初一年级上期末考试数学试卷(带答案和解释)

合集下载

2023-2024学年广东省广州市七年级(上)期末数学试卷及答案解析

2023-2024学年广东省广州市七年级(上)期末数学试卷及答案解析

2023-2024学年广东省广州市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.(3分)﹣的相反数是()A.﹣B.C.﹣5D.52.(3分)2023年9月21日,在距离地球400000米的中国空间站,“天宫课堂”第四课开讲,之所以选择400000米的飞行高度,其中一个原因是可以对空间站进行保护,使其避免受到地球磁场的干扰,从而保护宇航员.数据400000用科学记数法表示为()A.4×106B.4×105C.40×104D.453.(3分)若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.54.(3分)已知x=3是方程2(x﹣1)﹣a=0的解,则a的值是()A.B.C.4D.﹣45.(3分)计算:﹣24+(﹣2)4=()A.﹣32B.﹣16C.32D.06.(3分)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.7.(3分)如图,∠AOB=15°,∠AOC=90°,点B,O,D在同一直线上,则∠COD的度数为()A.75°B.15°C.105°D.165°8.(3分)已知线段AB=14cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cm B.9cm C.7cm或5cm D.6cm或8cm 9.(3分)甲,乙两超市为了促销一种定价相同的同种商品,甲超市连续两次降价,每次降价都是10%,乙超市一次性降价20%.现要购买这种商品,价格较低的是()A.甲超市B.乙超市C.甲、乙超市的价格相同D.不确定10.(3分)如图所示,用棋子摆成英文字母“H”字样,按照这样的规律摆下去,摆成第2024个“H”需要()个棋子.A.10117B.10120C.10122D.10125二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)|﹣5|﹣3的值是.12.(3分)已知a﹣4与﹣2互为相反数,则代数式的值是.13.(3分)多项式3x2y a﹣4y2+2x是五次三项式,则a的值为;二次项系数为.14.(3分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.(3分)如图,C,D是线段AB上两点,若CB=3cm,DB=7cm,且D是AC的中点,则AB的长为.16.(3分)已知A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9.若3A﹣B的值等于﹣2,则代数式x2﹣x+3的值是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)如图,已知三点A,B,C,按下列要求画图:(1)画射线AC;(2)延长CB至D,使得CD=BC+AB.18.(4分)计算:.19.(6分)解方程:.20.(6分)先化简,再求值:,其中,.21.(8分)整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时完成这项工作.假设这些人的工作效率相同.(1)具体应先安排多少人工作?(2)若一开始就以增加后的人数工作,则需要多少小时完成?22.(10分)快递员王师傅配送快件,在东西向某段路进行配送快递,若规定向东为正,向西为负,王师傅从单位出发配送的10户的里程如下:﹣10,﹣3,+14,﹣2,﹣8,+6,﹣4,+12,+8,﹣5(单位:千米).(1)请问王师傅最后所在的位置在单位的什么地方,距离单位多远?(2)如果小电车每千米耗电量0.02度电,想问王师傅这一上午耗电量多少?23.(10分)已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,OC与OD在直线AB的同侧.①若∠COE=20°,则∠DOB的度数为;②若∠COE=α,求∠DOB的度数.(2)如图2,OC与OD在直线AB的异侧,直接写出∠COE和∠DOB之间的数量关系,不必说明理由.24.(12分)定义一种新运算:观察下列各式,并解决问题.1△4=1×3+4=7,2△7=2×3+7=13,5△(﹣1)=5×3+(﹣1)=14.请你想一想:(1)5△8=,a△b=;(2)已知(﹣5)△(m△3)=12,求m的值;(3)判断a△b与b△a的大小关系,并说明理由.25.(12分)在数轴上,点A在原点O的左侧,点B在原点O的右侧,点A距离原点12个单位长度,点B距离原点2个单位长度.(1)A点表示的数为,B点表示的数为,两点之间的距离为;(2)若点P为数轴上一点,且BP=2,求AP的值;(3)若点P、Q、M同时向数轴负方向运动,点P从点A出发,点Q从原点出发,点M 从点B出发,且点P的运动速度是每秒6个单位长度,点Q的运动速度是每秒8个单位长度,点M的运动速度是每秒2个单位长度.运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?2023-2024学年广东省广州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.【分析】的相反数是,再化简即可.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:400000=4×105,故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选:C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.4.【分析】使方程两边左右相等的未知数的值叫做方程的解.【解答】解:将x=3代入方程得,2×(3﹣1)﹣a=0,解得:a=4,故选:C.【点评】本题考查方程的解的定义.熟练掌握方程解的定义是解答本题的关键.5.【分析】先算乘方,再算加减,即可解答.【解答】解:﹣24+(﹣2)4=﹣16+16=0,故选:D.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.6.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A.【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.7.【分析】先利用角的和差关系可得∠BOC=75°,然后再利用平角定义进行计算即可解答.【解答】解:∵∠AOB=15°,∠AOC=90°,∴∠BOC=∠AOC﹣∠AOB=75°,∴∠COD=180°﹣∠BOC=105°,故选:C.【点评】本题考查了角的计算,角的概念,根据题目的已知条件并结合图形进行分析是解题的关键.8.【分析】本题需要分两种情况讨论,①当点C在线段AB上时,②当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【解答】解:①当点C在线段AB上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14﹣2=12(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC+CN=6+1=7(cm);②当点C在线段AB的延长线上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14+2=16(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC﹣CN=8﹣1=7(cm);综上所述,线段MN的长度是7cm,故A正确.故选:A.【点评】本题主要考查了线段上两点间的距离,主要利用了线段中点的定义,难点在于要分情况讨论.9.【分析】设相同商品原定价为a元,然后根据降价分别求出两个超市的价格,比较即可得解.【解答】解:设相同商品原定价为a元,甲超市连续两次降价10%,价格为:a×(1﹣10%)×(1﹣10%)=0.81a,乙超市一次性降价20%,价格为:a×(1﹣20%)=0.8a,∵0.81a>0.8a,∴价格较低的是乙超市.故选:B.【点评】本题考查了列代数式,列出两超市降价后的价格是解题的关键.10.【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:图形①用棋子的个数=2×(2×1+1)+1;图形②用棋子的个数=2×(2×2+1)+2;图形③用棋子的个数=2×(2×3+1)+3;…,摆成第2024个“H”字需要棋子的个数=2×(2×2024+1)+2024=10122(个).故选:C.【点评】本题考查图形变化的规律,能根据所给图形发现所需棋子的个数依次增加4是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】先根据绝对值的性质去掉绝对值符号,再利用有理数的加减法则进行计算即可.【解答】解:原式=5﹣3=2,故答案为:2.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握绝对值的性质和有理数的加减法则.12.【分析】根据相反数的性质列方程求得a的值后代入代数式中计算即可.【解答】解:∵a﹣4与﹣2互为相反数,∴a﹣4﹣2=0,解得:a=6,原式=﹣1=﹣,故答案为:﹣.【点评】本题考查代数式求值及解一元一次方程,结合已知条件求得a的值是解题的关键.13.【分析】根据多项式的项与次数即可求得答案.【解答】解:∵多项式3x2y a﹣4y2+2x是五次三项式,∴2+a=5,解得:a=3,其二次项系数为﹣4,故答案为:3;﹣4.【点评】本题考查多项式,熟练掌握相关定义是解题的关键.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】先利用线段的和差关系可得DC=4cm,然后利用线段的中点定义可得AC=8cm,从而利用线段的和差关系进行计算,即可解答.【解答】解:∵CB=3cm,DB=7cm,∴DC=BD﹣BC=7﹣3=4(cm),∵D是AC的中点,∴AC=2CD=8(cm),∴AB=AC+BC=8+3=11(cm),故答案为:11cm.【点评】本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.16.【分析】把A与B代入3A﹣B=﹣2中,去括号合并求出2x2﹣3x的值,原式变形后代入计算即可求出值.【解答】解:∵A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9,∴3A﹣B=3(x2+xy﹣2x﹣3)﹣(﹣x2+3xy﹣9)=3x2+3xy﹣6x﹣9+x2﹣3xy+9=4x2﹣6x =﹣2,即2x2﹣3x=﹣1,则原式=(2x2﹣3x)+3=﹣+3=2,故答案为:2.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】(1)根据射线的定义画出图形;(2)根据要求作出图形.【解答】解:(1)如图,射线AC即为所求;(2)如图线段BC,BD即为所求.【点评】本题考查作图﹣复杂作图,两点之间的距离等知识,解题的关键是漏解射线,线段的定义.18.【分析】先算乘方,再算乘除,最后算加减即可.【解答】解:原式=﹣1﹣2×9÷=﹣1﹣18×3=﹣1﹣54=﹣55.【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.19.【分析】按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:,去分母得:4(2x﹣6)﹣3(x+18)=12,去括号得:8x﹣24﹣3x﹣54=12,移项得:8x﹣3x=12+24+54,合并同类项得:5x=90,系数化为1得:x=18.【点评】本题主要考查了解一元一次方程,掌握解一元一次方程的步骤是关键.20.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣,y=时,原式=﹣3×(﹣)+()2=1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.【分析】(1)根据题意可得,每个人每小时完成,设具体先安排x人工作,根据题意的工作方式可得出方程,解出即可;(2)设需要t小时完成,根据工作总量一定列出方程即可求出答案.【解答】解:由题意可得,每个人每小时完成,设具体先安排x人工作,则x×4+×(x+3)×6=1,解得:x=3.答:具体应先安排3人工作;(2)依题意得:(3+3)t=48,解得:t=8,答:需要8小时完成.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,然后运用方程求解.22.【分析】(1)将所有里程加起来,再根据向东为正,向西为负判断王师傅最后所在的位置在单位的什么地方,距离单位多远;(2)不关注于配送方向,只算最终共跑了多少里程,然后再用总里程数×0.02度电,即可.【解答】解:(1)根据题意可得:﹣10+(﹣3)+14+(﹣2)+(﹣8)+6+(﹣4)+12+8+(﹣5)=8(km),∵向东为正,向西为负,∴王师傅最后所在的位置在单位的东边位置,距离单位有8km远,答:王师傅最后所在的位置在单位的东边位置,距离单位有8km远.(2)0.02×(10+3+14+2+8+6+4+12+8+5)=0.02×72=1.44(度),答:王师傅这一上午耗电量为1.44度.【点评】本题考查了数轴、正数与负数的相关知识,解题的关键在于灵活运用数轴知识与读懂题意.23.【分析】(1)①由∠COD为直角,∠COE=20°可求得∠EOD的度数.再由OE平分∠AOD,以及∠AOD和∠BOD为邻补角即可求出∠BOD.②同①可得结论;(2)设∠COE=α,可以求出∠EOD,再由角平分线以及邻补角可求出∠BOD,得出∠BOD和∠COE的关系.【解答】解:(1)①∵∠COD为直角,∴∠COD=90°.∵∠COE=20°,∴∠EOD=∠COD﹣∠COE=90°﹣20°=70°.∵OE平分∠AOD,∴∠AOD=2∠EOD=140°.∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.②∵∠COD为直角,∴∠COD=90°.∵∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α.∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠BOD=180°﹣∠AOD=180°﹣(180°﹣2α)=2α.(2)设∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠DOB=180°﹣∠AOD=2α,∴∠DOB=2∠COE.【点评】本题考查角度的计算,主要涉及角平分线,垂直,邻补角的相关知识,计算过程中注意合理利用已知条件,利用角的和差来求解要求的角.24.【分析】(1)根据题目中的例子,可以计算出所求式子的值;(2)根据(﹣5)△(m△3)=12,可以得到关于m的方程,再求解即可;(3)先判断a△b与b△a的大小关系,再根据作差法说明理由即可.【解答】解:(1)由题目中的例子可得,5△8=5×3+8=23,a△b=3a+b,故答案为:23,3a+b;(2)∵(﹣5)△(m△3)=12,∴(﹣5)△(3m+3)=12,∴(﹣5)×3+3m+3=12,解得m=8;(3)当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.理由:∵a△b=3a+b,b△a=3b+a,∴a△b﹣b△a=3a+b﹣3b﹣a=2a﹣2b=2(a﹣b),∴当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.【点评】本题考查有理数的混合运算、新定义,解答本题的关键是明确题意,利用新定义解答.25.【分析】(1)先由点A在原点的左边,距离原点12个单位长度确定点A对应的数是﹣12,同理可得点B表示的数,根据右边的数﹣左边的数=两点的距离可得A,B两点的距离;(2)分点P在点B的左边和右边,根据线段的和差可得AP的长;(3)设移动的时间为t秒,分别表示三个动点P,Q,M表示的数,分三种情况讨论,列等式可解答.【解答】解:(1)∵点A在原点的左边,距离原点12个单位长度,∴点A对应的数是﹣12,同理可得点B表示的数为2,∴A,B两点之间的距离为:2﹣(﹣12)=2+12=14,故答案为:﹣12,2,14;(2)分两种情况:①当点P在点B的右边时,AP=AB+BP=14+2=16;②当点P在点B的左边时,AP=AB﹣BP=14﹣2=12;综上,AP的值是16或12;(3)设移动的时间为t秒,则动点P,Q,M对应的数分别为﹣12﹣6t,﹣8t,2﹣2t,分三种情况:①点Q是PM的中点时,PQ=QM,∴﹣8t﹣(﹣12﹣6t)=2﹣2t﹣(﹣8t),∴t=,此时,点P表示的数为:﹣12﹣6×=﹣19.5,点Q表示的数为:﹣8×=﹣10,点M表示的数为:2﹣2×=﹣0.5.②点P是QM的中点时,PQ=MP,∴﹣12﹣6t﹣(﹣8t)=2﹣2t﹣(﹣12﹣6t),∴t=﹣13(舍),③点M是PQ的中点时,因为点M的速度小,所以此种情况不存在.【点评】此题重点考查解一元一次方程,列一元一次方程解应用题,数轴上的动点问题的求解等知识与方法,正确地用代数式表示移动过程中的点对应的数是解题的关键。

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。

七年级上册数学期末检测试卷(附答案和解释)

七年级上册数学期末检测试卷(附答案和解释)

七年级上册数学期末检测试卷(附答案和解释)2019年七年级上册数学期末检测试卷(附答案和解释)距离期末考试越来越近了,期末考试考查的是整个学期的学习内容,内容很多。

各科都已经进入复习阶段,现在大家都在忙碌的复习阶段。

我们一起来看看这篇七年级上册数学期末检测试卷吧!一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣63. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 35. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=36. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最18. 已知x=﹣2是方程3(x+a)=15的解,则a=.19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB=度.20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD=度.三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)22. ﹣23+(﹣3)2﹣32(﹣2)2.23. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.24. 解方程:四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3? 26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?参考答案与试题解析一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:正和负相对,所以,如果向东走80m记为+80m,那么向西走60m记为﹣60m.2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣6考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:根据绝对值的性质,3. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数.解答:解:按照科学记数法的形式8 500亿元应该写成8.5103亿元.4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 3考点:代数式求值.分析:把x=﹣2直接代入x+1计算.5. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=3考点:解一元一次方程.专题:计算题.分析:去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.解答:解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.6. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最好还是把你的羊给我一只,我们羊数就一样了.若设甲有x 只羊,则下列方程正确的是()A. x+1=2(x﹣2)B. x+3=2(x﹣1)C. x+1=2(x﹣3)D.考点:由实际问题抽象出一元一次方程.分析:根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.解答:解:∵甲对乙说:把你的羊给我1只,我的羊数就是你的羊数的两倍.甲有x只羊,乙有+1只,∵乙回答说:最好还是把你的羊给我1只,我们的羊数就一样了,7. 下列图形中,不是正方体的展开图的是()A. B. C. D.考点:几何体的展开图.专题:压轴题.分析:利用正方体及其表面展开图的特点解题.解答:解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.8. 已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB.A. 1个B. 2个C. 3个D. 4个考点:两点间的距离.分析:根据题意画出图形,根据中点的特点即可得出结论. 解答:解:如图所示:①∵AP=BP,点P是线段AB的中点,故本小题正确;②∵BP=A B,AP=BP,即点P是线段AB的中点,故本小题正确;③∵AB=2AP,AB=AP+BP,AP=BP,即点P是线段AB的中点,故本小题正确;9. 一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2考点:整式的加减.分析:被减式=差+减式.解答:解:多项式为:x2﹣2y2+(x2+y2)10. 如图,已知直线AB,CD相交于点O,OE平分COB,若EOB=55,则BOD的度数是()A. 35B. 55C. 70D. 110考点:角平分线的定义;余角和补角.分析:利用角平分线的定义和补角的定义求解.解答:解:OE平分COB,若EOB=55,二、填空题(共10个小题,每小题2分,共20分)11. 比较大小:﹣6﹣8(填、=或)考点:有理数大小比较.专题:计算题.分析:先计算|﹣6|=6,|﹣8|=8,根据负数的绝对值大的反而小,绝对值小的反而大即可得到﹣6与﹣8的大小.解答:解:∵|﹣6|=6,|﹣8|=8,12. 计算:|﹣3|﹣2= 1 .考点:有理数的减法;绝对值.分析:先根据绝对值定义去掉这个绝对值的符号再计算.13. 化简:2(x﹣3)﹣(﹣x+4)= 3x﹣10 .考点:整式的加减.分析:首先根据去括号法则去括号(注意括号前是负号时,去括号,括号里各项都要变号),再合并同类项(注意只把系数相加减,字母和字母的指数不变).解答:解:2(x﹣3)﹣(﹣x+4),14. 如果一个角的补角是150,那么这个角的余角是 60 度. 考点:余角和补角.专题:计算题.分析:本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.解答:解:根据定义一个角的补角是150,则这个角是180﹣150=30,15. 若x,y互为相反数,a、b互为倒数,则代数式的值为﹣3 .考点:代数式求值.分析:根据相反数的概念和倒数概念,可得x、y;a、b的等量关系,把所得的等量关系整体代入可求出代数式的值. 解答:解:∵x,y互为相反数,a、b互为倒数,16. 如果把6.48712保留三位有效数字可近似为 6.49 . 考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.解答:解:6.48712保留三位有效数字可近似为:6.49.17. 若2x与2(1+x)互为相反数,则x的值为﹣ .考点:解一元一次方程.专题:计算题.分析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:2x+2(1+x)=0,去括号得:2x+2+2x=0,移项合并得:4x=﹣2,18. 已知x=﹣2是方程3(x+a)=15的解,则a= 7 .考点:一元一次方程的解.专题:计算题.分析:由x=﹣2是方程的解,将x=﹣2代入方程即可求出a 的值.解答:解:根据题意将x=﹣2代入方程得:3(﹣2+a)=15,19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB= 180 度.考点:角的计算.专题:计算题.分析:本题考查了角度的计算问题,因为本题中AOC始终在变化,因此可以采用设而不求的解题技巧进行求解.解答:解:设AOD=a,AOC=90+a,BOD=90﹣a,20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD= 70 度.考点:角的计算;角平分线的定义.分析:由图形可知DOE=DOC+EOC,然后根据角平分线的性质,可推出DOC=BOC,EOC=AOC,由此可推出DOE=AOB,最后根据AOB的度数,即可求出结论.解答:解:∵OD是BOC的平分线,OE是AOC的平分线,DOC=BOC,EOC=AOC,DOE=DOC+EOC=AOB,三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)考点:有理数的除法;有理数的乘法.分析:根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法运算,可得答案.22. ﹣23+(﹣3)2﹣32(﹣2)2.考点:有理数的乘方.分析:根据有理数的乘方的定义进行计算即可得解.解答:解:﹣23+(﹣3)2﹣32(﹣2)2=﹣8+9﹣9423. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=6x﹣8y﹣5x+10y+1024. 解方程:考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.解答:解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?考点:一元一次方程的应用.专题:工程问题.分析:在工程问题中,注意公式:工作总量=工作效率工作时间.若设第一架掘土机每小时掘土xm3,那么,第二架掘土机每小时掘土(x﹣40)m3.第一架掘土机16小时掘土16xm3,第二架掘土机24小时掘土24(x﹣40)m3.解答:解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.考点:比较线段的长短.专题:计算题.分析:根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=AB,CD=CB,AD=AC+CD,又AB=10cm,继而即可求出答案.解答:解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?考点:一元一次方程的应用.分析: (1)根据甲乙两个旅行社的优惠情况,分别表示出示两家旅行社的收费情况即可;(2)令m=n,求出x的值.解答:解:(1)由题意得,甲旅行社收费为:m=240+120x,乙旅行社收费为:n=2400.6(x+1)=144x+144;(2)令m=n可得,240+120x=144x+144,解得:x=4,这篇七年级上册数学期末检测试卷的内容,希望会对各位同学带来很大的帮助。

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

苏科版数学初一上学期期末试题与参考答案(2024-2025学年)

2024-2025学年苏科版数学初一上学期期末复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为多少cm?选项:A、24cmB、26cmC、28cmD、30cm2、题目:已知一个长方形的长为6cm,宽为4cm,那么它的面积是多少平方厘米?选项:A、20cm²B、24cm²C、30cm²D、36cm²3、下列各数中,比-2大的数是()。

A、-3B、-1C、0D、-44、如果一个数的相反数是它本身,那么这个数是()。

A、0B、1C、-1D、不存在5、(选择题)小明家养了若干只兔子,如果5周增长率为20%,则 growth_rate 表示兔子的增长率为:A. 20%B. 25%C. 33.3%D. 50%6、(选择题)一个长方形的周长是24cm,且长是宽的两倍,那么这个长方形的面积是:A. 12平方厘米B. 16平方厘米C. 18平方厘米D. 24平方厘米7、若一个正方形边长增加了原来的50%,则面积增加了多少百分比?A. 50%B. 100%C. 125%D. 225%8、下列哪组数能构成直角三角形的三边长?A. 5, 12, 13B. 7, 10, 12C. 8, 15, 17D. 9, 12, 159、在直角坐标系中,点A的坐标是(-3,4),点B的坐标是(2,-1),则线段AB 的中点坐标是()。

A.(-0.5,1.5)B.(-1,2)C.(-0.5,-2)D.(1,2) 10、已知函数f(x) = 2x - 3,若f(a) = 1,则a的值为()。

A. 1B. 2C. 3D. 4二、填空题(本大题有5小题,每小题3分,共15分)1、一个长方形的长是8cm,宽是3cm,那么它的周长是_______cm。

2、一个正方形的边长增加了20%,那么它的面积增加了 _______%。

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)

2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。

2024学年江苏省苏州市七年级上期末数学试卷

2024学年江苏省苏州市七年级上期末数学试卷

2024-2025学年江苏省苏州市七年级(上)期末数学试卷2024-2025学年江苏省苏州市七年级(上)期末数学试卷一、填空题:本大题共12小题.每小题3分,共36分.把答案干脆填在答题纸相对应的位置上.1.(3分)一个数的相反数是﹣3,则这个数是_________ .2.(3分)(2024•柳州)地球平均每年发生雷电次数约为1 600 000次,这个数用科学记数法表示为_________ .3.(3分)某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地_________ m2.4.(3分)已知∠α=34°30′,则∠α的余角为_________ °.5.(3分)已知点C在线段AB上,且AC=2BC,若AB=2cm,则BC= _________ cm.6.(3分)(2024•深圳)若单项式2x2y m及x n y3是同类项,则m+n的值是_________ .7.(3分)点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是_________ .8.(3分)当x= _________ 时,代数式4x﹣5的值等于﹣7.9.(3分)已知甲数比乙数的2倍大1,假如设甲数为x,那么乙数可表示为_________ .10.(3分)若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是_________ .11.(3分)(2024•湘潭)某市在端午节打算实行划龙舟大赛,预料15个队共330人参与.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为_________ .12.(3分)如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段_________ 条.二、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应的位置上.13.(3分)下列式子中,正确的是()A.|﹣5|=﹣5B.﹣|5|=﹣5C.D.14.(3分)实数a,b在数轴上的位置如图所示,则下列式子成立的是()A.a+b>0B.a>﹣b C.a+b<0D.﹣a<b 15.(3分)(2024•长沙)经过随意三点中的两点共可以画出的直线条数是()A.一条或三条B.三条C.两条D.一条16.(3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.17.(3分)小明和小莉诞生于2024年10月份,他们的诞生日不是同一天,但都是星期三,且小明比小莉诞生早,两人诞生日期之和是22,那么小莉的诞生日是()A.15号B.16号C.17号D.18号18.(3分)(2024•鄂尔多斯)视察表1,找寻规律.表2是从表1中截取的一部分,其中a,b,c的值分别为()表1:1234…2468…36912…481216………………表2:16a20bc30A.20,25,24B.25,20,24C.18,25,24D.20,30,25三、解答题:本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣(﹣23)﹣(+59)+(﹣35)+|﹣5﹣32|;(2)1﹣[(﹣5)2×﹣0.8]÷2×(﹣1+).20.(5分)先化简,再求值:,其中,.21.(8分)解方程:(1);(2)﹣=1.5.22.(6分)如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=6cm.求:(1)线段AB的长:(2)线段DE的长.23.(6分)已知,.(1)当x取何值时,y1=y2?(2)当x取何值时,y1比2y2大5?24.(5分)假如方程(x+6)=2及方程a(x+3)=a﹣x的解相同,求a的值.25.(7分)如图,∠AOC及∠BOC是邻补角,OD,OE分别是∠AOC,∠BOC的平分线.(1)写出∠AOE的补角;(2)若∠BOC=62°,求∠COD的值;(3)试问射线OD及OE之间有什么特殊的位置关系?为什么?26.(7分)视察下面的点阵图,探究其中的规律.摆第1个“小屋子”须要5个点;数一下,摆第2个“小屋予”须要_________ 个点;数一下,摆第3个“小屋子”须要_________ 个点.(1)摆第9个这样的“小屋子”须要多少个点?(2)写出摆第n个这样的“小屋予”须要的总点数的代数式.(3)摆第几个“小屋子”的时候,须要的总点数共为71个?27.(8分)打算两张同样大小的正方形纸片.(1)取打算好的一张正方形纸片,将它的四周各剪去一个同样大小的正方形(如图),再折合成一个无盖的长方体盒子.做成的长方体盒子的底面的边长为6cm,容积为108cm3,那么原正方形纸片的边长为多少?(2)取打算好的另一张正方形纸片,这张纸片恰好可做成圆柱形食品罐侧面的包装纸(不计接口部分),这个食品罐的体积是多少?(结果保留π)28.(8分)蔬菜种植户经过调查发觉,一种无公害蔬菜加工后出售,单价可提高20%,但重量削减10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,这种蔬菜加工前每千克卖多少元?29.(8分)实践及操作:在课堂上,李老师和同学们探究了及三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;(2)用圆规比较C1M、C2N的大小;(3)试问三角形C1AB面积和三角形C2AB面积是否相等?为什么?(4)连接C1C2,问AB及C1C2是否相互平行?(用直尺和三角板画平行线的方法加以校验)(5)在及点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都及三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有改变?2024-2025学年江苏省苏州市七年级(上)期末数学试卷参考答案及试题解析一、填空题:本大题共12小题.每小题3分,共36分.把答案干脆填在答题纸相对应的位置上.1.(3分)一个数的相反数是﹣3,则这个数是 3 .考点:相反数.专题:计算题.分析:找出﹣3的相反数即可.解答:解:一个数的相反数是﹣3,则这个数是3.故答案为:3点评:此题考查了相反数,娴熟驾驭相反数的定义是解本题的关键.2.(3分)(2024•柳州)地球平均每年发生雷电次数约为1 600 000次,这个数用科学记数法表示为 1.6×106.考点:科学记数法—表示较大的数.专应用题.题:分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值及小数点移动的位数相同.当数肯定值大于10时,n是正数;当原数的肯定值小于1时,n 是负数.解答:解:1 600 000=1.6×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某城市市区人口a万人,市区绿地面积b万m2,则平均每人拥有绿地m2.考点:列代数式.分析:依据:人均面积=,列式求解.解答:解:依题意,得:平均每人拥有绿地m2.点评:本题考查了平均数的求法.4.(3分)已知∠α=34°30′,则∠α的余角为55.5 °.考点:余角和补角;度分秒的换算.分析:依据余角:假如两个角的和等于90°(直角),就说这两个角互为余角可得∠α的余角=90°﹣34°30′.解解:∠α的余角:90°﹣34°30′=55°30′=55.5°.答:故答案为:55.5.点评:此题主要考查了余角,关键是驾驭余角定义.5.(3分)已知点C在线段AB上,且AC=2BC,若AB=2cm,则BC= cm.考点:比较线段的长短.分析:由已知点C在线段AB上,AC=2BC,AB=2cm ,故可以知道C点是线段AB的一个三等分点,且靠近B点,所以有BC=.解答:解:依据题意,AC=2BC,所以C点为线段AB的一个三等分点,且靠近B点.又AB=2cm,所以BC=cm.点评:主要考查了学生对线段的和、差、倍、分转化之间娴熟应用.6.(3分)(2024•深圳)若单项式2x2y m及x n y3是同类项,则m+n的值是 5 .考点:同类项.专题:计算题.分析:本题考查同类项的定义,由同类项的定义可先求得m和n的值,从而求出它们的和.解答:解:由同类项的定义可知n=2,m=3,则m+n=5.故答案为:5.点评:同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.7.(3分)点A表示数轴上的一个点,将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是﹣3 .考点:数轴.专题:常规题型.分析:此题可借助数轴用数形结合的方法求解.解答:解:设点A表示的数是x.依题意,有x+7﹣4=0,解得x=﹣3.故答案为:﹣3点评:此题综合考查了数轴、肯定值的有关内容,用几何方法借助数轴来求解,特别直观,体现了数形结合的优点.8.(3分)当x= ﹣时,代数式4x﹣5的值等于﹣7.考点:解一元一次方程.分析:首先依据题意列出方程,然后依据方程的解法:移项,合并同类项,把x的系数化为1即可解的答案.解答:解:4x﹣5=﹣7,移项得:4x=﹣7+5,合并同类项得:4x=﹣2,把x的系数化为1得:x=﹣﹣.故答案为:﹣.点评:此题主要考查了一元一次方程的解法,解题过程中要留意移项时要变号,许多同学遗忘变号而导致错误.9.(3分)已知甲数比乙数的2倍大1,假如设甲数为x ,那么乙数可表示为.考点:列代数式.分析:甲数=2×乙数+1,把相关数值代入整理,即可求得乙数.解答:解:∵甲数为x,∴x=2×乙数+1,∴乙数可表示为:.点评:找到甲乙两数之间的等量关系是解决本题的关键.10.(3分)若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是同角的余角相等.考点:余角和补角.分析:依据“同角的余角相等”,即可解出此题.解答:解:∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3(同角的余角相等).故答案为:同角的余角相等.点本题考查了余角的学问,解答本题的关键是驾驭同角的余角相等的性质.评:11.(3分)(2024•湘潭)某市在端午节打算实行划龙舟大赛,预料15个队共330人参与.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x人,那么可列出一元一次方程为15(x+2)=330 .考点:由实际问题抽象出一元一次方程.专题:压轴题.分析:首先理解题意找出题中存在的等量关系:15个队×每队的人数=总人数,依据此等量关系列方程即可.解答:解:设每条船上划桨的有x人,则每条船上有x+2人,依据等量关系列方程得:15(x+2)=330.点评:列方程解应用题的关键在于审题找出等量关系.12.(3分)如图,在线段AB上,画1个点,可得3条线段;画2个不同点,可得6条线段;画3个不同点,可得10条线段;…照此规律,画10个不同点,可得线段66 条.考点:规律型:图形的改变类.专题:规律型.分析:本题可依次解出画n=1,2,3,…个点时得出线段的条数.再依据规律依此类推,画10个不同点,可得线段66条.解答:解:∵画1个点,可得3条线段,2+1=3;画2个点,可得6条线段,3+2+1=6;画3个点,可得10条线段,4+3+2+1=10;…;画n个点,则可得(1+2+3+…+n+n+1)=条线段.所以画10个点,可得=66条线段;点评:本题是一道找规律的题目,这类题型在中考中常常出现.对于找规律的题目首先应找出哪些部分发生了改变,是依据什么规律改变的.二、选择题:本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相应的位置上.13.(3分)下列式子中,正确的是()A.|﹣5|=﹣5B.﹣|5|=﹣5C.D.考点:肯定值.专题:计算题.分析:依据肯定值的定义分别推断即可.解答:解:A、|﹣5|=5,所以A选项错误;B、﹣|﹣5|=﹣5,所以B选项正确;C、|﹣0.5|=0.5=,所以C选项错误;D、﹣|﹣|=﹣,所以D选项错误.故选B.点评:本题考查了肯定值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.14.(3分)实数a,b在数轴上的位置如图所示,则下列式子成立的是()A.a+b>0B.a>﹣b C.a+b<0D.﹣a<b考点:实数及数轴.专题:计算题.分析:视察数轴得到a<0,b>0,|a|>b,则有a+b<0;a<﹣b;﹣a>b.解答:解:依据题意得,a<0,b>0,|a|>b,∴a+b<0;a<﹣b;﹣a>b,∴A、B、D选项都错误,C选项正确.故选C.点评:本题考查了实数及数轴的关系:实数及数轴上的点是一一对应的关系;原点左边的点对应负实数,右边的点对应正实数;离原点越远,其点对应的实数的肯定值越大.15.(3分)(2024•长沙)经过随意三点中的两点共可以画出的直线条数是()A.一条或B.三C.两D.一三条条条条考点:直线、射线、线段.专题:分类探讨.分析:分两种状况:①三点在同始终线上时,只能作出一条直线;②三点不在同始终线上时,每两点可作一条,共3条.解答:解:①当三点在同始终线上时,只能作出一条直线;②三点不在同始终线上时,每两点可作一条,共3条;故选A.点评:两点可确定一条直线,留意分类探讨.16.(3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.考点:由三视图推断几何体;简洁组合体的三视图.分析:依据俯视图可得从正面看可看到每列正方体的最多个数分别为4,3,2,再表示为平面图形即可.解答:解:依据俯视图中的每个数字是该位置小立方块的个数,得出主视图有3列,从左到右的列数分别是4,3,2.故选C.点评:此题考查了三视图推断几何体,用到的学问点是俯视图、主视图,关键是依据三种视图之间的关系以及视图和实物之间的关系,画出平面图形.17.(3分)小明和小莉诞生于2024年10月份,他们的诞生日不是同一天,但都是星期三,且小明比小莉诞生早,两人诞生日期之和是22,那么小莉的诞生日是()A.15号B.16号C.17号D.18号考点:一元一次方程的应用.分析:若设小莉的诞生日期是2024年10月x日,依据他们的诞生日不是同一天,但都是星期三,可知小明的诞生日是x﹣7或x﹣14或x﹣21或x﹣28.再依据两人诞生日期之和是22,列方程计算,运用解除法即可得到正确答案.解答:解:设小莉的诞生日期是2024年10月x日.依据题意得:x+x﹣7=22,解得x=14.5,不是整数,应舍去;x+x﹣14=22,x=18;x+x﹣21=22,解得x,=21.5,不合题意,应舍去;x+x﹣28=22,解得x=25,x﹣28=﹣3,不合题意,应舍去.答:小莉的诞生日期是2024年10月18日.故选D.点评:本题考查了一元一次方程的应用,留意了解生活常识:诞生日不是同一天,但都是星期三,则他们相隔的天数应是7的倍数.18.(3分)(2024•鄂尔多斯)视察表1,找寻规律.表2是从表1中截取的一部分,其中a,b,c的值分别为()表1:1234…2468…36912…481216………………表2:16a20bc30A.20,25,24B.25,20,24C.18,25,24D.20,30,25考点:规律型:图形的改变类.专题:压轴题;规律型.分析:依据表1中数据规律可知:横排中1,2,3,4…对应的竖排中数据都是第1个数的倍数,由上往下依次是1倍,2倍,3倍…解答:解:表2中c是4的6倍即24,a是5的4倍即20,b是5的5倍即25.故选:A.点评:主要考查了学生通过特例分析从而归纳总结出一般结论的实力,通过分析找到规律是解答此类问题的关键.三、解答题:本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(8分)计算:(1)﹣(﹣23)﹣(+59)+(﹣35)+|﹣5﹣32|;(2)1﹣[(﹣5)2×﹣0.8]÷2×(﹣1+).考点:有理数的混合运算.分析:依据有理数混合运算的依次,先乘方后乘除最终算加减,有肯定值和括号的先算肯定值和括号里面的.解答:解:(1)原式=23﹣59﹣35+37=﹣34;(2)原式=﹣()××()=﹣=.点评:本题考查的是有理数的运算实力.留意:要正确驾驭运算依次,在混合运算中要特殊留意运算依次:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的依次.20.(5分)先化简,再求值:,其中,.考点:整式的加减—化简求值.分析:本题考查整式的混合运算,先把整式绽开,再合并同类项,化为最简形式,再把x,y的值代入,即可求得结果.解答:解:{2x2y﹣[3xy2﹣(4xy2﹣2x2y)]}==当x=﹣,y=时,原式==.点评:在做整式的混合运算时,要驾驭公式法,单项式及多项式相乘以及合并同类项等学问点.21.(8分)解方程:(1);(2)﹣=1.5.考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最终化系数为1,从而得到方程的解.(2)方程含有分数系数,先进行通分,然后移项,合并同类项,系数化1,求出x的值.解答:解:(1)去括号得:2﹣3x=﹣x﹣2x=﹣2,﹣2x=﹣,x=.(2)原方程变形为:6x﹣3﹣2(2﹣5x)=9,16x=16,x=1.点评:本题易在去分母、去括号和移项中出现错误,应细心的进行运算.22.(6分)如图,C、D两点将线段AB分成2:3:4三部分,E为线段AB的中点,AD=6cm.求:(1)线段AB的长:(2)线段DE的长.考点:比较线段的长短.专题:计算题.分析:(1)依据比值可设AC=2x,CD=3x,BD=4x.依据AD=6,列方程求解;(2)依据E为线段AB的中点,求得AE的长,则DE=AD﹣AE.解答:解:(1)设AC=2x,CD=3x,BD=4x.则有2x+3x=6,x=1.2.则AB=2x+3x+4x=9x=10.8(cm).(2)∵E为线段AB的中点,∴AE=AB=5.4.∴DE=AD﹣AE=6﹣5.4=0.6(cm).点评:此题能够用一个未知数表示出图中的三条线段,利用方程求解,理解线段的中点的概念.23.(6分)已知,.(1)当x取何值时,y1=y2?(2)当x取何值时,y1比2y2大5?考点:一次函数的性质.专题:计算题.分析:(1)(2)将y1及y2的等式关系转化为y1及y2所对应的x的表达式的关系,从而解出x的值.解答:解:(1)由于y1=y2即:解得:即:当时,y1=y2.(2)由y1﹣2y2=5得:解得:即:当时,y1比2y2大5.点评:y1及y2分别为关于x的不同的函数,由题设定义的两函数值的关系写出对应的x 的关系式是解题的关键所在.24.(5分)假如方程(x+6)=2及方程a(x+3)=a ﹣x的解相同,求a的值.考点:同解方程.专题:计算题.分析:分别解出两方程的解,两解相等,就得到关于a的方程,从而可以求出a的值.解答:解:解方程(x+6)=2,得x=﹣2,解方程a(x+3)=a ﹣x,得x=﹣,由题意得:﹣=﹣2,解得:a=.点评:本题解决的关键是能够求解关于x的方程.正确理解方程的解的含义.本题还可以把方程(x+6)=2的解x=﹣2代入方程a(x+3)=a ﹣x,通过解方程,求出a的值.25.(7分)如图,∠AOC及∠BOC是邻补角,OD,OE分别是∠AOC,∠BOC的平分线.(1)写出∠AOE的补角;(2)若∠BOC=62°,求∠COD的值;(3)试问射线OD及OE之间有什么特殊的位置关系?为什么?考点:垂线;角平分线的定义;余角和补角;对顶角、邻补角.专题:探究型.分析:(1)依据补角的定义,即求及∠AOE的和是180°的角.由图易知∠AOE的补角有∠BOE,再由角平分线的定义,可知∠COE=∠BOE,从而得出∠AOE的补角是∠BOE及∠COE;(2)首先依据邻补角的定义可知∠AOC=180°﹣∠BOC,得出∠AOC的度数,然后依据角平分线的定义得出∠COD=∠AOC;(3)依据角平分线及互为邻补角的定义,可求出∠DOE=90°,从而得出OD及OE之间的位置关系.解答:解:(1)∠AOE的补角是∠BOE及∠COE;(2)∵∠AOC=180°﹣∠BOC=180°﹣62°=118°,又∵OD是∠AOC的平分线,∴∠COD=∠AOC=×118°=59°;(3)射线OD及OE相互垂直.理由如下:∵OD是∠AOC 的平分线,∴∠COD=∠AOC,∵OE是∠BOC 的平分线,∴∠COE=∠BOC.∵∠AOC+∠BOC=180°,∠AOC+∠BOC=90°,∴∠COD+∠COE=90°,∴∠DOE=90°.∴OD⊥OE.点评:此题综合考查角平分线,邻补角,补角,垂直的定义及角度的简洁计算.26.(7分)视察下面的点阵图,探究其中的规律.摆第1个“小屋子”须要5个点;数一下,摆第2个“小屋予”须要11 个点;数一下,摆第3个“小屋子”须要17 个点.(1)摆第9个这样的“小屋子”须要多少个点?(2)写出摆第n个这样的“小屋予”须要的总点数的代数式.(3)摆第几个“小屋子”的时候,须要的总点数共为71个?考点:规律型:图形的改变类.专题:探究型.分析:本题中可依据图形分别得出n=1,2,3时的小屋子须要的点数,然后找出规律得出9个、第n个时小屋子须要的点数,依据总点数71个列出方程求出摆第几个“小屋子”.解解:依题意得:摆第1个“小屋子”须要6×1﹣1=5个点;答:摆第2个“小屋子”须要6×2﹣1=11个点;摆第3个“小屋子”须要6×3﹣1=17个点.(1)当n=9时,须要的点数为6×9﹣1个;(2)当n=n时,须要的点数为6n﹣1个;(3)依据题意有6n﹣1=71,解得n=12,故摆第12个“小屋子”的时候,须要的总点数共为71个.点评:本题是一道找规律的题目,这类题型在中考中常常出现.对于找规律的题目首先应找出哪些部分发生了改变,是依据什么规律改变的.27.(8分)打算两张同样大小的正方形纸片.(1)取打算好的一张正方形纸片,将它的四周各剪去一个同样大小的正方形(如图),再折合成一个无盖的长方体盒子.做成的长方体盒子的底面的边长为6cm,容积为108cm3,那么原正方形纸片的边长为多少?(2)取打算好的另一张正方形纸片,这张纸片恰好可做成圆柱形食品罐侧面的包装纸(不计接口部分),这个食品罐的体积是多少?(结果保留π)考点:一元一次方程的应用.专题:几何图形问题.分析:(1)长方体盒子容积=底面积×高,盒子的高为小正方形的边长,盒子的底面为纸片边长减去四个角的小正方形的边长的2倍求得.(2)圆柱体积=底面圆的面积×高,利用:底面圆的周长=正方形边长求得底面圆的半径,再利用求得的半径求出底面圆的面积,从而求得圆柱体积.解解:(1)设原正方形纸片的边长为x cm.答:由底面积×高=体积得:解得:x=12.即:原正方形纸片的边长为12cm.(2)由(1)可知一张正方形纸片的边长为12cm.∴即:食品罐的体积约为cm3.点评:正确审题,依据题目给出的条件,找出合适的等量关系,列出方程.留意:长方体体积=底面积×高,底面边长=纸片边长﹣2×小正方形边长.28.(8分)蔬菜种植户经过调查发觉,一种无公害蔬菜加工后出售,单价可提高20%,但重量削减10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,这种蔬菜加工前每千克卖多少元?考点:一元一次方程的应用.专题:销售问题.分析:加工后的单价为原来单价×(1+20%);重量为30×(1﹣10%);关系式为:加工后的总价﹣不加工的总价=12,把相关数值代入即可求解.解答:解:设加工前每千克卖x元,由题意得:(1+20%)x×(1﹣10%)×30﹣30x=12,解得x=5.答:蔬菜加工前每千克卖5元.点评:找到加工和不加工的等量关系是解决本题的关键;难点是得到加工后的单价和重量.29.(8分)实践及操作:在课堂上,李老师和同学们探究了及三角形面积相关的问题.如图,已知点A、B同在直线a上,点C1、C2在直线a的同一侧.(1)过C1画C1M⊥AB,垂足为M,过C2画C2N⊥AB,垂足为N;(2)用圆规比较C1M、C2N的大小;(3)试问三角形C1AB面积和三角形C2AB面积是否相等?为什么?(4)连接C1C2,问AB及C1C2是否相互平行?(用直尺和三角板画平行线的方法加以校验)(5)在及点C1、C2的同一侧,画三角形C3AB,三角形C4AB,并使三角形C3AB、三角形C4AB面积都及三角形C1AB面积相等;通过以上画图,问点C3、C4同在直线C1C2上吗?(6)当三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积是否有改变?考点:平行线的判定;三角形的面积.专题:作图题;综合题.分析:(1)据题意画出图即可.(2)利用圆规比较C1M、C2N的大小即可.(3)依据题(2)结论及同底可得到两三角形面积相等.(4)用直尺和三角板画平行线的方法可推断AB及C1C2平行.(5)据题意画出图形,可知点C3、C4在直线C1C2上.(6)三角形有一个顶点在直线C1C2上运动时,它和点A、B一起构成的三角形面积始终相等.解答:解:(1)C1M和C2N即为所求.(2)C1M=C2N;(3)△C1AB和△C2AB的面积相等;∵C1M=C2N,且AB为两三角形同底,∴依据三角形面积计算公式,△C1AB和△C2AB的面积相等.(4)AB及C1C2平行.(5)如图△C3AB和△C4AB即为所求三角形,点C3、C4在直线C1C2上.(6)当三角形有一个顶点在直线C1C2上时,它和点A、B组成的三角形面积没有改变.点评:本题主要考查了三角形的面积、高线及平行线的性质,属于中档难度的好题,同时也考查了学生对题意的阅读理解实力.参及本试卷答题和审题的老师有:sks;HLing;zhjh;zhangCF;sd2024;zjy011;HJJ;将来;Linaliu;lanchong;caicl;ln_86;心若在;jpz;gsls;zzz;zhehe;lantin;如来佛;蓝月梦;119107;weibo;wdxwzk;HCH;110397(排名不分先后)菁优网2024年1月13日。

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)

七年级数学上册期末试卷(附含答案)(满分: 120分考试时间: 120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数: 0 −5 −(−7) −|−8| (−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+a<0 aa<0 则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6a时水位变化记为+6a 那么水位下降6a时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1 −2 0 3中最小的数是()A.−1B.−2C.0D.37. 若a和a都是4次多项式则a+a一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段aa 则aa盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()/A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a a的点在数轴上的位置如图所示下列结论错误的是()/A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −112的倒数是________ ________的绝对值是1 ________的立方是8.12. 在月球表面白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a.则月球表面昼夜的温差为________∘a.13. 若|a|=5 a=−2 且aa>0 则a+a=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负): (+4, −8) (−5, +6) (−3, +2) (+1, −7) 则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下: +8 −3 +12 −7 −10 −3 −8 +1 0 +10.1这10名同学中最高分数是多少?最低分数是多少?2这10名同学的平均成绩是多少.(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆3本周实际销售总量达到了计划数量没有?4该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为: (单位: 海里)+80 −40 +60 +75 −65 −80 此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18.(10分)请画一条数轴然后在数轴上把下列各数表示出来: 312−4 −2120 −1 1 并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20.(10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位: 元)分别为+2 −3 +2 +1 −2 −1 0 −2. 当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线aa分别交a轴a轴于点aa,0和点a0,a且a a满足a2+4a+4+|2a+a|=0./(1)a=________ a=________.(2)点a在直线aa的右侧且∠aaa=45∘:①若点a在a轴上则点a的坐标为_________②若△aaa为直角三角形求点a的坐标.22.(10分)问: 该服装店在售完这30件a恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解: ∵0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∴负数共有2个.故选a.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据aa<0 结合乘法法则易知a a异号而a+a<0 根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解: ∵aa<0a a b异号又a a+b<0∴负数的绝对值大于正数的绝对值.故选a.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解: 1958000用科学记数法可表示为1.958×106.故选a.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6a时水位变化记作−6a.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2 a正确3的倒数是3a正确(−3)−(−5)=−3+5=2 a正确−11 0 4这三个数中最小的数是−11 a错误.故选a.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1 |−2|=2 根据负数的绝对值越大这个数就越小得到−2<−1 而0大于任何负数小于任何正数则有理数−1 −2 0 3的大小关系为−2<−1<0<3.【解答】解: ∵|−1|=1 |−2|=2a −2<−1∴有理数−1 −2 0 3的大小关系为−2<−1<0<3.故选a.7.【答案】C【考点】多项式的项与次数【解析】若a和a都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解: 若a和a都是4次多项式则a+a的结果的次数一定是次数不高于4次的整式.故选a.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段aa 则线段aa盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段aa起点在整点时覆盖16个数②当线段aa起点不在整点即在两个整点之间时覆盖15个数.故选a.9.【答案】C【考点】有理数大小比较数轴【解析】根据a a两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解: ∵a a两点在数轴上的位置可知: −1<a<0 a>1 |a|<|a|a a−b<0a+b>0b−1>0故a a a错误故a正确.故选a.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a −1 0 1 a的大小关系然后根据正实数都大于0 负实数都小于0 正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解: 根据实数a a在数轴上的位置可得a<−1<0<1<aa 1<|a|<|b|a 选项A错误a 1<−a<ba 选项B正确a 1<|a|<ba 选项C正确a −b<a<−1∴选项D正确.故选D.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−2,±1,23【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解. 【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解: 白天阳光垂直照射的地方温度高达+127∘a 夜晚温度可降至−183∘a所以月球表面昼夜的温差为:127∘a−(−183∘a)=310∘a.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5 a=−2 且aa>0 可知a=−5 代入原式计算即可.【解答】解: ∵|a|=5 a=−2 且aa>0∴a+a=−5−2=−7.故答案为: −7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解: 由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为: 12.三解答题(本题共计8 小题共计78分)15.【答案】解:1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.1最高分为: 80+12=92(分)最低分为: 80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:14−3−5+300=296.故答案为: 296.221+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∴本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+(−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解: (1)80+(−40)+60+75+(−65)+(−80)=30(海里).答: 渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解: 如图:/用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:/用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解: (1)原式=0.75+0.25+18+78=1+1=2. (2)原式=−8+6+2+15=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解: (1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解: (+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法: 同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值. 相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵57>0∴当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质: 偶次方非负数的性质: 绝对值【解析】解: (1)由题意得得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+a=0解得a=−2 a=4. 故答案为:−2 4.【解答】解:(1)由题意得a2+4a+4+|2a+a|=a+22+|2a+a|=0所以a+2=02a+b=0解得a=−2 a=4.故答案为: −2 4.(2)①(4,0)a 点P在x轴上则OP=OB=4a 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∴∠aaa=∠aaa.又∵∠aaa=45∘, ∠aaa=90∘a ∠APB=∠ABP=45∘a AP=AB又a ∠BOA=∠AHP=90∘a △AOB≅△PHA(AAS)a PH=AO=2,AH=OB=4∴aa=aa−aa=2.故点a的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∴aa=aa=2, aa=aa=4a 点P的坐标为(4,2)故点a的坐标为(2,−2)或(4,2).22.【答案】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答: 该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解: 该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。

新人教版七年级数学上册期末试卷及答案【完美版】

新人教版七年级数学上册期末试卷及答案【完美版】

新人教版七年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果y=+ +3, 那么yx的算术平方根是()A. 2B. 3C. 9D. ±32.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知(a+1)2+|b+5|=b+5, 且|2a-b-1|=1, 则ab=___________. 2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 如图, 有两个正方形夹在AB与CD中, 且AB//CD,若∠FEC=10°, 两个正方形临边夹角为150°, 则∠1的度数为________度(正方形的每个内角为90°)4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:.2. 先化简, 再求值:(1)3x2-[7x-(4x-3)-2x2], 其中x=5(2) , 其中3. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴).(3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. “大美湿地, 水韵盐城”. 某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生, 要求每位同学选择且只能选择一个最想去的景点, 下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息, 解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图, 并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生, 请估计“最想去景点B“的学生人数.6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.C4.D5.C6.C7、B8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2或4.2.105°3、70.4.-15.316.2或-8三、解答题(本大题共6小题, 共72分)1.x=1.2.(1)5x2-3x-3, 原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5, ﹣4);(2)90°;(3)略4.36平方米5、(1)40;(2)72;(3)280.6.(1)200元和100元(2)至少6件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初一年级上期末考试数学试卷(带答案和解释)距离期末考试越来越近了,半学期即将结束,各位同学们都进入了紧张的复习阶段,对于初一学习的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇初一年级上期末考试数学试卷吧!一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)1. 已知等式3a=2b+5,则下列等式中不一定成立的是()A. 3a﹣5=2bB. 3a+1=2b+6C. 3ac=2bc+5D. a=2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 线段只有一个中点D. 两条直线相交,只有一个交点3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()A. (5+8)xB. x(5+8)C. x(+)D. (+)x4. 下列说法正确的是()A. 射线OA与OB是同一条射线B. 射线OB与AB是同一条射线C. 射线OA与AO是同一条射线D. 射线AO与BA是同一条射线5. 下列说法错误的是()A. 点P为直线AB外一点B. 直线AB不经过点PC. 直线AB与直线BA是同一条直线D. 点P在直线AB上6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A. B. C. D.7. 的值与3(1﹣x)的值互为相反数,那么x等于()A. 9B. 8C. ﹣9D. ﹣88. 海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的()A. 南偏西50B. 南偏西40C. 北偏东50D. 北偏东409. 把10.26用度、分、秒表示为()A. 101536B. 10206C. 10146D. 1026二、耐心填一填,你一定很棒!(每题3分,共21分)10. 一个角的余角为68,那么这个角的补角是度.11. 如图,AB+BCAC,其理由是.12. 已知,则2m﹣n的值是.13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解.14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m=,n=.15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的.(把下图中正确的立体图形的序号都填在横线上)16. 横看成岭侧成峰,远近高低各不同是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是体.三.挑战你的技能17.18. 已知是方程的根,求代数式的值.19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)(2)记(1)中的角为AOB,OC平分AOB,D在射线OA的反向延长线上,画图并求COD的度数.23. 如图,AOB=110,COD=70,OA平分EOC,OB平分DOF,求EOF的大小.24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请完成下表:第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数12 12+a(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?参考答案与试题解析一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)1. 已知等式3a=2b+5,则下列等式中不一定成立的是()A. 3a﹣5=2bB. 3a+1=2b+6C. 3ac=2bc+5D. a=考点:等式的性质.分析:利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.解答:解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 线段只有一个中点D. 两条直线相交,只有一个交点考点:直线的性质:两点确定一条直线.分析:根据概念利用排除法求解.解答:解:经过两个不同的点只能确定一条直线.3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()A. (5+8)xB. x(5+8)C. x(+)D. (+)x考点:列代数式.分析:根据工作效率工作时间=工作总量等量关系求出结果. 解答:解:甲的工作效率是,乙的工作效率是,工作总量是1,4. 下列说法正确的是()A. 射线OA与OB是同一条射线B. 射线OB与AB是同一条射线C. 射线OA与AO是同一条射线D. 射线AO与BA是同一条射线考点:直线、射线、线段.分析:根据射线的概念,对选项一一分析,排除错误答案. 解答:解:A、射线OA与OB是同一条射线,选项正确;B、AB是直线上两个点和它们之间的部分,是线段不是射线,选项错误;C、射线OA与AO是不同的两条射线,选项错误;D、BA是直线上两个点和它们之间的部分,是线段不是射线,选项错误.5. 下列说法错误的是()A. 点P为直线AB外一点B. 直线AB不经过点PC. 直线AB与直线BA是同一条直线D. 点P在直线AB上考点:直线、射线、线段.分析:结合图形,对选项一一分析,选出正确答案.解答:解:A、点P为直线AB外一点,符合图形描述,选项正确;B、直线AB不经过点P,符合图形描述,选项正确;C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;D、点P在直线AB上应改为点P在直线AB外一点,选项错误.6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到从上往下2行的个数依次为3,2.7. 的值与3(1﹣x)的值互为相反数,那么x等于()A. 9B. 8C. ﹣9D. ﹣8考点:一元一次方程的应用.专题:数字问题.分析:互为相反数的两个数的和等于0,根据题意可列出方程.解答:解:根据题意得:2(x+3)+3(1﹣x)=0,8. 海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的()A. 南偏西50B. 南偏西40C. 北偏东50D. 北偏东40考点:方向角.分析:根据方向角的定义即可判断.解答:解:海面上灯塔位于一艘船的北偏东40的方向上,那么这艘船位于灯塔的南偏西40.9. 把10.26用度、分、秒表示为()A. 101536B. 10206C. 10146D. 1026考点:度分秒的换算.专题:计算题.分析:两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.度、分、秒的转化是60进位制.解答:解:∵0.2660=15.6,0.660=36,二、耐心填一填,你一定很棒!(每题3分,共21分)10. 一个角的余角为68,那么这个角的补角是158 度.考点:余角和补角.专题:计算题.分析:先根据余角的定义求出这个角的度数,进而可求出这个角的补角.解答:解:由题意,得:180﹣(90﹣68)=90+68=15811. 如图,AB+BCAC,其理由是两点之间线段最短.考点:线段的性质:两点之间线段最短.分析:由图A到C有两条路径,知最短距离为AC.解答:解:从A到C的路程,因为AC同在一条直线上,两点间线段最短.12. 已知,则2m﹣n的值是13 .考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:本题可根据非负数的性质两个非负数相加,和为0,这两个非负数的值都为0列出方程求出m、n的值,代入所求代数式计算即可.解答:解:∵;3m﹣12=0,+1=0;13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解x+2=0(答案不唯一) .考点:同解方程.专题:开放型.分析:根据题意首先求出方程11x﹣2=8x﹣8的解x=﹣2,然后再写出一个解为x=﹣2的方程即可.解答:解:11x﹣2=8x﹣8移项得:11x﹣8x=﹣8+2合并同类项得:3x=﹣614. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m=4 ,n= 3 .考点:合并同类项.专题:应用题.分析:本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,只有同类项才可以合并的.由同类项的定义可求得m和n的值.解答:解:由同类项定义可知:m=4,n﹣1=2,15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的①②④ .(把下图中正确的立体图形的序号都填在横线上)考点:由三视图判断几何体.专题:压轴题.分析:根据图1的正视图和左视图,可以判断出③是不符合这些条件的.因此原立体图形可能是图2中的①②④.解答:解:如图,主视图以及左视图都相同,故可排除③,因为③与①②④的方向不一样,故选①②④.16. 横看成岭侧成峰,远近高低各不同是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是圆锥体.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:俯视图是圆的有球,圆锥,圆柱,从正面看是三角形的只有圆锥.三.挑战你的技能17.考点:解一元一次方程.专题:计算题.分析:将方程去分母,去括号,然后将方程移项,合并同类项,系数化为1,即可求解.解答:解:去分母,得3(x+4)+15=15x﹣5(x﹣5)去括号,得3x+12+15=15x﹣5x+25移项,合并同类项,得18. 已知是方程的根,求代数式的值.考点:一元一次方程的解;整式的加减化简求值.专题:计算题.分析:此题分两步:(1)把代入方程,转化为关于未知系数m的一元一次方程,求出m的值;(2)将代数式化简,然后代入m求值.解答:解:把代入方程,19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.考点:方向角.分析:根据方位角的概念,画图正确表示出方位角,即可求解.20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?考点:一元一次方程的应用.专题:销售问题.分析:设进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.解答:解:设进价为x元,依题意得:90090%﹣40﹣x=10%x,整理,得770﹣x=0.1x21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.考点:比较线段的长短.专题:计算题.分析:(1)根据点M、N分别是AC、BC的中点,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半.解答:解:(1)∵点M、N分别是AC、BC的中点,CM=AC=4cm,CN=BC=3cm,MN=CM+CN=4+3=7cm;22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)(2)记(1)中的角为AOB,OC平分AOB,D在射线OA的反向延长线上,画图并求COD的度数.考点:余角和补角;角平分线的定义;角的计算.专题:作图题.分析:首先根据余角与补角的定义,设这个角为x,则它的余角为(90﹣x),补角为(180﹣x),再根据题中给出的等量关系列方程即可求解.解答:解:(1)设这个角为x,则它的余角为(90﹣x),补角为(180根据题意可得:(180﹣x)=5(90﹣x)解得x=67.5,即x=6730.故这个角等于6730(2)如图:AOB=67.5,OC平分AOB,则AOC=67.5=33.75 23. 如图,AOB=110,COD=70,OA平分EOC,OB平分DOF,求EOF的大小.考点:角平分线的定义.专题:计算题.分析:由AOB=110,COD=70,易得AOC+BOD=40,由角平分线定义可得AOE+BOF=40,那么EOF=AOB+AOE+BOF. 解答:解:∵AOB=110,COD=70AOC+BOD=AOB﹣COD=40∵OA平分EOC,OB平分DOFAOE=AOC,BOF=BOD24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请完成下表:第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数12 12+a 12+2a 12+3a 12+(n﹣1)a(2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?考点:规律型:图形的变化类.分析:(1)根据已知即可表示出各排的座位数;(2)根据第15排座位数是第5排座位数的2倍列等式,从而可求得a的值,再根据公式即可求得第15排的座位数.解答:解:(1)如表所示:第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数12 12+a 12+2a 12+3a 12+(n﹣1)a(2)依题意得:12+(15﹣1)a=2[12+(5﹣1)a],解得:a=2,观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

相关文档
最新文档