上海版高质量初一年级期末数学试卷附答案

合集下载

上海七年级第二学期数学期末数学考试试卷(答案)

上海七年级第二学期数学期末数学考试试卷(答案)

第二学期初中七年级数学期末质量调研1参考答案与评分意见一、填空题(本大题共有14题,每题2分,满分28分)1.4±;2.34;3.0.79;4.>;5.20;6.235-;7.50 ;8.70 ;9.()5,3-;10.10>c >6;11.54 ;12.△ABD 与△ADC 或△DCO 与△ABO 或△ABC 与△DBC ;13.130 ;14.60 或120 ;二、单项选择题(本大题共有4题,每题3分,满分共12分)15.B;16.D;17.B;18.A.三、(本大题共有4题,第19、20题各5分,第21、22题各6分,满分22分)19.解:原式(25255⎡=-⎢⎣……………………………………………………1分2555⎡⎤=-⨯⎢⎥⎣⎦…………………………………………………1分25555=……………………………………………1分52=-…………………………………………………………………2分【说明】没有过程,直接得结论扣2分.20.解法一:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分4562⎛⎫= ⎪⎝⎭……………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分3102不扣分.解法二:原式4113222⎛⎫=⨯ ⎪⎝⎭………………………………………………………2分42322=⨯…………………………………………………………1分1032=…………………………………………………………………1分382=.……………………………………………………………1分21.(1)画图正确2分,标注字母正确1分,结论1分;(2)画图正确1分,标注字母正确1分.22.(1)()2,4-,7;……………………………………………………………(1+1)分(2)()5,3-,等腰直角三角形;…………………………………………(1+1)分(3)画图正确1分,标注字母正确1分.四、(本大题共有5题,第23、24题各6分,第25、26题各8分,第27题10分,满分38分)23.解:根据题意:设A ∠、B ∠、C ∠的度数分别为3x 、4x 、5x .……1分因为A ∠、B ∠、C ∠是△ABC 的三个内角(已知),所以180A B C ∠+∠+∠= (三角形的内角和等于180 ),……………1分即345180x x x ++=.…………………………………………………1分解得15x =.……………………………………………………………2分所以45A ∠= ,60B ∠= ,75C ∠= .………………………………1分24.解:(1)因为AB AC =(已知),所以△ABC 是等腰三角形.由AD BC ⊥(已知),得112BAC ∠=∠(等腰三角形的三线合一).……………………………2分由110BAC ∠= (已知),得11110552∠=⨯= .……………………………………………………2分(2)因为△ABC 是等腰三角形,AD BC ⊥(已知),所以BD CD =(等腰三角形的三线合一).……………………………2分【说明】在用“等腰三角形的三线合一”性质时,前面两个条件有漏写的,要扣1分.25.解:两直线平行,内错角相等…………………………………………………1分EBA FCD ∠=∠…………………………………………………………1分等角的补角相等……………………………………………………………1分AB CD =.………………………………………………………………1分在△ABE 和△DCF 中,,,(AB CD ABE DCF BE CF =⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△ABE ≌△DCF (S.A.S ),……………………………………1分得A D ∠=∠(全等三角形的对应角相等), (1)分所以//AE DF (内错角相等,两直线平行).…………………………1分26.(1)三角形的一个外角等于与它不相邻的两个内角和…………………………1分12∠=∠………………………………………………………………………1分因为AB AC =(已知),所以B C ∠=∠(等边对等角).……………………………………………1分在△BFD 和△CDE 中,12,,(B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩已知),………………………………………………………1分所以△BFD ≌△CDE (A.A.S ),………………………………………1分(2)因为△BFD ≌△CDE ,所以DF DE =(全等三角形的对应边相等).……………………………1分因为△ABC 是等边三角形(已知),所以60B ∠= (等边三角形的每个内角等于60 ).因为FDE B ∠=∠(已知),所以60FDE ∠= (等量代换).……………………………………………1分所以△DEF 是等边三角形(有一个内角等于60 的等腰三角形是等边三角形).……………………………………………………………………………1分27.解:(1)a >2的理由是“垂线段最短”【说明】1.如果学生写出“直角三角形的斜边大于直角边”也同样给分.2.如果学生想法正确,但表达不够清楚,酌情扣1分.(2)()12,0P a --,△1P AB 的面积为a;()22,0P a -,△2P AB 的面积为a ;()32,0P ,△3P AB 的面积为4;()40,0P ,△4P AB 的面积为2.(每个结论各1分)。

最新上海初一第二学期期末考试数学试题附答案(第三套)

最新上海初一第二学期期末考试数学试题附答案(第三套)

最新上海初一第二学期期末考试数学试题(第二套)(考试时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1. 64的立方根是 . 2. 如果x =4,那么x = .3. 在数轴上,如果点A 、点B 所对应的数分别为7-、72,那么A 、B 两点的距离AB = .4.5在两个连续整数a 和b 之间(a <b ),那么b a = .5. 计算:()33= .6. 计算:219-= .7. 崇明越江通道建设中的隧道工程全长约为3100.9⨯米,其中3100.9⨯有 个有效数字.8. 三角形的两边长分别为3和5,那么第三边a 的取值范围是 . 9. △ABC 中,AB =3,∠A=∠B = 60°,那么BC = .10. 如图,AD ∥BC ,△ABD 的面积是5,△AOD 的面积是2,那么△COD 的面积是 .11. 将一副三角板如图所示摆放(其中一块三角板的一条直角边与另一块三角板的斜边摆放在一直线上),那么图中∠α= 度.12. 经过点P (-1,5)且垂直于x 轴的直线可以表示为直线 .13. 如图,点P 在∠MON 的平分线上,点A 、B 分别在角的两边,如果要使△AOP ≌△BOP ,那么需要添加的一个条件是 (只写一个即可,不添加辅助线). 14. 等腰三角形一腰上的高与另一腰的夹角为50°,那么这个等腰三角形的底角为 .二、选择题(本大题共4题,每小题3分,满分12分)15. 下列说法中正确的是( )(A )无限不循环小数是无理数;(B )一个无理数的平方一定是有理数; (C )无理数包括正无理数、负无理数和零;(D )两个无理数的和、差、积、商仍是无理数.16. 将一直角三角板与两边平行的纸条如图所示放置,下列结论: (1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°, 其中正确的个数是( )(A )1; (B )2; (C )3; (D )4. 17. 如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),那么棋子“炮”的坐标为( ) ABCDO第10题图 第11题图 NMPOB A第13题图第16题第17题图(A )(3,0); (B )(3,1); (C )(3,2); (D )(2,2).18. 如图,AOB 是一钢架,且∠AOB =10°,为加固钢架,需要在其内部添加一些钢管EF 、FG 、GH 、…,添加的钢管长度都与OE 相等,那么最多能添加这样钢管的根数为( )(A )6; (B )7; (C )8; (D )9. 三、简答题(本大题共4题,每小题6分,满分24分) 19.计算:()15315265÷-⨯. 20.利用幂的性质进行计算6332816÷⨯.21.如图,如果AB =AD ,∠ABC =∠ADC ,试说明BC 与CD 相等的理由. 解:联结BD .因为AB =AD ,所以 ( ).因为∠ABC =∠ADC (已知),所以∠ABC - =∠ADC - ( ). 即 所以BC =CD .22.在△ABC 中,如果∠A 、∠B 、∠C 的外角..的度数之比是4∶3∶2,求∠A 的度数.四、解答题(本大题共4小题,23题8分,24题9分,25题7分,26题12分,满分36分) 23.(1)在下图中画出表示点P 到直线a 距离的垂线段PM ;(2)过点P 画出直线B 的平行线c ,与直线a 交于点N ; (3)如果直线a 与b 的夹角为35°,求出∠MPN 的度数.24.如图,已知AC =BC =CD ,BD 平分∠ABC ,点E 在BC 的延长线上.(1) 试说明CD ∥AB 的理由;(2) C D 是∠ACE 的角平分线吗?为什么? MHGFEOBA 第18题图第23题图bABCD第21题图第24题图DAEBC25.如图,在直角坐标平面内,已知点A 的坐标(-5,0), (1) 图中B 点的坐标是 ;(2) 点B 关于原点对称的点C 的坐标是 ;点A 关于y 轴对称的点D 的坐标是 ;(3) △ABC 的面积是 ;(4) 在直角坐标平面上找一点E ,能满足ADE S ∆=ABC S ∆的点E 有 个; (5) 在y 轴上找一点F ,使ADF S ∆=ABC S ∆,那么点F 的所有可能位置是 ;(用坐标表示,并在图中画出)26、把两个大小不同的等腰直角三角形三角板按照一定的规则放置:“在同一平面内将直角顶点叠合”. (1)图1是一种放置位置及由它抽象出的几何图形,B 、C 、D 在同一条直线上,联结EC .请找出图中的全等三角形(结论中不含未标识的字母),并说明理由;(2)图2也是一种放置位置及由它抽象出的几何图形,A 、C 、D 在同一条直线上,联结BD 、联结EC 并延长与BD 交于点F .请找出线段BD 和EC 的位置关系,并说明理由; (3)请你:①画出一个符合放置规则且不同于图1和图2所放位置的几何图形; ②写出你所画几何图形中线段BD 和EC 的位置和数量关系;③上面第②题中的结论在按照规则放置所抽象出的几何图形中都存在吗?第26题 图1第25题上海市七年级第二学期期末考试卷(2)参考答案一、填空题:1、4;2、16;3、73;4、8;5、33;6、-3;7、2;8、82<<a ;9、3; 10、3; 11、75; 12、1-=x ; 13、AO =BO (或∠A =∠B ;∠APO =∠BPO );14、70°或20°. 二、选择题:15、A ; 16、D ; 17、C ; 18、C . 三、19、解:原式=1531152153130⨯-⨯=3232-=322-. 20、 解:原式=652334222÷⨯=6523342-+=338442=.21、∠ABD =∠ADB .等边对等角. ∠ABD .∠ADB .等式性质.∠CBD =∠CDB .………(每格1分) 22、解:设∠A 、∠B 、∠C 的外角分别为∠1=x 4度、∠2=x 3度、∠3=x 2度. ……(1分) 因为∠1、∠2、∠3是△ABC 的三个外角,所以360234=++x x x . 解得40=x . 所以∠1=160°、∠2=120°、∠3=80°. 因为∠A +∠1=180°, 所以∠A=80°. 四、解答题23、(1)、(2)画图略.(3)因为直线a 与b 的夹角为35°,所以∠β=35°. 将直线a 与c 的夹角记为∠1. 因为c ∥b ,所以∠1=∠β=35°.因为PM ⊥a ,所以∠PMN =90°因为∠1+∠P +∠PMN =180°,所以∠P =55°.24、(1)解:因为BD 平分∠ABC ,(已知)所以∠ABD =∠DBC .(角平分线定义)因为BC =CD ,(已知)所以∠DBC =∠D .(等边对等角)所以∠ABD =∠D .(等量代换) 所以CD ∥AB .(内错角相等,两直线平行)…………………………(1分)(2)CD 是∠ACE 的角平分线. …………………………………………………(1分)因为CD ∥AB ,所以∠DCE =∠ABE .(两直线平行,同位角相等))∠ACD =∠A .(两直线平行,内错角相等) 因为AC =BC ,(已知)所以∠A =∠ABE .(等边对等角)所以∠ACD =∠DCE .(等量代换)即CD 是∠ACE 的角平分线. 25、(1)(―3,4);(2)(3,―4);(5,0);(3)20;(4)无数. (5)(0,4)或(0,―4). 26、解:(1)△ABD ≌△ACE .因为△ABC 是直角三角形,所以AB=AC ,∠BAC =90°. 同理AD=AE ,∠EAD =90°. 所以∠BAC =∠EAD . 所以∠BAC +∠CAD =∠EAD +∠CAD .即∠BAD =∠CAE .在△ABD 和△ACE 中,⎪⎩⎪⎨⎧=∠=∠=.,,AE AD CAE BAD AC AB 所以△ABD ≌△ACE .(2)可证得△ABD ≌△ACE ,所以∠ADB =∠AEC .(全等三角形对应角相等)……………………(1分)因为∠ACE =∠DCF ,(对顶角相等)∠ADB +∠DCF +∠EFD =180°,(三角形内角和180°)∠AEC +∠ACE +∠EAC =180°,(三角形内角和180°)……(1分) 所以∠EAC =∠EFD . …………………………………………………(1分) 因为∠BAC =90°,所以∠EAC =90°.所以∠EFD =90°.所以BD ⊥EC . (垂直定义)…………………………………………(1分)(3)①图略. …………………………………………………………………(1分)②BD =EC ,BD ⊥EC . ………………………………………………(2分)③存在. …………………………………………………………………(1分)。

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,-3,-2/3,0.5中,最小的数为()答案:B。

-3最小。

2.-2的倒数是()答案:C。

-1/2.3.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是(。

)答案:D。

4x*(5/4) * (t+0.5) = 160,解方程得x=40.4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了7个棋子,第二个图形用了12个棋子,按这样的规律摆下去,摆成第20个“H”字需要棋子()答案:A。

第n个“H”字需要的棋子数为n^2 + 1.5.已知点A、B、C在一条直线上,线段AB=5cm,BC=3cm,那么线段AC的长为()答案:C。

线段AC=AB+BC=5+3=8cm。

6.化简(2x-3y)-3(4x-2y)的结果为()答案:B。

-10x+3y。

7.方程3x-1=2的解是()答案:A。

x=1.8.如果方程组{2x+y=5,x-2y=3}的解为{x=2,y=1},那么“口”和“△”所表示的数分别是(。

)答案:C。

口表示2x+y=7,△表示x-2y=-3.9.观察一行数:-1,5,-7,17,-31,65,则按此规律排列的第10个数是()答案:B。

-511.10.如图,两块直角三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD=()答案:B。

120度。

11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()答案:C。

44分钟。

12.关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b/a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解。

2023-2024学年上海市崇明区七年级上学期期末数学试卷及参考答案

2023-2024学年上海市崇明区七年级上学期期末数学试卷及参考答案

上海市崇明区2023-2024学年第一学期教学质量调研测试卷七年级数学(完卷时间90分钟,满分100分)一、选择题(本大题共4题,每小题3分,满分12分)1.下列运算结果正确的是……………………………………………………………………( ) A .3332x x x += B .236a a a ⋅= C .()22436a a = D .()223161a a a -=-2.下列各式因式分解正确的是………………………………………………………………( ) A .222()x a x a -=-B .24414(1)1a a a a ++=++C .24(4)x x x x -+=-+D .224(2)(2)x y x y x y -=-+ 3.下列说法正确的是…………………………………………………………………………( ) 二、填空题(本大题共14题,每小题2分,满分28分)① ② ③16题 第17如图,在正方形网格中,图②是由图19.计算:()()223223x y x x y +-⋅-.20.计算:()()3233242622x x x x x ⎡⎤--÷⎢⎥⎣⎦.26.春天正值放风筝的美好时节,为了丰富同学们的校园生活,某校七年级开展了“万物…筝‟春·逐梦远方”的风筝节比赛,要求同学们自制风筝积极参赛.如何设计与制作风筝呢?请同学们阅读“勤学小组”的项目实施过程,帮助他们解决项目实施过程中遇到的问题.项目主题:设计与制作风筝.项目实施:任务一:了解风筝“勤学小组”的同学查阅了有关风筝的历史,种类,结构,制作等方面的资料,同时还收集到如下图的风筝图案,请你帮助他们从中选出不是轴对称图形的风筝图案________.A. B. C. D.任务二:设计风筝设计风筝时主要进行风筝面与风筝骨架的设计.“勤学小组”的同学设计好了风筝面,接下来在正方形网格中进行风筝骨架的设计,请你帮助他们以直线l为对称轴画出风筝骨架的另一半.任务二用图任务三用图任务三:制作风筝传统风筝的技艺概括起来四个字:扎、糊、绘、放,简称“四艺”.“勤学小组”的同学准备用竹条扎制如图所示的风筝骨架,已知该图形是轴对称图形,AD所在的直线是该图形的对称轴,BD ,则竹条BC的长为________cm.30cm任务四:放飞风筝同学们拿着自己设计与制作的风筝进行了试飞,并根据试飞结果对风筝进行了修改完善.项目反思:同学们对项目学习的整个过程进行反思,并编写了“简易风筝制作说明书”.请你写出一条在项目实施的过程中用到的数学知识_______________________________________________________.27.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时分别行多少千米.所示,若1COD AOB,则2(1)如图①所示,已知70∠=︒,15AOB∠=︒,CODAOC∠是∠(2)如图②,已知63∠绕点O按顺时针方向旋转一个角度∠=︒,将AOBAOB当旋转的角度α为______时,COB∠的内半角;∠是AOD参考答案一、选择题(本大题共4题,每小题3分,满分12分)1.A;2.D;3.C;4.A;二、填空题(本大题共14题,每小题2分,满分28分)73.610;。

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×1062.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线 C .垂线段最短 D .两点之间直线最短 3.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查4.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .345.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )A .4B .3C .0D .﹣26.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50° B .130° C .50°或 90° D .50°或 130° 7.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180°8.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒10.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.写出一个比4大的无理数:____________.16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 17.当a=_____时,分式13a a --的值为0. 18.因式分解:32x xy -= ▲ .19.如果一个数的平方根等于这个数本身,那么这个数是_____. 20.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____. 21.4是_____的算术平方根.22.下列命题:①若∠1=∠2,∠2=∠3,则∠1=∠3;②若|a|=|b|,则a=b ;③内错角相等;④对顶角相等.其中真命题的是_______(填写序号)23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?27.解方程:x﹣2=2 3 x+28.如图,点O是直线AE上的一点,OC是∠AOD的平分线,∠BOD=13∠AOD.(1)若∠BOD=20°,求∠BOC的度数;(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.29.先化简,再求值:a2+(5a2﹣2a)﹣2(a2﹣3a),其中a=﹣5.30.已知:四点A B C D、、、的位置如图所示,根据下列语句,画出图形.()1画直线AD、直线,BC画射线AB;()2画一点O,使点O既在直线AD上又在直线,BC上;()3在上面所作的图形中,以A B C D O、、、、为端点的线段共有条.四、压轴题31.数轴上A、B两点对应的数分别是﹣4、12,线段CE在数轴上运动,点C在点E的左边,且CE=8,点F是AE的中点.(1)如图1,当线段CE运动到点C、E均在A、B之间时,若CF=1,则AB=,AC =,BE=;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.32.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)33.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】试题分析:384 000=3.84×105.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 3.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b、4、-2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.6.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.7.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.8.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.16.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.22.①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此解析:①④【解析】【分析】根据等式的性质,绝对值的性质,平行线性质,对顶角的性质逐一进行判断即可得.【详解】①若∠1=∠2,∠2=∠3,则∠1=∠3,真命题,符合题意;②令a=1,b=-1,此时|a|=|b|,而a≠b,故②是假命题,不符合题意;③两直线平行,内错角相等,故③是假命题,不符合题意;④对顶角相等,真命题,符合题意,故答案为:①④.【点睛】本题考查了真假命题,熟练掌握等式的性质,绝对值的性质,平行线的性质,对顶角的性质是解题的关键.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.221122a ab b -+-,值为:799- 【解析】根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.26.(1)需要甲车6辆,乙车8辆;(2)选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【解析】【分析】(1)设需要甲车x 辆,乙车y 辆,根据运送94吨原材料需运费6400元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设需要甲车a 辆,乙车b 辆,丙车(14-a-b )辆,根据需要运送94吨原材料,即可得出关于a 、b 的二元一次方程,结合a 、b 、c 均为非负整数即可得出运送方案,再利用总运费=400×甲车所需辆数+500×乙车所需辆数+600×丙车所需辆数,即可求出总运费.【详解】解:(1)设需要甲车x 辆,乙车y 辆,根据题意得:5x+8y=94400x+500y=6400⎧⎨⎩, 解得:x=6y=8⎧⎨⎩.答:需要甲车6辆,乙车8辆.(2)设需要甲车a辆,乙车b辆,丙车(14﹣a﹣b)辆,根据题意得:5a+8b+10(140﹣a﹣b)=94,整理得:5a+2b=46,∴a=46-2b5,当b=3时,a=8,c=3;当b=8时,a=6,c=0.第一种:400×8+500×3+600×3=6500(元);第二种:400×6+500×8=6400(元).答:选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.【点睛】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.27.x=4【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】解:去分母得:3x﹣6=x+2,移项合并得:2x=8,解得:x=4.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.28.(1)10°;(2)180°﹣6n【解析】【分析】(1)根据∠BOD=13∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.【详解】解:(1)∵∠BOD=13∠AOD.∠BOD=20°,∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,∴∠AOC=∠COD=12∠AOD=12×60°=30°,∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,有(1)得,∠BOC=∠COD﹣∠BOD,即:n =32x ﹣x ,解得:x =2n , ∴∠AOD =3∠BOD =6n , ∠EOD =180°﹣∠AOD =180°﹣6n ,【点睛】考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.29.80.【解析】试题分析:先去括号,再合并同类项,最后把字母的值代入计算即可.试题解析:222(52)2(3),a a a a a +--- 2225226,a a a a a =+--+244,a a =+,∵5a =-,∴原式24(5)4(5),=⨯-+⨯- 42520,=⨯-10020,=-80=.30.()1见解析;()2见解析;()37【解析】【分析】(1)根据直线、射线的性质画图即可;(2)画出直线AD 和直线BC 的交点即可得出答案;(3)根据线段的定义分别得出各条线段即可.【详解】解:(1)(2)如图所示:(3)根据图形可知线段有: AO , AB ,AD ,BO , BC ,CO ,OD ,共7条.故答案为:7【点睛】此题主要考查了简单作图,解答此题需要熟练掌握直线、射线、线段的性质,认真作图解答即可.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t , =4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P 所在的位置表示的数为5 .(4)由(3)得:点P 运动了6个来回后,又运动了30个单位长度,∴点P 和点Q 一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.33.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP=2t,BQ=t,∴AQ=20-t,QP=2t-(20-t)=3t-20,PB=20-2t.∵PB=20-2t≥0,∴t≤10.∵QP=3t-20≥0,∴t≥203,∴203≤t≤10.分三种情况讨论:①当AQ=13AP时,20-t=13×2t,解得:t=12>10,舍去;②当AQ=12AP时,20-t=12×2t,解得:t=10;③当AQ=23AP时,20-t=23×2t,解得:t607;答:t为10或607时,点Q是线段AP的“2倍点”.【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.。

上海市七年级上册数学期末试卷及答案-百度文库

上海市七年级上册数学期末试卷及答案-百度文库

上海市七年级上册数学期末试卷及答案-百度文库上海市七年级上册数学期末试卷及答案一、选择题1.将384 000用科学记数法表示为()。

A。

3.84×10^3 B。

3.84×10^4 C。

3.84×10^5 D。

3.84×10^62.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()。

A。

两点之间线段最短 B。

两点确定一条直线 C。

垂线段最短 D。

两点之间直线最短3.下列日常现象中,可以用“两点确定一条直线”来解释的现象是()。

A。

①④ B。

②③ C。

③ D。

④4.已知单项式2x^3y+2m与3xn+1y^3的和是单项式,则m-n的值是()。

5.下列各数中,绝对值最大的是()。

6.按如图所示图形中的虚线折叠可以围成一个棱柱的是()。

7.点M(5,3)在第()象限。

A。

第一象限 B。

第二象限 C。

第三象限 D。

第四象限8.如图,能判定直线a∥b的条件是(。

)。

A。

∠2+∠4=180° B。

∠3=∠4 C。

∠1+∠4=90° D。

∠1=∠49.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是()。

10.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为()。

A。

150×10^4 B。

15×10^5 C。

0.15×10^7 D。

1.5×10^611.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()。

A。

8 B。

12 C。

18 D。

2012.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为()cm。

二、填空题13.已知方程2x+a=ax+2的解为x=3,则a的值为__________。

14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____。

七年级上册上海数学期末试卷测试卷(解析版)

七年级上册上海数学期末试卷测试卷(解析版)

七年级上册上海数学期末试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。

上海市七年级第一学期数学期末考试(共三套-含答案)

上海市七年级第一学期数学期末考试(共三套-含答案)

上海市2021学年七年级第一学期数学期末试卷2021.1.14〔测试时间90分钟, 总分值100 分〕一、填空题〔每题1分,共18分〕1、多项式9753+-x x 是________次________项式2、多项式13691124--+-x x x 的最高次项是___________,最高次项的系数是____________,常数项是______3、_______________•(24a -)=23441612a a a +-5.从整式π、2、3+a 、3-a 中,任选两个构造一个..分式 . 6.如果多项式62-+mx x 在整数范围内可以因式分解,那么m 可以取的值是______________. 7.假设m +n =8,mn =14,那么=+22n m ;8.当x 时,分式242--x x 有意义;9.如果分式522-+x x 的值为1,那么=x ; 10.计算:x x x x 444122-⋅+-=______________;11、假设关于x 的方程221=-x 与23-=+a x x 的解相等,那么a 的值为_____________12. 如图,将△AOC 绕点O 顺时针旋转90°得△BOD ,3=OA ,1=OC ,那么图中阴影局部的面积为 .13.:如图,在正方形ABCD 中,点E 在边BC 上,将△DCE 绕点D 按顺时针方向旋转,与△DAF 重合,那么旋转角等于_________度.14. 在线段、角、正三角形、长方形、正方形、等腰梯形和圆中,共ABC DEF〔第13题图〕有 个为旋转对称图形.15.如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋 转到A ′B ′C ’的位置,使A 、C 、B ′三点共线,那么旋转角的大小是 度.16、正三角形是旋转对称图形,绕旋转中心至少旋转 度,可以和原图形重合。

17.长、宽分别为a 、b 的长方形硬纸片拼成一个“带孔〞正方形〔如右图所示〕,试利用面积的不同表示方法,写出一个等式______________________.18.为确保信息平安,信息需要加密传输,发送方由明文→明文〔解密〕.加密规那么为:明文a ,b ,c 对应的密文1-a ,12+b ,23-c .如果对方收到的密文为2,9,13,那么解密后得到的明文为 . 二、选择题(本大题共13小题,每题2分,总分值26分)1.以下运算中,正确的选项是 …………………………………—………………………〔 〕(A) 532)(a a =; (B) 532a a a =⋅; (C) 532a a a =+; (D) 236a a a =÷. 2.()()c b a c b a --+-的计算结果是………………………………………………〔 〕(A)222c b a -+; (B)222c b a +-;(C) 2222b c ac a -+-; (D) 2222c b ab a -+-. 3.如果22423y xy x M --=,2254y xy x N -+=,那么2215138y xy x --等于…〔 〕 〔A 〕N M -2 〔B 〕N M -4 〔C 〕N M 32- 〔D 〕N M 23- 4.如果分式yx x +-22的值为0,那么y 的值不能等于……………………………〔 〕 〔A 〕2 〔B 〕-2 〔C 〕4 〔D 〕-4 5.小马虎在下面的计算中只做对了一道题,他做对的题目是 ( 〕〔A 〕 222()a b a b +=+ 〔B 〕 432101102-⨯⨯⨯=〔C 〕 3252a a a += 〔D 〕 326(2)4a a -=6.甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调, 两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安 装x 台,根据题意,下面所列方程中正确的选项是 〔 〕(A)26066-=x x ; (B) x x 60266=-; (C)26066+=x x ; 〔D 〕xx 60266=+ 7.如果将分式yx y x +-22中的x 和y 都扩大到原来的3倍,那么分式的值〔 〕〔A 〕扩大到原来的3倍; 〔B 〕扩大到原来的9倍;〔C 〕缩小到原来的31; 〔D 〕不变.8、以下各式正确的选项是………………………………………………………………〔 〕 〔A 〕422x x x =+ 〔B 〕9336)2(x x-=-〔C 〕22)21x (41x x+=++ 〔D 〕)0(21222≠=-x x x9.在以下图右侧的四个三角形中,由ABC △既不能经过旋转也不能经过平 移得到的三角形是 〔 〕10.以下图形中,是中心对称图形的是〔 〕11.从甲到乙的图形变换,判断全正确的选项是〔A 〕〔1〕翻折,〔2〕旋转,〔3〕平移; 〔B 〕〔1〕翻折,〔2〕平移,〔3〕旋转; 〔C 〕〔1〕平移,〔2〕翻折,〔3〕旋转; 〔D 〕〔1〕平移,〔2〕旋转,〔3〕翻折。

上海市普陀区名校2024届数学七年级第一学期期末质量检测试题含解析

上海市普陀区名校2024届数学七年级第一学期期末质量检测试题含解析

上海市普陀区名校2024届数学七年级第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为( )A .﹣3B .﹣2C .﹣6D .+62.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >-4B .bd >0C .a b >D .b +c >0 3.若325m x y与224n m n x y +-是同类项,则2m n -的值为( ) A .1 B .1- C .3- D .以上答案都不对4.我市某一天的最高气温为1℃,最低气温为﹣9℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃5.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子( )A .(4n ﹣4)枚B .4n 枚C .(4n+4)枚D .n 2枚6.如图,一张地图上有A ,B ,C 三地,B 地在A 地的东北方向,若∠BAC =103°,则C 地在A 地的( )A .北偏西58方向B .北偏西68︒方向C .北偏西32方向D .西北方向7.下列各题合并同类项,结果正确的是( )A .1349ab ab -=B .222 523a b a b a b --=-C .2221257a a a -+=-D .336235x x x +=8.某项工程甲单独完成需要 45 天,乙单独成需要 30 天,若乙先单独干 20 天,剩余的由甲单独完成,问甲、乙一共用几天全部工作.设甲、乙一共用 x 天可以完成全部工作,则符合题意的方程是( )A .202013045x ++=B .202014530x -+=C .202013045x -+=D .202014530x ++= 9.如图,一个窗户的上部分是由4个相同的扇形组成的半圆,下部分是由边长为的4个完全相同的小正方形组成的长方形,则做出这个窗户需要的材料总长是( )A .B .C .D .10.下列说法错误的是( )A .负整数和负分数统称为负有理数B .正整数、0、负整数统称为整数C .正有理数与负有理数组成全体有理数D .3.14是小数,也是分数二、填空题(本大题共有6小题,每小题3分,共18分)11.若a ﹣1与﹣3互为相反数,则a=__.12.已知:线段AC 和BC 在同一条直线上,如果AC=5.4cm ,BC=3.6cm ,线段AC 和BC 中点间的距离是_______.13.如图,数a ,b ,c 在数轴上的位置如图,化简2a b b c c a ++---的结果是__________.14.一件服装的进价是200元,按标价的八折销售,仍可获利10%,该服装的标价是_______.15.多项式x 2-3kxy -3y 2+xy -8化简后不含xy 项,则k 为______.16.下列一组数:﹣8,2.6,﹣|﹣3|,﹣π,﹣227,0.101001…(每两个1中逐次增加一个0)中,无理数有_____个. 三、解下列各题(本大题共8小题,共72分)17.(8分)某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折,设购买书架a 只.(1)若该校到同一家超市选购所有商品,则到A 超市要准备_____元货款,到B 超市要准备_____元货款(用含a 的式子表示);(2)在(1)的情况下,当购买多少只书架时,无论到哪一家超市所付货款都一样?(3)假如你是本次购买的负责人,学校想购买20张书柜和100只书架,且可到两家超市自由选购,请你设计一种购买方案,使付款额最少,最少付款额是多少?18.(8分)有一道题“求代数式的值:()211428242x x y x y ⎛⎫-+--- ⎪⎝⎭,其中1,20202x y ==”,小亮做题时,把2020y =错抄成“2020y =-”,但他的结果也与正确答案一样,为什么?19.(8分)(1)计算:4211-1(1)-2-(3)23+-⨯- (2)解下列方程:7x-15x 13x 22-324++-= 20.(8分)先化简,再求值:()22252233233x x xy xy x xy ⎡⎤⎛⎫--+--+ ⎪⎢⎥⎝⎭⎣⎦,其中x 是-2的倒数,y 是最大的负整数. 21.(8分)如图,是由10个大小相同的小立方块搭成的几何体。

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线3.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .124.以下选项中比-2小的是( ) A .0 B .1 C .-1.5 D .-2.5 5.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 6.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,37.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或738.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯ B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯9.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .710.在下边图形中,不是如图立体图形的视图是( )A.B.C.D.11.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣1 12.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠4 13.3的倒数是()A.3B.3-C.13D.13-14.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°15.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A .45人B .120人C .135人D .165人二、填空题16.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.17.=38A ∠︒,则A ∠的补角的度数为______.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。

精品解析:上海市普陀区2021-2022学年七年级上学期期末数学试题(解析版)

精品解析:上海市普陀区2021-2022学年七年级上学期期末数学试题(解析版)

2021-2022学年上海市普陀区某校七年级第一学期期末数学试卷一、选择题(本大题共有6题,每题2分,满分12分)1. 下列计算结果中,正确的是( )A. a 3+a 3=a 6B. (2a )3=6a 3C. (a ﹣7)2=a 2﹣49D. a 7÷a 6=a .【答案】D【解析】【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键.2. 下列说法中正确的是( ) A. 3a b a+整式 B. 多项式2x 2﹣y 2+xy ﹣4x 3y 3按字母x 升幂排列为﹣4x 3y 3+2x 2+xy ﹣y 2C. 2x 是一次单项式D. a 3b +2a 2b ﹣3ab 的二次项系数是3【答案】C【解析】【分析】根据整式的定义即可判断选项A ,先按x 的指数从小到大的顺序排列,再判断选项B 即可,根据单项式的定义和单项式的次数定义即可判断选项C ,根据单项式的系数和次数的定义即可判断选项D .是【详解】解:A .分母中含有字母,是分式,不是整式,故不符合题意;B .多项式2x 2﹣y 2+xy ﹣4x 3y 3按字母x 升幂排列为﹣y 2+xy +2x 2﹣4x 3y 3,故不符合题意;C .2x 是一次单项式,故符合题意;D .a 3b +2a 2b ﹣3ab 的二次项系数是﹣3,故不符合题意;故选C .【点睛】本题考查了整式,单项式的系数和次数,多项式的升幂排列等知识.解题的关键在于熟练掌握整式、单项式的定义,多项式的升幂排列.3. 下列各式从左到右的变形是因式分解的是( )A 1+2x +3x 2=1+x (2+3x )B. 3x (x +y )=3x 2+3xyC. 6a 2b +3ab 2﹣ab =ab (6a +3b ﹣1)D. 12a 3x 5=4ax 2﹣3a 2x 3【答案】C【解析】【分析】根据因式分解即把一个多项式化成几个整式的积的形式,对各选项进行判断即可.【详解】解:A .从左到右的变形不属于因式分解,故不符合题意;B .从左到右的变形属于整式乘法,不属于因式分解,故不符合题意;CD .从左到右的变形不属于因式分解,故不符合题意;故选C .【点睛】本题考查了因式分解的定义.解题的关键在于明确因式分解定义.4. 当x =3时,下列各式值为0的是( ) A. 43x− B. 293x x −+ C. 33x x +− D. 239x x −− 【答案】B【解析】 【分析】将3x =代入分式,然后根据分式有意义的条件(分母不能为零)和分式值为零的条件(分子为零,且分母不为零)进行分析判断.【详解】解:A.当3x =时,30x −=,原分式没有意义,故此选项不符合题意;.B.当3x =时,290x -= ,30x +≠,原分式值为0,故此选项符合题意;C.当3x =时,30x −= ,原分式没有意义,故此选项不符合题意;D.当3x =时,290x -=,原分式没有意义,故此选项不符合题意;故选:B .【点睛】本题考查分式值为零的条件,理解分式值为零的条件(分子为零,且分母不为零)是解题关键. 5. 由圆和正五边形所组成的图形如图所示,那么这个图形( )A. 是轴对称图形但不是中心对称图形B. 是中心对称图形但不是轴对称图形C. 既是中心对称图形又是轴对称图形D. 既不是中心对称图形也不是轴对称图形【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行判断即可.【详解】解:此图形是轴对称图形但并不是中心对称图形.故选:A .【点睛】此题主要考查了中心对称图形以及轴对称图形,正确掌握相关定义解题关键.6. 如果2(5﹣a )(6+a )=100,那么a 2+a +1的值为( )A. 19B. ﹣19C. 69D. ﹣69【答案】B【解析】【分析】先根据多项式乘以多项式法则计算2(5﹣a )(6+a )=100,得a 2+a =﹣20,最后整体代入可得结论.的是【详解】解:∵2(5﹣a)(6+a)=100,∴﹣a2+5a﹣6a+30=50,∴a2+a=﹣20,∴a2+a+1=﹣20+1=﹣19,故选:B.【点睛】本题考查多项式乘以多项式、求代数式的值,设计整体思想,是基础考点,掌握相关知识是解题关键.二、填空题(本大题共有12题,每题3分,满分36分)7. 用代数式表示“x的2倍与y的差”为_____.−【答案】2x y【解析】【分析】根据题意可以用代数式表示出x的2倍与y的差.【详解】解:由题意知用代数式表示“x的2倍与y的差”为2x﹣y,故答案为:2x﹣y.【点睛】本题考查了列代数式.解题的关键在于根据题意列正确的代数式.8. 计算:(-a2)•a3=______.【答案】-a5【解析】【分析】同底数幂相乘,底数不变,指数相加.【详解】解:原式=-a5,故答案是-a5.【点睛】本题考查了同底数幂的乘法,解题的关键是注意符号的确定.9. 计算:(x+3)(x+5)=_____.【答案】2815++x x【解析】【分析】根据多项式与多项式相乘的法则计算.【详解】解:(x+3)(x+5)=x2+5x+3x+15=x2+8x+15故答案为:x 2+8x +15.【点睛】本题考查了多项式乘多项式.解题的关键在于熟练掌握多项式乘多项式的运算法则.10 计算:(9a 6﹣12a 3)÷3a 3=_____.【答案】334a −【解析】【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:()6339123a a a −÷,633393123a a a a =÷−÷,334a =−.故答案为:334a −.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.11. 因式分解:ax ﹣by +ay ﹣bx =_____.【答案】()()a b x y −+【解析】【分析】先分组,再提取公因式,最后再提取公因式.【详解】解:ax ﹣by +ay ﹣bx=(ax ﹣bx )+(ay ﹣by )=x (a ﹣b )+y (a ﹣b )=(a ﹣b )(x +y )故答案为:(a ﹣b )(x +y )【点睛】本题考查了因式分解,掌握分组分解是解题关键.12. 因式分解:2a 2﹣8=_____.【答案】2(a +2)(a -2).【解析】【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2). 故答案为2(a +2)(a -2)..考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13. 新型冠状病毒颗粒呈球形或者椭圆形,传染性非常强,传播速度非常快,它的直径约为125纳米(0.000000125米)左右,将0.000000125用科学记数法表示为_____.【答案】71.2510−×【解析】【分析】用科学记数法表示成a×10n的形式,当原数的绝对值<1时,n是负整数.【详解】解:0.000000125=1.25×10﹣7.故答案为:1.25×10﹣7.【点睛】本题考查科学记数法.表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.14.213−=______.【答案】9【解析】【分析】根据负整数指数幂运算法则,即可求解.【详解】解:213−=21913=故答案是:9.【点睛】本题主要考查负整数指数幂,掌握1ppaa−=(a≠0),是解题的关键.15. 计算:22233aa a++−−=_____.【答案】23 a a−【解析】【分析】根据分式加减法的法则计算,即可得出结果.【详解】解:22233a a a++−− 22233a a a +=−−− 2223a a +−=− 23a a =−, 故答案为:23a a −. 【点睛】本题考查分式的加减法,是基础考点,掌握相关知识是解题关键.16. 已知关于x 的多项式x 2+kx ﹣3能分解成两个一次多项式的积,那么整数k 的值为 _____.【答案】2±【解析】【分析】把常数项分解成两个整数的乘积,k 就等于那两个整数之和.【详解】解:∵﹣3=﹣3×1或﹣3=﹣1×3,∴k =﹣3+1=﹣2或k =﹣1+3=2,∴整数k 的值为:±2,故答案为:±2.【点睛】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.17. 如图,正方形ABCD 的边AB 在数轴上,数轴上点B 表示的数为1,正方形ABCD 的面积为a 2(a >1).将正方形ABCD 在数轴上向右水平移动,移动后的正方形记为A ′B ′C ′D ′,点A 、B 、C 、D 的对应点分别为A ′、B ′、C ′、D ′,移动后的正方形A ′B ′C ′D ′与原正方形ABCD 重叠部分图形的面积记为S .当S =a 时,数轴上点B ′表示的数是 _____(用含a 的代数式表示).【答案】a【解析】【分析】根据正方形的面积得到正方形的边长,当S a =时得到1AB ′=,求出BB ′,根据点B 表示的数为1 即可得到点B ′表示的数.【详解】解:如图,Q 正方形ABCD 的面积为2a ,∴正方形ABCD 的边长为a ,Q 移动后的正方形A B C D ′′′′与原正方形ABCD 重叠部分图形的面积记为S ,当S a =时,a AB a ′⋅=,1AB ′∴=, 1BB AB AB a ′′∴=−=−,Q 点B 表示的数为1,∴点B ′表示的数为11a a +−=.故答案为:a .【点睛】本题考查了实数与数轴,根据重叠部分图形的面积S a =得到1AB ′=是解题的关键. 18. 如图,在△ABC 中,∠ACB =50°,将△ABC 绕点C 逆时针旋转得到△DEC (点D 、E 分别与点A 、B 对应),如果∠ACD 与∠ACE 的度数之比为3:2,当旋转角大于0°且小于180°时,旋转角的度数为 _____.【答案】30°或150°【解析】【分析】分两种情况:当旋转角小于50°时和当旋转角大于50°时,分别画出图形,由∠ACD 与∠ACE 的度数之比为3:2,求出∠ACE ,即可得到旋转角度数.【详解】解:当旋转角小于50°时,如图:∵∠ACB =50°,△ABC 绕点C 逆时针旋转得到△DEC ,∴∠DCE =50°,∵∠ACD 与∠ACE 的度数之比为3:2,∴∠ACE =232+×50°=20°, ∴旋转角∠BCE =∠ACB ﹣∠ACE =30°,当旋转角大于50°时,如图:∵∠ACD 与∠ACE 的度数之比为3:2,∠DCE =∠ACB =50°,∴∠ACE =2∠DCE =100°,∴旋转角∠BCE =∠ACB +∠ACE =150°,故答案为:30°或150°.【点睛】本题考查旋转变换,是重要考点,掌握分类讨论法是解题关键.三、简答题(本大题共有6题,每题4分,满分24分)19. 计算:2()(2)(2)a b a b a b −−−+.【答案】22322a ab b −−+【解析】【分析】根据完全平方公式和平方差公式化简即可.【详解】解:原式222224()a ab b a b −−−=+222224a ab b a b −=++−22322a ab b =+−−.【点睛】本题考查整式的混合运算.掌握完全平方公式和平方差公式是解题关键.20. 计算:()122222x y xy x y x y x xy −− −−÷ +. 【答案】22222322x xy y x y xy +−+ 【解析】【分析】根据负整数指数幂、乘法公式、分式的除法和减法运算法则计算求解即可. 【详解】解:()122222x y xy x y x y x xy −− −−÷ + ()()()222x y x y xy xy x x y x y −+=−⋅+− ()22x y y xy x x y +=−+ ()()2242x y y xy x y +−=+ 222222422x xy y y x y xy ++−=+ 22222322x xy y x y xy+−=+. 【点睛】本题考查了负整数指数幂、乘法公式、分式的除法和减法运算.解题的关键在于正确的计算. 21. 因式分解:(x 2+4x )2﹣(x 2+4x )﹣20.【答案】2(5)(1)(2)x x x +−+【解析】【分析】直接利用十字相乘法分解因式得出即可.【详解】解:原式=(x 2+4x ﹣5)(x 2+4x +4)=(x +5)(x ﹣1)(x +2)2.【点睛】本题考查了因式分解.解题的关键在于熟练运用十字相乘法、公式法进行因式分解.22. 因式分解:1﹣a 2﹣4b 2+4ab .【答案】(12)(12)a b a b +−−+【解析】【分析】先分组,再逆用完全平方公式、平方差公式进行因式分解.【详解】解:1﹣a 2﹣4b 2+4ab=1﹣(a 2+4b 2﹣4ab )=1﹣(a ﹣2b )2=(1+a ﹣2b )[1﹣(a ﹣2b )]=(1+a ﹣2b )(1﹣a +2b ).【点睛】本题考查因式分解,涉及分组分解法、逆用完全平方公式、平方差公式等知识,是重要考点,掌握相关知识是解题关键.23. 已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【解析】子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=×=; 222233316(53)534m n m n m n −=÷=÷=÷=. 【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24. 解方程:21111x x x +=−+. 【答案】2x =【解析】【分析】根据解分式方程的步骤解答即可.【详解】解:21111x x x +=−+ 1﹣x 2+1=x (1﹣x ),1﹣x 2+1=x- x 2x =2,检验:当x =2时,1﹣x 2≠0.∴x =2是原方程的根.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的一般步骤为去分母、去括号、合并同类项、系数化为1、检验,其中检验也是解题的关键.四、解答题(第25、26每题6分,第27、28每题8分,满分28分)25. 如图,已知四边形ABCD 和直线MN .(1)画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称;(2)画出四边形A 2B 2C 2D 2,使四边形A 2B 2C 2D 2与四边形ABCD 关于点O 成中心对称;(3)四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的位置关系是 .【答案】(1)见解析;(2)见解析; (3)关于直线CO 成轴对称.【解析】【分析】(1)根据轴对称的性质即可画出四边形A 1B 1C 1D 1,使四边形A 1B 1C 1D 1与四边形ABCD 关于直线MN 成轴对称;(2)根据中心对称性质即可画出四边形A 2B 2C 2D 2,使四边形A 2B 2C 2D 2与四边形ABCD 关于点O 成中心对称;(3)结合以上画图确定四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2的位置关系即可.【小问1详解】解:如图,A1B1C1D1即为所求;【小问2详解】解:如图,A2B2C2D2即为所求;【小问3详解】解:如图可知: 四边形A1B1C1D1与四边形A2B2C2D2关于直线CO成轴对称.故答案为:关于直线CO成轴对称.【点睛】本题主要考查了轴对称的性质、中心对称的性质以及抽对称图形的识别,掌握轴对称和中心对称的性质成为解答本题的关键.26. 2022年北京冬奥会开幕在即,参加女子1500米短道速滑的运动员在教练员的指导下努力训练提高竞技水平.在经过指导后,甲运动员的速度是原来的1.1倍,时间缩短了15秒,那么经过指导后,甲运动员的速度是多少?【答案】经过指导后,甲运动员的速度是10米/秒.【解析】【分析】设甲运动员原来的速度是x米/秒,则经过指导后的速度是1.1x米/秒,利用“时间=路程÷速度”以及“经过指导后时间缩短了15秒”的等量关系列分式方程求解即可.【详解】解:设甲运动员原来的速度是x米/秒,则经过指导后的速度是1.1x米/秒,依题意得:1500x﹣15001.1x=15,解得:x=100 11,经检验,x =10011是原方程的解,且符合题意, ∴1.1x =1.1×10011=10. 答:经过指导后,甲运动员的速度是10米/秒.【点睛】本题主要考查了分式方程的应用,解题的关键是审清题意、舍出未知数、根据等量关系列出分式方程.27. 先化简,再求值:22696x x x x +++−÷(52x −﹣x ﹣2),其中x =﹣2. 【答案】13x −;15【解析】【分析】原式小括号内的式子进行通分计算,然后再算括号外面的除法,最后代入求值.【详解】解:原式()()()()()232253222x x x x x x x ++− =÷− +−−− 235422x x x x +−+=÷−− ()()32233x x x x x +−=⋅−+− 13x=− , 当2x =−时,原式()11132325===−−+. 【点睛】本题考查分式的化简求值,掌握分式混合运算的运算顺序(先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的)和计算法则是解题关键.28. 如图1,长方形纸片ABCD (AD >AB ),点O 位于边BC 上,点E 位于边AD 上,将纸片沿OE 折叠,点C 、D 的对应点分别为点C ′、D ′.(1)当点C ′与点A 重合时,如图2,如果AD =12,CD =8,联结CE ,那么△CDE 的周长是 ; (2)如果点F 位于边AB 上,将纸片沿OF 折叠,点B 的对应点为点B ′.①当点B ′恰好落在线段OC ′上时,如图3,那么∠EOF 的度数为 ;(直接填写答案)②当∠B ′OC ′=20°时,作出图形,并写出∠EOF 的度数.【答案】(1)20;(2)①90°;②见解析,100EOF °=∠【解析】【分析】(1)证明DE +EC =AD =12,可得结论;(2)①利用角平分线的定义以及平角的性质解决问题即可;②分两种情形,分别画出图形,利用角平分线的定义,平角的性质解决问题即可.【小问1详解】解:如图2中,点C ′与点A 重合时,由翻折的性质可知,EA =EC ,∴DE +EC =DE +EA =AD =12,∴△CDE 的周长=DE +EC +CD =12+8=20.故答案为:20;【小问2详解】①如图,由翻折的性质可知,∠BOF=∠B′OF,∠EOC=∠EOC′,∵∠BOC=180°,∴∠EOF=∠EOB′+∠FOB′=12(∠COB′+∠BOB′)=12∠BOC=90°.故答案为:90°;②如图,当OB′在OC′的下方时,∵∠B′OC′=20°,∴∠BOB′+∠COC′=180°﹣20°=160°,∵∠FOB′=12∠BOB′,∠EOC′=12∠COC′,∴∠FOB′+∠EOC′=12×160°=80°,∴∠EOF=∠FOB′+∠EOC′+∠B′OC′=100°.如图,当OB′在OC′的上方时,∵∠B′OC′=20°,∴∠BOB′+∠COC′=180°+20°=200°,∵∠FOB′=12∠BOB′,∠EOC′=12∠COC′,∴∠FOB′+∠EOC′=12×200°=100°,∴∠EOF=∠FOB′+∠EOC′﹣∠B′OC′=80°.综上所述,∠EOF的度数为100°或80°【点睛】本题考查了折叠的性质,几何图形中角度的计算,分类讨论是解题的关键.。

上海市七年级上册数学期末试卷(含答案)

上海市七年级上册数学期末试卷(含答案)

上海市七年级上册数学期末试卷(含答案)一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线 2.在220.23,3,2,7-四个数中,属于无理数的是( ) A .0.23 B .3 C .2- D .2273.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( )A .23(30)72x x +-=B .32(30)72x x +-=C .23(72)30x x +-=D .32(72)30x x +-= 5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm6.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )4 a b c ﹣2 3 …A .4B .3C .0D .﹣27.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm8.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n -9.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 10.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 11.已知∠A =60°,则∠A 的补角是( ) A .30°B .60°C .120°D .180° 12.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣4 13.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒B .75︒C .115︒D .95︒ 14.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 15.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.19.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____.20.已知单项式245225n m x y x y ++与是同类项,则m n =______.21.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.22.|-3|=_________;23.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.24.﹣30×(1223-+45)=_____. 25.15030'的补角是______.26.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)27.若2a +1与212a +互为相反数,则a =_____. 28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.用度、分、秒表示24.29°=_____.30.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题31.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?32.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.33.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

上海市七年级上册数学期末试卷(含答案)

上海市七年级上册数学期末试卷(含答案)
4.在 , , , 这四个数中,最小的数是()
A. B. C. D.
5.有一个数值转换器,流程如下:
当输入 的值为64时,输出 的值是()
A.2B. C. D.
6.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=40°时,∠BOD的度数是( )
A.50°B.130°C.50°或90°D.50°或130°
A.AB上B.BC上
C.CD上D.AD上
二、填空题
13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.
14.将一根木条固定在墙上只用了两个 Nhomakorabea子,这样做的依据是_______________.
15.根据下列图示的对话,则代数式2a+2b﹣3c+2m的值是_____.
上海市七年级上册数学期末试卷(含答案)
一、选择题
1.下列判断正确的是( )
A.3a2bc与bca2不是同类项
B. 的系数是2
C.单项式﹣x3yz的次数是5
D.3x2﹣y+5xy5是二次三项式
2.若 ,则()
A. B. C. D.
3.下列每对数中,相等的一对是( )
A.(﹣1)3和﹣13B.﹣(﹣1)2和12C.(﹣1)4和﹣14D.﹣|﹣13|和﹣(﹣1)3
16.如图,数轴上点A与点B表示的数互为相反数,且AB=4则点A表示的数为______.
17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示
为_________.
18.如图,点C,D在线段AB上,CB=5cm,DB=8cm,点D为线段AC的中点,则线段AB的长为_____.

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库

上海市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13 C .13-D .32.-2的倒数是( ) A .-2B .12-C .12D .23.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .1125.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 6.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y7.方程312x -=的解是( ) A .1x = B .1x =-C .13x =-D .13x =8.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511C .﹣1023D .102510.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15011.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a ≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.15.|-3|=_________;16.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 18.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 19.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 21.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______. 22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______. 23.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________. 24.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.27.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.28.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.29.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数30.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A ,B 在数轴上分别对应的数为a ,b (a <b ),则AB 的长度可以表示为AB =b -a . 请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A 点,再向右移动3个单位长度到达B 点,然后向右移动5个单位长度到达C 点. (1)请你在图②的数轴上表示出A ,B ,C 三点的位置.(2)若点A 以每秒1个单位长度的速度向左移动,同时,点B 和点C 分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t 秒. ①当t =2时,求AB 和AC 的长度;②试探究:在移动过程中,3AC -4AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.32.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握3.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.4.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.5.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.6.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.7.A解析:A【解析】试题分析:将原方程移项合并同类项得:3x=3,解得:x=1.故选A.考点:解一元一次方程.8.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.9.D解析:D【解析】【分析】观察数据,找到规律:第n个数为(﹣2)n+1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n个数为(﹣2)n+1,第10个数是(﹣2)10+1=1024+1=1025故选:D.【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.10.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.11.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.12.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a-,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=解析:80°【解析】【分析】由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=20°,可得∠B′OG+∠BOG=160°∴∠BOG=12×160°=80°.故答案为80°.【点睛】本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 15.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.16.33【解析】【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x元解析:33【解析】【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80 解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键.【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.21.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案. 【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x a y b =⎧⎨=⎩代入方程2x-3y=5得 2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.22.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.23.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.24.-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a 的值即可.【详解】解:根据题意得:4a +9+3a +5=0,移项合并得:7a =﹣14,解得:a =﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论: ①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.28.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.29.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.30.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.31.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.。

2025届上海市静安区、青浦区数学七年级第一学期期末学业水平测试试题含解析

2025届上海市静安区、青浦区数学七年级第一学期期末学业水平测试试题含解析

2025届上海市静安区、青浦区数学七年级第一学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.已知622x y 和313m n x y -是同类项,则2m n +的值是( ) A .6 B .5 C .4 D .22.如图,从边长为()4a cm +的大正方形纸片中剪去一个边长为()1a cm +的小正方形()0a >,剩余部分沿虚线剪开,拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .()225a a cm +B .()2325a cm + C .()2321a cm + D .()221a a cm + 3.如图,将△ABC 绕点A 按逆时针方向旋转100°得到△AB ′C ′(点B 的对应点是点B ′,点C 的对应点是点C ′),连接BB ′,若AC ′∥BB ′,则∠C ′AB ′的度数为( )A .20°B .30°C .40°D .45°4.一架长10m 的梯子斜靠在培上,梯子底端到墙的距高为6m .若梯子顶端下滑1m ,那么梯子底端在水平方向上滑动了( )A .1mB .小于1mC .大于1mD .无法确定5.下列各数,﹣3,π,﹣15,038,0.010010001…(每相邻两个1之间0的个数依次多1),其中无理数的个数是( )A .1B .2C .3D .4 6.下列判断:①2πxy -不是单项式;②3x y -是多项式;③0不是单项式;④1x x + 是整式.其中正确的有( )A .2个B .1个C .3个D .4个7.下列运算正确的是( )A .235x x x +=B .236x x x ⋅=C .633x x x ÷=D .()23636x x =8.下列代数式中,单项式的个数是( )①23x y - ; ②x y ; ③2x ; ④a -; ⑤21x +; ⑥1π; ⑦27x y -; ⑧1. A .3个 B .4个 C .5个 D .6个9.如图,线段AB CD =,那么AC 与BD 的大小关系为( )A .AC BD <B .AC BD > C .AC BD = D .无法判断10.已知关于x 的方程432x m -=的解是x m =,则m 的值为( )A .2B .-2C .27D .27- 二、填空题(本大题共有6小题,每小题3分,共18分)11.x 与0030x -的和是__________.12.直线AB 与CD 相交于点O ,若,∠+∠=∠+∠AOC BOD AOD BOC 则AOC ∠=__________︒13.单项式2323x y -的系数是__________,次数是___________. 14.计算的结果等于______.15.如图,有一个高为6的圆柱体,现将它的底面圆周在数轴上滚动在滚动前,圆柱底面圆周上有一点A 和数轴上表示的﹣1重合,当圆柱滚动一周时,A 点恰好落在了表示3的点的位置,则这个圆柱的侧面积是_____.16.若一个角的度数是60°28′,则这个角的余角度数是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)某超市为了回馈广大新老客户,元旦期间决定实行优惠活动.优惠一:非会员购物时,所有商品均可享受九折优惠;优惠二:交纳200元会费成为该超市的会员,所有商品可享受八折优惠.(1)若用x 表示商品价格,请你用含x 的式子分别表示两种购物方式优惠后所花的钱数.(2)当商品价格是多少元时,用两种方式购物后所花钱数相同?(3)若某人计划在该超市购买一台价格为2700元的电脑,请分析选择哪种优惠方式更省钱.18.(8分)如图,点C是线段AB外一点.按下列语句画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC;(4)延长AC至点D,使CD AC.19.(8分)某商场开展春节促销活动出售A、B两种商品,活动方案如下两种:方案一A B每件标价90元100元每件商品返利按标价的30% 按标价的15% 例如买一件A商品,只需付款90(1﹣30%)元方案二所购商品一律按标价的20%返利(1)某单位购买A商品30件,B商品20件,选用何种方案划算?能便宜多少钱?(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,求x的值.20.(8分)如图,点B是线段AC上一点,且AB=24cm,BC=13 AB,(1)试求出线段AC的长;(2)如果点O是线段AC的中点,请求线段OB的长.21.(8分)在数轴上,点A,B,C表示的数分别是-6,10,1.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A和线段BC的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=12AC ?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由. 22.(10分)由大小相同的小立方块搭成的几何体如图,请在下图的方格中画出该几何体的俯视图和左视图.23.(10分)一个由若干小正方形堆成的几何体,它从正面看和从左面看的图形如图1所示.()1这个几何体可以是图2中甲,乙,丙中的______;()2这个几何体最多由______个小正方体堆成,最少由______个小正方体堆成;()3请在图3中用阴影部分画出符合最少情况时的一个从上面往下看得到的图形.24.(12分) (1) 计算: 232019322()(8)()(1)43-⨯-+-÷--- (2) 解方程: 3157146x x ---=参考答案一、选择题(每小题3分,共30分)1、A【分析】由622x y 和313m n x y -是同类项,可知相同字母的指数相同,据此列式求出m 和n 的值,然后代入计算即可.【详解】由题意得,3m =6,n =2,∴m =2,∴22226m n +=⨯+=故选A.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.2、B【分析】利用大正方形的面积减去小正方形的面积即可,解题时注意平方差公式的运用.【详解】解:长方形的面积为:(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5),故选B.【点睛】此题考查了平方差公式的几何背景,图形的剪拼,关键是根据题意列出式子,运用平方公式进行计算,要熟记公式. 3、C【分析】先根据旋转的性质可得''100,BAB AB AB ∠=︒=,再根据等腰三角形的性质可得'AB B ∠的度数,然后根据平行线的性质即可得出答案.【详解】由旋转的性质得:''100,BAB AB AB ∠=︒= '''1(180)402AB B ABB BAB ∴∠=∠=︒-∠=︒ 又''//AC BB'''40C AB AB B ∴∠=∠=︒故选:C .【点睛】本题是一道较为简单的综合题,考查了旋转的性质、等腰三角形的性质(等边对等角)、平行线的性质(两直线平行,内错角相等),熟记各性质是解题关键.4、C【分析】根据题意作图,利用勾股定理即可求解.【详解】根据题意作图如下,AB=DE=10,CB=6,BD=1∴221068AC=-=当梯子顶端下滑1m,则CE=7,CD= 2210751-=∴梯子底端在水平方向上滑动的距离是516->1m故选C.【点睛】此题主要考查勾股定理,解题的关键是根据题意作图分析求解.5、B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.382,∴在﹣3,π,﹣15,038,0.010010001…(每相邻两个1之间0的个数依次多1)中,无理数有π,0.010010001…(每相邻两个1之间0的个数依次多1)共2个.故选:B.【点睛】本题考查了数的分类,理解有理数与无理数的概念是解题的关键.6、B【分析】根据单项式、多项式及整式的定义,结合所给式子即可得出答案.【详解】(1) 2πxy -是单项式,故(1)错误; (2) 3x y -是多项式,故(2)正确; (3)0是单项式,故(3)错误; (4)1x x +不是整式,故(4)错误; 综上可得只有(2)正确.故选B.【点睛】此题考查单项式,整式,多项式,解题关键在于掌握各性质定义.7、C【分析】分别依据同类项概念、同底数幂的乘法、幂乘方与积的乘方和同底数幂的除法法则逐一计算即可.【详解】A 选项:2x 与3x 不是同类项,不能合并,故A 错误;B 选项:232356x x x x x +⋅==≠,故B 错误;C 选项:63633x x x x -÷==,故C 正确;D 选项:()2332663996x x x x ⨯==≠,故D 错误. 故选:C .【点睛】本题主要考查幂的运算,解题的关键是掌握同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则.8、C【分析】单独的数字或字母,或数字与字母的乘积是单项式,根据定义解答. 【详解】是单项式的有:③2x ;④a -;⑥1π;⑦27x y -;⑧1. 故选:C .【点睛】此题考查单项式的定义:单独的数字或字母,或数字与字母的乘积是单项式,熟记定义是解题的关键. 9、C【分析】根据线段的和差及等式的性质解答即可.【详解】∵AB CD =,∴AB BC CD BC +=+,∴AC BD =.故选C.【点睛】本题考查了线段的和差,以及等式性质的应用,仔细观察图形找出线段之间的数量关系是解答本题的关键. 10、A【分析】将x=m 代入方程432x m -=,解关于m 的一元一次方程即可.【详解】解:∵关于x 的方程432x m -=的解是x m =,∴4m-3m=1,∴m=1.故选:A .【点睛】本题考查一元一次方程的解,熟练掌握方程解的定义是解题的关键二、填空题(本大题共有6小题,每小题3分,共18分)11、0070x【分析】根据题意列出代数式解答即可.【详解】x 与−30%x 的和是x−30%x =70%x ;故答案为:70%x .【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.12、90【分析】由周角的定义和已知条件可求得=180∠+∠︒AOC BOD ,再利用对顶角的性质可得出答案.【详解】解:∵,∠+∠=∠+∠AOC BOD AOD BOC又∵+=360∠+∠∠+∠︒AOC BOD AOD BOC ,∴2()=360∠+∠︒AOC BOD ,∴=180∠+∠︒AOC BOD ,∵AOC ∠和BOD ∠为对顶角,∴==90∠∠︒AOC BOD ,故答案为:1.【点睛】本题主要考查了对顶角,熟练掌握对顶角的性质是解此题的关键.13、23- 1【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是1,故答案为:23-,1.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.14、x.【解析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进而得出答案.【详解】=x .故答案为:x.【点睛】此题考查积的乘方,解题关键在于掌握运算法则.15、1【解析】依题意可知底面圆的周长为4,而圆柱体的高为6,根据侧面积=底面周长×高求解.【详解】∵|-1-3|=4,∴圆柱体的周长为3-(-1)=4,高=6,∴圆柱体的侧面积=底面周长×高=4×6=1.故答案为:1.【点睛】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.16、29°32′【分析】如果两个角的和等于90°(直角),就说这两个角互为余角,根据余角的定义即可直接求解.【详解】解:这个角的余角度数为:90°﹣60°28′=29°32′.故答案是:29°32′.【点睛】本题考查了余角的定义,若两个角的和等于90°,就说这两个角互为余角.三、解下列各题(本大题共8小题,共72分)17、(1)方案一的金额:90%x;方案二的金额:80%x+1.(2)10元;(3)方案二更省钱.【解析】试题分析:(1)根据题意分别得出两种优惠方案的关系式即可;(2)利用(1)中所列关系式,进而解方程求出即可;(3)将已知数据代入(1)中代数式求出即可.试题解析:(1)由题意可得:优惠一:付费为:0.9x,优惠二:付费为:1+0.8x;(2)当两种优惠后所花钱数相同,则0.9x=1+0.8x,解得:x=10,答:当商品价格是10元时,两种优惠后所花钱数相同;(3)∵某人计划在该超市购买价格为2700元的一台电脑,∴优惠一:付费为:0.9x=2430,优惠二:付费为:1+0.8x=2360,答:优惠二更省钱.考点:1.一元一次方程的应用;2.列代数式.18、(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】(1)根据射线的定义即可得出答案;(2)沿BA方向延长即可得出答案;(3)连接AC即可得出答案;(4)沿AC方向延长,使AC=CD即可得出答案.【详解】解:(1)(2)(3)(4)如图所示:【点睛】本题考查的是射线、线段,比较简单,需要熟练掌握相关定义与性质.19、(1)选用方案一更划算,能便宜170元;(2)某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,x的值为1.【解析】试题分析:(1)分别求出方案一和方案二所付的款数,然后选择省钱的方案,求出所省的钱数;(2)分别表述出方案一和方案二所需付款,根据两方案的实际付款一样,求出x的值.试题解析:(1)方案一付款:30×90×(1﹣30%)+20×100×(1﹣11%)=3190(元),方案二付款:(30×90+20×100)×(1﹣20%)=3760(元),∵3190<3760,3760﹣3190=170(元),∴选用方案一更划算,能便宜170元;(2)设某单位购买A商品x件,则方案一需付款:90(1﹣30%)x+100(1﹣11%)(2x﹣1)=233x﹣81,方案二需付款:[90x+100(2x﹣1)](1﹣20%)=232x﹣80,当x=a件时两方案付款一样可得,233x﹣81=232x﹣80,解得:x=1,答:某单位购买A商品x件(x为正整数),购买B商品的件数是A商品件数的2倍少1件,若两方案的实际付款一样,x的值为1.20、(1)AC=32cm ;(2)OB=8cm.【分析】(1)由B在线段AC上可知AC=AB+BC,把AB=24cm,BC=13AB=8cm代入即可求出结论;(2)根据O是线段AC的中点及AC的长可求出CO的长,由OB=CO−BC即可得出结果.【详解】解:(1)∵AB=24cm,BC=13 AB,∴BC=8cm,∴AC=AB+BC=24+8=32cm;(2)由(1)知:AC=32cm,∵点O是线段AC的中点,∴CO=12AC=12×32=16cm,∴OB=CO−B C=16−8=8cm.【点睛】本题考查了与线段中点有关的计算问题,掌握线段的中点的性质、线段的和、差、倍的运算是解题的关键.21、(1)16;(2)172;(3)15或2.【分析】(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B、C的中点,再设当运动时间为x秒长时,点A和线段BC的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y秒,分两种情况:①当点A在点B的左侧时,②当点A在线段AC上时,列出方程求解即可.【详解】(1)运动前线段AB的长度为10﹣(﹣6)=16;(2)设当运动时间为x秒长时,点A和线段BC的中点重合,依题意有﹣6+3t=11+t,解得t=故当运动时间为秒长时,点A和线段BC的中点重合(3)存在,理由如下:设运动时间为y秒,①当点A在点B的左侧时,依题意有(10+y)﹣(3y﹣6)=2,解得y=7,﹣6+3×7=15;②当点A在线段BC上时,依题意有(3y-6)-(10+y)=解得y=综上所述,符合条件的点A表示的数为15或2.【点睛】本题考查了实数与数轴的知识点,解题的关键是熟练的掌握实数与数轴的相关知识点.22、见解析【分析】俯视图时,最左边叠起来的两个立方体只剩下一个面,而另外三个立方体,在俯视时,都只看到一个面;左视图时,最左边两个重叠的立方体,可以看到有两个正方形的面,而靠前端的正方体有一个正方形的面【详解】解:如图所示:【点睛】本题较为容易,需要注意的是在做三视图时要观察好每一个立方体,不要弄错23、(1)甲,乙;(2)9,7;(3)答案见解析.【解析】()1依据甲和乙的主视图和左视图如图1所示,丙的左视图与图1不符,即可得到结论;()2若几何体的底层有6个小正方体,则几何体最多由9个小正方体组成;若几何体的底层有4个小正方体,则几何体最少由7个小正方体组成;()3依据几何体的底层有4个小正方体,几何体最少由7个小正方体组成,即可得到几何体的俯视图.【详解】()1图2中,甲和乙的主视图和左视图如图1所示,丙的左视图与图1不符,故答案为:甲,乙;()2由图1可得,若几何体的底层有6个小正方体,则几何体最多由9个小正方体组成;若几何体的底层有4个小正方体,则几何体最少由7个小正方体组成;故答案为:9,7;()3符合最少情况时,从上面往下看得到的图形如下:(答案不唯一)【点睛】本题考查了简单组合体的三视图,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.x=-24、(1)31;(2)1【分析】(1)先乘方,后乘除,最后计算加减;(2)去分母,去括号,移项,合并同类项,系数化为1即可.【详解】(1) 232019322()(8)()(1)43-⨯-+-÷---3274()(8)()(1)48=-⨯-+-⨯--- 3271=++31=;(2)去分母得:3(31)2(57)12x x ---=,去括号得:93101412x x --+=,移项得:91012314-=+-x x ,合并同类项得:1x -=,把x 的系数化为1得:1x =-.【点睛】本题考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解本题的关键.。

2022-2023学年上海市七年级上学期数学期末典型试卷3含答案

2022-2023学年上海市七年级上学期数学期末典型试卷3含答案

2022-2023学年上学期上海七年级初中数学期末典型试卷3一.选择题(共10小题)1.(2021秋•普陀区期末)下列说法中,错误的是( ) A .3能整除15B .在正整数中,除了奇数就是偶数C .在正整数中,除2外所有的偶数都是合数D .一个正整数乘以一个假分数,积一定大于它本身2.(2021秋•浦东新区期末)一种商品的售价是220元,12月份先提价20%,1月份又降价20%,则下列说法中正确的是( ) A .现在的价格是176元 B .现在的价格是211.2元C .价格不变,仍然是220元D .现在的价格是264元3.(2021秋•奉贤区期末)在分数45,512,950,332,216中,不能化为有限小数的有( )个. A .1个B .2个C .3个D .4个4.(2021春•虹口区校级期末)若4x ﹣3y =0,则4x−5y 4x+5y 的值为( )A .14B .−14C .12D .−125.(2010春•黄浦区校级期末)在代数式m+n 2,2x 2y ,1x,﹣5,a 中,单项式的个数是( )A .1个B .2个C .3个D .4个6.(2021春•徐汇区校级期末)下列说法中正确的个数为( ) ①0不是单项式; ②﹣x +y 3是四次二项式; ③5x 2−x 3的二次项系数是5.A .0个B .1个C .2个D .3个7.(2021春•青浦区期末)方程x+33−x−16=x 去分母后,所得的式子正确的是( )A .2x +3﹣x +1=6xB .2x +6﹣x +1=6xC .2x +6﹣x ﹣1=6xD .2x +6﹣x +1=x8.(2021春•徐汇区校级期末)小强在解方程时,不小心把一个数字用墨水污染成了x +2=1−x−⋅2,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是( ) A .5B .3C .﹣3D .﹣59.(2020春•普陀区期末)如图,已知∠AOB :∠BOC =2:3,∠AOC =75°,那么∠AOB=( )A .20°B .30°C .35°D .45°10.(2019春•浦东新区期末)如图,∠AOB =20°,∠AOC =90°,点B 、O 、D 在同一直线上,则∠COD 的度数为( )A .100°B .105°C .110°D .115°二.填空题(共10小题)11.(2022春•杨浦区校级期末)0.0520亿保留到 ,有 有效数字. 12.(2022春•闵行区期末)数轴上A 、B 两点所表示的数分别是−12、135,那么线段AB 的长为 .13.(2022春•杨浦区校级期末)数轴上的点A 表示0.3,点B 表示−13,这两点中离原点距离较近的点是点 .14.(2021春•浦东新区校级期末)已知正整数x 、y 满足3x +2y =11,则x +2y = . 15.(2021春•徐汇区校级期末)在关于x 、y 的多项式3x 3﹣2x 2y +5xy ﹣y 3中,三次项的系数之和为 .16.(2021春•徐汇区校级期末)小明从家前往学校,前一半路程步行,后一半路程骑车,如果步行速度是每分钟a 米,骑车速度是每分钟b 米,那么从家到学校的平均速度是每秒 米.17.(2015秋•六盘水期末)﹣2x 与3x ﹣1互为相反数,则x = .18.(2021春•金山区校级期末)我们知道,无限循环小数都可以转化为分数,例如,将0.3.转化为分数时,可设x =0.3.,则10x =3.3.,所以10x =3+x ,解得x =13,既0.3.=13,仿此方法,将1.7.化成分数是 .19.(2021秋•普陀区期末)如图1,把一个半径是7cm 的圆分成20等份,然后把它剪开,按照图2的形状拼起来,拼成图形的周长是 cm .20.(2021秋•普陀区期末)课桌桌面长1.2米,宽0.5米,要将桌面尺寸图画在纸上,如果长画成6厘米,那么宽画 厘米. 三.解答题(共10小题)21.(2021秋•普陀区期末)写出数轴上点A 、B 表示的数,并且在数轴上画出点C ,最后将点A 、B 、C 所表示的数用“<”连接.点C 表示的数为134.解:点A 表示的百分数为 ,点B 表示的假分数为 . < < .22.(2021秋•普陀区期末)计算:3.43﹣225+6.57﹣535.23.(2021秋•普陀区期末)计算:3.2÷85×74.24.(2021春•浦东新区校级期末)先阅读下面例题的解题过程,再解决后面的题目. 例:已知9﹣6y ﹣4y 2=7,求2y 2+3y +7的值.解:由9﹣6y ﹣4y 2=7,得﹣6y ﹣4y 2=7﹣9,即6y +4y 2=2,所以2y 2+3y =1,所以2y 2+3y +7=8.题目:已知代数式14x +5﹣21x 2的值是﹣2,求6x 2﹣4x +5的值. 25.(2018秋•杨浦区校级期末)3a 3﹣6a 2b +4a 2b −89a 326.(2017秋•嘉定区期末)如图,整扇窗是由一个半径为r 米的半圆和一个长方形组成的,已知整扇窗的面积为4平方米.用含r 的代数式表示长方形的高.27.(2021秋•闵行区期末)某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折; 方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元? 28.(2008秋•虹口区期末)解方程:2−x 2−3=x 3−2x+36.29.(2021秋•浦东新区期末)如图中有一个等腰直角三角形ABC ,∠C =45°,一个以AB 为直径的半圆,和一个以BC 为半径的扇形.已知AB =BC =8厘米,求图中阴影部分的面积.30.(2020秋•虹口区校级期末)(1)探究:哪些特殊的角可以用一副三角板画出? 在①135°,②120°,③75°,④25°中,小明同学利用一副三角板画不出来的特殊角是 ;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图①,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角(∠AOB )的顶点与60°角(∠COD )的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分∠EOD 时,求旋转角度α;②是否存在∠BOC =2∠AOD ?若存在,求旋转角度α;若不存在,请说明理由.2022-2023学年上学期上海七年级初中数学期末典型试卷3参考答案与试题解析一.选择题(共10小题)1.(2021秋•普陀区期末)下列说法中,错误的是()A.3能整除15B.在正整数中,除了奇数就是偶数C.在正整数中,除2外所有的偶数都是合数D.一个正整数乘以一个假分数,积一定大于它本身【考点】有理数的除法;有理数.【专题】实数;数感.【分析】根据整除的定义判断A选项;根据奇数、偶数的定义判断B选项;根据合数的定义判断C选项;根据假分数的定义判断D选项.【解答】解:A选项,15÷3=5,故该选项不符合题意;B选项,在正整数中,除了奇数就是偶数,故该选项不符合题意;C选项,在正整数中,除2外所有的偶数都是合数,故该选项不符合题意;D选项,如1×22=1,故该选项符合题意;故选:D.【点评】本题考查了有理数的除法,掌握分母比分子小或与分子相等的分数分数是假分数是解题的关键.2.(2021秋•浦东新区期末)一种商品的售价是220元,12月份先提价20%,1月份又降价20%,则下列说法中正确的是()A.现在的价格是176元B.现在的价格是211.2元C.价格不变,仍然是220元D.现在的价格是264元【考点】有理数的混合运算.【专题】应用题;实数;运算能力.【分析】根据现在价格=售价×(1+20%)×(1﹣20%)列出算式,计算即可得到结果.【解答】解:根据题意得:220×(1+20%)×(1﹣20%)=220×1.2×0.8=211.2(元),现在的价格为211.2元.故选:B.【点评】此题考查了有理数的混合运算,列出正确的算式是解本题的关键.3.(2021秋•奉贤区期末)在分数45,512,950,332,216中,不能化为有限小数的有( )个. A .1个B .2个C .3个D .4个【考点】有理数. 【专题】实数;推理能力.【分析】首先,要看分数是否是最简分数,不是的,先把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.据此逐项分析后再选择.【解答】解:45的分母中含有质因数5,能化成有限小数,故本选项不符合题意;512的分母中含有质因3、2,其中3不能化成有限小数,故本选项合题意; 950的分母中含有质因数5和2,能化成有限小数,故本选项不符合题意; 332的分母中含有质因数2,能化成有限小数,故本选项不符合题意; 216=72的分母中含有质因数2,能化成有限小数,故本选项不符合题意;不能化为有限小数的有1个. 故选:A .【点评】此题主要考查有理数,解答的关键是根据一个最简分数,如果分母中除了2与5以外,不再含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 4.(2021春•虹口区校级期末)若4x ﹣3y =0,则4x−5y 4x+5y 的值为( )A .14B .−14C .12D .−12【考点】代数式求值. 【专题】计算题.【分析】由4x ﹣3y =0得4x =3y ,代入所求的式子化简即可. 【解答】解:由4x ﹣3y =0,得4x =3y , ∴4x−5y 4x+5y=3y−5y 3y+5y=−2y 8y=−14.故选:B .【点评】此题考查的知识点是代数式求值,解题关键是用到了整体代入的思想,注意:利用分式的性质变形时,所乘的(或所除的)整式不为零.5.(2010春•黄浦区校级期末)在代数式m+n 2,2x 2y ,1x,﹣5,a 中,单项式的个数是( )A .1个B .2个C .3个D .4个【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义知,单项式有:2x 2y ,﹣5,a . 共3个. 故选:C .【点评】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,这是判断是否是单项式的关键. 6.(2021春•徐汇区校级期末)下列说法中正确的个数为( ) ①0不是单项式; ②﹣x +y 3是四次二项式; ③5x 2−x 3的二次项系数是5.A .0个B .1个C .2个D .3个【考点】多项式;单项式. 【专题】整式;符号意识.【分析】根据单项式的定义,多项式的系数和次数的定义解答即可. 【解答】解:①0是单项式,原说法错误; ②﹣x +y 3是三次二项式,原说法错误; ③5x 2−x 3=53x 2−13x ,所以二次项系数是53,原说法错误,所以正确的说法是0个, 故选:A .【点评】本题考查了单项式的定义,多项式的系数和次数的定义,熟记相关定义是解题的关键,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 7.(2021春•青浦区期末)方程x+33−x−16=x 去分母后,所得的式子正确的是( )A .2x +3﹣x +1=6xB .2x +6﹣x +1=6xC .2x +6﹣x ﹣1=6xD .2x +6﹣x +1=x【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用;运算能力.【分析】方程的两边都乘6,去括号后得结论.【解答】解:方程的两边都乘6,得2(x+3)﹣(x﹣1)=6x,去括号,得2x+6﹣x+1=6x.故选:B.【点评】本题考查了解一元一次方程,掌握等式的性质是解决本题的关键.8.(2021春•徐汇区校级期末)小强在解方程时,不小心把一个数字用墨水污染成了x+2= 1−x−⋅2,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是()A.5B.3C.﹣3D.﹣5【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】设被墨水污染的部分为y,把x=1代入原方程即可解得答案.【解答】解:设被墨水污染的部分为y,把x=1代入原方程得:1+2=1−1−y 2,解得:y=5,故选:A.【点评】本题考查一元一次方程的解及解一元一次方程,解题的关键是掌握一元一次方程解的概念,把x=1代入原方程.9.(2020春•普陀区期末)如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB =()A.20°B.30°C.35°D.45°【考点】角的计算.【专题】线段、角、相交线与平行线;几何直观;运算能力;应用意识.【分析】由∠AOB:∠BOC=2:3,可得∠AOB=25∠AOC进而求出答案,做出选择.【解答】解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=22+3∠AOC=25×75°=30°,故选:B.【点评】本题考查角的有关计算,按比例分配转化为∠AOB =25∠AOC 是解答的关键. 10.(2019春•浦东新区期末)如图,∠AOB =20°,∠AOC =90°,点B 、O 、D 在同一直线上,则∠COD 的度数为( )A .100°B .105°C .110°D .115°【考点】角的概念.【专题】线段、角、相交线与平行线.【分析】先求出∠BOC ,再由邻补角关系求出∠COD 的度数. 【解答】解:∵∠AOB =20°,∠AOC =90°, ∴∠BOC =90°﹣20°=70°, ∴∠COD =180°﹣70°=110°. 故选:C .【点评】本题考查了邻补角的定义和角的计算;弄清各个角之间的关系是关键. 二.填空题(共10小题)11.(2022春•杨浦区校级期末)0.0520亿保留到 万位 ,有 3 有效数字. 【考点】近似数和有效数字. 【专题】实数;数感.【分析】根据近似数的精确度和有效数字的定义求解. 【解答】解:0.0520亿保留到万位,有3个有效数字. 故答案为:万位,3.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式.12.(2022春•闵行区期末)数轴上A 、B 两点所表示的数分别是−12、135,那么线段AB 的长为 2110.【考点】数轴.【专题】实数;运算能力.【分析】根据数轴上两点间的距离的计算方法直接计算即可. 【解答】解:AB =135−(−12)=135+12=2110.故答案为:2110.【点评】本题考查数轴上两点间的距离,熟练掌握数轴上两点间的距离的计算方法是解题关键.13.(2022春•杨浦区校级期末)数轴上的点A 表示0.3,点B 表示−13,这两点中离原点距离较近的点是点 A . 【考点】数轴.【专题】数形结合;运算能力.【分析】根据题意知:离原点较近的点是绝对值较小的数,据此可解本题. 【解答】解:∵|0.3|=0.3,|−13|=13, 又∵0.3<13,∴离原点较近的点是点A . 故答案为:A .【点评】此题主要考查了数轴的应用,运用数轴上点到原点的距离与点的表示数的关系是解答此题的关键.14.(2021春•浦东新区校级期末)已知正整数x 、y 满足3x +2y =11,则x +2y = 9或5 . 【考点】代数式求值.【专题】整式;一次方程(组)及应用;运算能力.【分析】先求出满足条件的正整数x ,y 的值,再代入即可求出答案. 【解答】解:∵3x +2y =11,x ,y 为正整数, ∴{x =1y =4或{x =3y =1, ∴当{x =1y =4时,x +2y =1+8=9,当{x =3y =1时,x +2y =3+2=5, ∴x +2y =9或5, 故答案为:9或5.【点评】本题主要考查了二元一次方程的解和求代数式的值,用了分类谈论的思想. 15.(2021春•徐汇区校级期末)在关于x 、y 的多项式3x 3﹣2x 2y +5xy ﹣y 3中,三次项的系数之和为 0 . 【考点】多项式. 【专题】整式;符号意识.【分析】根据多项式的相关的定义解答即可.【解答】解:多项式3x 3﹣2x 2y +5xy ﹣y 3中三次项为:3x 3,﹣2x 2y ,﹣y 3, 其系数为:3,﹣2,﹣1,所以三次项的系数之和为3+(﹣2)+(﹣1)=0.故答案为:0.【点评】本题考查了多项式的相关定义,能熟记多项式的相关定义是解此题的关键. 16.(2021春•徐汇区校级期末)小明从家前往学校,前一半路程步行,后一半路程骑车,如果步行速度是每分钟a 米,骑车速度是每分钟b 米,那么从家到学校的平均速度是每秒ab 30(a+b)米.【考点】列代数式.【专题】行程问题;分式;运算能力;应用意识.【分析】把从家前往学校的路程看作单位“1“,根据路程÷速度=时间先求出时间,再根据速度=路程÷时间计算即可求解. 【解答】解:根据题意可得,平均速度是112a +12b=2ab a+b(米/分钟),2ab a+b米/分钟=ab30(a+b)米/秒.故从家到学校的平均速度是每秒ab 30(a+b)米.故答案为:ab30(a+b).【点评】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 17.(2015秋•六盘水期末)﹣2x 与3x ﹣1互为相反数,则x = 1 . 【考点】解一元一次方程. 【专题】方程思想.【分析】根据相数的定义列出关于x 的方程,﹣2x +3x ﹣1=0,解方程即可. 【解答】解:根据题意,﹣2x +3x ﹣1=0, 解之得x =1. 故答案为:1.【点评】本题考查了相反数的概念和一元一次方程的解法.若两个数互为相反数,则它们的和为零,反之也成立.18.(2021春•金山区校级期末)我们知道,无限循环小数都可以转化为分数,例如,将0.3.转化为分数时,可设x =0.3.,则10x =3.3.,所以10x =3+x ,解得x =13,既0.3.=13,仿此方法,将1.7.化成分数是169.【考点】解一元一次方程;有理数. 【专题】一次方程(组)及应用;运算能力.【分析】设1.7.=x ①,两边同时乘以10得到10x =17.7②,两式相减求出x 即可.【解答】解:设1.7.=x ①,两边同时乘以10,可得10x =17.7②, ②﹣①得10x ﹣x =17.7﹣1.7, 整理得9x =16, 解得x =169. 故答案为:169.【点评】此题考查了解一元一次方程,以及有理数,弄清题中无限循环小数化分数的方法是解本题的关键.19.(2021秋•普陀区期末)如图1,把一个半径是7cm 的圆分成20等份,然后把它剪开,按照图2的形状拼起来,拼成图形的周长是 57.96 cm .【考点】认识平面图形.【专题】矩形 菱形 正方形;运算能力.【分析】由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知这个长方形的周长,据此即可求解. 【解答】解:因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,3.14×2×7+7×2=57.96(cm ), 故答案为:57.96.【点评】本题考查了图形的拼接,解答此题的主要依据是圆的面积推导过程. 20.(2021秋•普陀区期末)课桌桌面长1.2米,宽0.5米,要将桌面尺寸图画在纸上,如果长画成6厘米,那么宽画 2.5 厘米. 【考点】认识平面图形.【专题】矩形 菱形 正方形;几何直观;运算能力.【分析】根据成比例线段的定义进行计算即可. 【解答】解:设宽应画x 厘米,由题意得, 1.2:6=0.5:x , 解得x =2.5, 故答案为:2.5.【点评】本题考查认识平面图形,理解成比例线段的定义是解决问题的前提. 三.解答题(共10小题)21.(2021秋•普陀区期末)写出数轴上点A 、B 表示的数,并且在数轴上画出点C ,最后将点A 、B 、C 所表示的数用“<”连接.点C 表示的数为134.解:点A 表示的百分数为 50% ,点B 表示的假分数为 83.50% < 134 < 83.【考点】有理数大小比较;数轴. 【专题】实数;几何直观.【分析】根据数轴上的点表示的数即可得结果;根据数轴上的点表示的数,右边的数总比左边的大即可比较大小. 【解答】解:如图所示,点A 表示的百分数为50%; 点B 表示的假分数为83;排列正确:50%<134<83.故答案为:50%,83,50%,134,83.【点评】本题主要考查了数轴,数轴上的点与实数是一一对应的关系,要注意数轴上的点比较大小的方法是左边的数总是小于右边的数.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(2021秋•普陀区期末)计算:3.43﹣225+6.57﹣535.【考点】有理数的加减混合运算.【专题】实数;运算能力.【分析】先运用加法的交换结合律进行简便计算,再进行最后的减法运算. 【解答】解:3.43﹣225+6.57﹣535=(3.43+6.57)﹣(225+535)=10﹣8 =2.【点评】此题考查了有理数的加减混合运算能力,关键是能准确运用运算定律进行简便运算.23.(2021秋•普陀区期末)计算:3.2÷85×74. 【考点】有理数的除法;有理数的乘法. 【专题】实数;运算能力.【分析】先变小数为分数,变乘法为除法后再进行计算. 【解答】解:3.2÷85×74=165×58×74 =72. 【点评】此题考查了有理数的乘除混合运算能力,关键是能准确理解和运用运算法则进行正确计算.24.(2021春•浦东新区校级期末)先阅读下面例题的解题过程,再解决后面的题目. 例:已知9﹣6y ﹣4y 2=7,求2y 2+3y +7的值.解:由9﹣6y ﹣4y 2=7,得﹣6y ﹣4y 2=7﹣9,即6y +4y 2=2,所以2y 2+3y =1,所以2y 2+3y +7=8.题目:已知代数式14x +5﹣21x 2的值是﹣2,求6x 2﹣4x +5的值. 【考点】代数式求值. 【专题】整体思想.【分析】根据已知条件可得到一个等式,对等式变形,可求出3x 2﹣2x 的值,再整体代入所求代数式即可.【解答】解:∵14x +5﹣21x 2的值是﹣2, ∴14x ﹣21x 2=﹣7, 即2x ﹣3x 2=﹣1, ∴3x 2﹣2x =1,则6x 2﹣4x +5=2×(3x 2﹣2x )+5=7.【点评】做此类题的时候,应先得到只含未知字母的代数式的值为多少,把要求的式子整理成包含那个代数式的形式.25.(2018秋•杨浦区校级期末)3a 3﹣6a 2b +4a 2b −89a 3 【考点】合并同类项. 【专题】整式;运算能力.【分析】根据合并同类项的法则计算即可.合并同类项时,系数相加减,字母及其指数不变.【解答】解:3a 3﹣6a 2b +4a 2b −89a 3 =(3a 3−89a 3)+(﹣6a 2b +4a 2b ) =199a 3−2a 2b . 【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键. 26.(2017秋•嘉定区期末)如图,整扇窗是由一个半径为r 米的半圆和一个长方形组成的,已知整扇窗的面积为4平方米.用含r 的代数式表示长方形的高.【考点】列代数式. 【专题】分式.【分析】先表示出长方形的面积,再除以长即可. 【解答】解:由题意,可得长方形的面积为:4−12πr 2, ∵长方形的一边为2r , ∴长方形的高为4−12πr 22r=8−πr 24r(米).【点评】本题考查了列代数式,能正确根据题意列出式子是解此题的关键.27.(2021秋•闵行区期末)某商店为迎接新年举行促销活动,促销活动有以下两种优惠方案:方案一:购买一件商品打八折,购买两件以上在商品总价打八折的基础上再打九折; 方案二:购买一件商品打八五折,折后价格每满100元再送30元抵用券,可以用于抵扣其他商品的价格.(注:两种优惠只能选择其中一种参加)(1)小明想购买一件标价270元的衣服和一双标价450元的鞋子,请你帮助小明算一算选择哪种优惠方案更合算.(2)如果衣服和鞋子的标价都是在进价的基础上加价了50%,那么这两种优惠方案商店是赚了还是亏了?为什么?(3)如果小明已决定要购买标价为450元的鞋子,又想两种方案的优惠额相同,那么小明想购买的衣服的标价(低于450元)应调整为多少元? 【考点】一元一次方程的应用;有理数的混合运算. 【专题】一次方程(组)及应用;应用意识.【分析】(1)分别计算出两种方案的费用,比较即可得答案; (2)计算出进价,即可得答案;(3)标价(低于450元)应调整为x 元,根据两种方案的优惠额相同列方程,即可解得答案.【解答】解:(1)方案一:(270+450)×80%×90%=518.4(元),方案二:买鞋子费用为450×85%=382.5(元),买衣服除去抵用券后费用为270﹣3×30=180(元),一共应付款:382.5+180=562.5(元), ∵518.4<562.5, ∴选择方案一更合算;(2)∵衣服和鞋子的标价都是在进价的基础上加价了50%, ∴衣服和鞋子的进价是(270+450)÷(1+50%)=480(元), 而518.4>480,562.5>480, ∴这两种优惠方案商店都是赚了;(3)设小明想购买的衣服的标价(低于450元)应调整为x 元,根据题意得: (450+x )×80%×90%=450×85%+x ﹣3×30, 解得x =112.5,答:小明想购买的衣服的标价(低于450元)应调整为112.5元.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程. 28.(2008秋•虹口区期末)解方程:2−x 2−3=x 3−2x+36.【考点】解一元一次方程. 【专题】计算题.【分析】原式去分母,去括号,移项合并,将x 系数化为1,即可求出解. 【解答】解:去分母得:3(2﹣x )﹣18=2x ﹣(2x +3), 去括号得:6﹣3x ﹣18=2x ﹣2x ﹣3, 移项合并得:﹣3x =9,解得:x=﹣3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.29.(2021秋•浦东新区期末)如图中有一个等腰直角三角形ABC,∠C=45°,一个以AB 为直径的半圆,和一个以BC为半径的扇形.已知AB=BC=8厘米,求图中阴影部分的面积.【考点】认识平面图形.【专题】与圆有关的计算;运算能力.【分析】分别求出S扇形BCE,S半圆,S△ABC即可计算阴影部分的面积.【解答】解:∵S扇形BCE=45π×82360=8π(平方厘米),S半圆=12π×(82)2=8π(平方厘米),S△ABC=12×8×8=32(平方厘米),∴S阴影部分=S扇形BCE+S半圆﹣S△ABC=8π+8π﹣32=(16π﹣32)平方厘米.【点评】本题考查认识平面图形,掌握扇形、三角形面积的计算方法是正确解答的前提.30.(2020秋•虹口区校级期末)(1)探究:哪些特殊的角可以用一副三角板画出?在①135°,②120°,③75°,④25°中,小明同学利用一副三角板画不出来的特殊角是④;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图①,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45°角(∠AOB)的顶点与60°角(∠COD)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB平分∠EOD时,求旋转角度α;②是否存在∠BOC=2∠AOD?若存在,求旋转角度α;若不存在,请说明理由.【考点】角的计算;角平分线的定义.【专题】线段、角、相交线与平行线.【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°﹣∠COD=180°﹣60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论;②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.【解答】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①∵∠COD=60°,∴∠EOD=180°﹣∠COD=180°﹣60°=120°,∵OB平分∠EOD,∴∠EOB=12∠EOD=12×120°=60°,∵∠AOB=45°,∴α=∠EOB﹣∠AOB=60°﹣45°=15°;②当OA在OD的左侧时,如图②,则∠AOD=120°﹣α,∠BOC=135°﹣α,∵∠BOC=2∠AOD,∴135°﹣α=2(120°﹣α),∴α=105°;当OA在OD的右侧时如图③,则∠AOD=α﹣120°,∠BOC=135°﹣α,∵∠BOC=2∠AOD,∴135°﹣α=2(α﹣120),∴α=125°,综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.【点评】本题考查了解得计算,特殊角,角平分线的定义,正确的理解题意是解题的关键.考点卡片1.有理数1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数{整数{正整数0负整数分数{正分数负分数; ②按正数、负数与0的关系分类:有理数{正有理数{正整数正分数0负有理数{负整数负分数. 注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.2.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.3.有理数大小比较(1)有理数的大小比较比较有理数的大小可以利用数轴,他们从右到左的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.(2)有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【规律方法】有理数大小比较的三种方法1.法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对。

上海市七年级上册数学期末试卷(含答案)

上海市七年级上册数学期末试卷(含答案)

上海市七年级上册数学期末试卷(含答案)一、选择题 1.4 =( )A .1B .2C .3D .42.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 4.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .5.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+56.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( )A .(-1)n -1x 2n -1B .(-1)n x 2n -1C .(-1)n -1x 2n +1D .(-1)n x 2n +17.如图,∠AOD =84°,∠AOB =18°,OB 平分∠AOC ,则∠COD 的度数是( )A .48°B .42°C .36°D .33° 8.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣39.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .10.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.3的倒数是( ) A .3B .3-C .13D .13-12.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x = C .2123x -=,变形为232x -= D .21x =,变形为2x =13.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511 C .﹣1023 D .1025 14.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .715.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.18.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.19.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.20.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.21.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.22.写出一个比4大的无理数:____________. 23.当a=_____时,分式13a a --的值为0. 24.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.25.因式分解:32x xy -= ▲ .26.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).27.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.28.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.29.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.30.若523m xy +与2n x y 的和仍为单项式,则n m =__________.三、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.33.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 34.如图,在平面直角坐标系中,点M 的坐标为(2,8),点N 的坐标为(2,6),将线段MN 向右平移4个单位长度得到线段PQ (点P 和点Q 分别是点M 和点N 的对应点),连接MP 、NQ ,点K 是线段MP 的中点. (1)求点K 的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.35.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.36.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.37.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?38.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:4=2,故答案为:B.本题考查算术平方根的概念,解题关键在于对其概念的理解.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D 【解析】 【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可. 【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分. 设小强做数学作业花了x 分钟, 由题意得 6x -0.5x =180, 解之得x = 36011. 故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.A解析:A 【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.5.A解析:A试题分析:设段数为x ,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n 时,x=4n+1.故选A . 考点:探寻规律.6.C解析:C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.A解析:A 【解析】 【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果. 【详解】解:OB 平分AOC ∠,18AOB ∠=︒, 236AOC AOB ∴∠=∠=︒, 又84AOD ∠=︒,843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A . 【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.8.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .9.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.10.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.11.C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 13.D解析:D【解析】【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可.【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1,第10个数是(﹣2)10+1=1024+1=1025故选:D .【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.14.C解析:C【解析】【分析】根据同类项的概念求得m 、n 的值,代入m n +即可.解:∵2m ab -与162n a b -是同类项,∴2m=6,n-1=1,∴m=3,n=2,则325m n +=+=.故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A .【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx 是同类项,∴m=1,n =3,∴m﹣n =1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y 3与﹣5y n x 是同类项,∴m =1,n =3,∴m ﹣n =1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n −2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.18.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.19.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.20.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C 运算”的结果.【详解】解:由题意可得,当n =26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C 运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.22.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.23.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.24.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.25.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).26.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).x xy4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入27.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 28.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC =80°,则∠AOB =∠BOC+∠AOC =110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE =40°,∴∠BOC =80°,∴∠AOB =∠BOC+∠AOC =80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.29.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 30.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9. 三、压轴题31.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +,点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810=故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.33.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.。

2022-2023学年上海黄浦区七年级上册期末数学试卷及答案

2022-2023学年上海黄浦区七年级上册期末数学试卷及答案

2022-2023学年上海黄浦区七年级上册期末数学试卷及答案一.选择题(本大题共6小题,每题3分,满分18分)1.,73,3.14,2π-)A. 1个B. 2个C. 3个D. 4个【答案】C 【解析】【分析】根据有理数的定义,有理数包括整数和分数,分数为有限小数或无限循环小数,找出其中的有理数即可.【详解】解:根据题意,有理数有:73,3.143=,共3个;故选:C .【点睛】本题考查了有理数的定义,解题的关键是熟记有理数与无理数的定义.2. 下列运算中一定正确的是( )=B. 5=C. 11--a=【答案】C 【解析】【分析】根据二次根式的加减运算,二次根式的性质,进行计算即可.【详解】A≠B 、55=-≠,故该选项运算错误,不符合题意;C、11--,故该选项运算正确,符合题意;D 、a a =≠,故该选项运算错误,不符合题意;故选:C .【点睛】本题考查了二次根式的加减运算,次根式的性质,熟练掌握以上运算法则和性质是解题的关键.3. 现有2cm ,3cm ,5cm ,6cm 长的四根木棒,任选其中的三根组成三角形,那么可以组成三角形的个数有( )A. 1个 B. 2个C. 3个D. 4个【答案】B 【解析】【分析】根据三角形的三边关系进行判断即可.【详解】四条木棒的所有组合:2,3,5和2,3,6和3,5,6和2,5,6,根据三角形两边之和大于第三边,两边之差小于第三边的构成条件,只有3,5,6和2,5,6能组成三角形.故选:B .【点睛】本题考查了三角形的三边关系,掌握三角形的三边关系是解题的关键.4. 如图,下列说法中错误的是( )A. ,GBD HCE ∠∠是同位角B. ,ABD ACH ∠∠是同位角C. ,FBC ACE ∠∠是内错角D. ,GBC BCE ∠∠是同旁内角【答案】A 【解析】【分析】根据同位角、同旁内角、内错角的定义结合图形判断.【详解】解:A 、∠GBD 和∠HCE 不符合同位角的定义,故本选项合题意; B 、∠ABD 和∠ACH 是同位角,故本选项不合题意;C 、∠FBC 和∠ACE 是内错角,故本选项不合题意;D 、∠GBC 和∠BCE 是同旁内角,故本选项不合题意;故选:A .【点睛】本题考查了同位角、同旁内角、内错角的定义,属于基础题,正确且熟练掌握同位角、同旁内角、内错角的定义和形状,是解题的关键.5. 在直角坐标平面内,A 是第二象限内的一点,如果它到x 轴、y 轴的距离分别是3和4,那么点A 的坐标是( )A. ()3,4-B. ()3,4-C. ()4,3- D. ()4,3-【答案】D 【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【详解】解:∵点A 在第二象限,到x 轴的距离是3,到y 轴的距离是4,∴点A 的横坐标是4-,纵坐标是3,∴点A 的坐标为()4,3-.故选:D .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.6. 如图,点P 是AB 上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,不一定能推出ΔAPC ≌ΔAPD.的是( )A. BC=BD.B. ∠ACB=∠ADB.C. ∠CAB=∠DABD. AC=AD.【答案】D 【解析】【分析】根据题意,∠ABC=∠ABD ,AB 是公共边,结合选项,逐个验证得出正确结果.【详解】解:A 、补充BC=BD ,先证出△ABC ≌△ABD ,后能推出△APC ≌△APD ,故此选项错误;B 、补充∠ACB=∠ADB ,先证出△ABC ≌△ABD ,后能推出△APC ≌△APD ,故此选项错误;C 、补充∠CAB=∠DAB ,先证出△ABC ≌△ABD ,后能推出△APC ≌△APD ,故此选项错误;D 、补充AC=AD ,不能推出△APC ≌△APD ,故此选项正确.故选D.【点睛】本题考查三角形全等判定,三角形全等判定定理:有AAS ,SSS ,ASA ,SAS .注意SSA 是不能证明三角形全等的,做题时要逐个验证,排除错误的选项.二.填空题(本大题共12小题,每题2分,满分24分)的7. 16的平方根是___________.【答案】4±【解析】【分析】根据平方根的定义即可求解.【详解】即:16的平方根是4±故填:4±【点睛】此题主要考查平方根,解题的关键是熟知平方根的定义.8. 比较大小:--填“>”“<”或“=”).【答案】<【解析】【分析】先把根号外的因式移入根号内,再根据实数的大小比较方法比较大小即可.【详解】解:-=-=,∴<即-<-故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.9. 2022年上海常住人口约为24758900人,用科学记数法表示24758900并保留三位有效数字______.【答案】72.4810⨯【解析】【分析】根据科学记数法的表示方法和有效数字的取舍解答即可【详解】解:根据题意,得724758900 2.4810=⨯;故答案为:72.4810⨯【点睛】此题考查了科学记数法和有效数字.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.10. 计算:21332183⎛⎫⨯= ⎪⎝⎭______.【答案】2【解析】【分析】根据幂乘方逆运算法则和积的乘方逆运算法则求解即可.【详解】解:12112111133333333224418181818823399⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯=⨯=⨯=⨯==⎢⎥ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;故答案为:2.【点睛】本题考查了分数指数幂、幂的乘方和积的乘方,熟练掌握幂的运算性质是解题关键.11. 如果点()1,23+-P m m 在x 轴上,则点P 的坐标是______.【答案】5(,0)2【解析】【分析】根据x 轴上点的横坐标为0列方程求出m 的值,再求解即可.【详解】解:∵()1,23+-P m m 在x 轴上,∴230m -=,解得:32m =,则512m +=,∴点P 的坐标是5(,0)2,故答案为:5(,0)2.【点睛】本题考查了坐标轴上点的坐标特征,熟记在x 轴上的点,纵坐标等于0;在y 轴上的点,横坐标等于0是解题的关键.12.直角坐标平面内点()向左平移3个单位得到的点的坐标为______.【答案】(3,1)【解析】【分析】坐标系中点的平移遵循:上加下减,左减右加,据此即可解答.的【详解】解:点()向左平移3个单位得到的点的坐标为(3,1)-.故答案为:(3,1)-.【点睛】本题考查了坐标系中点的平移,熟知平移的规律是解题关键.13. 如图,在BDE △中,90E ∠=︒,AB CD ∥,20ABE ∠=︒,则EDC ∠=__________.【答案】70︒【解析】【分析】过E 作EF ∥AB ,由平行线的性质,几何图形中角的和差关系进行计算,即可得到答案.详解】解:如图,过E 作EF ∥AB ,,∴AB CD ∥∥EF ,∴20BEF ABE ∠=∠=︒,EDC FED ∠=∠,∵90BEF FED ∠+∠=︒,∴902070EDC ∠=︒-︒=︒;故答案为:70°.【点睛】本题考查了平行线的性质,几何图形中角的和差关系,解题的关键是熟练掌握平行线的性质求角的度数.14. 如图,将一副三角板如图摆放(一块三角板的直角边与另一块三角板的斜边在同一直线上),那么α∠=______°.【【答案】75【解析】【分析】由题意知45EFB ∠=︒,60ABC ∠=︒,再利用三角形的内角和可得答案.【详解】解:由题意知:45EFB ∠=︒,60ABC ∠=︒,18075FCB EFB ABC ∴∠=︒-∠-∠=︒75α∴∠=︒,故答案为:75.【点睛】本题主要考查了三角形的内角和为180︒,熟练掌握三角形的内角和性质是解题的关键,难度适中.15. 如图,在ABC 中,AD BC ⊥,CEAB ⊥,垂足分别是D 、E ,AD 、CE 交于点H ,要使得AEH △CEB ≌ ,可添加一个适当的条件:______.【答案】EH EB =(答案不唯一)【解析】【分析】由垂直的定义和余角的性质可得90AEH BEC ∠=∠=︒,EAH BCE ∠=∠,故只需要添加一个边的条件即可.【详解】解:∵AD BC ⊥,CEAB ⊥,∴90,90,90AEH BEC BAD B ECB B ∠=∠=︒∠+∠=︒∠+∠=︒,∴EAH BCE ∠=∠,∴要使得AEH △CEB ≌ ,根据“角角边”可添加EH EB =(答案不唯一);故答案为:EH EB =(答案不唯一).【点睛】本题考查了全等三角形的判定,熟练掌握判定三角形全等的方法是解题关键.16. 已知30∠=AOB °,点P 在AOB ∠的内部,点1P 与点P 关于OB 对称,点2P 与点P 关于OA 对称,若5OP =,则12=PP ______.【答案】5【解析】【分析】连接OP ,根据轴对称的性质可得OP 1=OP=OP 2,∠BOP=∠BOP 1,∠AOP=∠AOP 2,然后求出∠P 1OP 2=2∠AOB=60°,再根据有一个角是60°的等腰三角形是等边三角形判定.【详解】解:如图,连接OP ,∵P 1与P 关于OB 对称,P 2与P 关于OA 对称,∴OP 1=OP=OP 2,∠BOP=∠BOP 1,∠AOP=∠AOP 2,∴OP 1=OP 2,∠P 1OP 2=∠BOP+∠BOP 1+∠AOP+∠AOP 2=2∠BOP+2∠AOP=2∠AOB ,∵∠AOB=30°,∴∠P 1OP 2=60°,∴△P 1OP 2是等边三角形.∴P 1P 2 =OP 2=OP=5,故答案为:5.【点睛】本题考查了轴对称的性质,等边三角形的性质和判定,熟练掌握轴对称的性质求出△P 1OP 2的两边相等且有一个角是60°是解题的关键,作出图形更形象直观.17. 如图,在ABC 中,90C ∠=︒,4AC BC ==,AB =,AD 平分CAB ∠,DE AB ⊥于点E ,则DEB 的周长是______.【答案】【解析】【分析】由角平分线的性质可得DC DE =,可证得()Rt Rt HL ACD AED ≌△△,结合DEB C DE DB BE =++△,即可求解.【详解】解:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥于点E ,∴DC DE =,∵AD AD =,∴()Rt Rt HL ACD AED ≌△△,∴AC AE =,∵DEB C DE DB BE DC DB BE BC BE =++=++=+△,又∵4AC BC ==,AB =∴DEB C AC BE AE BE AB =+=+==△故答案为:.【点睛】本题考查角平分线的性质,全等三角形的判定及性质,熟练掌握相关性质是解决问题的关键.18. 如图,已知ADC △的面积为4,AD 平分BAC ∠,且AD BD ⊥于点D ,那么ABC 的面积为__________.【答案】8【解析】【分析】延长BD 交AC 于点E ,则可知△ABE 为等腰三角形,则S △ABD =S △ADE ,S △BDC =S △CDE ,可得出S △ADC =12S △ABC .即可求出答案.【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分∠BAE ,AD ⊥BD ,∴∠BAD=∠EAD ,∠ADB=∠ADE ,在△ABD 和△AED 中,BAD EAD AD AD BDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABD ≌△AED (ASA ),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC =12S △ABC ,∴248ABC S ∆=⨯=;故答案为:8.【点睛】本题考查了等腰三角形的性质和判定的应用,全等三角形的判定和性质,由BD=DE 得到S △ABD =S △ADE ,S △BDC =S △CDE 是解题的关键.三.简答题(本大题共6小题,每题6分,满分36分)19.计算:21023272)--+-+.【答案】2-+【解析】【分析】先计算除法,算术平方根,负整数指数幂,零指数幂,然后进行加减运算即可.【详解】解:原式31=-+-2=-.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解决问题的关键.20. 计算:(2.-1【解析】【分析】利用乘法分配律和完全平方公式进行运算,然后进行加减混合运算即可.【详解】解:(2-+=6+2-+3-1【点睛】此题考查了二次根式的混合运算、完全平方公式等知识,熟练掌握二次根式的运算法则是解题的关键.21. .【答案】4【解析】【分析】将各根式化为同底数幂的形式,再利用同底数幂的乘除法法则计算.÷453362222=⨯÷22=4=.【点睛】此题考查了分数指数幂的计算,将各根式正确化为同底数幂的形式及正确掌握分数指数幂的计算法则是解题的关键.22. 阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD =,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE=【答案】见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证,∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.23. 如图,已知在ABC 中,45ABC ∠= ,AD 是ABC 的高,点E 在边AC 上,BE 与AD 交于点F ,且DF DC =,试说明BE AC ⊥.解:∵AD 是ABC 的高(已知)∴90ADB ADC ∠=∠= (垂直的意义)∵180∠+∠+∠= ABD BAD ADB ,45ABC ∠=∴______45∠=∠=ABD ∴BD AD =.在BDF V 和ADC △中(请继续完成以下说理过程)【答案】BAD ;见解析【解析】【分析】由AD 是ABC 的高可得45BAD ABD ∠=∠= ,进而可证BD AD =,再利用SAS 可证明BDF ADC ≌V V ,进而可得DBF CAD ∠=∠,结合BFD AFE ∠=∠,可得90∠=∠= AEF BDF ,即可证明BE AC ⊥.【详解】解:∵AD 是ABC 的高(已知)∴90∠=∠= ADC ADC (垂直的意义)∵180∠+∠+∠= ABD BAD ADB ,45ABC ∠= ∴45∠=∠=BAD ABD ∴BD AD =.在BDF V 和ADC △中BD AD BDF ADCDF DC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BDF ADC ≌△△∴DBF CAD ∠=∠(全等三角形对应角相等)∵BFD AFE ∠=∠(对顶角相等)∴90∠=∠=AEF BDF ∴BE AC ⊥.【点睛】本题考查全等三角形的判定及性质,等角对等边,熟练掌握相关性质定理是解决问题的关键.24. 如图,在直角坐标平面内,已知点()0,4A 、()2,3B --、()2,3C -,(1)点C 关于原点对称的点C '的坐标是______;(2)ABC '△的面积是______;(3)在x 轴负半轴上找一点D ,使''=DBC ABC S S △△,则点D 坐标为______.【答案】(1)()2,3C -(2)6 (3)()4,0D -【解析】【分析】(1)根据关于原点对称的点的坐标特点进行求解即可;(2)根据三角形的面积公式可得答案;(3)根据面积相等列方程求解即可.【小问1详解】∵点C 的坐标为()2,3-,∴点C 关于原点对称的点C '的坐标为()2,3-.故答案为:()2,3-.【小问2详解】连接AB ,AC ',BC ',如图:则ABC '△的面积为16262⨯⨯=.故答案为:6.【小问3详解】设点D 的坐标为(),0a -,则1622DBC S a '=⨯⨯- ,即16622a =⨯⨯-,解得:4a =或0a =(舍去)则点D 坐标为()4,0-.故答案为:()4,0-.【点睛】本题考查了求关于原点对称的点的坐标,借助网格求三角形的面积等,掌握三角形的面积公式是解题的关键.四.解答题(本大题共3小题,第25、26题7分,第27题8分,满分22分)25. 如图,在ABC 中,AB AC =,点D 、E 分别在BC 、AC 的延长线上,AD AE =,30∠=︒CDE .(1)如果设B x ∠=︒,用含x 的代数式来表示E ∠,并说明理由;(2)求BAD ∠的度数.【答案】(1)150E x ∠=︒-︒,理由见解析(2)60︒【解析】【分析】(1)根据等边对等角得出ACB B x ∠=∠=︒,根据180DCE E CDE ∠+∠+∠=︒,30∠=︒CDE 即可求解;(2)根据三角形内角和定理得出1802BAC x ∠=-︒,根据AE AD =,可得150E ADE x ∠=∠=-︒,根据180EAD E ADE ∠+∠+∠=︒,可得2120EAD x ∠=-︒,根据60BAD BAC EAD ∠=∠+∠=︒,即可求解.【小问1详解】解:∵AB AC =,B x ∠=︒,∴ACB B x ∠=∠=︒,∴DCE ACB x ∠=∠=︒,∵180DCE E CDE ∠+∠+∠=︒,30∠=︒CDE ,∴150E x ∠=︒-︒,【小问2详解】∵180BAC B ACB ∠+∠+∠=︒,∴1802BAC x ∠=-︒,∵AE AD =,∴150E ADE x ∠=∠=-︒,∵180EAD E ADE ∠+∠+∠=︒,∴2120EAD x ∠=︒-︒,∴60BAD BAC EAD ∠=∠+∠=︒.【点睛】本题考查了三角形内角和定理,等边对等角,熟练掌握等腰三角形的性质以及三角形内角和定理是解题的关键.26. 如图,在ABC 中,90ACB ∠=︒,D 是AB 上一点,且BD AD CD ==,过B 作BE CD ⊥,分别交AC 于点E 、交CD 于点F .(1)求证:A EBC ∠=∠;(2)如果2AC BC =,请猜想BE 和BD 的数量关系,并证明你的猜想.【答案】(1)见解析 (2)BD BE =,证明见解析【解析】【分析】(1)由BE CD ⊥与90ACB ∠=︒得90ACD BCD ∠+∠=︒和90EBC BEC ∠+∠=︒可得ACD EBC ∠=∠,由AD CD =得DAC ACD ∠=∠,从而得证;(2)过D 作DG AC ⊥于G ,根据已知条件可证明CG BC =.再证明()ASA DCG EBC △≌△,即可得解.【小问1详解】∵BE CD⊥∴90BFC ∠=︒∴18090EBC BCF BFC ∠+∠=︒-∠=︒∵90ACB BCF ACD ∠=∠+∠=︒∴EBC ACD∠=∠∵AD CD=∴A ACD∠=∠∴A EBC ∠=∠;小问2详解】BD BE =,证明如下:过D 作DG AC ⊥于G∵,DA DC DG AC=⊥∴2AC CG=∵2AC BC=∴CG BC=∵90,90DGC ECB ∠∠=︒=︒∴DGC ECB∠=∠在DGC 和ECB 中DGC ECBCG BCDCG EBC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA DCG EBC △≌△【∴CD BE=∵CD BD=∴BD BE =.【点睛】此题考查了直角三角形的性质,等腰三角形的性质,全等三角形的性质和判定,解题的关键是熟练掌握以上知识点.27. 如图,在直角坐标平面内,已知点()4,3A -、()3,4B ,过点A 、B 分别作x 轴的垂线,垂足为点D 、E .(1)说明OA OB ⊥的理由;(2)求AOB 的面积(3)在x 轴上找到点P ,使BOP △是以OB 为腰的等腰三角形,请直接写出点P 的坐标.【答案】(1)见解析 (2)252(3)()6,0P 或()5,0或()5,0-【解析】【分析】(1)由题意易证ADO OEB ≌△△,可知A O D O B E ∠=∠,进而证明90BOE AOD ∠+∠=︒可得90AOB ∠=︒,即可证得结论;(2)利用梯形面积减去两个直角三角形面积即可求解;(3)分两种情况:①当以O 顶点,即5OB OP ==时,②当以B 顶点,即5BO BP ==时,分别进行讨论即可求解.【小问1详解】解:∵()4,3A -、()3,4B ,AD x ⊥轴,BE x ⊥轴,∴3AD OE ==,4==DO BE ,90ADO OEB ∠=∠=︒,则90BOE OBE ∠+∠=︒,的∴ADO OEB ≌△△,∴A O D O B E ∠=∠,则90BOE AOD ∠+∠=︒,∴90AOB ∠=︒,∴OA OB ⊥;【小问2详解】AOB 的面积()1125347342222=⨯+⨯-⨯⨯⨯=;【小问3详解】由勾股定理可得:5OB ==,①当以O 顶角顶点,即5OB OP ==时,此时点P 的坐标为()5,0或()5,0-;②当以B 为顶角顶点,即5BO BP ==时,由勾股定理可得:3EP ==,则6OP =,此时点P 的坐标为()6,0;综上,()6,0P 或()5,0或()5,0-.【点睛】本题考查图形与坐标,全等三角形的判定及性质,等腰三角形的性质,熟练掌握相关性质定理是解决问题的关键.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21、解:原式=2231分
xx2xx1
=2(x1)
x(x1)
x
=
x(x1)
2
x(x1)
3x1分
x(x1)
1分
=x1
1
2分
(x1y1)(x1y1)
22、 解一:原式=(
x2

y2xy
1分解二:原式=
x1y11
y2x2
=
x2y2
yx
1分=x
xy
y11分
(yx)(yx)
=
x2y2
xy yx
11
1分=1分
片,使点A恰好落在原BC边上,折痕与原AD边交于点F;则
AFE的度数为.
A DAB
BCE
DFD
CEAC
二、选择题:
15.已知:(2x5)(3x8)(3x8)(x5)M,则M等于……………()
(A)3x2; (B)3x26x; (C)3x26x; (D)3x26x。
16.关于x的方程
2x
x2
3m3有增根,则m的值为…………………………()
2016学年第一学期期末考试七年级数学试卷
题号





总分
得分
(考试时间90分钟,满分100分)
一、填空题:
1.“a的立方与b的平方的差”用代数式表示为:。
2.将多项式
4x32xy23x2yy3
按字母y降幂排列:。
3. 已知xmnxmnx6,则m=。
4.已知M是单项式,且M3a9b12,则M=。
5.计算:(a2b)(2ba)=。
(A)2;(B)1;(C)0;(D)1.
17. 在俄罗斯方块游戏中,所有出现的方格体自由下落,如果一行中九个方格齐全,那么这一行会自动消失。已项操作,才能拼成一个完整图案,使图上所有方格自动消失()
(A)顺时针旋转90°,向下平移;(B)逆时针旋转90°,向下平移;
的1.2倍”,根据图文信息,请通过计算判定哪位同学获胜?
L
30米
29、如图,下面两个图案都是由8个大小一样的小长方形拼成的,并且图(2)中央小正方形的边长是1厘米.问:(1)图案(1)、图案(2)是中心对称图形吗?(2分)
(2)求小长方形的长和宽.(5分)
解:(1)图(1);图2.(填:“是”或“不是”)
解:AD
F
MBEC
28、甲、乙两人玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线LP
起跑,到达P点后再返回起跑线为结束(如图所示);途中乒乓球掉下时须
捡起并回到掉球处继续赛跑,所用时间少的人获胜。结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完。事后,乙同学说:“我俩所用
的全部时间的和为50秒。”甲同学说:“不算掉球那段时间,我的速度是乙
2.24.化简求值:xy
x2y2

x33x
x2yx24xy4y21
其中x1,y1.
3
四、作图题:
25、画出四边形关于直线l的轴对称图形。26、在边长为1的正方形网格中:(1)画出
ABC关于点O的中心对称图形ABC。
(2)ABC与ABC的重叠部分的面积为

l
五、解答题:
27.正方形ABCD中,ADF绕着点A顺时针旋转90°后得到ABM,点M、B、C在一条直线上,且AEM与AEF恰好关于AE所在直线成轴对称。已知EF7,正方形边长为8。(1)写出图中形状、大小都相等的三角形;(2)求EFC的面积。
二、选择题:
15、C; 16 、 B; 17 、 C;18 、 D;
三、简答题:(每小题5分,共30分)
19、解:原式=5a(3bc)5a(3bc)1分
=25a2(3bc)21分
=25a2(9b26bcc2)1分
=25a29b26bcc22分
20、解:原式=x24x3x24x83分
=x1x3x24x82分
5 个,则第n幅图中共有 个。
……
图(1)图(2)图(3)
A图B(n)N
13. 如图右,三个大小一样的正方形,正方形CDFE绕点C旋转后D
能与正方形CMNB重合,那么旋转角为度。
F
14、将长方形纸片ABCD按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点
B恰好落在AD边上,折痕与原BC边交于点E;(2)以过点E的直线为折痕折叠纸
(C)设甲班在x天植树80棵,则80705;(D)设乙班在x天植树70棵,则7080
x
三、简答题
xx5
19.计算:(5a3bc)(5a3bc).20.分解因式:(x24x)25(x24x)24.
21.计算:223
.22.计算:(x2y2)(x1y1)(结果不
xxx2
x1
含负整数指数幂)
23.解方程:1
25、画错一个点扣1分,漏结论扣1分;
26、(1)画图;3分
(2)4;2分
五、解答题:
27、解:(1)ADF
和ABM;
AEM
和AEF;2分
(2) 正 方 形 ABCD 的 面 积=64; 1 分
AEM的面积=281分
EFC的面积=6428288;2分
28、解:设乙的速度为x米/秒,则甲的速度为1.2米/秒。1分
(C)顺时针旋转90°,向右平移;(D)逆时针旋转90°,向右平移.
18.学生参加植树造林。甲班每天比乙班多植5棵树,甲班植80棵树与乙班植70棵树所用的天数相等,求甲、乙两班每天各植树多少棵。下面列式错误的是 ……()
(A)设甲班每天植树x棵,则80
; (B) 设乙班每天植树x棵,则
70;
xx5x5x
5
由 题 意 得 :23xx12分
5
x51分
3x31分
5
答:小长方形的长为 5 厘米,宽为 3 厘米。
解法二:设小长方形的长为x厘米,则宽为y厘米。 1 分
3x5y
2yx12 分
x52 分 ( 得 到x或y就 得1
分)
答:小长方形的长为 5 厘米,宽为 3 厘米。
x
yx
=
xy
2分=
yx
2分
xy
23、解:
x3
121分
x3
412(x3)(或3
x3
2x9
x4.5
2)1分
1分
1分
经检验:
x4.5是原方程的解,
所以原方程的解是
x4.5。1分
24、解:原式=
=
xy x2y
x2yxy
(x2y)2
1分
(xy)(xy)
11分
=xy1分
当x1,y1时,原式=12分
3
四、作图题:
x
60
1.2x
6503 分
x2.51分经检验:x2.5是原方程的根,且符合题意;1分
1.2x3
60
2.5
24秒,502426秒
答 : 乙 用 时 少 , 乙 获 胜 。 1 分
29、解:(1) 图(1)不是中心对称图形; 1 分图 (2) 是 中 心 对 称 图 形 . 1 分
(2)解法一:设小长方形长为x厘米,则宽为3x厘米。 1 分
6.分解因式:x21=。
7.分解因式:(x5)(3x2)3(x5)=。
8.当x=时,分式
x1
的值为零。
9. 化简:
5x7
4x11=。
x24xx24x
10.用科学计数法表示:0.0000197=。
11.设x2z3y,则代数式x24z24xz9y2
的值是。
12.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有
(图1)(2)
(图2)
2016学年第一学期七年级数学期末考卷答案
一、填空题:
1、a3b2;2、y32xy23x2y4x3;3、3;4、a3b4;5、a24b2;
6、(x1)(x1);7、(x5)(3x5);8、1;9、1;
4
10、1.97105;11、0;12、2n1;13、180;14、67.5;
相关文档
最新文档