初一年级上期末考试数学试卷(带答案和解释)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初一年级上期末考试数学试卷(带答
案和解释)
距离期末考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初一学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇初一年级上期末考试数学试卷吧!
一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)
1. 已知等式3a=2b+5,则下列等式中不一定成立的是()
A. 3a﹣5=2b
B. 3a+1=2b+6
C. 3ac=2bc+5
D. a=
2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()
A. 两点之间,线段最短
B. 两点确定一条直线
C. 线段只有一个中点
D. 两条直线相交,只有一个交点
3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()
A. (5+8)x
B. x(5+8)
C. x(+)
D. (+)x
4. 下列说法正确的是()
A. 射线OA与OB是同一条射线
B. 射线OB与AB是同一条射线
C. 射线OA与AO是同一条射线
D. 射线AO与BA是同一条射线
5. 下列说法错误的是()
A. 点P为直线AB外一点
B. 直线AB不经过点P
C. 直线AB与直线BA是同一条直线
D. 点P在直线AB上
6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()
A. B. C. D.
7. 的值与3(1﹣x)的值互为相反数,那么x等于()
A. 9
B. 8
C. ﹣9
D. ﹣8
8. 海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的()
A. 南偏西50
B. 南偏西40
C. 北偏东50
D. 北偏东40
9. 把10.26用度、分、秒表示为()
A. 101536
B. 10206
C. 10146
D. 1026
二、耐心填一填,你一定很棒!(每题3分,共21分)
10. 一个角的余角为68,那么这个角的补角是度.
11. 如图,AB+BCAC,其理由是.
12. 已知,则2m﹣n的值是.
13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的
解.
14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m=,n=.
15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的.(把下图中正确的立体图形的序号都填在横线上)
16. 横看成岭侧成峰,远近高低各不同是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是体.
三.挑战你的技能
17.
18. 已知是方程的根,求代数式的值.
19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?
21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、
N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)
(2)记(1)中的角为AOB,OC平分AOB,D在射线OA的反向延长线上,画图并求COD的度数.
23. 如图,AOB=110,COD=70,OA平分EOC,OB平分DOF,求EOF的大小.
24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.
(1)请完成下表:
第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数
12 12+a
(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?
参考答案与试题解析
一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)
1. 已知等式3a=2b+5,则下列等式中不一定成立的是()
A. 3a﹣5=2b
B. 3a+1=2b+6
C. 3ac=2bc+5
D. a=
考点:等式的性质.
分析:利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.
解答:解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;
B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;
D、根据等式的性质2:等式的两边同时除以3,得a=;
2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()
A. 两点之间,线段最短
B. 两点确定一条直线
C. 线段只有一个中点
D. 两条直线相交,只有一个交点
考点:直线的性质:两点确定一条直线.
分析:根据概念利用排除法求解.
解答:解:经过两个不同的点只能确定一条直线.
3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()
A. (5+8)x
B. x(5+8)
C. x(+)
D. (+)x
考点:列代数式.
分析:根据工作效率工作时间=工作总量等量关系求出结果. 解答:解:甲的工作效率是,乙的工作效率是,工作总量是1,
4. 下列说法正确的是()
A. 射线OA与OB是同一条射线
B. 射线OB与AB是同一条射线
C. 射线OA与AO是同一条射线
D. 射线AO与BA是同一条射线
考点:直线、射线、线段.
分析:根据射线的概念,对选项一一分析,排除错误答案. 解答:解:A、射线OA与OB是同一条射线,选项正确;
B、AB是直线上两个点和它们之间的部分,是线段不是射线,选项错误;
C、射线OA与AO是不同的两条射线,选项错误;
D、BA是直线上两个点和它们之间的部分,是线段不是射线,选项错误.
5. 下列说法错误的是()
A. 点P为直线AB外一点
B. 直线AB不经过点P
C. 直线AB与直线BA是同一条直线
D. 点P在直线AB上
考点:直线、射线、线段.
分析:结合图形,对选项一一分析,选出正确答案.
解答:解:A、点P为直线AB外一点,符合图形描述,选项正确;
B、直线AB不经过点P,符合图形描述,选项正确;
C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;
D、点P在直线AB上应改为点P在直线AB外一点,选项错误.
6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()
A. B. C. D.
考点:简单组合体的三视图.
分析:找到从上面看所得到的图形即可.
解答:解:从上面看可得到从上往下2行的个数依次为3,2.
7. 的值与3(1﹣x)的值互为相反数,那么x等于()
A. 9
B. 8
C. ﹣9
D. ﹣8
考点:一元一次方程的应用.
专题:数字问题.
分析:互为相反数的两个数的和等于0,根据题意可列出方程.
解答:解:根据题意得:2(x+3)+3(1﹣x)=0,
8. 海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的()
A. 南偏西50
B. 南偏西40
C. 北偏东50
D. 北偏东40
考点:方向角.
分析:根据方向角的定义即可判断.
解答:解:海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的南偏西40.
9. 把10.26用度、分、秒表示为()
A. 101536
B. 10206
C. 10146
D. 1026
考点:度分秒的换算.
专题:计算题.
分析:两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.度、分、秒的转化是60进位制.
解答:解:∵0.2660=15.6,0.660=36,
二、耐心填一填,你一定很棒!(每题3分,共21分)
10. 一个角的余角为68,那么这个角的补角是158 度.
考点:余角和补角.
专题:计算题.
分析:先根据余角的定义求出这个角的度数,进而可求出这个角的补角.
解答:解:由题意,得:180﹣(90﹣68)=90+68=158
11. 如图,AB+BCAC,其理由是两点之间线段最短.
考点:线段的性质:两点之间线段最短.
分析:由图A到C有两条路径,知最短距离为AC.
解答:解:从A到C的路程,因为AC同在一条直线上,两点间线段最短.
12. 已知,则2m﹣n的值是13 .
考点:非负数的性质:偶次方;非负数的性质:绝对值.
分析:本题可根据非负数的性质两个非负数相加,和为0,这两个非负数的值都为0列出方程求出m、n的值,代入所求代数式计算即可.
解答:解:∵;
3m﹣12=0,+1=0;
13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解x+2=0(答案不唯一) .
考点:同解方程.
专题:开放型.
分析:根据题意首先求出方程11x﹣2=8x﹣8的解x=﹣2,然后再写出一个解为x=﹣2的方程即可.
解答:解:11x﹣2=8x﹣8
移项得:11x﹣8x=﹣8+2
合并同类项得:3x=﹣6
14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m=
4 ,n= 3 .
考点:合并同类项.
专题:应用题.
分析:本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,只有同类项才可以合并的.由同类项的定义可求得m和n的值.
解答:解:由同类项定义可知:
m=4,n﹣1=2,
15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的①②④ .(把下图中正确的立体图形的序号都填在横线上)
考点:由三视图判断几何体.
专题:压轴题.
分析:根据图1的正视图和左视图,可以判断出③是不符合这些条件的.因此原立体图形可能是图2中的①②④.
解答:解:如图,主视图以及左视图都相同,故可排除③,因为③与①②④的方向不一样,故选①②④.
16. 横看成岭侧成峰,远近高低各不同是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是圆锥体.
考点:由三视图判断几何体.
分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解答:解:俯视图是圆的有球,圆锥,圆柱,从正面看是三角形的只有圆锥.
三.挑战你的技能
17.
考点:解一元一次方程.
专题:计算题.
分析:将方程去分母,去括号,然后将方程移项,合并同类项,系数化为1,即可求解.
解答:解:去分母,得
3(x+4)+15=15x﹣5(x﹣5)
去括号,得
3x+12+15=15x﹣5x+25
移项,合并同类项,得
18. 已知是方程的根,求代数式的值.
考点:一元一次方程的解;整式的加减化简求值.
专题:计算题.
分析:此题分两步:(1)把代入方程,转化为关于未知系数m的一元一次方程,求出m的值;
(2)将代数式化简,然后代入m求值.
解答:解:把代入方程,
19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
考点:方向角.
分析:根据方位角的概念,画图正确表示出方位角,即可求解.
20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?
考点:一元一次方程的应用.
专题:销售问题.
分析:设进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.
解答:解:设进价为x元,
依题意得:90090%﹣40﹣x=10%x,
整理,得
770﹣x=0.1x
21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
考点:比较线段的长短.
专题:计算题.
分析:(1)根据点M、N分别是AC、BC的中点,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;
(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半.
解答:解:(1)∵点M、N分别是AC、BC的中点,
CM=AC=4cm,CN=BC=3cm,
MN=CM+CN=4+3=7cm;
22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)
(2)记(1)中的角为AOB,OC平分AOB,D在射线OA的反向延长线上,画图并求COD的度数.
考点:余角和补角;角平分线的定义;角的计算.
专题:作图题.
分析:首先根据余角与补角的定义,设这个角为x,则它的余角为(90﹣x),补角为(180﹣x),再根据题中给出的等量关系列方程即可求解.
解答:解:
(1)设这个角为x,则它的余角为(90﹣x),补角为(180
根据题意可得:(180﹣x)=5(90﹣x)
解得x=67.5,即x=6730.
故这个角等于6730
(2)如图:AOB=67.5,OC平分AOB,则AOC=67.5=33.75 23. 如图,AOB=110,COD=70,OA平分EOC,OB平分DOF,求EOF的大小.
考点:角平分线的定义.
专题:计算题.
分析:由AOB=110,COD=70,易得AOC+BOD=40,由角平分线定义可得AOE+BOF=40,那么EOF=AOB+AOE+BOF. 解答:解:∵AOB=110,COD=70
AOC+BOD=AOB﹣COD=40
∵OA平分EOC,OB平分DOF
AOE=AOC,BOF=BOD
24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.
(1)请完成下表:
第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数
12 12+a 12+2a 12+3a 12+(n﹣1)a
(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?
考点:规律型:图形的变化类.
分析:(1)根据已知即可表示出各排的座位数;
(2)根据第15排座位数是第5排座位数的2倍列等式,从而可求得a的值,再根据公式即可求得第15排的座位数.
解答:解:(1)如表所示:
第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数
12 12+a 12+2a 12+3a 12+(n﹣1)a
(2)依题意得:
12+(15﹣1)a=2[12+(5﹣1)a],
解得:a=2,
观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,
如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

12+(15﹣1)a=12+(15﹣1)2=40(个)
要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿
观察能力和语言表达能力的提高。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以
往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

希望为大家提供的初一年级上期末考试数学试卷的内容,能够对大家有用,更多相关内容,请及时关注!。

相关文档
最新文档