.难点:运用二次函数y=a(x+h)2+k的图象与性质解决简单的实际问题.教学活动设计二次设计课堂导入1.填空:函数开口方向对称轴顶点坐标最值y=3x2向上y轴或x=0(0,0)最小值0 y=-2x2+3向下y轴或x=0(0,3)最大值3 y=x2-4向上y轴或x=0(0,-4)最小值-4y=0.6(x-5)2向上x=5(5,0)最小值0y=-3(x+1)2向下x=-1(-1,0)最大值02.函数y=x2+1的图象由y=x2向上平移1个单位得到;函数y=(x-2)2的图象由y=x2向右平移两个单位得到.探索新知合作探究自学指导知识模块一二次函数y=a(x+h)2+k的图象与y=ax2之间的关系阅读教材P16~17,完成下面内容:1.在同一直角坐标系中,画出下列函数y=x2,y=(x-2)2,y=(x-2)2+1的图象.2.观察它们的图象,回答:它们的开口方向都向上,对称轴分别为y轴、直线x=2 、直线x=2 ,顶点坐标分别为(0,0) 、(2,0) 、(2,1) .请同学们完成填空,并观察三个图象之间的关系.【例题】说出抛物线y=2(x+1)2-3的开口方向、对称轴和顶点坐标,并指出它是由抛物线y=2x2通过怎样的平移得到的.知识模块二二次函数y=a(x+h)2+k的图象与性质1.(1)a>0,开口向上;a<0,开口向下;(2)对称轴是x= -h ;(3)顶点坐标是(-h,k) .2.从二次函数y=a(x+h)2+k的图象可以看出:如果a>0,当x<-h时,y随x的增大而减小,当x>-h时,y随x的增大而增大;如果a<0,当x<-h时,y随x的增大而增大,当x>-h时,y随x的增大而减小.续表探索新知合作探究合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:抛物线的增减性根据函数图象运用数形结合思想;二次函数的平移问题用到的知识点为:二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.2.归纳小结:一般地,抛物线y=a(x+h)2+k与y=ax2形状相同,位置不同,把抛物线y=ax2向上(下)向左(右)平移,可以得到抛物线y=a(x+h)2+k.平移的方向、距离要根据h、k 的值决定.二次函数y=a(x+h)2+k的图象与性质(1)①a>0,开口向上;a<0,开口向下;②对称轴是x= -h ;③顶点坐标是(-h,k) .(2)从二次函数y=a(x+h)2+k的图象可以看出:如果a>0,当x<-h时,y随x的增大而减小,当x>-h时,y随x的增大而增大;如果a<0,当x<-h时,y随x的增大而增大,当x>-h时,y随x的增大而减小.3.方法规律:由抛物线y=ax2的图象通过平移得到y=a(x+h)2+k的图象,平移的规律是左加右减,上加下减.当堂训练1.将抛物线y=-8x2先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为.2.抛物线y=-9(x+2)2-5的开口方向是,对称轴是,当x= 时,y 有最值,当时,y随x的增大而增大,当时,y随x的增大而减小.3.若一抛物线形状与y=2x2+7x相同,顶点坐标是(4,-2),则其解析式为.板书设计第4课时二次函数y=a(x+h)2+k的图象和性质二次函数y=a(x+h)2+k的图象与y=ax2之间的关系二次函数y=a(x+h)2+k的图象与性质教学反思课题21.2 二次函数的图象和性质课时第5课时上课时间教学目标1.知识与技能(1)掌握用描点法画出函数y=ax2+bx+c的图象.(2)掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标.2.过程与方法经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质.3.情感、态度与价值观经历、探索二次函数y=ax2+bx+c图象性质的过程,培养观察、思考、归纳的良好思维习惯.教学重难点重点:通过配方确定抛物线的对称轴,顶点坐标.难点:理解二次函数y=ax2+bx+c(a≠0)的性质.教学活动设计二次设计课堂导入旧知回顾:1.你能说出函数y=-3(x+2)2+4图象的开口方向、对称轴和顶点坐标及其性质吗?解:开口向下,对称轴是直线x=-2,顶点坐标是(-2,4).在对称轴右侧y随x的增大而减小,在对称轴左侧y随x的增大而增大.当x=-2时,有最大值4.2.函数y=-3(x+2)2+4图象与函数y=-3x2的图象有什么关系?解:函数y=-3(x+2)2+4的图象是由函数y=-3x2的图象向上平移4个单位,向左平移2个单位得到的.探索新知合作探究自学指导知识模块一掌握二次函数y=ax2+bx+c的图象与性质阅读教材P18~19,完成下面的内容:填空:y=-2x2-8x-7=-2(x2+4x)- 7=-2(x2+4x+ 4 )- 7 + 8=-2(x+ 2 )2+ 1知识模块二二次函数图象与性质的应用【例1】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( C )(A)ab>0,c>0 (B)ab>0,c<0(C)ab<0,c>0 (D)ab<0,c<0【例2】已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于(-1,0),则下列结论错误的是( D )(A)当x=2时,有最大值(B)当x<2时,y随x的增大而增大(C)-=2(D)抛物线与x轴的另一个交点为(2,0)合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.续表探索新知合作2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:探究用配方法求抛物线的顶点坐标和对称轴时,首先要把二次项系数化为1.2.归纳小结:(1)一般式化为顶点式的思路:①二次项系数化为 1 ;②加、减一次项系数一半的平方;③写成平方的形式.(2)二次函数y=ax2+bx+c的图象与性质.二次函数y=ax2+bx+c的对称轴是x=-,顶点坐标是-,.若a>0:当x<-时,y随x的增大而减小;当x>-时,y随x的增大而增大;当x=-时,y最小值= ;若a<0:当x<-时,y随x的增大而增大;当x>-时,y随x的增大而减小,当x= -时,y最大值= .3.方法规律:二次函数y=ax2+bx+c(a≠0)图象的画法五点绘图法:利用公式法或配方法,确定图象的开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取五点为:顶点,与y轴的交点(0,c),以及点(0,c)关于对称轴对称的点(2h,c),与x轴的交点(x1,0) ,(x2,0) (若与x轴没有交点,则取两个关于对称轴对称的点).当堂训练1.抛物线y=-2x2+4x+6的开口,对称轴为,顶点坐标是,当x= 时,y有最值,当时,y随x的增大而增大,当时,y随x的增大而减小.2.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1)y=-x2-6x;(2)y=x2-4x+3.3.已知抛物线y=-x2+ax-4的顶点在坐标轴上,求a的值.板书设计第5课时二次函数y=ax2+bx+c的图象和性质二次函数y=ax2+bx+c的图象与性质二次函数图象与性质的应用教学反思课题21.2 二次函数的图象和性质课时第6课时上课时间教学目标1.知识与技能会用待定系数法求二次函数的表达式,会求两图象的交点坐标.2.过程与方法经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法.3.情感、态度与价值观培养观察、思考、归纳的良好思维习惯,增强学生数学应用意识.教学重难点重点:用待定系数法求二次函数的解析式.难点:由条件灵活选择解析式类型.教学活动设计二次设计课堂导入旧知回顾:1.正比例函数图象经过点(1,-2),该函数解析式是y=-2x .2.在直角坐标系中,直线l过(1,2)和(3,-1)两点,求直线l的函数关系式.思考:一般地,函数关系式中有几个独立的系数,我们就需要相同个数的独立条件才能求出函数关系式.例如:我们确定正比例函数y=kx(k≠0)只需要一个独立条件;确定一次函数y=kx+b(k≠0)需要两个独立条件.如果要确定二次函数y=ax2+bx+c的关系式,需要几个条件呢?探索新知合作探究自学指导阅读教材P21~22,完成下面的内容:通过学习,你会发现求y=ax2+bx+c的解析式需要三个独立条件.(学生先独立思考,然后教师出示解题步骤)【例1】已知二次函数经过(-1,10),(1,4),(2,7),求这个二次函数解析式.解:设二次函数解析式为y=ax2+bx+c(a≠0).因为二次函数y=ax2+bx+c过点(-1,10),(1,4),(2,7)三点.所以解得所以所求二次函数的解析式为y=2x2-3x+5.【例2】见教材第22页,学生先独立思考,然后小组讨论.总结解决此类问题的方法.学生看书,教师巡视,督促每一位学生认真自学,鼓励学生质疑问难.合作探究1.将阅读教材时“生成的问题”和通过“自学指导”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.续表探索新知合作探究2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.教师指导1.易错点:确定二次函数的表达式时,注意选择合适的二次函数形式.2.归纳小结:(1)求二次函数的解析式y=ax2+bx+c,需要求出a,b,c 的值.由已知条件(如二次函数图象上三个点的坐标)列出关于a,b,c 的方程组,求出a,b,c 的值,就可以写出二次函数的解析式.(2)求两函数图象的交点坐标,就是两函数关系式联立组成方程组的解.3.方法规律:求二次函数的关系式,应恰当地选用二次函数关系式的形式,一般,有如下几种情况:(1)已知抛物线上三点的坐标,一般选用一般式;(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;(4)已知抛物线上纵坐标相同的两点,常选用顶点式.。

沪科版九年级上册数学第21章 二次函数与反比例函数 反比例函数的应用与k的几何意义

沪科版九年级上册数学第21章 二次函数与反比例函数  反比例函数的应用与k的几何意义
变量
1.【2020·合肥包河区月考】如图,正方形 ABOC 的边长为 2, 反比例函数 y=kx的图象过点 A,则 k 的值是( D ) A.2 B.-2 C.4 D.-4
2.【2021·淮北五校联考】如图,点 A 是反比例函数 y=kx图象上 一点,过点 A 作 AB⊥y 轴于点 B,点 C,D 在 x 轴上,且 BC ∥AD,四边形 ABCD 的面积为 4,则 k=___-_4____.
(2)问血液中药物浓度不低于4微克/毫升的持续时间是多少小时?
当 0≤x<4 时,令 y=4,得 4=2x, 解得 x=2;当 4≤x≤10 时, 令 y=4,得 4=3x2,解得 x=8. 8-2=6(小时), ∴血液中药物浓度不低于 4 微克/毫升的持续时间是 6 小时.
A.7:20 B.7:30 C.7:45 D.7:50
【点拨】∵开机加热时每分钟上升 10℃,∴从 30℃到 100℃ 需要 7min,设一次函数表达式为 y=k1x+b,将(0,30),(7, 100)代入 y=k1x+b,得b7=k1+30b,=100,解得kb==1300,,∴y=10x +30(0≤x≤7),令 y=50,解得 x=2.设反比例函数表达式为 y =kx,将(7,100)代入 y=kx得 k=700,∴y=70x0.将 y=30 代入 y=70x0,解得 x=730,∴y=70x0(7<x≤730 ).
(1)求y与x之间的函数关系式;
解:(1)设 y 与 x 之间的函数关系式为 y=kx, 由题可知当 x=3 时,y=400,∴k=3×400=1 200, 1 200 (2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较y1-y2与y2-y3 ∴y 与 x 之间的函数关系式为 y= x . 的大小:y1-y2________y2-y3.

沪科版九年级上册数学第21章 二次函数与反比例函数 反比例函数图像与性质的常见应用

沪科版九年级上册数学第21章 二次函数与反比例函数 反比例函数图像与性质的常见应用

数的函数值小于反比例函数的函
数值?
解: (1)∵一次函数y=kx+b(k≠0)的图象过点P和( 3 ,0) 2
A∴(一-次2,1函),数的表达式为y=232kk-b2bx-10. 3,解. 得,bk
2, 3.
∵反比例函数的图象过点A(-2,1),
∴.解得m=-2.
m
∴反比例函m数的1 表达式y 为 x (m 0)
∵AC⊥y轴,
∴点C的纵坐标与点A的纵坐标相同,是2.
∵点C在反比例函数y=的图象上,
∴当y=2时,2=,解得x=.∴5 AC=.
过B作BD⊥AC于D,5则BD=xyB-y5C=5-2=53,
∴S△ABC=AC·BD=x ××3=. 2
2
1
1 5 15
2
22
4
题型 5 等面积的综合题
5.(2015·甘南州)如图,在直角坐标系中,矩形OABC
解:(1) ∵一次函数y=3x+2的图象过点B,且点B的
横坐标为1,
∴y=3×1+2=5.∴点B的坐标为(1,5).
∵点B在反比例函数y=的图象上,
∴k=1×5=5.
k
∴反比例函数的表达式为y=. x
5 x
(2)∵一次函数y=3x+2的图象与y轴交于点A,
当x=0时,y=2,∴点A的坐标为(0,2).
第21章二次函数与反比例函数
21.5反比例函数
第4课时反比例函数图像与 性质的常见应用
题型 1 图表信息题
1.数学复习课上,王老师出示了如框中的题目:
已知:直线y=kx+b(k≠0)经过点
M(b,-b),
题目中求的证黑:色点矩M形一框定部在分双是曲一线段上被y .墨2b水污染

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计

沪科版数学九年级上册21.5《反比例函数》(第1课时)教学设计一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生了解反比例函数的定义,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

教材通过生活中的实例引入反比例函数的概念,接着引导学生探究反比例函数的性质,最后通过例题和练习题巩固所学知识。

二. 学情分析九年级的学生已经学习了函数的基本概念和性质,具备了一定的函数知识基础。

但反比例函数的概念和性质与正比例函数有所不同,学生可能难以理解和接受。

因此,在教学过程中,教师需要注重引导学生通过观察、分析和归纳来发现反比例函数的性质,并能够运用这些性质解决实际问题。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的概念。

2.掌握反比例函数的性质,能够运用反比例函数解决实际问题。

3.培养学生的观察能力、分析能力和解决问题的能力。

四. 教学重难点1.反比例函数的定义和性质的理解。

2.运用反比例函数解决实际问题的方法的掌握。

五. 教学方法1.情境教学法:通过生活中的实例引入反比例函数的概念,让学生感受到反比例函数的实际意义。

2.引导发现法:引导学生观察、分析和归纳反比例函数的性质,培养学生的发现能力和思维能力。

3.例题教学法:通过典型例题的讲解,让学生掌握反比例函数的应用方法。

4.练习法:通过练习题的训练,巩固所学知识,提高学生的解题能力。

六. 教学准备1.教学课件:制作反比例函数的课件,展示反比例函数的性质和应用。

2.练习题:准备一些有关反比例函数的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实例,如广告牌的高度与距离地面的高度之间的关系,引入反比例函数的概念。

引导学生观察和思考,引出反比例函数的定义。

2.呈现(10分钟)展示反比例函数的性质,引导学生通过观察、分析和归纳来发现反比例函数的性质。

沪科版(2012)初中数学九年级上册 21.5 反比例函数----二次函数与反比例函数 课件优质课件

沪科版(2012)初中数学九年级上册 21.5 反比例函数----二次函数与反比例函数 课件优质课件
数学
二次函数与反比例函数
21.5 反比例函数
第1课时 反比例函数的概念
第1课时 反比例函数的概念
基础自主学习
► 学习目标1 阅读教材到反比例函数定义前面内容,会 列出下列函数关系式
1.矩形的面积为10,一条边长为2,另一条边长为__5__. 若设一条边长为x,另一条边长为y,则y与x之间的关系式为 _y_=__1x_0_________.
第1课时 反比例函数的概念
探究问题三 根据实际问题建立反比例函数模型 例3 人的视觉机能受运动速度的影响很大,行驶中司机在
驾驶室内观察前方物体时是动态的,车速增加,视野变窄. 当车速为50 km/h时,视野为80度.如果视野f(度)是车速 v(km/h)的反比例函数,求f,v之间的函数关系式,并计算当 车速为100 km/h时视野的度数.
2.某工厂运来14000吨煤,每天平均耗煤x吨,那么这些 煤可以用y天,写出y与x之间的关系式为__y_=__1_4_0x_00____.
第1课时 反比例函数的概念
3.某物体对地面的压力为定值,物体对地面的压强 p(Pa) 与受力面积 S(m2)之间有怎样的关系?写出它们之间的关系 式.
[答案] 如果设压力为 F,则 p=FS. [归纳] 学会利用面积公式、压强公式、速度公式等一些常 见的公式列函数关系式.
[解析] 反比例函数的一般形式是 y=kx(k≠0),对于待定 系数 k,只需要一组对应值即可求出,求出函数关系式,再 将 v 的值代入计算即可.
第1课时 反比例函数的概念
解:设 f,v 之间的函数关系式为 f=kv(k≠0). ∵v=50 时,f=80,∴80=5k0, 解得 k=4000,∴f=40v00. 当 v=100 时,f=4100000=40(度), ∴车速为 100 km/h 时,视野为 40 度. [归纳总结] 根据题意,两个变量之间是反比例函数关系,就 可以设函数关系式是 y=kx,然后用待定系数法代入求解即可.

沪科版九年级上册数学第21章 二次函数与反比例函数 反比例函数

沪科版九年级上册数学第21章 二次函数与反比例函数  反比例函数
长 x 之间的关系是 20=12 xy,则 y=4x0,是反比例函数关系, 故本选项正确.故选 D. 【答案】D
13.【2021·滁州定远县联考改编】已知y与x+3成反比例,当x=3时,y=4.那
么当y=6时,x的值为( )A.2CB.2C.1D.-1
32
p=9V6
V/m3 1 1.5 2 2.5 3 38.
15 -2
k 1.一般地,表达式形如y=________(k为常数,且k≠______)的函数叫做反比例 x 函数,其中x是自变量,y是函数,自变量x的取值范围是__________.其表
达方式还0 可表示为xy=________,y=________.
x≠0
k
kx-1
2.求反比例函数表达式常用的方法是待定系数法.
3.反比例函数 y=2 0x22中,自变量 x 的取值范围是( C ) A.x>0 B.x<0 C.x≠0 的一切实数 D.x 取任意实数
4.若函数y=x2m+1为反比例函数,则m的值是( )
D
A.1
B.0.5
C.0
D.-1
5.下列哪些式子中的 y 是 x 的反比例函数?
解:对照反比例函数的定
(3)当m,n为何值时,为反比例函数?
当函数y=(5m-3)x2-n+m+n是反比例函数时,有2-n=-1,m+n=0, 且5m-3≠0,解得n=3,m=-3.
18.李贝说:“在如图所示的长方形ABCD中,AB=6,BC=8,P是BC边上一 动点,连接AP,过点D作DE⊥AP于点E,设AP=x(6≤x≤10),DE=y,则y 是x的反比例函数.”你认为李贝的说法正确吗?请说明理由.
11.若函数 y=m(mx-1)是反比例函数,则常数 m 必须满足的 条件是( D ) A.m≠1 B.m≠0 或 m≠1 C.m≠0 D.m≠0 且 m≠1

沪科版九上数学第21章:二次函数与反比例函数知识点总结

沪科版九上数学第21章:二次函数与反比例函数知识点总结

沪科版九上数学第21章:二次函数与反比例函数强化记忆知识点知识点1:二次函数的图象与系数的关系.二次函数2y ax bx c =++中图象与系数的关系:(1)二次项系数a 的正负决定开口方向,a 的大小决定开口的大小. a>0时,开口向上,a<0时,开口向下。

a 越大,开口越小。

a 越小,开口越大。

(2)一次项系数b ,在a 确定的前提下,b 决定了抛物线对称轴的位置.若0>ab ,则对称轴a b x 2-=在y 轴左边,若0<ab ,则对称轴a bx 2-=在y 轴的右侧。

若b=0,则对称轴abx 2-==0,即对称轴是y 轴.概括的说就是“左同右异,y 轴0” (3)常数项c ,c 决定了抛物线与y 轴交点的位置.当0c >时,交点在y 轴的正半轴上 ;当0c =时,抛物线经过原点,;当0c <时,交点在y 轴的负半轴上, 简记为“上正下负原点0”(4) △=b 2-4ac 决定了抛物线与x 轴交点的个数. ① 当0∆>时,抛物线与x 轴有两个交点 ② 当0∆=时,抛物线与x 轴只有一个交点; ③ 当0∆<时,抛物线与x 轴没有交点.另外当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.注:a +b +c 表示x=1时,对应的函数值。

a -b +c 表示x= -1时,对应的函数值.4a +2b +c 表示x=2时,对应的函数值。

9a -3b +c 表示x= -3时,对应的函数值.等知识2:一次函数的图象与系数的关系.一次函数:y=kx +b(k,b 是常数,k≠0) 中图象与系数的关系:(1)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (2)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(3)截距: 当b>0时,图象交于y 轴正半轴, 当b<0时,图象交于y 轴负半轴,当b=0时,图象交于原点.(4)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.知识3:反比例函数的图象与系数的关系以及反比例函数性质. 反比例函数:y =xk(k 为常数,k ≠0)中图象与系数的关系: (1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。

沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计

沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计

沪科版数学九年级上册第21章《二次函数与反比例函数》复习教学设计一. 教材分析《二次函数与反比例函数》是沪科版数学九年级上册第21章的内容,本章主要让学生掌握二次函数和反比例函数的性质、图象和应用。

内容涵盖了二次函数的定义、开口方向、对称轴、顶点坐标的求法,以及反比例函数的定义、图象、性质等。

这一章内容在初中数学中占有重要地位,对于学生来说,理解掌握二次函数和反比例函数的知识,对于高中阶段的学习有着重要的铺垫作用。

二. 学情分析九年级的学生已经学习过一次函数和二次函数的基础知识,对于函数的概念、图象和性质有一定的了解。

但是,对于二次函数和反比例函数的性质、图象和应用,部分学生可能还存在着一定的困难。

因此,在教学过程中,需要针对学生的实际情况,进行有针对性的教学设计,帮助学生理解和掌握二次函数和反比例函数的知识。

三. 教学目标1.知识与技能:使学生掌握二次函数和反比例函数的定义、性质、图象和应用,能够熟练运用二次函数和反比例函数解决实际问题。

2.过程与方法:通过自主学习、合作交流等方式,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学素养,使学生认识到数学在生活中的重要性。

四. 教学重难点1.重点:二次函数和反比例函数的定义、性质、图象和应用。

2.难点:二次函数和反比例函数的性质、图象和应用的理解和运用。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次函数和反比例函数的定义和应用。

2.自主学习法:鼓励学生自主探究二次函数和反比例函数的性质、图象,培养学生的自主学习能力。

3.合作交流法:学生进行小组讨论,共同解决问题,培养学生的合作交流能力。

4.案例教学法:通过分析实际问题,引导学生运用二次函数和反比例函数解决问题,提高学生的应用能力。

六. 教学准备1.教学课件:制作精美的教学课件,辅助教学。

2.教学素材:准备相关的实际问题,作为教学案例。

沪科版九年级上册数学第21章 二次函数与反比例函数 二次函数y=ax2+bx+c的图象和性质

沪科版九年级上册数学第21章 二次函数与反比例函数 二次函数y=ax2+bx+c的图象和性质
∴y1<y2. 2
∵ 5 1 2 1 ,∴点C( 5 ,y3)到对称轴
的距离大于点B(2,y2)到对称轴的距离, ∴y2<y3.∴y3>y2>y1.
感悟新知
归纳
知3-讲
解答此类题有两种思路,思路一:将三点的横坐标分别 代入函数表达式,求出对应的y1,y2,y3的值,再比较大小, 但本例这样计算比较困难,显然不是最佳的方案;思路二: 根据二次函数图象的特征来比较,利用增减性以及点在抛物 线上的大致位置,关键是由这些点与对称轴的位置关系来确 定y1,y2,y3的大小,显然本例使用这种方法比较简单.
感悟新知
归纳
知2-讲
解答抛物线 y= a(x+h)2+k的开口方向、 对称轴、 顶点坐标、最值、 增减性规律等问题,首先必 须 弄清顶点式y=a(x+h)2+ k 中 a,h,k 与开口方向、 对称轴、顶点坐标、最值间 的关系,比较题中给出 的 相关数据与a,h,k间的关 系,再结合相关知识 按题目 要求解答 .
感悟新知
知3-练
1.对于抛物线 y=-12(x+1)2+3,下列结论: ①抛物线的开口向下; ②对称轴为直线 x=1; ③顶点坐标为(-1,3); ④x>1 时,y 随 x 的增大而减小. 其中正确的个数为( C ) A.1 B.2 C.3 D.4
课堂小结
二次函数y=a(x+h)2+k的图象和性质:
图象与y=ax2的图象之间的关系,因此本题在描点画图
前,不妨先将函数

作一
比较.
y 1 (x 2)2 1 y 1 (x 2)2
2
2
感悟新知
知1-导
对于每一个给定的x值,函数 y 1 (x 2)2 1的值都要

沪科版数学九年级上册21.5反比例函数 课件(共34张PPT)

沪科版数学九年级上册21.5反比例函数  课件(共34张PPT)
随堂练习
如图,是反比例函数 图象的一支.根据图象,回答下列问题:(1)图象的另一支位于哪个象限?常数m的取值范围是什么?解:因为这个反比例函数图象的一支位于第一象限,所以另一支必位于第三象限.又因为这个函数图象位于第一、三象限,所以m-5>0,解得m>5.
(2)在这个函数图象的某一支上任取点A( )和点B( ).如果 ,那么 和 有怎样的大小关系?解:∵m-5>0, ∴在这个函数图象的任一支上,y都随x的增大而减小, ∴当 时, .
当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大
练一练
1.如果反比例函数 的图象位于第二、四象限内,那么满足条件的正整数k的值是_______.2.已知直线y=kx+b 的图象经过第一、二、四象限,则函数 的图象在第________象限.3.在反比例函数 的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是________.
24
(1)(3)
3.已知一次函数y=kx+b的图象如图所示,那么正比例函数y=kx和反比例函数 在同一平面直角坐标系中的图象大致是( )
C
4.已知反比例函数 (k为常数,k≠1)若点A(1,2)在这个函数的图象上,求k的值.若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围.若k=13,试判断点B(3,4),C(2,5),B点是否在这个函数的图象上,并说明理由.解:(1)代入A(1,2)得k-1=2,k=3; (2)k-1>0,k>1; (3) 代入B(3,4),C(2,5),B点在函数图象上,C点不在.
C
A
3.若函数 是反比例函数,则m的值是_____.4.在下列函数表达式中,x均表示自变量,那么哪些是y关于x的反比例函数?其相应的k的值是多少?① ;② ;③xy=2;④ ;⑤ y关于x的反比例函数有①②③;对应的k值分别为2.5,;2;7

沪科版九年级上册数学第21章 二次函数与反比例函数 二次函数y=ax2+bx+c的图象和性质

沪科版九年级上册数学第21章 二次函数与反比例函数   二次函数y=ax2+bx+c的图象和性质

物线
5
y=12x2
先向___左___平移___1___个单位,再向__下____平移
___2___个单位得到.
3.怎样平移抛物线y=x2-4x-5,使得顶点落在原点上,写出平移方法: _______________________________________.
先向左平移2个单位,再向上平移9个单位
4.【2020·合肥48中模拟】抛物线y=x2-4x+5的顶点坐标是( )
A.(-2,1)
B.(2,1)
C.(-2,-B 1)
D.(2,-1)
5.【2020·合肥 38 中月考】关于二次函数 y=2x2+x-1,下列说 法正确的是( D ) A.图象与 y 轴的交点坐标为(0,1) B.图象的对称轴在 y 轴的右侧 C.当 x<0 时,y 的值随 x 值的增大而减小 D.y 的最小值为-98
【点拨】当x=-1时,y=a-b+c>0,当x=2时,y=4a+2b+c<0,M-N =4a+2b-(a-b)=4a+2b+c-(a-b+c)<0,即M<N,故答案为<.
【答案】<
9.【2021·桐城期末】平移抛物线y=x2+2x-8,使它经过原点,写出平移后 抛物线的一个表达式:_____________________________.
【答案】C
7.【2020·凉山州】二次函数y=ax2+bx+c的图象如图所示,有如下结论: ①abc>0; ②2a+b=0; ③3b-2c<0; ④am2+bm≥a+b(m为实数). 其中正确结论的个数是( ) A.1个B.2个C.3个D.4个
【点拨】①∵对称轴在 y 轴右侧,∴a,b 异号, ∴ab<0.∵c<0,∴abc>0,故①正确; ②∵对称轴为直线 x=-2ba=1, ∴2a+b=0,故②正确; ③∵2a+b=0,∴a=-12b. ∵当 x=-1 时,y=a-b+c>0, ∴-12b-b+c>0,∴3b-2c<0,故③正确;

初中数学沪科版九年级上册第21章 二次函数与反比例函数2 反比例函数(6)

初中数学沪科版九年级上册第21章 二次函数与反比例函数2 反比例函数(6)

《反比例函数的图像和性质》教学设计一、教材分析(一)教材内容选自沪科版九年级下册第二十一章《二次函数》第五节反比例函数第二课时。

(二)教材地位及作用众所周知,函数是初中代数的核心,反比例函数又是初中阶段要求学习的三种函数中的第二种,是一类比较简单但很重要的函数,现实世界中充满了反比例函数的例子。

本节内容在这一章中又占据着举足轻重的地位,将反比例函数的概念和应用紧密联系起来。

(三)教学目标根据乡镇中学学生数学基础偏差的特点和新课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。

再结合我对这节课的理解和分析,制定教学目标如下:1、通过学生在动手操作,学会在平面直角坐标系中用描点法画出反比例函数的图象;并在列表、描点、连线的过程中体验图象的性质和函数的变化特征。

2、通过观察反比例函数图像,引导学生观察、分析、归纳反比例函数的性质,培养学生利用数形结合的数学思想方法,逐步形成解决问题的一些基本策略和技巧。

3、在学生自主探究反比例函数图像和性质的过程中,让学生体验到数学活动中充满了探索和创造,增强他们对数学学习的好奇心与求知欲。

(四)教学重点难点重点:用描点法作反比例函数的图像,并利用图像探究反比例函数的性质难点:如何抓住特点准确画出反比例函数的图像。

华罗庚教授曾深刻指出:“数无形,少直观;形无数,难入微.”为了突出重点、突破难点。

我设计并制作了能动态演示函数图象的多媒体课件。

让学生动手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。

二、教法学法类比、探究、分类讨论、归纳的教学方法三、教学过程(一)创设情境,引入新课1、反比例函数的概念是什么?有什么条件需要特别注意?2、反比例函数的几种表达形式怎样书写?3、问题一:以前我们学习过的正比例函数的图像是什么形状的?我们是通过几个步骤画出来的呢?4、问题二:那对于上一节课学习的反比例函数,它的图像又是什么形状呢?大家想知道么? 通过问题一帮助学生回忆用描点法画函数图象的方法,并认识到任何函数的图象都可以用描点法画,激活学生原有的知识,为探究反比例函数图象的画法奠定基础。

数学沪科版九年级(上册)21.5.1反比例函数

数学沪科版九年级(上册)21.5.1反比例函数


y 100 x 0
x
.
新知探究
方法归纳
反比例函数模型在物理学中应用最为广泛,一定条件 下,公式中的两个变量可能构成反比例关系,进而可以构 建反比例函数的数学模型.列出反比例函数表达式后,注意 结合实际问题写出自变量的取值范围 y k (k≠0) x
用待定系数法求反比例函数
第二十一章 二次函数与反比例函数
21.5.1 反比例函数
教学目标
1.理解并掌握反比例函数的意义及概念.(重点) 2.会判断一个函数是否是反比例函数.(重点) 3.会求反比例函数的表达式.(难点)
复习导入
问题1:某村有耕地200 hm2,人口数量x逐年发生变化,该村 人均耕地面积y hm2与人口数量x之间有着什么样的函数关系 呢?
I 随着R的增大而变小,随着R 的减小而变大.
(3)变量I 是R的函数吗?为什么?
是,当R确定一个数值的 时候,I有唯一的数值与其
对应.
新知探究
一般地,如果两个变量y与x的关系可以表示成
y k (k为常数, k≠0) x
的形式,那么称 y 是 x 的反比例函数. 其中x是自变量不能为0,常数k(k≠0)称为反比例函数的反比 例系数.
x
2
(3)把y=12 代入y=- 12 ,得12=- 12 ,x=-1.
x
x
总结
新知探究
例3:在压力不变的情况下,某物体承受的压强p Pa是它的受
力面积S m2的反比例函数,如图.
p
(1)求p与S之间的函数表达式;
(2)当S=0.5时,求p的值.
解:(1)设 p k(k≠0),
1000
S
因为函数图象过点(0.1,1000),

沪科版数学九年级上册21.5《反比例函数》教学设计3

沪科版数学九年级上册21.5《反比例函数》教学设计3

沪科版数学九年级上册21.5《反比例函数》教学设计3一. 教材分析《反比例函数》是沪科版数学九年级上册第21.5节的内容,本节课主要让学生了解反比例函数的定义,理解反比例函数的图像和性质,并能够运用反比例函数解决实际问题。

本节课的内容是学生在学习了正比例函数和一次函数的基础上进行的,为后续学习指数函数、对数函数等高级函数奠定基础。

二. 学情分析九年级的学生已经具备了一定的函数知识,对正比例函数和一次函数有了初步的理解。

但是,反比例函数的概念和性质相对于正比例函数和一次函数来说更加抽象,学生可能难以理解和接受。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,逐步理解反比例函数的概念和性质。

三. 教学目标1.了解反比例函数的定义,理解反比例函数的图像和性质。

2.能够运用反比例函数解决实际问题。

3.提高学生的抽象思维能力和问题解决能力。

四. 教学重难点1.反比例函数的定义和性质。

2.反比例函数图像的特点。

3.运用反比例函数解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生认识反比例函数。

2.数形结合法:利用图形直观地展示反比例函数的性质。

3.小组合作学习:引导学生通过合作交流,共同探讨反比例函数的问题。

六. 教学准备1.准备反比例函数的PPT课件。

2.准备一些实际问题,用于引导学生运用反比例函数解决。

3.准备一些反比例函数的图形,用于直观展示反比例函数的性质。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如“一辆汽车以60公里/小时的速度行驶,行驶1小时后,离出发点的距离是多少?”引导学生思考,引出反比例函数的概念。

2.呈现(10分钟)通过PPT课件,呈现反比例函数的定义和性质,让学生初步了解反比例函数。

3.操练(10分钟)让学生通过计算和作图,验证反比例函数的性质,加深对反比例函数的理解。

4.巩固(10分钟)通过解决一些实际问题,让学生运用反比例函数,巩固所学知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时 反比例函数的概念
学习目标 2 阅读教材本节反比例函数的定义,知道反比例 函数的一般形式 y=kx(k 为常数,且 k≠0),理解反比例函数的概 念
4.下面的函数是反比例函数的是 ③⑤____(填写序号). ①y=-2x;②y=x2;③y=-4x;④y=x2-x;⑤y=3x-1. 5.反比例函数 y=kx中,常数 k 不能取零,自变量 x 的取值范 围是 x≠0 ____. 数的关 6.系在式反为比例y=函-数1x_2y_=__kx.中,当 x=3 时,y=-4,则反比例函
第1课时 反比例函数的概念
课堂小结
第1课时 反比例函数的概念
[反思] 前面我们分别学习了一次函数与二次函数的图象和性 质,总是先__画_出__图__象___,然后得出__函__数__性__质__.那么反比例 函数的图象是怎样的?反比例函数具有什么性质?
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 ,表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑 封存梦想去拥抱蓝天。成
第1课时 反比例函数的概念
[归纳] 1.一般地,形如 y=kx____(k 为常数,且 k≠0)的 函数,叫做反比例函数.
2.判断一个函数为反比例函数,看化简后关系式是否为 y=kx或 xy=k 或 y=kx-1(k 为常数,且 k≠0)的形式.
第1课时 反比例函数的概念
重难互动探究
探究问题一 能够根据反比例函数的概念确定反比例函数中 字母常数的值
第1课时 反比例函数的概念
探究问题三 根据实际问题建立反比例函数模型 例3 人的视觉机能受运动速度的影响很大,行驶中司机在
驾驶室内观察前方物体时是动态的,车速增加,视野变窄. 当车速为50 km/h时,视野为80度.如果视野f(度)是车速 v(km/h)的反比例函数,求f,v之间的函数关系式,并计算当 车速为100 km/h时视野的度数.
[解析] 反比例函数的一般形式是 y=kx(k≠0),对于待定 系数 k,只需要一组对应值即可求出,求出函数关系式,再 将 v 的值代入计算即可.
第1课时 反比例函数的概念
解:设 f,v 之间的函数关系式为 f=kv(k≠0). ∵v=50 时,f=80,∴80=5k0, 解得 k=4000,∴f=40v00. 当 v=100 时,f=4100000=40(度), ∴车速为 100 km/h 时,视野为 40 度. [归纳总结] 根据题意,两个变量之间是反比例函数关系,就 可以设函数关系式是 y=kx,然后用待定系数法代入求解即可.
第1课时 反比例函数的概念
探究问题二 根据函数概念求函数关系式 例 2 已知函数 y=2y1-y2,y1 与 x+1 成正比例,y2
与 x 成反比例,当 x=1 时,y=4,当 x=2 时,y=3,求 y 与 x 的函数关系式.
[解析] 根据正比例函数和反比例函数的定义得到 y1,y2 的关系式,进而得到 y 的关系式,把所给两组解代入即可得 到相应的比例系数,也就求得了所求的关系式.
例 1 已知 y=(m2+2m)xm2+m-1 是 y 关于 x 的反比 例函数,求 m 的值及函数关系式.
解:由题意,得mm22+ +m2m-≠1=0,-②1,① 由①,得 m=0 或 m=-1, 由②,得 m≠0 且 m≠-2,∴m=-1,y=-1x.
第1课时 反比例函数的概念
[归纳总结] 本题考查反比例函数的概念,反比例函数的关系 式除了 y=kx的形式外,还有 y=kx-1 和 xy=k(其中 k 是不等 于零的常数),在解题时特别注意不要忽略 k≠0 这一条件.
数学பைடு நூலகம்
二次函数与反比例函数
21.5 反比例函数
第1课时 反比例函数的概念
第1课时 反比例函数的概念
基础自主学习
► 学习目标1 阅读教材到反比例函数定义前面内容,会 列出下列函数关系式
1.矩形的面积为10,一条边长为2,另一条边长为__5__. 若设一条边长为x,另一条边长为y,则y与x之间的关系式为 _y_=__1x_0_________.
2.某工厂运来14000吨煤,每天平均耗煤x吨,那么这些 煤可以用y天,写出y与x之间的关系式为__y_=__1_4_0x_00____.
第1课时 反比例函数的概念
3.某物体对地面的压力为定值,物体对地面的压强 p(Pa) 与受力面积 S(m2)之间有怎样的关系?写出它们之间的关系 式.
[答案] 如果设压力为 F,则 p=FS. [归纳] 学会利用面积公式、压强公式、速度公式等一些常 见的公式列函数关系式.
第1课时 反比例函数的概念
解:由题意,得 y1=k1(x+1)(k1≠0),y2=kx2(k2≠0).∵y =2y1-y2,∴y=2k1(x+1)-kx2,
∴43= =46kk11- -kk222, ,解得kk12= =14-,3, 即 y=12(x+1)+3x.
第1课时 反比例函数的概念
[归纳总结] 用待定系数法求函数关系式,关键是弄清y与 x(或x+a)是何种函数关系,需注意两个函数的比例系数 是不同的.
相关文档
最新文档