2021届湖南省长沙市雅礼中学高三上学期第五次月考数学试题 PDF版
湖南省长沙市雅礼中学2021届高三上学期第5次月考化学试题(含答案)
雅礼中学2021届高三月考试卷(五)化学命题人:黄铁明 审题人:吴建新考生须知:1.本试卷共20小题,满分为100分,考试时量75分钟。
2.请将第Ⅰ卷的选择题答案用2B 铅笔填写在机读答题卡上,将第Ⅱ卷的答案填写在答卷上。
本卷答案必须做在答题卡或答卷的相应位置上,做在试卷上无效。
3.本卷可能用到的相对原子质量:H -1 C -12 N -14 O -16 Na -23 Mg -24 Al -27 S -32 C -35.5 K -39 Fe -56 Cu -64 Mo -96 I -127第Ⅰ卷 选择题(共40分)一、单选题(本题共10小题,每小题2分,共20分。
每小题只有一个选项符合题意) 1.化学与生活密切相关,下列说法正确的是( )A 福尔马林可用于新冠病毒环境消毒和鱼肉等食品的防腐保鲜B 华为5G 手机芯片的主要成分是硅C.嫦娥五号外壳为钛合金,因它可防电离辐射D.用谷物酿造出酒和醋,酿造过程中只发生了氧化反应2.《本草衍义》中对精制砒霜过程有如下叙述:“取砒之法,将生砒就置火上,以器覆之,令砒烟上飞着覆器,遂凝结累然下垂如乳,尖长者为胜,平短者次之。
”砒霜的化学式是23As O ,是我国最古老的毒物之一,氧化性比Ag +弱,下列说法正确的是( ) A.文中涉及的操作方法是蒸馏B.砒霜是最古老的毒物之一,有特殊的臭味C.砒霜是冶炼砷合金和制造半导体的原料D.银针探毒的方法在我国古代断案中被广为采用,是因为三氧化二砷可以与银反应 3.A N 为阿伏加德罗常数的值,下列说法正确的是( ) A.0.1mol 氨基(2NH —)含有的电子数为0.9A NB 用电解粗铜的方法精炼铜,当电路中通过的电子数为2A N 时,阳极应有64g Cu 转化为2Cu +C.将0.2mol 2Cl 通入足量水中,转移的电子数为0.2A ND.将一定量的2Cl 通入2FeBr 溶液中,当有2mol Br -转化为2Br 时,转移的电子数一定为3A N4.相同条件下,四个等体积的干燥圆底烧瓶中分别充满气体进行喷泉实验,经充分反应后,瓶内溶液的物质的量浓度关系正确的是( )A.===①②③④B.>>>①③②④C.=>=①②③④D.>>=①②③④5.常温下,下列各组离子可能在指定溶液中大量共存的是 A.0.11mol L -⋅KI 溶液中:Na +、K +,ClO -、OH -B.能使甲基橙变红的溶液中:Na +、4NH +、24SO -、3HCO -C.与Al 反应能放出2H 的溶液中:2Fe +、K +、3NO -、24SO -D.水电离的()121H110mol L c +--=⨯⋅的溶液中:K +、Na +、2AlO -、223S O -6.下列实验操作和现象及所得到的结论均正确的是( )7.根据陈述的知识,类推得出的结论正确的是( )A.锂在空气中燃烧生成的氧化物是2Li O ,则钠在空气中燃烧生成的氧化物是2Na O B 链状烷烃的结构和性质都相似,则分子组成不同的链状烷烃一定互为同系物 C.晶体硅熔点高、硬度大,则可用于制作半导体材料 D.金刚石的硬度大,则60C 的硬度也大8.某同学用23Na CO 和3NaHCO 溶液进行如图所示实验。
湖南省长沙市雅礼中学2024届高三上学期月考(一)数学试题及答案
大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=()A.{}08x x ≤< B. 182xx≤<C.{}216x x ≤< D. 1162xx≤<2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( )A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )A.B.1C.D.24.函数sin exx xy =的图象大致为()A. B.C. D.5.已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( )A 1B.2C.-1D.-2.6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -38. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为,则模型中九个球的表面积和为( )A 6πB. 9πC.31π4D. 21π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象.C. 函数()2sin cos cos 26f x x x x π=+−单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存极值点.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )的在A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =的零点个数为______. 15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离.18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值.21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 图象上有一点列()*11,1,2,...,,22i i i A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−.的大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=( )A. {}08x x ≤< B. 182xx≤<C. {}216x x ≤<D. 1162xx≤<【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.详解】{}{}2|log 4|016Mx x x x =<=<<,1|2N x x=≥ ,则1162M N x x ∩=≤<.故选:D.2. 记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A. 3 B. 2C. -2D. -3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d = += 即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7, 设等差数列的公差为d ,所以11+27516a d a d = += ,解之得3d =.故选:A.3. 已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )【A.B. 1C.D. 2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=−的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z +=, 所以()21221i 1i z z =−=−+=−,所以21i z =−=法二:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z ⋅=, 所以21221i z z ==+,所以2221i 1i z ===++.故选:C . 4. 函数sin exx xy =的图象大致为( ) A. B.C. D.【答案】D 【解析】【分析】分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x −−−−===,所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy >,排除C 选项. 故选:D.5. 已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( ) A. 1 B. 2C. -1D. -2【答案】B 【解析】【分析】由题知=1x −为方程220x kx m +−=的一个根,由韦达定理即可得出答案. 【详解】因为220x kx m +−<的解集为()(),11t t −<−, 所以=1x −为方程220x kx m +−=的一个根, 所以2k m +=. 故选:B .6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R ABAC=,100tan10RBC =−=− , 25250.760.985RR ==, 故选:B.7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==−=−. 【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x −,又由()()40f x f x ++−=,得()()4f x f x +=−−,所以()()()846f x f x f x +=−−−=−+,所以()()2f x f x +=−,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==−=−.故选:B .8. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为( )A. 6πB. 9πC.31π4D. 21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE,则CE BE ==,AE DE ==,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF=4AF =,点O 为最大球球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE , 设最大球的半径为R ,则OF OM R ==, 因为Rt AOM △∽Rt AEF ,所以AO OMAE EF==1R =, 即1OM OF ==,则413AO =−=,故1sin 3OM EAF AO ∠== 设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G , 连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =−=−, 又JK a b =+,所以33b a a b −=+,解得2b a =,又33OK R b AO AK b =+=−=−,故432b R =−=,解得12b =, 所以14a =, 模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +×+×=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象 C. 函数()2sin cos cos 26f x x x x π=+−的单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 【答案】ACD 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα+,知A 正确; 根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确; 利用二倍角公式化简得到()f x ,由正切型函数的周期性可求得结果知D 正确.【详解】对于A ,21cos 21sin 212cos 4226παπαα++−+===,A 正确; 对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π−=,即()2sin 2g x x =,B 错误;对于C ,()13sin 22sin 2sin 222226f x x x x x x x π=+=++, 则由222262k x k πππππ−+≤+≤+,Z k ∈得:36k x k ππππ−+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ−++∈,C 正确; 对于D ,()22tan tan 21tan xf x x x ==−,tan 2y x ∴=的最小正周期为2π,D 正确.故选:ACD.10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解. 【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC , 但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11A C D , 平面11AC D ∩平面ACD l =,所以//AC l ,所以B 正确; 对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO中点为该三棱柱外接球的球心,所以外接球的半径R , 所以外接球的表面积为22843R ππ=,所以C 不正确; 对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A的点D 到平面11ACC A 的最大距离为R ,所以D 正确. 故选:BD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x −−=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x −−,故()()0e e x xa b b a −−+−=, 即()()2e =xa b a b −−,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b −+−+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b −+−+++,因为e 0x >,e 0x −>,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb −−′,因为0ab <,若0,0a b ><,则()e e0=xxa xb f −−>′恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f −−<′恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x −−−′, 令()=0f x ′得1=ln 2bx a,又0ab >, 若0,0a b >>,当1,ln 2b x a∈−∞,()0f x ′<,函数()f x 为单调递减. 当1ln ,2b x a∈+∞,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a∈−∞,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a∈+∞,()0f x ′<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值. 所以函数存在极值点,故D 正确. 故答案为:BCD.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为n T 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a −⋅−<可得:20221a −和20231a −异号,即202220231010a a −> −< 或202220231010a a −<−> . 而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1. 对于A :公比202320221a q a =<,因为11a >,所以11n n a a q −=为减函数,所以{}n a 为递减数列.故A 正确; 对于B :因为20231a <,所以2023202320221a S S =−<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确; 对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ×= ()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+ ,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=−=,可得(1,1)a bλ+=+ , 又因为()a b b +⊥,可得()(1,1)(3,1)310b ba λλ=+⋅=++=⋅+ ,解得4λ=−, 所以(2,4)a =−−,所以a =故答案为:14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =零点个数为______. 【答案】3 【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =的大致图象如下:由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点, 故答案为:3.15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.的【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D −中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边,所以其面积为26S .16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)【答案】914 【解析】【分析】根据题意可得1, 1.1n n n y n y ′=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y ′=+=,则()20201192000011.111.121.1201.1211.1n n n n n y y n =′=+=×+×++×+×∑∑L , 可得2012202101.111.121.1201.1211.1nn n yy =′×=×+×++×+×∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =−′−×=+++−×=−×−∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1−+××++====−−−−, 所以20914nn n yy =′=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离. 【答案】(1)证明见解析 (2【解析】【分析】(1)利用线面平行的判定定理证明; (2)利用等体积法求解.的【小问1详解】连接1BC 交1B C 于点N ,连接MN , 则有N 为1BC 的中点,M 为AB 的中点, 所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM , 所以1//AC 平面1B CM . 【小问2详解】连接1AB ,因为2CACB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ∩=,所以CM ⊥平面11ABB A , 又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC 是等腰直角三角形,112CM AB MB ====,所以1112CMB S CM MB =⋅=△1111222ACM ACB S S CA CB ==×⋅=△△, 设点A 到平面1B CM 的距离为d , 因为11A B CM B ACM V V −−=,所以111133B CM ACM S d S AA ××=×× ,所以11ACM B CMS AA dS ×= .18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 【答案】(1)见解析; (2)2516. 【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12ba C R Ab A R === ,然后等量代换出2211a b +,再运用降次公式化简,结合内角取值范围即可求解. 【小问1详解】 证明:由题知sin()sin()cos cos A B A C B C−−=,所以sin()cos sin()cos A B C A C B −=−, 所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B −=−, 所以cos sin cos cos sin cos A B C A C B = 因为A 为锐角,即cos 0A ≠ , 所以sin cos sin cos B C C B =, 所以tan tan =B C , 所以B C =. 【小问2详解】 由(1)知:B C =, 所以sin sin B C =, 因为sin 1a C =, 所以1sin C a=, 因为由正弦定理得:2sin ,sin 2b aR A B R=, 所以sin 2sin sin 12b a C R A b A R=== ,所以1sin A b =, 因为2A B C C ππ=−−=− ,所以1sin sin 2A C b==, 所以222211sin sin 2a bC C++ 221cos 2(1cos 2)213cos 2cos 222CC C C −+−=−−+因为ABC 是锐角三角形,且B C =, 所以42C ππ<<,所以22C ππ<<,所以1cos 20C −<<, 当1cos 24C =−时,2211a b +取最大值为2516, 所以2211a b +最大值为:2516. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算. 【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1111233P A =×−= ,()1111224P B =×−= , 甲的得分X 的可能取值为1,0,1−,()()()()11111346P X P AB P A P B =−===−×= ,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ==+=+=×+−×−=()()()()11111344P X P AB P A P B ====×−= ,所以X 的分布列为:()1711101612412E X =−×+×+×=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1−分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ==, 甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P =×=, 甲3轮中有2轮各得1分,1轮得1−分的概率为2233111C 4632P =×= , 甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P =××=, 所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值. 【答案】(1)证明见解析;(2)3n =. 【解析】 【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +−+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c −−=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=, 11n n n b a a +=−+ ,则12112b a a −+,则()()()111112211212n n n n n n n n b a a a n a n a a b ++−−=−+=+−+−+=−+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b −=×=;(2)由(1)可知,2n n b =即121nn n a a +−=−,可得2123211212121n n n a a a a a a −−−=− −=−−=− , 累加得()()()()1211212222112112n n n n a a n n n −−−−=+++−−=−−=−−− ,21n n a n ∴=−−.213n n n n c −−∴=,()111112112233n n n n n n n c +++++−+−−−==, 11112221212333n n nn n n n n n n n c c ++++−−−−+−∴−=−=, 令()212nf n n =+−,则()11232n f n n ++=+−,所以,()()122nf n f n +−=−.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =−<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> . 所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +−=或11n n a a q −=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n −= = −≥ 进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n −−=,即第n 项与第n 1−项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a −=,即第n 项与第n 1−项的商是个有规律的数列,就可以利用这种方法;(6)构造法:�一次函数法:在数列{}n a 中,1n n a ka b −=+(k 、b 均为常数,且1k ≠,0k ≠). 一般化方法:设()1n n a m k a m −+=+,得到()1b k m =−,1b m k =−,可得出数列1n b a k+ −是以k的等比数列,可求出n a ;�取倒数法:这种方法适用于()112,n n n ka a n n N ma p∗−−=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; �1nn n a ba c +=+(b 、c 为常数且不为零,n N ∗∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用�中的方法求解即可. 21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,�双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,�双曲线E 的标准方程为221169x y −=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −±,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−= ,解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −= ,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=.将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−.整理得212320t t +=−,解得8t =或4t =(舍去). �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i ii A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−. 【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. (2)见解析 【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥−≥,结合二倍角的正弦可证:2271162i i k +>−×,结合等比数列的求和公式可证题设中的不等式. 【小问1详解】()sin f x x x ′=−+,设()sin s x x x =−+,则()cos 10s x x ′=−+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数, 故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. 【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥−≥,证明:设()3sin ,06x u x x x x =−+≥,则()2cos 1()02x u x x f x ′=−+=≥(不恒为零),故()u x 在[)0,∞+上为增函数, 故()()00u x u ≥=即3sin (0)6x x x x ≥−≥恒成立. 当*N i ∈时,11111111222sin sin 112222i i i i i i i ig g k ++++ − ==− − 11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++=−=×−由(1)可得()2cos 102x x x ≥−>,故12311cos 1022i i ++≥−>, 故111112311112sin2cos 12sin 2112222i i i i i i ++++++ ×−≥×−−1112213322111112sin121222622i i i i i i i +++++++ ×−≥−− × 2222224422117111711111622626262i i i i i +++++ =−−=−×+×>−× × , 故1214627111...16222n nk k k n −+++>−−+++41111771112411166123414n n n n −− =−−×=−−×−× −771797172184726n n n n =−−+×>−>−. 【点睛】思路点睛:导数背景下数列不等式的证明,需根据题设中函数的特征构成对应的函数不等式,从而得到相应的数列不等式,再结合不等式的性质结合数列的求和公式、求和方法等去证明目标不等式.。
湖南省长沙市雅礼中学2024-2025学年高三上学期入学考试数学试题解析版
雅礼中学2025届高三上学期入学考试试卷数 学时量:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、 已知集合{}240A x x =-≤,则A =N ( )A .{}0B .{}0,1C .{}0,1,2D .{}1,22、 )A B C D3、 (暑假作业原题)若正数x ,y 满足 ²20x xy -+=,则x y +的最小值是( )A .B .C .4D .6【答案】C【分析】根据已知条件及基本不等式即可求解.4、过椭圆22:1169x yC+=的中心作直线l交椭圆于,P Q两点,F是C的一个焦点,则PFQ△周长的最小值为()A.16 B.14 C.12 D.10所以PFQ△的周长为PF当线段PQ为椭圆短轴时,故选:B5、已知圆C的方程为22(2)x y a+-=,则“2a>”是“函数y x=的图象与圆C有四个公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B6、 (暑假作业原题)如图是一块高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.记格子从左到右的编号分别为0,1,2,⋯,10,用X 表示小球最后落入格子的号码,若0()()P X k P X k == ,则0(k = )A .4B .5C .6D .7【分析】小球在下落过程中,共10次等可能向左或向右落下,则小球落入格子的号码X 服从二项分布,且落入格子的号码即向右次数,即1~(10,)2X B ,则10101()()(02kP X k C k ===,1,2...,10),然后由二项式系数对称性即可得解.【解答】解:小球在下落过程中,共10次等可能向左或向右落下, 则小球落入格子的号码X 服从二项分布, 且落入格子的号码即向右次数,即1~(10,2X B ,所以10101010111()()(1()(0222k k k kP X k C C k -==-==,1,2...,10),由二项式系数对称性知,当5k =时,10kC 最大,故05k =. 故选:B .【点评】本题考查了二项分布及二项式系数的性质的应用,属于中档题.7、 (教材原题)以正方体的顶点为顶点的三棱锥的个数是( ) A .70B .64C .60D .58【分析】从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面,用所有的结果减去不合题意的结果,得到结论.【解答】解:首先从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面, ∴满足条件的结果有4488661258C C --=-=.故选:D .【点评】本题是一个排列问题同立体几何问题结合的题目,是一个综合题,这种问题实际上是以排列为载体考查正方体的结构特征.8、 (暑假作业原题)已知定义域为R 的函数()f x ,其导函数为()f x ',且满足()2()0f x f x '-<,(0)1f =,则( )A .2(1)1e f -<B .()21f e >C .1(2f e >D .1(1)(2f ef <【分析】构造函数2()()xf xg x e =,由()2()0f x f x '-<得()0g x '<,进而判断函数()g x 的单调性,判断各选项不等式.【解答】解:2()()x f x g x e=,则22222()2()()2()()()x x x x f x e f x e f x f x g x e e '⋅-'-'==, 因为()2()0f x f x '-<在R 上恒成立,所以()0g x '<在R 上恒成立,故()g x 在R 上单调递减, 所以220(1)(0)(1)(0),(1)1f f g g e f e e --->=->=,故A 不正确; 所以g (1)(0)g <,即20(1)(0)f f e e<,即f (1)22(0)e f e <=,故B 不正确;1()(0)2g g <,即101()(0)21f f e e <=,即1(2f e <,故C 不正确; 1()(1)2g g >,即121()(1)2f f e e >,即1(1)()2f ef <,故D 正确.故选:D .【点评】本题考查了利用导数研究函数的单调性,考查了函数思想,属中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9、 已知复数12,z z ,下列说法正确的是( )A .若12=z z ,则2212z z =B .1212z z z z =C .1212z z z z -≤+D .1212z z z z +≤+10、 已知函数()ππ)02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭,函数()()12g x f x =+的部分图象如图所示,则下列说法中正确的是( )A .()f x 的表达式可以写成()24f x x π⎛⎫=- ⎪⎝⎭B .()f x 的图象向右平移3π8个单位长度后得到的新函数是奇函数 C .()()1h x f x =+的对称中心ππ,182k ⎛⎫-+⎪⎝⎭,Z k ∈ D .若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈ ⎪⎝⎭11、 如图,过点(C a ,0)(0)a >的直线AB 交抛物线22(0)y px p =>于A ,B 两点,连接AO 、BO ,并延长,分别交直线x a =-于M ,N 两点,则下列结论中一定成立的有( )A .//BM ANB .以AB 为直径的圆与直线x a =-相切C .AOB MON S S ∆∆=D .24MCN ANC BCM S S S ∆∆∆=⋅【分析】设出直线与抛物线联立,利用韦达定理及斜率公式,结合三角形的面积公式及直线与圆的位置关系的判断方法即可求解.【解答】解:对于A ,令直线:AB x my a =+,1(A x ,1)y ,2(B x ,2)y , 联立22x my a y px=+⎧⎨=⎩,消x 可得2220y pmy pa --=,则△2(2)80pm pa =+>,122y y pa =-,122y y pm +=, 则21212()222x x m y y a pm a +=++=+, 则1111,:OA y y k OA y x x x ==则直线,∴11(,)ayM a x --,故12211122212220()BMay pay y x y y y pak x a x a y x a +++====+++, 同理0AN k =,//BM AN ∴,故A 正确; 对于B ,如图,设AB 中点1212(,22x x y y Q ++,即2(Q pm a +,)pa -,则Q 到直线x a =-的距离22d pm a =+, 以AB为直径的圆的半径12||||2AB y y =-=,所以222||(2)(2)4AB d p a a p m -=+-, 当2p a =时相切,当2pa ≠时不相切,故B 错误;对于C ,设x a =-与x 轴交于P ,PON AOC S S ∆∆=,MOP BOC S S ∆∆=, 则PON MOP AOC BOC S S S S ∆∆∆∆+=+,则AOB MON S S ∆∆=,故C 正确; 对于D ,112211(),()22ANC BCM S x a y S x a y ∆∆=+=-+,则1212121211()()(2)(2)44ANC BCM S S x a x a y y my a my a y y ∆∆⋅=-++=-++221212121[2()4]4m y y am y y a y y =-+++22221[(2)2(2)4](2)(2)4m pa am pm a pa pa pm a =--++-=+,而121212||||2MCN MPC NPC S S S a y y a y y ∆∆∆=+=⋅-=-, 所以2222222121212()[()4]4(2)4MCN ANC BCM S a y y a y y y y pa pm a S S ∆∆∆=-=+-=+=⋅,故D 正确.故选:ACD .【点评】本题考查了已知两点求斜率,由斜率判断两条直线平行,判断直线与圆的位置关系,根据韦达定理求参数,属于中档题.三、填空题:本题共3小题,每小题5分,共15分.12、 已知随机变量X 服从正态分布()25,N σ,若(56)0.27P X <≤=,则(4)P X <= .13、 已知向量()sin ,cos a θθ=,()3,1b =,若a b ∥,则2sin sin 2θθ+的值为 .14、 设0k >,若存在正实数x ,使得不等式14log 20kx x k --⋅≥成立,则k 的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.15、 (13分)平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C -是否为一个定值?若是,求出这个定值;若否,说明理由.(2)记ABD △与BCD △的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】cos A C -为定值,定值为1 (2)14【详解】(1)法一:在ABD △中,由余弦定理222cos 2+-=⋅AD AB BD A AD AB,得cos A =2168BD A -=①,同理,在BCD △中,22222cos 222BD C +-=⨯⨯,即28cos 8BD C -=②,①-②cos 1A C -=,所以当BD cos A C -为定值,定值为1; 法二:在ABD △中,由余弦定理2222cos BD AD AB AD AB A =+-⋅得222222cos BD A =+-⨯⨯,即216BD A =-, 同理,在BCD △中,2222cos 88cos BD CD CB CD CB C C =+-⋅=-,所以1688cos A C -=-1cos A C -=cos 1A C -=,所以当BD cos A C -为定值,定值为1;(2)222222221211sin sin 44S S AB AD A BC CD C +=⋅⋅+⋅⋅ 222212sin 4sin 12sin 44cos A C A C =+=+-2212sin 41)A A =+--224cos 12A A =-++,令()cos ,1,1A t t =∈-,所以2224122414y t t ⎛=-++=-+ ⎝⎭,所以t =cos A = 2212S S +有最大值为14.16、 (15分)(暑假作业原题)函数()e 4sin 2xf x x λλ=-+-的图象在0x =处的切线为3,y ax a a =--∈R .(1)求λ的值;(2)求()f x 在(0,)+∞上零点的个数. 解析【小问1详解】因为()e 4sin 2,()e 4cos x x f x x f x x λλλλ'=-+-=-, 所以(0)4f λ'=-,所以切线斜率为4λ-,即4a λ=-, 所切线方程为()41y x λλ=--+又(0)1f λ=-,所以切点坐标为(0,1)λ-,代入得则11λλ-=-+,解得1λ=.【小问2详解】由(1)得()e 4sin 1,()e 4cos x x f x x f x x '=--=-, 令()()e 4cos xg x f x x ==-',则()e 4sin xg x x =+',当πx ≥时,()e 4cos 0x f x x '=->恒成立,所以()f x 在[)π,+∞上递增, 所以ππ()(π)e 4sin 1e 50f x f x ≥=--≥->, 因此()f x 在[π,)+∞无零点;当0πx <<时,()e 4sin 0xg x x '=+>恒成立,所以()f x '单调递增,又π(0)30,(π)e 40f f ''=-<=+>, 所以()f x '在(0,π)上存在唯一的零点0x , 当()00,,()0,()∈<'x x f x f x 单调递减;当()0,π,()0,()x x f x f x '∈>单调递增;又()0(0)0,(0)0f f x f =<=,π(π)e 10f =->, 因此()f x 在(0,π)上仅有1个零点; 综上,()f x 在(0,)+∞上仅有1个零点.17、 (15分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED , 因为AC 平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,BE =AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -, 则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z = ,则0n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取y =()n =,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,n CF n CF n CF⋅===, 设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== CF 与平面ABD(1)求C 的方程;(2)记双曲线C 的左右顶点分别为1A ,2A ,直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值. (3)探究圆E :224410x y x y +---=上是否存在点S ,使得过S 作双曲线的两条切线1l ,2l 互相垂直.【答案】(1)22143x y -=; (2)13-; (3)存在.【详解】(1)由对称性知,双曲线C 过点(4,3),则221691b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得2a b =⎧⎪⎨=⎪⎩,所以双曲线C 的方程为22143x y -=. (2)由(1)得12(2,0),(2,0)A A -,设()()1122,,,M x y N x y , 显然直线MN 不垂直于y 轴,设直线MN 的方程为4x my =+, 由2243412x my x y =+⎧⎨-=⎩消去x 得220(34)2436m y my -++=, 显然22340,144(4)0m m -≠∆=+>,1212222436,3434m y y y y m m -+==--, 则121223m y y y y +=-,即()121232my y y y =-+, 所以()()()()11212112212222222262y y x y my k x y k x y y my x -++===++-()()1211211221223221236362y y y my y y my y y y y y -+++===-+-++.(3)圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直. 若双曲线的两条切线有交点,则两条切线的斜率存在且不为0, 设双曲线的两条切线分别为1122,y k x n y k x n =+=+,将y kx n =+代入22143x y -=消去y 得:22(3484120)k knx n ----=,由0'∆=得()()2222644344120k n k n +-+=,解得2243n k =-,因此2222112243,43n k n k =-=-,设两条切线的交点坐标为()00,x y ,则01010202y k x n y k x n -=⎧⎨-=⎩,即有()22010143y k x k -=-,且()22020243y k x k-=-,即()()2222220100100200204230,4230x k x y k y x k x y k y --++=--++=, 于是12,k k 是方程()22200004230x k x y k y --++=的两根,而121k k =-,则2020314y x +=--,即22001x y +=,从而两条切线们交点的轨迹为圆221x y +=, 而221x y +=的圆心为(0,0)O ,半径为1,圆222:(2)(2)3E x y -+-=的圆心(2,2)E ,半径为3,显然||OE ==,满足31||31OE -<<+,即圆O 与圆E 相交, 所以圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直.19、 (17分)对于数列{}n a ,如果存在等差数列{}n b 和等比数列{}n c ,使得()n n n a b c n *=+∈N ,则称数列{}n a 是“优分解”的.(1)证明:如果{}n a 是等差数列,则{}n a 是“优分解”的.(2)记()2*11ΔΔΔΔn n n n n n a a a a a a n ++=-=-∈N ,,证明:如果数列{}n a 是“优分解”的,则()2*Δ0n a n =∈N 或数列{}2Δn a 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}n a 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.【答案】(1)证明见解析 (2)证明见解析 (3)122n n a -=+【详解】(1){}n a 是等差数列,∴设()()111111n a a n d a n d ⎡⎤=+-=-+-+⎣⎦, 令()111,1n n b a n d c =-+-=,则{}n b 是等差数列,{}n c 是等比数列,所以数列{}n a 是“优分解”的.(2)因为数列{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,则()12121111Δ1,ΔΔΔ(1)n n n n n n n n a a a d c q q a a a c q q --++=-=+-=-=-. 当1q =时,()2*Δ0n a n =∈N ;当1q ≠时,{}2Δn a 是首项为21(1)c q -,公比为q 的等比数列. (3)一方面, 数列{}n S 是“优分解”的,设()*n n n S B C n =+∈N ,其中()()11111,0,0n n n B B n D C C Q C Q -=+-=≠≠,由(2)知2121Δ(1)n n S C Q Q -=-因为12122323Δ4,Δ6S S S a S S S a =-===-==,所以2121ΔΔΔ2S S S =-=.{}221(1)2,1,Δn C Q Q S ∴-=∴≠∴是首项为2,公比为()1Q Q ≠的等比数列.另一方面,因为{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,()2111211Δ,ΔΔΔ1n n n n n n n n n n S S S a S S S a a d c q q +++++=-==-=-=+- {}2Δn S 是首项为2,公比为()1Q Q ≠的等比数列, 0,1q q ∴≠≠,且()()()2222213ΔΔΔS S S =⋅,()()()223111111d c q q d c q q d c q q ⎡⎤⎡⎤⎡⎤∴+-=+-⋅+-⎣⎦⎣⎦⎣⎦化简得()311111(1)0,0,0,1,0,Δ1n n n n c dq q c q q d a a a c q q -+-=≠≠≠∴=∴=-=- ,即数列{}Δn a 是首项121Δ1a a a =-=,公比为q 的等比数列. 又232Δ2,2a a a q =-=∴= ,又()211Δ2,12,0,2,S d c q q d q =∴+-===∴ 解得11111,312c b a c =∴=-=-=,综上所述,()1111122n n n a b n d c q --=+-+=+.。
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(9月份)(含答案)
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(9月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设集合A ={x|(x +1)(x−4)<0},B ={x|2x +a <0},且A ∩B ={x|−1<x <3},则a =( )A. 6B. 4C. −4D. −62.已知z 1+i =1−1i ,则|−z |=( )A.2B.22C. 2D. 13.已知f(x)=sin (ωx−π3)(ω∈N)的图象与直线y =a 在区间[0,π]上存在两个交点,则当ω最大时,曲线y =f(x)的对称轴为( )A. x =π24+kπ4,k ∈Z B. x =π30+kπ5,k ∈Z C. x =5π24+kπ4,k ∈Z D. x =π6+kπ5,k ∈Z4.函数f(x)=2x +2−xln( x 2+1−x)的图象大致为( )A. B.C. D.5.若平面单位向量a ,b ,c 满足〈a ,b〉=π6,b ⋅c =0,a ⋅c <0,则|b 2c ||a +c |( )A.5B.3C.153D.536.石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环ABCD ,如图(2),砖雕厚度为6cm ,AD =80cm ,CD =3AB ,CD 所对的圆心角为直角,则该梅花砖雕的表面积为(单位:cm 2)( )A. 3200πB. 480π+960C. 6880π+960D. 3680π+9607.已知过抛物线C :y 2=2px(p >0)的焦点F 的直线与C 交于A ,B 两点,线段AB 的中点为M(x 0,y 0),且|AB|=2x 0+1,Q(t,−2−t),若点P 在抛物线C 上,则|PQ|的最小值为( )A.3 24B.3 22C.3 34D.328.已知数列{a n }满足a 1=3,a n +1−a n =2,4b n =(−1)n +1(1a n +1a n +1),若数列{b n }的前n 项和为T n ,不等式3T n <λ(3−5λ)(n ∈N ∗)恒成立,则λ的取值范围为( )A. (110,+∞)B. (15,+∞)C. (110,12)D. (15,25)二、多选题:本题共3小题,共18分。
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)(含答案)
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x |log 2x >1},B ={x |0<x <4},则A ∩B =( )A. {x |2<x <4}B. {x |2⩽x <4}C. {x |0<x⩽2}D. {x |x⩽2}2.已知复数z 满足(1―i )z =2i ,且z +ai (a ∈R )为实数,则a =( )A. 1B. 2C. ―1D. ―23.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A. |a |=|b | B. a ⋅b = 22 C. a ―b 与b 垂直 D. a //b4.已知a 是函数f (x )=2x ―log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定5.若sinx +cosx =13,x ∈(0,π),则sinx ―cosx 的值为( )A. ± 173 B. ― 173 C. 13 D. 1736.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A. 8B. 24C. 48D. 1207.函数y =f (x )的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. y =f (1―12x )B. y =―f (1―12x )C. y =f (4―2x )D. y =―f (4―2x )8.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF ,四边形ABFE 和CDEF 是全等的等腰梯形,△ADE 和△BCF 是全等的等腰三角形.若AB =25m ,BC =AD =10m ,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为145.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )A. 102mB. 112mC. 117mD. 125m二、多选题:本题共3小题,共18分。
2023届湖南省长沙市雅礼中学高三年级上册学期月考(五)数学试题【含答案】
2023届湖南省长沙市雅礼中学高三上学期月考(五)数学试题一、单选题1.已知全集R U =,集合{(1)(2)0}M xx x =-+≥∣,{13}N x x =-≤≤∣,则()U M N ⋂=( ) A .[1,1)- B .[1,2]- C .[2,1]-- D .[1,2]【答案】A【分析】先由一元二次不等式的解法求得集合M ,再由集合的补集、交集运算求得答案.【详解】解:由题意可得:由(1)(2)0x x -+≥得1x ≥或2x ≤-,所以(][)21M =-∞-+∞,,,则 :()C 2,1U M =-,又{13}N xx =-≤≤∣,所以()U M N ⋂= [)1,1-. 故选:A .2.若复数z 满足()()11i 22i z -+=-,则z =( ) A .5 B .3 C .5 D .2【答案】A【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得z 的值. 【详解】由复数的四则运算可得()()()()()2221i 21i 111i 112i 1i 1i 1i z --=+=+=-+=-++-, 因此,()22125z =+-=. 故选:A.3.如图,在ABC 中,点D 是边BC 的中点,2AG GD =,则用向量,AB AC 表示BG 为( )A .2133BG AB AC =-+B .1233BG AB AC =-+C .2133BG AB AC =- D .2133BG AB AC =+ 【答案】A【解析】先根据题意,得到()12AD AB AC =+,23AG AD =,再由向量的加减运算,即可得出结果. 【详解】因为点D 是边BC 的中点,所以()12AD AB AC =+, 又2AG GD =,所以23AG AD =, 因此()21123333BG AG AB AD AB AB AC AB AC AB =-=-=+-=-. 故选:A.【点睛】本题主要考查用基底表示向量,熟记平面向量基本定理即可,属于常考题型.4.在普通高中新课程改革中,某地实施”3+1+2“选课方案,该方案中的“2”该指的是政治、地理、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地理至少有一门被选中的概率是( ) A .16B .12C .23D .56【答案】D【分析】分别查出4门科目任选2门总共结果数,再选出政治和地理至少有一门的结果数,然后根据古典概率计算概率即可.【详解】在政治、地理、化学、生物4门科目中任选2门共有6种情况,分别为:政治+地理、政治+化学、政治+生物、地理+化学、地理+生物、化学+生物. 其中政治和地理至少有一门的情况包含5种,分别为:政治+地理、政治+化学、政治+生物、地理+化学、地理+生物. 故政治和地理至少选一门的概率为56P =.故选:D5.已知三棱台111ABC A B C 中,三棱锥111A A B C -的体积为4,三棱锥1A ABC -的体积为8,则该三棱台的体积为( )A .12+B .12+C .12+D .12+【答案】B 【分析】设11112,ABCA B C SSS S ==,棱台高为h ,由已知得212S h=,124S h=,根据棱台的体积公式可得三棱台的体积V .【详解】设11112,ABCA B C SSS S ==,棱台高为h ,由已知1112143A A B C V S h -==,得212S h=,11183A ABC V S h -==,得124S h =,三棱台111ABC A B C 的体积为()221121224122412113423V h S h h h h S S S ⎛⎫⨯++=+ ⎪ ⎪=⎭+⎝+=, 故选:B.【点睛】关键点点睛:本题考查了三棱台、三棱锥的体积的求法,解题的关键点是利用底面积与高的转化.6.将函数sin 64y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位,所得函数图象的一个对称中心是( ). A .,016π⎛⎫⎪⎝⎭B .,09π⎛⎫ ⎪⎝⎭C .,04π⎛⎫ ⎪⎝⎭D .,02π⎛⎫ ⎪⎝⎭【答案】D【分析】先利用三角函数的图像变换,可以得到变换后的函数解析式sin 2y x =,再由正弦函数的对称性代入计算即可.【详解】函数sin 64y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),则得到:sin 24y x π⎛⎫=+ ⎪⎝⎭,再向右平移8π个单位,则得到:sin 2sin 284y x x ππ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,令2x k =π即,2k x k Z π=∈ 故选:D【点睛】本题考查了三角函数图像的变换以及三角函数的对称性,属于一般题.7.设0.70.820232020,2021,log 2022a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b<c<aD .c<a<b【答案】D【分析】根据指数函数、幂函数和对数函数的单调性可得出0.70.8120202021<<,2023log 20221<,然后即可得出a ,b ,c 的大小关系【详解】00.70.80.812020202020202021=<<<,20232023log 2022log 20231<=,c a b ∴<<.故选:D .8.边长为2的正方形,经如图所示的方式裁剪后,可围成一个正四棱锥,则此正四棱锥的外接球的表面积的最小值为( )A .23π9B .43π9C .()843π- D .(823)π-【答案】B【分析】设底面边长为2x ,可求得此四棱锥的高为12x -,根据外接球与正四棱锥的关系,利用勾股定理可求出外接球半径,再利用导数求得半径的最小值即可. 【详解】如图所示,设围成的四棱柱为P ABCD -,PF 为正四棱锥P ABCD -的高,作FE BC ⊥交BC 于E ,连接PE ,设FE x =,则1PE x =-,在直角三角形PFE 中由勾股定理得2212PF PE FE x -- 又因为正四棱锥P ABCD -的外接球球心在它的高PF 上, 记球心为O ,半径为R ,连接,OB FB ,则2FB x , 则在直角三角形OFB 中()22222OB OF FB PF OP FB =+=-+,即()()222122R x Rx =--+,解得22221(12)1212412x x x R x x-+-+==--,令12x t -=(01)t <<,则414t R t +=,4212416t R t -'=,令0R '=解得233t =,所以R 在4103⎛⎫ ⎪⎝⎭,上单调递减,在4113⎛⎫ ⎪⎝⎭,上单调递增, 所以当233t =时R 取最小值,所以242min 1349t R t ⎛⎫+== ⎪⎝⎭, 所以该四棱锥外接球的表面积的最小值为2min 43π4π9R =, 故选:B二、多选题9.如图,在棱长为1的正四面体ABCD 中,点M ,N 分别为棱BC ,AD 的中点.则( )A .12MN =B .AB CD ⊥C 3D .直线AM 与CN 所成角的余弦值为13【答案】BC【分析】把,,,MN AM NC CD 分别用,,AB AC AD 表示,再根据数量积的运算律计算分析,即可判断ABD ,连接DM ,在DM 上取点O ,使得2OD OM =,连接OA ,则OA ⊥平面BCD ,解ADM △即可判断C.【详解】解:由正四面体ABCD ,可得π3BAC BAD DAC ∠=∠=∠=, 对于A ,()()1122MN AN AM AN AB AC AD AB AC =-=-+=--,则()212MN AD AB AC ⎡⎤=--⎢⎥222222AD AB AC AB AC ABAD AD AC =+++⋅-⋅-⋅ ==A 错误; 对于B ,CD AD AC =-,则()11022AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=-=, 所以AB CD ⊥,故B 正确; 对于D ,111,222AM AB AC NC AC AN AC AD =+=-=-, 则32AM NC ==111222AM NC AB AC AC AD ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭211112424AB AC AB AD AC AD AC =⋅-⋅+-⋅ 1111148282=-+-=, 设直线AM 与CN 所成角为θ,则12cos cos ,33AM NC AM NC AM NCθ⋅====, 所以直线AM 与CN 所成角的余弦值为23,故D 错误;对于C ,连接DM ,在DM 上取点O ,使得2OD OM =,连接OA , 则OA ⊥平面BCD ,则ADM ∠即为直线AD与平面BCD 所成角的平面角, 在ADM △中,1AM DM AD ===,则331cos ADM +-∠=由正四面体的结构特征可得,直线,,AB AC AD 与平面BCD 所成角的相等, C 正确 故选:BC10.已知函数()ln f x x x =,若120x x <<,则下列选项正确的是( ) A .()()1122x f x x f x +<+ B .()()2112x f x x f x <C .当211ex x >>时,()()()()11222112x f x x f x x f x x f x +>+D .若方程()f x a =有一个根,则1a e=-【答案】BC【分析】构造函数()()ln g x f x x x x x =+=+,利用导数判断函数的单调性,可判断A 选项;由函数ln y x =的单调性可判断B 选项;利用函数()y f x =在区间 1,e ⎛⎫+∞ ⎪⎝⎭上的单调性可判断C 选项;取特例可判断D 选项.【详解】对于A 选项,构造函数()()ln g x f x x x x x =+=+,定义域为(0)+∞,,()ln 2g x x '=+, 当 210e<<x 时,()0g x '<;当 21e x > 时,()0g x '>. 所以,函数()ln g x x x x =+的单调递减区间为 210,e ⎛⎫⎪⎝⎭,单调递增区间为 21,e ⎛⎫+∞ ⎪⎝⎭当 12210e x x <<< 时,()()12g x g x >,即()()1122x f x x f x +>+,A 选项错误;对于B 选项,()ln f x x x= ,由于函数ln y x =在(0)+∞,上单调递增, 当120x x <<时,12ln ln x x <,即 1212()()f x f x x x < ,所以()()2112x f x x f x <,B 选项正确; 对于C 选项,函数()ln f x x x =,定义域为()0,∞+,()ln 1f x x '=+ 令()0f x '<,则10ex <<;令0fx,可得 1ex >所以,函数()ln f x x x =的单调递减区间为10,e ⎛⎫⎪⎝⎭,单调递增区间为1,e ⎛⎫+∞ ⎪⎝⎭.当 211ex x >> 时,()()12f x f x <,则()()()()121122x x f x x x f x ->-,即()()()()11222112x f x x f x x f x x f x +>+,C 选项正确;对于D 选项,当0a =时,若方程()0f x =也只有一个根1x =,D 选项错误. 故选:BC11.设F 是抛物线C :24y x =的焦点,直线l 过点F ,且与抛物线C 交于A ,B 两点,O 为坐标原点,则下列结论正确的是( ) A .||4AB ≥ B .||||8OA OB +>C .若点(2,2)P ,则||||PA AF +的最小值是3D .OAB 的面积的最小值是2 【答案】ACD【解析】讨论直线l 是否有斜率,分别计算|AB |和△OAB 的面积或其范围,判断A ,D ,举特例判断B 错误,根据抛物线性质和三点共线判断C . 【详解】解:F (1,0),不妨设A 在第一象限, (1)若直线l 无斜率,则A (1,2),B (1,−2),则|AB |=4,|OA |+|OB |=2|OA |=14122OABS=⨯⨯=,显然B 错误; (2)若直线l 存在斜率,设直线l 斜率为k ,则直线l 的方程为:y =k (x −1),显然k ≠0,联立方程组()214y k x y x ⎧=-⎨=⎩,消元得:()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212222442k x x k k++==+, ∴|AB |=12x x ++2=4+24k>4,原点O 到直线l 的距离d =∴21144222OABSAB d k ⎛⎫=⨯⨯=⨯+= ⎪⎝⎭, 综上,|AB |≥4,OABS ≥2,故A 正确,D 正确,过点A 向准线作垂线,垂足为N ,则|P A |+|AF |=|P A |+|AN |,又P (2,2)在抛物线右侧,故当P ,A ,N 三点共线时,|P A |+|AF |取得最小值3,故C 正确. 故选:ACD .【点睛】本题考查直线与抛物线的位置关系,考查抛物线的简单性质,属于中档题. 12.已知函数1()3x p f x -=,2()3x p g x -=,12p p ≠,则下列四个结论中正确的是( ). A .()y f x =的图象可由()y g x =的图象平移得到 B .函数()()f x g x +的图象关于直线122p p x +=对称 C .函数()()f x g x -的图象关于点12,02p p +⎛⎫⎪⎝⎭对称 D .不等式()()f x g x >的解集是12,2p p +⎛⎫+∞ ⎪⎝⎭【答案】ABC【分析】由()()1213x p g x p f x p -+-==可知A 正确;设()()()F x f x g x =+,证明()()12F x p F p x +=-即可判断B ;设()()()H x f x g x =-,证明()()120H x p H x p ++-+=即可判断C ;利用指数函数的单调性解不等式,分类讨论不等式的解,即可判断D. 【详解】对于A ,因为()()1213x p g x p f x p -+-==,所以()y f x =的图象可由()y g x =的图象平移得到,所以A 正确;对于B ,设()()()F x f x g x =+,则()12||133x p p x F x p +-+=+,()2211||||23333x p p x p p x x F x p -+-+---+=+=+,因为()()12F x p F p x +=-,所以()()f x g x +的图象关于直线122p p x +=对称,B 正确; 对于C ,设()()()H x f x g x =-,则()12||133x p p x H x p +-+=-,()2112||||23333x p p x p p x x H x p -+-+---+=--=-,因为()()120H x p H x p ++-+=,所以()H x 的图象关于点12,02p p +⎛⎫⎪⎝⎭对称,所以C 正确; 对于D ,由()()f x g x >,得12x p x p ->-,化为2212x p x p ->-,()2221212p p x p p ->-,若12p >p ,则212p p x +>;若21p p <,则212p p x +<,所以D 错误. 故选:ABC【点睛】本题考查指数与指数函数、函数的基本性质,属于中档题.三、填空题13.在()5(1)21x x -+的展开式中,3x 项的系数为______.【答案】10【分析】利用二项定理展开5(1)x -,再利用多项式乘法法则求出3x 项即可作答.【详解】依题意,52345(1)1510105x x x x x x -=-+-+-,因此5(1)(21)x x -+展开式中3x 项为23310210110x x x x ⋅-⋅=,所以3x 项的系数为10. 故答案为:1014.已知圆22:2O x y +=,M 是直线l :40x y -+=上的动点,过点M 作圆O 的两条切线,切点分别为A ,B ,则MA MB ⋅的最小值为______. 【答案】3【分析】画出图形,设2AMB θ∠=,利用数量积公式将MA MB ⋅转化为求2||cos 2MA θ的最小值,从而分析图形可知当 OM l ⊥ 时, 这时2||cos 2MA θ最小,即MA MB ⋅ 最小. 【详解】设2AMB θ∠=, 则 2||||cos 2||cos 2MA MB MA MB MA ⋅==θθ,可知当 OM l ⊥ 时, ||MA 最小且 2θ 最大, cos2θ 最小, 这时 MA MB ⋅ 最小.设点 O 到直线 l 的距离为 d , 则 d =因为圆 O 的半径为, 所以当 OM l ⊥ 时, 1sin 2θ=, 可得 21cos 2,||2MA =θ 226d =-=, 所以 MA MB ⋅ 的最小值为3. 故答案为:3 .15.已知曲线()ln f x x =在点()()1,1P f 处的切线也是曲线()e x g x a =的一条切线,则=a ____________.【答案】2e -##21e 【分析】首先利用导数的几何意义得到切线为1y x =-,设()e x g x a =的切点为()00,e xB x a ,从而得到01lnx a =,代入切线得到切点为()2,1B ,再结合01ln x a=即可得到答案. 【详解】()ln f x x =,()10f =,所以切点()1,0.()1f x x'=,()11k f '==,切线()011y x -=⋅-,即1y x =-. 设()e x g x a =的切点为()00,e xB x a ,()e x g x a '=,()001e x k g x a '===,所以01lnx a=. 所以切点为()0,1B x ,将B 点代入切线1y x =-得:02x =, 又因为01lnx a=,解得:=a 2e -. 故答案为:2e -.16.已知椭圆222:1x C y a+=的一个焦点为F ,若过焦点F 的弦AB 与以椭圆短轴为直径的圆相切,且2AB =,则该椭圆的离心率为______.3132【分析】根据直线AB 与单位圆相切、2AB =列方程,求得,a c ,从而求得椭圆的离心率. 【详解】椭圆1b =,焦距为c,以椭圆短轴为直径的圆为221x y +=,圆心为原点,半径为1. 由于过焦点F 的弦AB 与以椭圆短轴为直径的圆相切,所以直线AB 与x 轴不平行,设直线AB 的方程为,0x my c x my c =+--=,原点到直线AB221,1c m ==+①,由2221x my c x y a =+⎧⎪⎨+=⎪⎩消去x 并化简得()222210m a y mcy ++-=, ()2222440m c m a ∆=++>,设()()1122,,,A x y B x y ,则1222122221mc y y m a y y m a ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以ABc =2222ac m a =+ 222221ac c a==-+,()()()22221,111ac c a a c a a =+--=+-, 由于1a >,所以2221,11,20c a a a a a =+-=+--=, 解得2a =(负根舍去),则2213,c c =+==所以椭圆的离心率为c a =四、解答题17.已知函数()()()()πsin πf x x x x -∈R 的所有正的零点构成递增数列{}()*n a n ∈N .(1)求数列{}n a 的通项公式;(2)设1223nn n b a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求数列{}n b 的前n 项和n T .【答案】(1)()*23n a n n =-∈N (2)222n nn T +=-【分析】(1)首先利用辅助角公式化简()f x ,再求出所有正的零点,利用等差数列即可求解通项. (2)首先求出n b ,再利用错位相减法求解即可.【详解】(1)()()()πsin π2cos π6f x x x x π⎛⎫=-=+ ⎪⎝⎭,由题意令()ππππ62x k k +=+∈Z ,解得()13x k k =+∈Z . 又函数()f x 的所有正的零点构成递增数列{}n a ,所以当0k =时,{}n a 是首项113a =,公差1d =的等差数列,因此()()*121133n a n n n =-⨯+=-∈N .(2)由(1)知121232n nn n b a n ⎛⎫⎛⎫⎛⎫=+=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()123111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,①()23411111111231222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,②由①-②得()12311111111111221212222222212n n n n n n n n T n +++⎛⎫- ⎪⎛⎫⎝⎭=++++-=-=-+⋅ ⎪⎝⎭-,所以222n nn T +=-. 18.为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD .其中AB =3百米,AD =5百米,且△BCD 是以D 为直角顶点的等腰直角三角形.拟修建两条小路AC ,BD (路的宽度忽略不计),设∠BAD =θ,θ∈(2π,π).(1)当cos θ=5AC 的长度; (2)当草坪ABCD 的面积最大时,求此时小路BD 的长度. 【答案】(1)37AC =;(2)26BD 【分析】(1)在△ABD 中,由余弦定理可求BD 的值,利用同角三角函数基本关系式可求sinθ,根据正弦定理可求sin ∠ADB 35=,进而可求cos ∠ADC 的值,在△ACD 中,利用余弦定理可求AC 的值.(2)由(1)得:BD 2=14﹣5,根据三角形面积公式,三角函数恒等变换的应用可求.SABCD=7152+sin (θ﹣φ),结合题意当θ﹣φ2π=时,四边形ABCD 的面积最大,即θ=φ2π+,此时cosφ=sinφ=,从而可求BD 的值.【详解】(1)在ABD ∆中,由2222cos BD AB AD AB AD θ=+-⋅,得214BD θ=-,又cos θ=∴BD =∵,2πθπ⎛⎫∈ ⎪⎝⎭ ∴sin θ=由sin sin BD AB BAD ADB =∠∠3sinADB =∠,解得:3sin 5ADB ∠=,∵BCD ∆是以D 为直角顶点的等腰直角三角形 ∴2CDB π∠=且CD BD ==∴3cos cos sin 25ADC ADB ADB π⎛⎫∠=∠+=-∠=- ⎪⎝⎭在ACD ∆中,2222cos AC AD DC AD DC ADC =+-⋅∠ (2232375⎛⎫=+--= ⎪⎝⎭,解得:AC =(2)由(1)得:214BD θ=-,2113sin 22ABCD ABD BCD S S S BD θ∆∆=+=⨯+⨯ 7sin θθ=-)()157sin 2cos 7sin2θθθφ=-=+-,此时sin φ=cos φ=0,2πφ⎛⎫∈ ⎪⎝⎭当2πθφ-=时,四边形ABCD 的面积最大,即2πθφ=+,此时sin θ=cos θ=∴2141426BD θ⎛=-=-= ⎝,即BD =答:当cos θ=小路AC 草坪ABCD 的面积最大时,小路BD 百米.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,正弦定理,三角形面积公式,三角函数恒等变换的应用以及正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.图1是直角梯形ABCD ,ABCD ,90D ∠=,2AB =,3DC =,AD =,2CE ED =,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且1AC 2.(1)求点D 到平面1BC E 的距离;(2)若113DP DC =,求二面角P BE A --的大小.【答案】(1)详见解析; (2)4π【分析】(1)连接AC ,交BE 于F ,易得四边形ABCE 是菱形,得到AC BE ⊥,再由2221AC AF CF =+,得到1C F AF ⊥,从而有1C F ⊥平面ABED ,然后利用11C DBE D C BE V V --=求解;(2)由(1)建立空间直角坐标系,求得平面BEP 的一个法向量为(),,m x y z =,易知平面BEA 的一个法向量为()0,0,1n =,由cos ,m n m n m n⋅=⋅求解.【详解】(1)解:如图所示:,连接AC ,交BE 于F ,因为90D ∠=,2AB =,3DC =,3AD =2CE ED =, 所以AE =2, 又ABCD ,所以四边形ABCE 是菱形, 所以AC BE ⊥,在ACD 中,2223AC AD CD +=所以3AF CF ==16AC =2221AC AF CF =+,所以1C F AF ⊥,又AF BE F ⋂=, 所以1C F ⊥平面ABED , 设点D 到平面1BC E 的距离为h , 因为1113233,13222C BEDBESS =⨯⨯==⨯⨯=, 且11C DBE D C BE V V --=,所以111133C BEDBEh SC F S ⨯⨯=⨯⨯,解得32h =; (2)由(1)建立如图所示空间直角坐标系:则(()()()133,0,3,0,1,0,0,1,0,3,0,02D C B E A⎫--⎪⎪⎝⎭,所以()()3,1,0,0,2,0BA BE =-=-,因为113DP DC =,所以13313BP BD BD DP DC ⎛=++=- =⎝⎭, 设平面BEP 的一个法向量为(),,m x y z =, 则00m BE m BP ⎧⋅=⎪⎨⋅=⎪⎩,即203320y x y z -=⎧⎪⎨-=⎪, 令1x =,得()1,0,1m =-,易知平面BEA 的一个法向量为()0,0,1n =, 所以2cos ,2m n m n m n⋅==-⋅则3,4m n π=, 易知二面角P BE A --的平面角是锐角, 所以二面角P BE A --的大小为4π. 20.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g .这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布. (1)已知如下结论:若()2,XN μσ,从X 的取值中随机抽取()*,2k k N k ∈≥个数据,记这k 个数据的平均值为Y ,则随机变量2,Y N k σμ⎛⎫~ ⎪⎝⎭.利用该结论解决下面问题.(i )假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y ,求()980P Y ≤;(ii )庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在()950,1050上,并经计算25个面包质量的平均值为978.72g .庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望. 附:①随机变量η服从正态分布()2,N μσ,则()0.6827P μσημσ-≤≤+=,()()220.9545,330.9973P P μσημσμσημσ-≤≤+=-≤≤+=;②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生. 【答案】(1)(i )0.02275;(ii )理由见解析. (2)()119188E ξ=【分析】(1)(i )由正太分布的对称性及3σ原则进行求解;(ii )结合第一问求解的概率及小概率事件进行说明;(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,求出相应的概率,进而求出分布列及数学期望.【详解】(1)(i )因为25010025=,所以()21000,10Y N ,因为()220.9545P μσημσ-≤≤+=,所以()10.954520.022752P ημσ-≤-==,因为9801000210=-⨯,所以()()98020.02275P Y P Y μσ≤=≤-=;(ii )由第一问知()()98020.02275P Y P Y μσ≤=≤-=,庞加莱计算25个面包质量的平均值为978.72g ,978.72980<,而0.022750.05<,为小概率事件,小概率事件基本不会发生,这就是庞加莱举报该面包师的理由;(2)设取出黑色面包个数为随机变量ξ,则ξ的可能取值为0,1,2,则()143154530265287140p ξ==⨯⨯+⨯⨯=;()124135449122265287840p ξ==⨯⨯⨯+⨯⨯⨯=,()121132732265287840p ξ==⨯⨯+⨯⨯=,故分布列为:ξ 01 2 p53140 44984073840其中数学期望()5344973119012140840840188E ξ=⨯+⨯+⨯= 21.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(22,0)±,过椭圆1C 上一点P(2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线P A 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQNR的取值范围. 【答案】(1)12-(2)【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQNR的取值范围即可得出结果.【详解】(1)由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =又因为点(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >, 由题意等轴双曲线2C的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=, 因为直线P A 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线P A 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k --=+,即 2222882441(,)1414k k k k A k k +---++,又因为直线P A 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-(2)由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<. 联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得x =,由题意可知Q NQ x =,R NR x =,所以1Q R x NQ NR x ===, 又因为204n <<,所以2632n >,则11>,即0<<1NQ NR << 所以NQ NR的取值范围为 【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程, 然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况. 22.已知函数()2sin ,R f x x ax a =-∈.(1)当1a =时,求()()ln(1)g x f x x =-+在区间π0,6⎡⎤⎢⎥⎣⎦上的最小值;(2)证明:11111sin sin sin sinln (12342n n n +++++>>且*n ∈N ). 【答案】(1)0 (2)证明详见解析【分析】(1)利用导数判断出()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上的单调性,从而求得最小值.(2)先证得()sin ln 1x x >+在区间10,2⎡⎤⎢⎥⎣⎦上恒成立,进而证得要证明的不等式成立.【详解】(1)()()π2sin ln 106g x x x x x ⎛⎫=--+≤≤ ⎪⎝⎭,()12cos 11g x x x '=--+,()00g '=,令()()()()21π12cos 10,2sin ,01161u x x x u x x u x x ⎛⎫''=--≤≤=-+= ⎪+⎝⎭+, 令()()()()231π22sin 0,2cos 0611v x x x v x x x x ⎛⎫'=-+≤≤=--< ⎪⎝⎭++, 所以()v x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递减,即()u x '在区间π0,6⎡⎤⎢⎥⎣⎦上单调递减. ()2π1π10,0066π16u u u ⎛⎫⎛⎫'''=-+<⋅< ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭, 故存在0π0,6x ⎛⎫∈ ⎪⎝⎭使()00u x '=, 所以()u x 在区间()00,x 单调递增,在区间0π,6x ⎛⎫ ⎪⎝⎭单调递减,π110π616g ⎛⎫'-> ⎪⎝⎭+,所以在区间π0,6⎛⎫ ⎪⎝⎭,()0g x '>, 所以()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上递增,最小值为()00g =. (2)由(1)可知()()()2sin ln 100g x x x x g =--+≥=在区间10,2⎡⎤⎢⎥⎣⎦上恒成立(1π26<), 所以()2sin ln 1x x x -≥+,对于函数()()1ln 102h x x x x ⎛⎫=-+≤≤ ⎪⎝⎭,()()100,1011x h h x x x '==-=>++, 所以()h x 在区间10,2⎡⎤⎢⎥⎣⎦上单调递增, 所以当102x <<时,()0h x >,即()()ln 10,ln 1x x x x -+>>+, 所以()()()2sin ln 1ln 1ln 1x x x x x ≥++>+++,即()sin ln 1x x >+在区间10,2⎡⎤⎢⎥⎣⎦上恒成立, 所以1111sin sin sin sin 234n ++++ 3413411ln ln ln ln ln 23232n n n n n +++⎛⎫>+++=⋅⋅⋅= ⎪⎝⎭. 【点睛】关键点点睛:不等式证明的可考虑综合法以及分析法,本题第2小问是分析法.在导数运用的题目中,第一问的结论可能会用到第二问.特殊不等式(常见不等式)()ln 1x x >+等,可以在平时做题中积累,解答过程中需要利用导数进行简单的证明.当一次求导无法求得函数的单调性时,可考虑利用多次求导来进行求解.。
雅礼中学2021届高三上学期第五次月考 数学试题(含解析)
雅礼中学2021届高三上学期第五次月考数学试题第Ⅰ卷一、单项选择题:本大题共8小题,每小题5分,共40分.1.已知集合{24}A x x =-<∣,{53}B x x =-<∣,则A B ⋂=( )A .{54}x x -<<∣B .{52}x x -<-∣C .{23}x x -∣D .{34}x x <∣ 2.设134z i =-,223z i =-+,则12z z +在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.从5名同学中选若干名分别到图书馆食堂做志愿者,若每个地方至少去2名,则不同的安排方法共有( ) A.20种 B .50种 C .80种 D .100种4.党的十九大报告中指出:从2020年到2035年,在全面建成小康社会的基础上,再奋斗15年,基本实现社会主义现代化.若到2035年底我国人口数量增长至14.4亿,由2013年到2019年的统计数据可得国内生产总值(GDP )y (单位:万亿元)关于年份代号x 的回归方程为 6.6050.36(1,2,3,4,5,6,7)y x x =+=,由回归方程预测我国在2035年底人均国内生产总值(单位:万元)约为( ) A .14.04万元 B .202.16万元 C .13.58万元 D .14.50万元5.随着网络技术的发达,电子支付变得愈发流行,若电子支付只包含微信支付和支付宝支付两种.某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.76.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度为0T ,则经过一定时间t 后的温度T 将满足()012ta a T T T T ⎛⎫⎪⎭⋅-=- ⎝,其中a T 是环境温度,h 称为半衰期.现有一杯85℃的热茶,放置在25℃的房间中,如果热茶降温到55℃,需要10分钟,则欲降温到45℃,大约需要多少分钟?(lg 20.3010≈,1g 30.4771≈)( )A .12B .14C .16D .18 7.在直角三角形ABC 中,90A ︒∠=,2AB =,4AC =,P 在ABC 斜边BC 的中线AD 上,则()AP PB PC ⋅+的最大值为( )A .258 B .52 C .254 D .2528.已知()f x 是定义在R 上的函数,且对任意x R ∈都有(2)(2)4(2)f x f x f +=-+,若函数(1)y f x =+的图象关于点(1,0)-对称,且(1)3f =,则(2021)f =( )A .6B .3C .0D .3-二、多项选择题:本大题共4小题.每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.如果a 、b 、c 满足c b a <<,且0ac <,那么下列选项成立的是( )A .ab ac >B .22cb ab < C .()0c b a -> D .()0ac a c -< 10.已知方程2225 3102x y ax ay a a +++++-=,若方程表示圆,则a 的值可能为( ) A .2- B .0 C .1 D .3 11..在棱长为1的正方体1111ABCD A B C D -中,下列结论正确的是( )A .异面直线1BD 与1BC 所成的角大小为90° B .四面体1D DBC 的每个面都是直角三角形 C .二面角11D BC B --的大小为30°D .正方体1111ABCD A B C D -12.在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受得到.而信号处理背后的“功臣”就是正弦型函数.函数41sin[(21)]()21i i x f x i =-=-∑的图象就可以近似地模拟某种信号的波形,则( )A .函数()f x 为周期函数,且最小正周期为πB .函数()f x 的图象关于点(2,0)π对称C .函数()f x 的图象关于直线2x π=对称 D .函数()f x 的导函数()f x '的最大值为4 第Ⅱ卷三、填空题:本大题共4小题每小题5分,共20分.13.已知抛物线2:2(0)C y px p =>,直线:2l y x b =+经过抛物线C 的焦点,且与C 相交于A 、B 两点.若||5AB =,则p =________.14.数列1,2-,2,3-,3,3-,4,4-,4,4-,5,5-,5,5-,5,…的项正负交替,且项的绝对值为1的有1个,2的有2个,…,n 的有n 个,则该数列第2021项是________.15.筒车是我国古代发明的一种水利灌溉工具因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m 的筒车上的每一个盛水桶都按逆时针方向作角速度为rad /min 3π的匀速圆周运动,平面示意图如右下图,已知筒车中心O 到水面BC 的距距离为2m ,初始时刻其中一个盛水筒位于点0P 处,且0(// ) 6POA OA BC π∠=,则8min 后该盛水筒到水面的距离为________m .16.正方体1111ABCD A B C D -的长为1,E ,F 分别为BC ,1CC 的中点.则平面AEF 截正方体所得的截面面积为________;以点E 11ACC A 的交线长为________. 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在①sin 2B B +=,②cos220B B +-=,③222b ac -=这三个条件中任选一个,补充在下面的问题中,并进行解答.问题:已知ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,若4a =,c =,________,求ABC的面积.18.(本小题满分12分)已知数列{}n a 满足()2*12323n a a a na n n N ++++=∈.(1)求数列{}n a 的通项公式;(2)设()1(1)n n n n b a a +=-+,求数列{}n b 的前2020项和2020S .19.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,1PA AB ==,D= 2BC C =,//AB CD ,2ADC π∠=.(1)求证:PD AB ⊥;(2)求直线AC 与平面PBC 所成角的正弦值.20.(本小題满分12分)在2019年女排世界杯中,中国女子排球队以11连胜的优异战绩成功夺冠,为祖国母亲七十华诞献上了一份厚礼.排球比赛采用5局3胜制,前4局比赛采用25分制,每个队只有赢得至少25分,并同时超过对方2分时,才胜1局;在决胜局(第五局)采用15分制,每个队只有赢得至少15分,并领先对方2分为胜,在每局比赛中,发球方贏得此球后可得1分,并获得下一球的发球权,否则交换发球权,并且对方得1分.现有甲、乙两队进行排球比赛:(1)若前三局比赛中甲已经赢两局,乙赢一局接下来两队赢得每局比赛的概率均为12,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各 14分,且甲已获得下一发球权.若甲发球时甲赢1分的概率为25,乙发球时甲赢1分的概率为35,得分者 获得下一个球的发球权.设两队打了(6)x x 个球后甲赢得整场比赛,求x 的值及相应的概率()p x .21.(本小题满分12分)如图,点A 为椭圆221:21C x y +=的左顶点,过A 的直线1l 交抛物线22:2(0)C y px p =>于B ,C 两点,点C 是AB 的中点.(1)若点A 在抛物线2C 的准线上,求抛物线2C 的标准方程;(2)若直线2l 过点C ,且倾斜角和直线1l 的倾斜角互补,交椭圆1C 于M ,N 两点. (i )证明:点C 的横坐标是定值,并求出该定值; (ii )当BMN 的面积最大时,求p 的值.22.(本小题满分12分)已知函数()21xf x ae x =+-,(其中常数 2.71828e =,是自然对数的底数)(1)讨论函数()f x 的单调性;(2)证明:对任意的1a ,当0x >时, ()()f x x ae x +.参考答案一、单项选择题:本大题共8小题,每小题5分,共40分.2.D 【解析】由题134z i =-,223z i =-+,则121z z i +=-,对应点为(1,1)-.3.B 【解析】当去4个人时,安排方法有4254C C 30=种,当去5个人时,安排方法有3152C C 20=种.综上,不同的安排方法共有50种.故选B .4.A 【解析】到2035年底对应的年份代号为23,由回归方程ˆ 6.6050.36yx =+得,我国国内生产总值约为6.602350.36202.16⨯+=(万亿元),又202.1614.0414.4≈,所以到2035年底我国人均国内生产总值约为14.04万元.故选A .5.B 【解析】设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB ⋃=++.因为()0.45P A =,()0.15P AB =,所以()0.4P B =.故选B .6.C 【解析】根据题意有:1015525(8525)102hh ⎛⎫-=-⇒=⎪⎝⎭, ∴101211lg30.47714525(8525)log 101015.852103lg 20.3010t t t ⎛⎫-=-⇒=⇒=⨯=⨯≈⎪⎝⎭,故选C . 7.B 【解析】以A 为坐标原点,以AB ,AC 方向分别为x 轴,y 轴正方向建立平面直角坐标系,则(2,0)B ,(0,4)C ,中点(1,2)D ,设(,2)P x x ,所以(,2)AP x x =,(1,22)PD x x =--,()2()(2)2[(1)2(22)]10AP PB PC AP PD x x x x x x ⋅+=⋅=-+-=--, 12x =时,最大值为52.故选B . 8.D 【解析】令0x =,得(2)(2)4(2)f f f =+,即(2)0f =,(2)(2)f x f x +=-, 因为函数(1)y f x =+的图象关于点(1,0)-对称, 所以函数()y f x =的图象关于点(0,0)对称, 即()()f x f x -=-,所以(2)(2)(2)f x f x f x +=-=--,即(4)()f x f x +=-,(8)()f x f x +=,则(2021)(25383)(3)(1)3f f f f =⨯-=-=-=-,故选D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.由,0c b ca ab a <⎧⇒<⎨>⎩,所以A 选项正确. 当0b =时,22cb ab =,所以B 选项错误.0,()00b a c b a c -<⎧⇒->⎨<⎩,所以C 选项正确. 0,()00a c ac a c ac ->⎧⇒-<⎨<⎩,所以D 选项正确.故选ACD . 10.AB 【解析】因为方程22253102x y ax ay a a +++++-=表示圆, 所以2225(3)4102a a a a ⎛⎫+-+-> ⎪⎝⎭, 解得1a <,所以满足条件的只有2-与0. 故选AB .11.ABD 【解析】连接1BC ,易知11BC B C ⊥,又正方体中11C D ⊥平面11BCC B , 从而有111C D B C ⊥,1111C D BC C ⋂=,1B C ⊥平面11BD C ,从而得11B C BD ⊥,异面直线1BD 与1B C 所成的角大小为90°,A 正确; 正方体中1DD ⊥平面ABCD ,则1DD BD ⊥,1DD CD ⊥, 同理BC CD ⊥,1BC CD ⊥,∴四面体1D DBC 的四个面都是直角三角形,B 正确;由1BC CD ⊥,1BC CC ⊥,知11D CC ∠是二面角11D BC B --的平面角, 为45°,即二面角11D BC B --为45°,C 错误; 易知1BD 的中点是正方体外接球和内切球的球心,12,,D 正确. 故选ABD .12.BCD 【解析】∵sin3sin5sin7()sin 357x x xf x x =+++, sin[3()]sin[5()]sin[7()]()sin()357x x x f x x πππππ++++=++++sin3sin5sin7sin ()()357x x xx f x f x =----=-≠, 所以,π不是函数()y f x =的最小正周期,A 选项错误; ∵sin(3)sin(5)sin(7)sin3sin5sin7()sin()sin 357357x x x x x xf x x x ----=-+++=----, sin[3(4)]sin[5(4)]sin[7(4)](4)sin(4)357x x x f x x πππππ++++=++++sin3sin5sin7sin ()357x x xx f x =+++=, 所以,函数()y f x =的图象关于直线2x π=对称,C 选项正确; ()cos cos3cos5cos7f x x x x x '=+++,∵1cos 1x -,1cos31x -,1cos51x -,1cos71x -,则()cos cos3cos5cos74f x x x x x '=+++,又 (0)4f '=,所以函数()y f x '=的最大值为4,D 选项确.故选BCD .三、填空题:本大题共4小题,每小题5分,共20分.13.2【解析】法1:由题意知,直线:2l y x b =+,即 22b y x ⎛⎫=+ ⎪⎝⎭. ∵直线l 经过抛物线2:2(0)C y px p =>的焦点, ∴22b p-=,即b p =-. ∴直线l 的方程为2y x p =-.设()11,A x y 、()22,B x y ,联立22,2,y x p y px =-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232px x +=,又||5AB =, ∴12552x x p p ++==,则2p =. 法2:设直线的倾斜角为θ,则tan 2k θ==,得sin θ=,∴2222||5sin p pAB θ===,得2p =. 14.64【解析】将绝对值相同的数字分为一组,则每组数字个数构成等差数列n a n =, 因为(1)6364202163201622n n n +⨯⇒⇒=,前2021项共包含63个完整组,且第63组最后一个数字为第2016项, 故2021项为第64组第5个数字,由奇偶项正负交替规律,其为64. 15.72【解析】根据题意可得,8分钟后盛水桶所转过的角为8833ππ⨯=,而除去一圈,82233πππ-=,所以转8分钟之后0P 所转到的位置P 满足25366POA πππ∠=+=, 所以点P 到水面的距离5723sinm 62d π=+=. 16.98【解析】如图,连接1AD ,则11////EF BC AD , ∴等腰梯形1AEFD 为平面AEF 截正方体所得截面图形, 由正方体棱长为1,得1AD =,EF =,AE ==,则E 到1AD 的距离为4=,∴1192248AEFD S ⎛=+⨯= ⎝. ∵平面11AA C C ⊥平面ABCD ,且平面11AA C C ⋂平面ABCD AC =, 过E 作EH AC ⊥于H ,则EH ⊥平面11ACC A ,∵E 为BC 中点,∴144EH AC ==,以点E 11ACC A 的交线为圆弧,2=,由4CH =, 2HN =,得 3NHC π∠=,∴23MHN π∠=,所求交线为劣弧MN ,长度为2323π⨯=.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.【解析】选①:由sin 2B B +=得:sin 13B π⎛⎫+= ⎪⎝⎭,又 (0,)B π∈, 所以6B π=. 3分选②:由cos220B B +-=得:22cos 30B B +-=,解得cos B =,又 (0,)B π∈,所以6B π=. 3分选③:由222b ac -=-得:222c a b +-=,得222cos 2a c b B ac +-===,又 (0,)B π∈,所以6B π=. 3分又因为sin sin C cB b==1sin 2C B ===由(0,)C π∈,所以3C π=或23C π=. 6分 当3C π=时,2A π=,又因为4a =,所以2b =,c =.所以面积122S =⨯⨯=. 8分当23C π=时,6A π=,所以A B =. 又因为4a =,所以4b =.所以面积1442S =⨯⨯= 10分 18.【解析】(1)由()2*12323n a a a na n n N ++++=∈,可得2123123(1)(1)n a a a n a n -++++-=-,所以22(1)21n na n n n =--=-, 3分 即()*122,n a n n N n=-∈,当1n =,11a =也满足, 所以()*12n a n N n=-∈. 6分 (2)2020122020S b b b =+++111111112222222212232019202020202021⎛⎫⎛⎫⎛⎫⎛⎫=--+-+-+-+--+-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12020120212021=-=. 12分 19.【解析】(1)由PA ⊥平面ABCD ,得PA AB ⊥, 由2ADC π∠=,得AD CD ⊥, 2分 ∵//AB CD ,∴AD AB ⊥, 3分∵AD PA A ⋂=,∴AB ⊥平面PAD ,∵PD ⊂平面PAD ,∴PDAB ⊥. 5分(2)以射线AB ,AD ,AP 为x ,y ,z 轴的正半轴,建立空间直角坐标系. 则(0,0,0)A ,(1,0,0)B ,D ,(0,0,1)P ,C ,AC =,(1,0,1)PB =-,1)PC =-. 7分设平面PBC 的法向量(,,)n x y z =.则由0,0,n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x z x z -=⎧⎪⎨+-=⎪⎩ 9分取31,n ⎛⎫=-⎪⎝⎭,则||3|cos ,|7||||AC n AC n AC n ⋅〈〉==⋅. 11分故直线AC与平面PBC12分20.【解析】(1)甲队最后贏得整场比赛的情况为第四局贏或第四局输第五局赢,所以甲队最后赢得整场比赛的概率为11132224+⨯=.4分(2)根据比赛规则,x的取值只能为2,4或6,对应比分为16:14,17:15,18:16.两队打了2个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲得分,此时概率为224(2)5525p=⨯=;6分两队打了4个球后甲赢得整场比赛,即打第一个球甲发球甲得分,打第二个球甲发球甲失分,打第三个球乙球甲发球甲得分,打第四个球甲发球甲得分,此时概率为2332332272 (4)55555555625p=⨯⨯⨯+⨯⨯⨯=.8分两队打了6个球后甲赢得整场比赛,6个球的胜负情况如图(胜者用√表示),(6)55555555555555555555555515625 p=⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=.12分21.【解析】(1)由题意得(1,0)A-,1分点A在抛物线2C的准线上,则12p=,即2p =, 2分 所以抛物线2C 的标准方程为24y x =. 3分 (2)(i )证明:因为过A 的直线1l 和抛物线交于两点, 所以1l 的斜率存在且不为0,设1l 的方程为1x my =-,其中m 是斜率的倒数, 4分 设()11,B x y ,()22,C x y , 联立方程组21,2,x my y px =-⎧⎨=⎩ 整理得2220y pmy p -+=,0∆>且12122,2,y y pm y y p +=⎧⎨=⎩ 5分因为C 是AB 的中点,所以122y y =, 所以223pm y =,294m p =,2222111332pm p x m m =⋅-=-=, 所以点C 的橫坐标为定值. 6分(ⅱ)因为直线2l 的倾斜角和直线1l 的倾斜角互补, 所以2l 的斜率和1l 的斜率互为相反数. 设直线2l 的方程为2132pm x m y ⎛⎫=--+ ⎪⎝⎭,(),M M M x y ,(),N N N x y , 即2x my =-+, 联立方程组222,210,x my x y =-+⎧⎨+-=⎩整理得()222430m y my +-+=, ()222(4)1224240m m m ∆=-+=->,所以26m >,242M N m y y m +=+,232M Ny y m =+. 8分 因为点C 是AB 中点,所以BMNAMNS S=,因为(1,0)A -到MN的距离d =,M N MN y =-,所以1||2AMNSMN d =⋅= 10分令26t m =-,则13288AMNS===⨯+,当且仅当8t =,214m =时等号成立, 所以9144p=, 956p =. 12分 22.【解析】(1)()2xf x ae '=+.①当0a 时,()0f x '>,函数()f x 在R 上单调递增; 2分 ②当0a <时,由()0f x '>解得2ln x a ⎛⎫<- ⎪⎝⎭,由()0f x '<解得2ln x a ⎛⎫>- ⎪⎝⎭.故()f x 在2,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭单调递减. 4分 综上所述,当0a 时,()f x 在R 上单调递增; 当0a <时,()f x 在2,ln a ⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭上单调递增,在2ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递减. (2)证法一:原不等式等价于120x e x e x a ax a--+-. 6分 令12()x e x g x e x a ax a =--+-,则()2(1)e 1()xx a x g x ax'---=. 当1a 时,11x x ae x e x ----, 8分令()1xh x e x =--,则当0x >时,()10xh x e '=->, ∴当0x >时,()h x 单调递增,即()(0)0h x h >=, 9分∴当01x <<时,()0g x '<;当1x =时,()0g x '=;当1x >时,()0g x '>, ∴()(1)0g x g =. 11分即120x e x e x a ax a--+-,故()()f x x ae x +. 12分 证法二:原不等式等价于()2(1)xa e exx --.令()x g x e ex =-,则()xg x e e '=-.当1x <时,()0g x '<;当1x >时,()0g x '>.∴()(1)0g x g =,即0x e ex -,当且仅当1x =时等号成立. 6分 当1x =时,()2(1)xa e exx --显然成立;当0x >且1x ≠时,0x e ex -. 欲证对任意的1a ,()2(1)xa e exx --成立,只需证2(1)x e ex x --. 8分思路1:∵0x >,∴不等式2(1)xe ex x --可化为120x e x e x x---+, 令1()2x e h x x e x x =---+,则()2(1)1()xx e x h x x'---=, 10分 易证当0x >时,10xe x -->,∴当01x <<时,()0h x '<,当1x >时,()0h x '>, ∴函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增, ∴min ()(1)0h x h ==,∴()0h x ,即120x e x e x x---+, 从而,对任意的1a ,当0x >时,()(e)f x x a x +. 12分思路2:令2(1)()x x ex x e ϕ-+=,则(1)(3)()xx x e x e ϕ'--+-=.()031x e x ϕ'>⇒-<<,()01x x ϕ'<⇒>或03x e <<-, 10分∴()x ϕ在(0,3)e -上单调递减,在(3,1)e -上单调递增,在(1,)+∞上单调递减. ∵(0)(1)1ϕϕ==,∴2(1)()1xx ex x eϕ-+=,即2 (1)xx e ex --. 从而,对任意的1a ,当0x >时,()()f x x ae x +. 12分 证法三:原不等式等价于2210x ae x x aex +---.令2()(2)1xg x ae x ae x =----,()2(2)xg x ae x ae '=---. 令()2(2)xh x ae x ae =---,则()2xh x ae '=-,其中0x >. 6分 ①当2a 时,()0h x '>,()h x 在(0,)+∞上单调递增.注意到(1)0h =,故当(0,1)x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>.∴()g x 在(0,1)上单调递减,在(1,)+∞上单调递增. ∴min ()(1)0g x g ==,即 ()()f x x ae x +. 8分 ②当12a <时,20ln 1a ⎛⎫<< ⎪⎝⎭. 当20ln x a ⎛⎫<< ⎪⎝⎭时,()0h x '<,()h x 单调递减;当2ln x a ⎛⎫> ⎪⎝⎭时,()0h x '>,()h x 单调递增.(i )若221a e <-,则(0)(1e)20h a =-+.∵2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴当(0,1)x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>. 与①同,不等式成立. 10分 (ⅱ)若211a e <-,则(0)(1)20h a e =-+>, ∵2ln(1)0h h a ⎛⎫<= ⎪⎝⎭, ∴020,ln x a ⎛⎫⎛⎫∃∈⎪ ⎪⎝⎭⎝⎭,使得()00h x =,且当()00,x x ∈时,()()0g x h x '=>; 当()0,1x x ∈时,()()0g x h x '=<;当(1,)x ∈+∞时,()()0g x h x '=>. ∴()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在(1,)+∞上单调递增. ∵(0)10g a =-,(1)0g =, 此时,()0g x ,即()()f x x ae x +. 综上所述,结论得证. 12分。
湖南省长沙市雅礼中学2019届高三上学期月考(五)理科数学试题 PDF版含答案
$ $ " "! # 解析' 由等差数列的性质可得$ % % % % 则$ % + ! -!& $ $ $ ( $ ' $ 7 $ # $ & ( $ ' 7 $ # *0 $ $ * 0 # %1 " "1 " (0 " "0 " "0 (0 #0 #0 "0 #! " " ! # " ( 5 " # % % 故选 -! 0 $ & " ( $ *0 " & ' " (0 "1 #
# # " % 整个密闭区域的面积为 # 解析' 如图% 圆的方程为 ( % % " % # % ! /!& 1 0# #! ,! " " #% 槡 +
#! +!
$
# 槡
" +槡 #% #" 满足条件的区域面积为# ! 0 ( !( ( 0#5 8 $ ( $ " " " # " ( "% # 故选 ( 槡 由几何概型知所求概率为 0 % 0 /! (! ( ' # ( ( $ +槡 # " ( 则 解析' 以 , 为原点建立如图所示的坐标系% " $ ! .!& -, -, % " % % " % % " % % " % % " % 设 /! % " % #! -! .! .0 ! !" !# # /0 ! 2 3 4 4 9 : ! # ! # # $ # ! " $ 2 3 4 4 9 : 1#
湖南省雅礼中学2021届高三上学期月考试卷(四)数学试题 PDF版含答案
q 2 或 q 0 (舍 ) ,an a1qn1 2n1 ;
(2)由(1)知: an
2n1 ,bn
log2
1 an1 log2
an3
1 n(n
2)
1 (1 2n
1 n
), 2
Tn
1 [(1 21
1) 3
(1 2
1) 4
(1 3
1) 5
(1 n 1
1) n 1
(1 n
(2)设 bn
log2
1 an1 log2
an3
,求数列 {bn} 的前
n
项和 Tn
.
19.(本小题满分 12 分) 如图,在四棱锥 P ABCD 中,底面 ABCD 为正方形,PA 底面 ABCD ,PA AB ,E 为线段 PB 的中点.
(1)证明:点 F 在线段 BC 上移动时,△AEF 为直角三角形; (2)若 F 为线段 BC 的中点,求二面角 A EF D 的余弦值.
湖南省长沙市雅礼中学2022-2023学年高三上学期月考卷(三)数学试题+PDF版含答案
雅礼中学2023届高三月考试卷(三).数学得分:__________.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共8页.时量120分钟,满分150分.第I 卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}20,ln 1A xx x B x y x =-==-∣∣,则A B ⋃=()A.[]0,1B.[)0,1C.(],1∞-D.(),1∞-2.设复数12,z z 在复平面内的对应点关于实轴对称,11i z =+,则12z z =()A.2B.2- C.1i+ D.1i-3.已知,,,a b c d 是四条直线,,αβ是两个不重合的平面,若a b c d ∥∥∥,,,,a b c d ααββ⊂⊂⊂⊂,则α与β的位置关系是()A.平行B.相交C.平行或相交D.以上都不对4.设向量,a b 满足a b a b +=-= a b ⋅=()A.1B.2C.3D.55.已知圆229x y +=的弦过点()1,2P ,当弦长最短时,该弦所在直线的方程为()A.20y -=B.250x y +-=C.20x y -=D.10x -=6.已知0,0x y >>,且7x y +=,则()()12x y ++的最大值为()A.36B.25C.16D.97.已知()(),f x g x 都是定义在R 上的函数,且()()(0xf xg x a a =⋅>,()()()()()()()()1151),,112f f a f xg x f x g x g g -≠<+=-'',则a 的值为()A.5B.2C.25D.128.函数11y x=-的图象与函数()2sin 24y x x π=-的图象所有交点的横坐标之和等于()A.8B.7C.6D.5二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列圆中与圆22:2410C x y x y ++-+=相切的是()A.22(2)(2)9x y +++= B.22(2)(2)9x y -++=C.22(2)(2)25x y -+-=D.22(2)(2)4x y -++=10.已知拋物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于()()1122,,,P x y Q x y 两点,点P 在l 上的射影为1P ,则下列说法正确的是()A.若125x x +=,则7PQ =B.以PQ 为直径的圆与准线l 相切C.设()0,1M ,则1PM PP +D.过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条11.已知函数()2cos 2cos (0)f x x x x ωωωω=+>,且()f x 的最小正周期为π.将函数()f x 的图象向右平移6π个单位长度后得到函数()g x 的图象,则下列选项正确的是()A.ω的值为1B.()f x 的单调递增区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C.0,2x π⎡⎤∈⎢⎥⎣⎦时,()g x 的最大值为3D.0,2x π⎡⎤∈⎢⎥⎣⎦时,()g x 的最小值为1-12.某公司有10名股东.其中任何六名股东所持股份之和不少于总股份的一半,则下列选项正确的有()A.公司持股最少的5位股东所持股份之和可以等于512B.公司持股较多的5位股东所持股份均不少于112C.公司最大的股东所持股份不超过14D.公司最大的股东所持股份可以超过14但不超过310第II 卷三、填空题:本题共4小题,每小题5分,共20分.13.数据2,4,6,8,10,12,13,15,16,18的第70百分位数为__________.14.在我国古代书籍《九章算术》第六章“均输”中有一问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”意思是:今有五个人分五钱,前两人所得钱数与后三人所得钱数一样多,问每个人分别分得多少钱?"均输”的意思是各人所得依次相差一样多,问:末两人共得几何?答曰:__________钱.15.在ABCD 中,0AB BD ⋅=,沿BD 折成直二面角A BD C --,且2221AB BD +=,则三棱锥A BCD -的外接球的表面积为__________.16.已知椭圆C 过点()1,2M ,焦点(0,,平行OM 的直线l 与椭圆C 交于,A B ,两点则OAB S 的最大值为__________.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明证明过程或演算步骤.17.(本小题满分,10分)已知()140,cos 2435ππαβπβαβ⎛⎫<<<<-=+= ⎪⎝⎭.(1)求sin2β的值;(2)求cos 4πα⎛⎫+⎪⎝⎭的值.18.(本小题满分12分)如图在底面为直角梯形的四棱锥P ABCD -中,,90,AD BC ABC PA ∠=⊥∥ 平面ABCD,3,2,6PA AD AB BC ====.(1)求证:BD ⊥平面PAC ;(2)求二面角P BD A --的大小.19.(本小题满分12分)某城市为了了解高中生的身高情况,从某次全市高中生体检中抽取了一所学校的n 名学生的身高数据,整理分组成区间[140,150],(150,160],(160,170],(170,180],(180,190],单位:厘米,并画出了频率分布直方图如右,已知从左到右前三个小组频率之比为2:3:4,其中第二小组有15人.(1)求样本频数n 的值;(2)以此校的样本数据来估计全市的总体数据,若从全市所有高中学生(人数很多)中任选三人,设X 表示身高超过160厘米的学生人数,求X 的分布列及期望;(3)某班主任对全班50名学生进行了作业量多少的调查.数据如下表:认为作业多认为作业不多合计喜欢玩游戏18927不喜欢玩游戏81523合计262450试通过计算说明在犯错误的概率不超过多少的前提下认为喜欢玩游戏与作业量的多少有关系.附:α0.050.0250.0100.0050.001αχ 3.8415.0246.6357.87910.828()()()()22(),.n ad bc n a b c d a b c d a c b d χ-==+++++++20.(本小题满分12分)设()121f x x=+,定义()()()()1101,02n n n nn f f x f f x a f +-⎡⎤==⎣⎦+,其中*n N ∈.(1)求数列{}n a 的通项公式;(2)若12232232n n T a a a na =++++ ,求2n T .21(本小题满分12分)如图x 平面直角坐标系xOy 中,一直角三角形,90,,ABC C B C ∠= 在x 轴上且关于原点O 对称,D 在边BC 上,3,BD DC ABC = 的周长为12.若一双曲线E 以,B C 为焦点,且经过,A D 两点.(1)求双曲线E 的方程;(2)若一过点(),0P m (m 为非零常数)的直线与双曲线E 相交于不同于双曲线顶点的两点,M N ,且MP PN λ=,问在x 轴上是否存在定点G ,使()BC GM GN λ⊥- ?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.22.(本小题满分12分)已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+ 都成立.雅礼中学2023届高三月考试卷(三)数学参考答案一、单项选择题13.1414.1.515.π16.2四、解答题17.【解析】(1)27sin2cos 22cos 1249ππβββ⎛⎫⎛⎫=-=--=- ⎪ ⎪⎝⎭⎝⎭.(2)02παβπ<<<< ,33,44422πππππβαβ∴<-<<+<.()sin 0,cos 04πβαβ⎛⎫∴->+< ⎪⎝⎭()14cos ,sin 435πβαβ⎛⎫-=+= ⎪⎝⎭ ,()3sin ,cos 435πβαβ⎛⎫∴-=+=- ⎪⎝⎭.()3143cos cos 44535315ππααββ⎡⎤⎛⎫⎛⎫∴+=+--=-⨯+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.18.【解析】(1)以A 为原点,分别以,,AB AD AP 为,,x y z 轴建系,则()()()()()0,0,0,,,0,2,0,0,0,3A B C D P ,()()()0,0,3,,2,0AP AC BD ∴===-,0,0BD AP BD AC ∴⋅=⋅= ,,BD AP BD AC PA AC A ∴⊥⊥⋂=,BD ∴⊥平面PAC .(2)设平面ABD 的法向量为()0,0,1m = ,平面PBD 的法向量为(),,1n x y =,由0,0n BP n BD ⋅=⋅=,3,30,2320,2x y y ⎧⎧=⎪⎪-+=⎪⎪∴⇒⎨⎨-+=⎪⎪=⎪⎪⎩⎩3,,122n ⎛⎫∴= ⎪ ⎪⎝⎭ ,1cos ,2m n ∴= ,∴二面角P BD A --的大小为6019.【解析】(1)设前三个小组的频率分别为123,,p p p ,由条件得()21311233,22,10.0050.02010,p p p p p p p ⎧=⎪⎪=⎨⎪++=-+⨯⎪⎩解得:123111,,643p p p ===,由2115604p n n==⇒=.(2)由(1)知一个高中生身高超过160厘米的概率为()370.0050.02010,12p p =++⨯=由于高中生人数很多,所以X 服从二项分布,()33775773,,C ,0,1,2,3,3.121212124kkk X B P X k k EX -⎛⎫⎛⎫⎛⎫~====⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)将表中的数据代入公式()()()()22()p ad bc a b c d a c b d χ-=++++,得到2250(181589) 5.059 5.024********χ⨯⨯-⨯=≈>⨯⨯⨯,查表知()25.0240.025P χ≥=,即说明在犯错误的概率不超过0.025的前提下认为喜欢玩游戏与作业量的多少有关系.20.【解析】(1)()()()()11110211202,,0022410n n f a f f f f +-⎡⎤=====⎣⎦++,()()()()()()()()1112101101001112024202022210n n n n n n n n n n f f f f a a f f f f +++--+--∴====-⋅-+++++,112n n a a +∴=-,∴数列{}n a 是首项为14,公比为12-的等比数列,11142n n a -⎛⎫=- ⎪⎝⎭.(2)21232232n n T a a a na =++++ ,212321111123222222n n T a a a na ⎛⎫⎛⎫⎛⎫⎛⎫-=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:221211142311124212nn nT n -⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+⨯- ⎪⎝⎭+,22131192n n n T +⎛⎫=- ⎪⎝⎭21.【解析】(1)设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则()()(),0,,0,,0B c D a C c -.由3BD DC =,得()3c a c a +=-,即2c a =.222||16,124,2.AB AC a AB AC a AB AC a ⎧-=⎪⎪∴+=-⎨⎪-=⎪⎩解得1a =,2,c b ∴==∴双曲线E 的方程为2213y x -=.(2)设在X 轴上存在定点(),0G t ,使()BC GM GN λ⊥-.设直线的方程为()()1122,,,,x m ky M x y N x y -=.由MP PN λ=,得120y y λ+=,即12y y λ=-.①()()12124,0,,BC GM GN x t x t y y λλλλ=-=--+-,()()12BC GM GN x t x t λλ∴⊥-⇔-=-.即()12ky m t ky m t λ+-=+-.②把①代入②,得()()121220ky y m t y y +-+=③把x m ky -=代入2213y x -=,并整理得()()222316310k y kmy m -++-=.其中2310k -≠且Δ0>,即213k ≠,且2231k m +>.()2121222316,3131m km y y y y k k --+==--.代入③,得()()22261603131k m km m t k k ---=--,化简得kmt k =,当1t m=时,上式恒成立.因此,在x 轴上存在定点1,0G m ⎛⎫⎪⎝⎭,使()BC GM GN λ⊥- .22.【解析】(1)()121f x x x a=--+',0x = 时,()f x 取得极值,()00f ∴'=,故120100a-⨯-=+,解得1a =.经检验1a =符合题意.(2)由1a =知()()2ln 1f x x x x =+--,由()52f x x b =-+,得()23ln 102x x x b +-+-=,令()()23ln 12x x x x b ϕ=+-+-,则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=,在区间[]0,2上恰有两个不同的实数根.或()()()()4511321221x x x x x x ϕ-+-'=-+=++,当[]0,1x ∈时,()0x ϕ'>,于是()x ϕ在[]0,1上单调递增;当(]1,2x ∈时,()0x ϕ'<,于是()x ϕ在(]1,2上单调递减.依题意有()()()()()00,31ln 1110,22ln 12430,b b b ϕϕϕ⎧=-≤⎪⎪=+-+->⎨⎪=+-+-≤⎪⎩解得,1ln31ln22b -≤<+.(3)()()2ln 1f x x x x =+--的定义域为{1}xx >-∣,由(1)知()()231x x f x x -'+=+.令()0f x '=得,0x =或32x =-(舍去),∴当10x -<<时,()()0,f x f x '>单调递增;当0x >时,()()0,f x f x '<单调递减.()0f ∴为()f x 在()1,∞-+上的最大值.()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立),对任意正整数n ,取10x n =>,得2111ln 1n n n⎛⎫+<+ ⎪⎝⎭,211ln n n n n ++⎛⎫∴< ⎪⎝⎭.故()23413412ln2ln ln lnln 14923n n n n n++++++>++++=+ .。
湖南省长沙市雅礼中学2021届高三月考数学试卷(二)(含解析)
"#!67 -"%-# $gG89W3$## !+4##'"!3#$&4#$"=:%)[ \&z -"-# '#43#&\1 G89 W);Ày
\&7G/1-"-# =<=&]8/71-" '8/71-# .8/7-"-# çû&9áÿ>?1Ä=<
*+þ1-#0$ %/&-1-"-#'($6
)+@=U9'".#槡&
!"#$%&'!!3
"2!!à¬$ái"#i" Hghlmnopqrs=XtN&u+,Hu°?\vpuw"$$¿qx¿!Güy-
novp&z{|å"$$¿w}=~¾à%õà%ÆàÑëJÃ&Ã>aÔG ¿=qx C$! C$ b $&$!#&$!#&$!0&$!0&$!1&$!1&$!%&$!%&"!$$ç|&B -`P¦=U$VsP!?$]$'$&$!1&9ß?ó¿G*åqx¿+&>9ß?ó¿G*`åq x¿+.þ$'$&$!#/&ß?ó¿G*v¿+!z{|å"$$¿læ=IëJð&læ IG*+^*{++!
^Dÿ
" 8B
.4B
=
B K)<B!_`a&'¶q#V$g[Fb%yq[Fc$!
湖南省长沙市雅礼中学2021-2022学年高三上学期入学考试数学试题
长沙市雅礼中学2021-2022学年高三上学期入学考试数学试题一、单选题1.已知集合M =x lg x -1 ≤0 ,N =x x <2 .则M ∪N =()A.∅B.1,2C.-2,2D.-1,0,1,22.已知复数z 满足z 1-i =2+i i ,则z =()A.1B.2C.52D.1023.在正方体ABCD -A 1B 1C 1D 1中,P 为B 1D 1的中点,则直线PB 与AD 1所成的角为()A.π2B.π3C.π4D.π64.把函数y =f (x )图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin x -π4 的图像,则f (x )=()A.sin x 2-7π12B.sin x 2+π12C.sin 2x -7π12D.sin 2x +π125.已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,PF 1 =3PF 2 ,则C 的离心率为()A.72B.132C.7D.136.若cos α-π4 =35,则sin2α=()A.2425B.-725C.-2425D.7257.数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数字通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门]选修课程选完,则每位同学的不同选修方式有()A.60种B.78种C.84种D.144种8.设f x 是定义在R 上的奇函数,满足f 2-x =f x ,数列a n 满足a 1=-1,且a n +1=1+1n a n +2n n ∈N *.则f a 22 =()A.0B.-1C.21D.22二、多选题9.设向量a 、b 满足a =b =1,且b -2a=5,则以下结论正确的是()A.a ⊥bB.a +b =2C.a -b=2 D.<a ,b>=60∘10.下列命题为真命题的是()A.对具有线性相关关系的变量x 、y ,有一组观测数据x i ,y i i =1,2,⋯,10 ,其线性回归方程是y=-2b x +1,且x 1+x 2+x 3+⋯+x 10=3y 1+y 2+y 3+⋯+y 10 =9,则实数b 的值是1118B.从数字1、2、3、4、5、6、7、8中任取2个数,则这2个数的和为奇数的概率为47C.已知样本数据x 1、x 2、⋯、x n 的方差为4,则数据2x 1+30、2x 2+30、⋯、2x n +30的标准差是4D.已知随机变量X ∼N 1,σ2 ,若P X <-1 =0.3,则P X <2 =0.711.以下四个命题表述正确的是()A.直线3+m x +4y -3+3m =0m ∈R 恒过定点-3,-3B.圆x 2+y 2=4上有且仅有3个点到直线l :x -y +2=0的距离都等于1C.曲线C 1:x 2+y 2+2x =0与曲线C 2:x 2+y 2-4x -8y +m =0恰有三条公切线,则m =4D.已知圆C :x 2+y 2=4,点P 为直线x 4+y 2=1上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点1,2 12.在正方体AC 1中,E 是棱CC 1的中点,F 是侧面BCC 1B 1内的动点,且A 1F 与平面D 1AE 的垂线垂直,如图所示,下列说法正确的是()A.点F 的轨迹是一条线段B.A 1F 与BE 是异面直线C.A 1F 与D 1E 不可能平行D.三棱锥F -ABD 1的体积为定值三、填空题13.已知函数f (x )=x -12,x ≤1log 12x ,x >1,若f x 0 =-2,则x 0=.14.点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的距离的最小值是.15.已知F 是抛物线C :y 2=8x 的焦点,Μ是C 上一点,F Μ的延长线交y 轴于点Ν.若Μ为F Ν的中点,则F Ν =.16.某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k -1+1-5T k -15-T k -25 ,y k =y k -1+T k -15-T k -25 . T (a )表示非负实数a 的整数部分,例如T (2.6)=2,T (0.2)=0.按此方案,第6棵树种植点的坐标应为.第2008棵树种植点的坐标应为.四、解答题17.已知数列a n 满足:a n =n 2a n +12+12,n =2k -1,k ∈N ∗2a n 2+n 2,n =2k ,k ∈N ∗(1)问数列a n 是否为等差数列或等比数列?说明理由.(2)求证:数列a 2n2n 是等差数列,并求数列a 2n 的通项公式.18.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a +c =2b cos A .(1)证明∶B =2A ;(2)设D 为BC 边上的中点,点E 在4B 边上,满足DE ⋅CB =DE ⋅CA ,且b =3a ,四边形ACDE 的面积为1538,,求线段CE 的长.19.如图,在四棱台ABCD-A1B1C1D1中,底面四边形ABCD为菱形,AA1=A1B1=12AB=1,∠ABC=60∘.AA1⊥平面ABCD.(1)若点M是AD的中点,求证:C1M⊥A1C;(2)棱BC上是否存在一点E,使得二面角E-AD1-D的余弦值为13?若存在,求线段CE的长;若不存在,请说明理由.20.某新型双轴承电动机需要装配两个轴承才能正常工作,且两个轴承互不影响.现计划购置甲,乙两个品牌的轴承,两个品牌轴承的使用寿命及价格情况如下表:品牌价格(元/件)使用寿命(月)甲10007或8乙4003或4已知甲品牌使用7个月或8个月的概率均为12,乙品牌使用3个月或4个月的概率均为12.(1)若从4件甲品牌和2件乙品牌共6件轴承中,任选2件装入电动机内,求电动机可工作时间不少于4个月的概率;(2)现有两种购置方案,方案一:购置2件甲品牌;方案二:购置1件甲品牌和2件乙品牌(甲、乙两品牌轴承搭配使用).试从性价比(即电动机正常工作时间与购置轴承的成本之比)的角度考虑,选择哪一种方案更实惠?21.已知椭圆C :y 2a 2+x 2b2=1a >b >0 的焦距与椭圆x 23+y 2=1的焦距相等,且C 经过抛物线y =x -1 2+2的顶点.(1)求C 的方程;(2)若直线y =kx +m 与C 相交于A ,B 两点,且A ,B 关于直线l :x +ty +1=0对称,O 为C 的对称中心,且△AOB 的面积为103,求k 的值.22.已知函数f x =x ln x -12x 3+a ,g x =xe 1-x +2a -12x 3-x (a ∈R ,e 为自然对数的底数).(1)若函数f x 在1e,1 上有零点,求a 的取值范围;(2)当x ≥1时,不等式f x ≤g x 恒成立,求实数a 的取值范围.参考答案12345678 C D D B A B B A 9101112AC BC BCD ABD 13141516426(1,2);(3,402) 17.(1)数列a n不是等差数列也不是等比数列,理由见解析;(2)证明略,a2n=n+22n-1n∈N*.18.(1)证明略;(2)132.19.(1)证明略;(2)存在,且CE=1-32.20.(1)4160;(2)方案二更实惠.21.(1)y24+x22=1;(2)k=±3.22.(1)12e3+1e<a<12;(2)23,+∞.。
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)
雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在,”的否定是A.存在,B.不存在,C.任意,D.任意,2.若集合(i 是虚数单位),,则等于A. B. C. D.3.已知奇函数,则A.-1B.0C.1D.4.已知,是两条不同的直线,,是两个不同的平面,则下列可以推出的是A.,, B.,,C.,, D.,,5.已知函数图象的一个最高点与相邻的对称中心之间的距离为5,则A.0B. C.4D.6.已知是圆上一个动点,且直线与直线x ∈Z 220x x m ++…x ∈Z 220x x m ++>x ∈Z 220x x m ++>x ∈Z 220x x m ++…x ∈Z 220x x m ++>{}2341,i ,i ,i A ={}1,1B =-A B ⋂{}1-{}1{}1,1-∅()()22cos x x f x m x -=+⋅m =12m l αβαβ⊥m l ⊥m β⊂l α⊥m l ⊥l αβ⋂=m α⊂m l P m α⊥l β⊥l α⊥m l P m βP()()4cos (0)f x x ωϕω=+>6f ϕπ⎛⎫-= ⎪⎝⎭2ϕ2ϕM 22:1C x y +=1:30l mx ny m n --+=2:30l nx my m n +--=(,,)相交于点,则的取值范围为A. B.C. D.7.是椭圆上一点,,是的两个焦点,,点在的角平分线上,为原点,,且.则的离心率为A.8.设集合,那么集合中满足条件“”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数满足,,并且当时,,则下列关于函数说法正确的是A. B.最小正周期m n ∈R 220m n +≠P PM 1,1⎤-+⎦1⎤-⎦1,1⎤-+⎦1⎤+⎦P 2222:1(0)x y C a b a b+=>>1F 2F C 120PF PF ⋅= Q 12F PF ∠O 1OQPF P OQ b =C 12(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=A 1234513x x x x x ++++……()f x ()()22f x f x ππ+=-()()0fx f x ππ++-=()0,x π∈()cos f x x =()f x 302f π⎛⎫=⎪⎝⎭2T π=C.的图象关于直线对称D.的图象关于对称11.若双曲线,,分别为左、右焦点,设点是在双曲线上且在第一象限的动点,点为的内心,,则下列说法不正确的是A.双曲线的渐近线方程为B.点的运动轨迹为双曲线的一部分C.若,,则D.不存在点,使得取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为________.13.各角的对应边分别为,,,满足,则角的取值范围为________.14.对任意的,不等式(其中e 是自然对数的底)恒成立,则的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求数列的前项和.16.(本小题满分15分)如图,在四棱锥,,,,点在上,且,.(1)若为线段的中点,求证:平面;()f x x π=()f x (),0π-22:145x y C -=1F 2F P I12PF F △()0,4A C 045x y±=I 122PF PF =12PI xPF yPF =+ 29y x -=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭4x ABC △a b c 1b ca c a b+++…A *n ∈N 11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…a n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T P ABCD -BCAD P 1AB BC ==3AD =E AD PE AD ⊥2DE PE ==F PE BFP PCD(2)若平面,求平面与平面所成夹角的余弦值.17.(本小题满分15分)已知函数有两个极值点为,,.(1)当时,求的值;(2)若(e 为自然对数的底数),求的最大值.18.(本小题满分17分)已知抛物线的焦点为,为上任意一点,且的最小值为1.(1)求抛物线的方程;(2)已知为平面上一动点,且过能向作两条切线,切点为,,记直线,,的斜率分别为,,,且满足.①求点的轨迹方程;②试探究:是否存在一个圆心为,半径为1的圆,使得过可以作圆的两条切线,,切线,分别交抛物线于不同的两点,和点,,且为定值?若存在,求圆的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量,,,…,(且),令,如果存在,使得,那么称是该向量组的“长向量”.(1)设,且,若是向量组,,的“长向量”,求实数的取值范围;(2)若,且,向量组,,,…,是否存在“长向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“长向量”,其中,AB ⊥PAD PAB PCD ()21ln 2f x x x ax =+-1x ()212x x x <a ∈R 52a =()()21f x f x -21e x x …()()21f x f x -2:2(0)E x py p =>F H E HF E P P E M N PM PN PF 1k 2k 3k 123112k k k +=P ()0,(0)Q λλ>P Q 1l 2l 1l 2l E ()11,A s t ()22,B s t ()33,C s t ()44,D s t 1234s s s s Q 1a 2a 3a n a N n ∈3n …123n n S a a a a =++++{}()1,2,3,,p a p n ∈ p n p a S a - …p a(),2n a n x n =+n ∈N 0n >3a 1a 2a 3ax sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭n ∈N 0n >1a 2a 3a 7a 1a 2a3a1a2a3a()1sin ,cos a x x =.设在平面直角坐标系中有一点列,,,…,,满足为坐标原点,为的位置向量的终点,且与关于点对称,与(且)关于点对称,求的最小值.()22cos ,2sin a x x = 1P 2P 3P n P 1P 2P 3a 21k P +2k P 1P 22k P +21k P +k ∈N 0k >2P10151016P P参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C 【解析】集合,,.故选C.3.A【解析】是奇函数,,,,,.故选A.4.D 【解析】有可能出现,平行这种情况,故A 错误;会出现平面,相交但不垂直的情况,故B 错误;,,,故C 错误;,,又由,故D 正确.故选D.5.C 【解析】设的最小正周期为,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有,得,则有,解得,所以,所以.故选C.6.B 【解析】依题意,直线恒过定点,直线恒过定点,显然直线,因此,直线与交点的轨迹是以线段为直径的圆,其方程为:,圆心,半径,而圆的圆心,半径,如图:,两圆外离,由圆的几何性质得:,{}i,1,1,i A =--{}1,1B =-{}1,1A B ⋂=-()f x ()()22cos x x f x m x -=+⋅()()()2222x x x xf x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =()()122cos 0x x m x -∴++=10m ∴+=1m =-αβαβm l P m α⊥l βαβ⊥⇒P l α⊥m l m α⇒⊥P m βαβ⇒⊥P ()f x T 224254T ⎛⎫+= ⎪⎝⎭12T =212πω=6πω=()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭()()1:310l m x n y ---=()3,1A ()()2:130l n x m y -+-=()1,3B 12l l ⊥1l 2l P AB 22(2)(2)2x y -+-=()2,2N 2r =C ()0,0C 11r =12NC r r =>+12min1PMNC r r =--=-,所以的取值范围为.故选B.7.C【解析】如图,设,,延长交于点,由题意知,为的中点,故为中点,又,即,则,又由点在的角平分线上得,则是等腰直角三角形,故有化简得即代入得,即,又,所以,所以,.故选C.8.D【解析】因为或,所以若,则在中至少有一个,且不多于3个.所以可根据中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为,所以共有种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为,故A 正确;,结合A 选项可知第70百分位数为第7个数和第812max1PMNC r r =++=+PM 1⎤-+⎦1PF m =2PF n =OQ 2PF A 1OQ PF P O 12F F A 2PF 120PF PF ⋅= 12PF PF ⊥2QAP π∠=Q 12F PF ∠4QPA π∠=AQP △2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩2,2,m n b m n a -=⎧⎨+=⎩,,m a b n a b =+⎧⎨=-⎩2224m n c +=222()()4a b a b c ++-=2222a b c +=222b a c =-2223a c =223e =e =0i x =1i x =1234513x x x x x ++++……()1,2,3,4,5i x i =1i x =i x 2315C 2N =⋅3225C 2N =⋅435C 2N =⋅23324555C 2C 2C 2130N =⋅+⋅+⋅=422616-=1070%7⨯=个数的平均数,即,故B 不正确;这10年粮食年产量的平均数为,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于时,,并且满足,则函数的图象关于直线对称.由于,所以,故,故,故函数的最小正周期为,根据,知函数的图象关于对称.由于时,,,故A 正确,由于函数的最小正周期为,故B 错误;由函数的图象关于对称,易知的图象不关于直线对称,故C 错误;根据函数图象关于点对称,且函数图象关于直线对称,知函数图象关于点对称,又函数的最小正周期为,则函数图象一定关于点对称,故D 正确.故选AD.11.ABD 【解析】双曲线,可知其渐近线方程为,A错误;设,,的内切圆与,,分别切于点,,,可得,,,由双曲线的定义可得:,即,又,解得,则点的横坐标为,由点与点的横坐标相同,即点的横坐标为,故在定直线上运动,B 错误;由,且,解得,,,,则,同理可得:,设直线,直线,联立方程得,设的内切圆的半径为,则,解得,即,353836.52+=()13232302835384239263533.710⨯+++++++++=()0,x π∈()cos f x x =()()22f x f x ππ+=-()f x2x π=()()0fx f x ππ++-=()()fx f x ππ+=--()()()()()22f x f x f x f x ππππ--+=+=--=-()()()24f x f x f x ππ=-+=+4π()()0fx f x ππ++-=()f x (),0π()0,x π∈()cos f x x =3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4π()f x (),0π()f x x π=(),0π2x π=()3,0π4π(),0π-22:145x y C -=02x =1PF m =2PF n =12PF F △1PF 2PF 12F F S K T PS PK =11F S FT =22F T F K =2m n a -=12122F S F K FT F T a -=-=122FT F T c +=2F T c a =-T a I T I 2a =I 2x =122PF PF =1224PF PF a -==18PF =24PF =1226F F c ==126436167cos 2868PF F ∠+-∴==⨯⨯12sin PF F ∠==12tan PF F ∠∴=21tan PF F ∠=)1:3PF y x =+)2:3PF y x =-(P 12PF F △r ()12118684622PF F S r =⨯⨯=⨯++⋅△r =I ⎛ ⎝,,,由,可得解得,,故,C 正确;,,当且仅当,,三点共线取等号,易知,故存在使得取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90 【解析】展开式的通项公式为,令,解得,所以展开式中的系数为.13. 【解析】从所给条件入手,进行不等式化简,观察到余弦定理公式特征,进而利用余弦定理表示,由可得,可得.14. 【解析】对任意的,不等式(其中e 是自然对数的底)恒成立,只需恒成立,只需恒成立,只需恒成立,2,PI ⎛∴=- ⎝ (17,PF =- (21,PF =- 12PI xPF yPF =+ 27,,x y -=--⎧⎪⎨=⎪⎩29x =49y =29y x -=1224PF PF a -== 12244PA PF PA PF AF ∴+=+++…A P 2F ()1min549PA PF +=+=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭()()521031553C C 3rr rrr r r T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭1034r -=2r =4x 225C 310990⋅=⨯=0,3π⎛⎤⎥⎝⎦()()1b c b a b c a c a c a b+⇒+++++……()()222a c a b b c a bc ++⇒++…cos A 222b c a ac +-…2221cos 22b c a A bc +-=…0,3A π⎛⎤∈ ⎥⎝⎦11ln2-*n ∈N 11e 1n an n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…11e n an +⎛⎫+ ⎪⎝⎭…()1ln 11n a n ⎛⎫++ ⎪⎝⎭…11ln 1a n n -⎛⎫+ ⎪⎝⎭…构造,,,.下证,再构造函数,,,,设,,,令,,,,在时,,单调递减,,即,所以递减,,即,所以递减,并且,所以有,,所以,所以在上递减,所以的最小值为.,即的最大值为.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为是正项等比数列,所以,公比,因为,所以,即,则,解得(舍去)或,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又因为,所以,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)依题意得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)当时,,所以,因为,所以,当时,符合上式,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)()()11ln 1m x x x =-+(]0,1x ∈()()()()()22221ln 11ln 1x x x m x x x x ++-=++'(]0,1x ∈()(]22ln 1,0,11x x x x+<∈+()()22ln 11x h x x x =+-+(]0,1x ∈()()()2221ln 12(1)x x x xh x x ++-'-=+(]0,1x ∈()()()221ln 12F x x x x x =++--()()2ln 12F x x x =+-'(]0,1x ∈()()2ln 12G x x x =+-(]0,1x ∈()21xG x x=-+'(]0,1x ∈(]0,1x ∈()0G x '<()G x ()()00G x G <=()0F x '<()F x ()()00F x F <=()0h x '<()h x ()00h =()22ln 11x x x+<+(]0,1x ∈()0m x '<()m x (]0,1x ∈()m x ()111ln2m =-11ln2a ∴-…a 11ln2-{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2n n a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n …()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ()121n b b n n =+11b =()21n b n n =+1n =1n b ={}n b ()21n b n n =+因为,所以.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)16.【解析】(1)设为的中点,连接,,因为是中点,所以,且,因为,,,,所以四边形为平行四边形,,且,所以,且,即四边形为平行四边形,所以,因为平面平面,所以平面.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)因为平面,所以平面,又,所以,,相互垂直,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,所以,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)设平面的一个法向量为,则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设平面的一个法向量为,()211211n b n n n n ⎛⎫==- ⎪++⎝⎭1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭M PD FM CM F PE FMED P 12FM ED =AD BC P 1AB BC ==3AD =2DE PE ==ABCE BC ED P 12BC ED =FM BC P FM BC =BCMF BFCM P BF ⊄,PCD CM ⊂PCD BF P PCD AB ⊥PAD CE ⊥PAD PE AD ⊥EP ED EC E ()0,0,2P ()0,1,0A -()1,1,0B -()1,0,0C ()0,2,0D ()1,0,0AB = ()0,1,2AP = ()1,0,2PC =- ()1,2,0CD =-PAB ()111,,m x y z =1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-()0,2,1m =- PCD ()222,,n x y z =则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)设平面与平面所成夹角为,则∙∙∙∙∙∙∙∙∙∙∙(15分)17.【解析】(1)函数的定义域为,则,当时,可得,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)当或时,;当时,;所以在区间,上单调递增,在区间上单调递减;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)所以和是函数的两个极值点,又,所以,;所以,即当时,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)易知,又,所以,是方程的两个实数根,则且,,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设,由,可得,令,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)则,所以在区间上单调递减,222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 21z =()2,1,1n = PAB PCD θcos θ=()21ln 2f x x x ax =+-()0,+∞()211x ax f x x a x x -+=+-='52a =()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==10,2x ⎛⎫∈ ⎪⎝⎭()2,x ∈+∞()0f x '>1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 10,2⎛⎫ ⎪⎝⎭()2,+∞1,22⎛⎫ ⎪⎝⎭12x =2x =()f x 12x x <112x =22x =()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭52a =()()21152ln28f x f x -=-()()()()22221212111ln2x f x f x x x a x x x -=+---()21x ax f x x-+='1x 2x 210x ax -+=2Δ40a =->120x x a +=>121x x =2a >()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭21x t x =21e x x (21)e x t x =…()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭e t …()222111(1)1022t g t t t t-⎛⎫=-+=-< ⎪⎝⎭'()g t [)e,+∞得,故的最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙(15分)18.【解析】(1)设抛物线的准线为,过点作直线于点,由抛物线的定义得,所以当点与原点重合时,,所以,所以抛物线的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)①设,过点且斜率存在的直线,联立消去,整理得:,由题可知,即,所以,是该方程的两个不等实根,由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)又因为,所以,,由,有,所以,因为,,,所以点的轨迹方程为.②由①知,设,,且,∙∙∙∙∙∙∙∙∙(9分)联立消去,整理得,又,,,,由韦达定理可得,同理可得,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)又因为和以圆心为,半径为1的圆相切,,即.同理,所以,是方程的两个不等实根,()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭…()()21f x f x -e 1122e -+E l 2py =-H 1HH ⊥l 1H 1HF HH =H O 1min 12pHH ==2p =E 24x y =(),P m n P ():l y k x m n =-+()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩y 24440x kx km n -+-=()2Δ164440k km n =--=20k mk n -+=1k 2k 1212,,k k m k k n +=⎧⎨=⎩()0,1F 31n k m -=0m ≠123112k k k +=121232k k k k k +=21m m n n =-0m ≠12n n -=1n ∴=-P ()10y x =-≠(),1P m -()14:1l y k x m =--()25:1l y k x m =--1m ≠±0m ≠()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩y 2444440x k x k m -++=()11,A s t ()22,B s t ()33,C s t ()44,D s t 12444s s k m =+34544s s k m =+()()()212344515454444161616s s s s k m k m k k m m k k =++=+++1l ()0,(0)Q λλ>1()()2224412120m k m k λλλ-++++=()()2225512120m k m k λλλ-++++=4k 5k ()()22212120m k m k λλλ-++++=所以由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(14分)所以,若为定值,则,又因为,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)所以圆的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)19.【解析】(1)由题意可得:,则.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)(2)存在“长向量”,且“长向量”为,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)理由如下:由题意可得,若存在“长向量”,只需使,又,故只需使,即,即,当或6时,符合要求,故存在“长向量”,且“长向量”为,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)(3)由题意,得,,即,即,同理,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)三式相加并化简,得,即,,所以,设,由得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)设,则依题意得:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--1234s s s s 220λ-=0λ>λ=Q 22(1x y +=312a a a +…40x -……2a 6a1n a ==p a1n p S a - …()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-71p S a -=== 022cos12p π+ (1)1cos 22p π--……2p =2a 6a123a a a + (2)2123a a a + …()22123a a a +...222123232a a a a a ++⋅ (2)22213132a a a a a ++⋅ (222)312122a a a a a ++⋅…2221231213230222a a a a a a a a a +++⋅+⋅+⋅…()21230a a a ++…1230a a a ++ …1230a a a ++=()3,a u v = 1220a a a ++= sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩(),n n n P x y ()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩得,故,,所以,,当且仅当时等号成立,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)故.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP ++++++⎡⎤=--=-=⎣⎦22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ …()4x t t ππ=-∈Z 10151016min1014420282P P =⨯=。
湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题-
湖南省长沙市长郡中学、长沙一中、雅礼中学、湖南师大附中2023届高三下学期5月“一起考”数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.如图,在平面直角坐标系中,以原点O 为圆心的圆与x 轴正半轴交于点()1,0A .已知点()11,B x y 在圆O 上,点T 的坐标是()00,sin x x ,则下列说法中正确的是( )四、解答题∴GA GC =,又∵GN 为公共边,∴Rt Rt GNA GNC V V ≌,∴AN CN =,N 为AC 的中点,又∵M 为BC 的中点,∴MN 为CBA △的中位线,MN P AB ,又∵MN Ë平面ABD ,AB Ì平面ABD ,∴MN P 平面ABD .又∵MN GN N =I ,MN Ì平面MNG ,GN Ì平面MNG ,∴平面MNG P 平面ABD ,又∵MG Ì平面MNG ,∴MG P 平面ABD .方法二:延长CG ,交AD 于点K ,连接AG ,BK ,∵BG ^平面ACD ,GA Ì平面ACD ,GC Ì平面ACD ,∴BG ^GA ,BG ^GC ,又∵BA BC =,BG 为公共边,∴Rt Rt BGA BGC V V ≌,∴GA GC =,又∵DA AC ^,∴ACK V 是KAC Ð为直角,CK 为斜边的直角三角形,∴GC GK =,即G 为CK 的中点,又∵M 为BC 的中点,∴MG 为CBK V 的中位线,MG P BK ,∵BK Ì平面ABD ,MG Ë平面ABD ,所以MG P 平面ABD .(2)过点A 作AF BG ∥,以A 为原点,AC ,AD ,AF 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.因此(0)0p =是()p x 的最小值,即()0p x ³,所以e 1x x ³+恒成立,所以()()e 11ax h x ax x g x -=³-+³-+³.综上,1a ³.【点睛】思路点睛:用导数研究不等式()0f x ³恒成立问题,常常是利用导数求得()f x 的最小值,再由最小值不小于0得参数范围,也可以利用特殊值求得参数的范围(必要条件),然后证明这个范围对所有自变量x 都成立(充分条件),从而得出结论.。
湖南省长沙市雅礼中学2024届高三上学期月考(二)数学试题(原卷版)
大联考雅礼中学2024届高三月考试卷(二)数学得分:___________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若12z i =+,则()1z z +⋅=( )A. 24i -- B. 24i -+ C. 62i - D. 62i+2. 全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是( )A. {2,3,5,7,9}B. {2,3,4,5,6,7,8,9}C. {4,6,8}D. {5}3. 函数()2log 22x x x x f x -=+部分图象大致是( )A. B.C. D.4. 在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅= ( )A. 3B. 3-C. 4-D. 45. 某校科技社利用3D打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(1.5 4.7π≈)A. 3045.6gB. 1565.1gC. 972.9gD. 296.1g6. 已知数列{}n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为( )A. 4π B. 2πC. 34π D. 54π8. 已知函数()f x 定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为( )A. ()()2,04,∞-⋃+ B. ()(),15,∞∞--⋃+C. ()(),24,-∞-+∞ D. ()()1,05,∞-⋃+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 对于实数a ,b ,c ,下列选项正确的是( )A. 若a b >,则2a b a b +>>B. 若0a b >>,则a b>>C. 若11a b >,则0a >,0b < D. 若0a b >>,0c >,则b c b a c a +>+10. 已知函数()2sin cos f x x x x =+,则下列说法正确的是( )A ()πsin 23f x x ⎛⎫=- ⎪⎝⎭的.B. 函数()f x 的最小正周期为πC. 函数()f x 的对称轴方程为()5πZ 12x k k π=+∈D. 函数()f x 的图象可由sin 2y x =的图象向右平移π3个单位长度得到11. 设n S 是公差为d (0d ≠)的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( )A. 若0d <,则1S 是数列{}n S 的最大项B. 若数列{}n S 有最小项,则0d >C. 若数列{}n S 是递减数列,则对任意的:*N n ∈,均有0n S <D. 若对任意的*N n ∈,均有0n S >,则数列{}n S 是递增数列12. 如图所示,在棱长为2的正方体1111ABCD A B C D -中,点M ,N 分别为棱11B C ,CD 上的动点(包含端点),则下列说法正确的是( )A. 四面体11A D MN 的体积为定值B. 当M ,N 分别为棱11B C ,CD 的中点时,则在正方体中存在棱与平面1A MN 平行C. 直线MN 与平面ABCDD. 当M ,N 分别为棱11B C ,CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 若函数()ln f x x a x =-的图象在1x =处的切线斜率为3,则=a __________.14. 在平面直角坐标系xOy 中,圆O 与x 轴正半轴交于点A ,点B ,C 在圆O 上,若射线OB 平分的AOC ∠,34,55B ⎛⎫ ⎪⎝⎭,则点C 的坐标为__________.15. 已知函数()f x 的定义域为R ,()e x y f x =+是偶函数,()3e x y f x =-是奇函数,则()f x 的最小值为_____________.16. 已知菱形ABCD中,对角线BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC =,则三棱锥A BCD -的外接球的表面积为________.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 已知正项数列{}n a 的前n 项和为n S ,且满足22n n n S a a =+.(1)求数列{}n a 的通项公式;(2)设24n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:3n T <.18. 在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c)sin aC C =-.(1)求A ;(2)若8a =,ABCABC 的周长.19. 如图,在三棱柱111ABC A B C -中,11BC B C O = ,12BC BB ==,1AO =,160B BC ∠=︒,且AO ⊥平面11BB C C .(1)求证:1AB B C ⊥;(2)求二面角111A B C A --的正弦值.20. 如图,已知椭圆2222:1(0)x y C a b a b+=>>上一点A ,右焦点为(c,0)F ,直线AF交椭圆于B 点,且满足||2||AF FB =,||AB =.(1)求椭圆C 的方程;(2)若直线(0)y kx k =>与椭圆相交于,C D 两点,求四边形ACBD 面积的最大值.21. 如图所示,A BCP -是圆锥的一部分(A 为圆锥的顶点),O 是底面圆的圆心,23BOC π∠=,P 是弧BC 上一动点(不与B 、C 重合),满足COP θ∠=.M 是AB 的中点,22OA OB ==.(1)若//MP 平面AOC ,求sin θ的值;(2)若四棱锥M OCPB -体积大于14,求三棱锥A MPC -体积的取值范围.22. 混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为()01p p <<.目前,我们采用K 人混管病毒检测,定义成本函数()N f X KX K=+,这里X 指该组样本N 个人中患病毒的人数.(1)证明:()E f X N ≥⎡⎤⎣⎦;(2)若4010p -<<,1020K ≤≤.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.的。
湖南省长沙市雅礼中学2025届高三上学期月考(二)数学试题
湖南省长沙市雅礼中学2025届高三上学期月考(二)数学试题一、单选题1.已知集合{}21,A x x k k ==-∈N ,{}1,0,1,2,3B =-,则A B =I ( ) A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,2,3-2.若复数()21i 68iz -=+,则z z +=( )A B .25C .35D .453.设a r ,b r 是单位向量,则()2a ba b +-⋅r rr r 的最小值是( )A .1-B .0C .34D .14.已知()2cos 23cos 0αββ+-=,则()tan tan ααβ+=( ) A .5B .15C .-5D .15-5.巴黎奥运会期间,旅客人数(万人)为随机变量X ,且()2~30,2X N .记一天中旅客人数不少于26万人的概率为0p ,则0p 的值约为( )(参考数据:若()2~,X N μσ,有()0.683P X μσμσ-<≤+≈,()220.954P X μσμσ-<≤+≈,()330.997P X μσμσ-<≤+≈) A .0.977B .0.9725C .0.954D .0.6836.已知抛物线C :24x y =的焦点为F ,过点F 的直线与C 相交于M ,N 两点,则122MF NF +的最小值为( ) A .92B .4C .72D .37.若x ,0y ≥,1x y += )A .⎡⎣B .[]1,2C .2⎤⎦D .12⎡⎢⎣8.从重量分别为1,2,3,4,…,10克的砝码(每种砝码各2个)中选出若干个,使其总重量恰为9克的方法总数为m ,下列各式的展开式中9x 的系数为m 的选项是( )A .()()()()23101111x x x x ++++LB .()()()()11213110x x x x ++++LC .()()()()()222222341011111x x x x x +++++LD .()()()()22222232101111x x x x x x x x x ++++++++++L L二、多选题9.(多选)下列选项中,正确的是( )A .不等式220x x +->的解集为{|2x x <-或1}x >B .不等式2112x x +≤-的解集为{|32}x x -≤< C .不等式21x -≥的解集为{|13}x x ≤≤ D .设R x ∈,则“11x -<”是“405x x +<-”的充分不必要条件 10.如图,透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜度的不同,11AC 始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE AH ⋅为定值11.已知奇函数()f x 在R 上单调递增,()()f x g x '=,()()g x f x '=,若()()()22f x f x g x =,则( )A .()g x 的图象关于直线0x =对称B .()()()222g x gx f x =+C .()00g =或1D .()()221gx f x -=三、填空题12.从14,13,12,2,3,4,6,9中任取两个不同的数,分别记为m ,n ,记A =“log 0m n <”,则()P A =.13.如图,ABC V 中,6AB =,2AC BC =,D 为AB 中点,则tan BDC ∠的取值范围为.14.小军和小方两人先后在装有若干黑球的黑盒子与装有若干白球的白盒子(黑球数少于白球数)轮流取球,规定每次取球可以从某一盒子中取出任意多颗(至少取1颗),或者在两个盒子中取出相同颗数的球(至少各取1颗),最后不能按规则取的人输.已知两盒中共有11个球,且两人掷硬币后决定由小军先手取球.小方看了眼黑盒中的球,对小军说:“你输了!”若已知小方有必胜策略,则黑盒中球数为.四、解答题15.记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2a b -=,()sin sin sin 2A BA B +-=. (1)求c ;(2)若ABC V 的内切圆在AB 上的切点为D ,求AD .16.已知动圆P 过点()2,0A -且与圆B :()22236x y -+=内切.(1)求动圆圆心P 的轨迹E 的方程;(2)设动圆1C :2221x y t +=,1C 与E 相交于,,,A B C D 四点,动圆2C :()222212x y t t t +=≠与E相交于,,,A B C D ''''四点.若矩形ABCD 与矩形A B C D ''''的面积相等,求2212t t +的值.17.为提高我国公民整体健康水平,2022年1月,由国家卫生健康委疾控局指导、中国疾病预防控制中心和国家体育总局体育科学研究所牵头组织编制的《中国人群身体活动指南(2021)》(以下简称《指南》)正式发布,《指南》建议18~64岁的成年人每周进行150~300分钟中等强度或75~150分钟高强度的有氧运动(以下简称为“达标成年人”),经过两年的宣传,某体育健康机构为制作一期《达标成年人》的纪录片,采取街头采访的方式进行拍摄,当采访到第二位“达标成年人”时,停止当天采访.记采访的18~64岁的市民数为随机变量X (2X ≥),且该市随机抽取的18~64岁的市民是达标成年人的概率为13,抽查结果相互独立.(1)求某天采访刚好到第五位可停止当天采访的概率;(2)若抽取的18~64岁的市民数X 不超过n 的概率大于13,求整数n 的最小值.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 1,f 1 处的切线方程; (2)若1x ≥时,()0f x ≤,求λ的取值范围; (3)求证:()1111111232124e 2e*n n n n nnn +++++-+++->∈N L .19.高斯-博内公式是大范围微分几何学的一个经典的公式,是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述,建立了空间的局部性质和整体性质之间的联系.其特例是球面三角形总曲率x 与球面三角形内角和θ满足:πx θα=+,其中α为常数,(如图,把球面上的三个点用三个大圆(以球心为半径的圆)的圆弧联结起来,所围成的图形叫做球面三角形,每个大圆弧叫做球面三角形的一条边,两条边所在的半平面构成的二面角叫做球面三角形的一个角.球面三角形的总曲率等于2SR,S 为球面三角形面积,R 为球的半径).(1)若单位球面有一个球面三角形,三条边长均为π2,求此球面三角形内角和;(2)求α的值;(3)把多面体的任何一个面伸展成平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.设凸多面体Ω顶点数为V ,棱数为E ,面数为F ,试证明凸多面体欧拉示性数()ΩV E F χ=-+为定值,并求出()Ωχ.。
湖南省长沙市雅礼中学高三上学期第五次月考地理试题
雅礼中学2021届高三月考试卷(五)地理本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题(本题共16小题,每小题3分,共48分。
在每小题给出的四个选铷项中,只有一项是最符合题目要求的)水是影响村落空间分布的重要因素。
我国某村落始建于明清时期,大部分建筑材料取自村落附近,村中有引水渠贯穿村巷(如下左图所示)。
下右图示意该村落空间分布。
据此完成1~3题。
1.该村落引水点处河流流向与修建引水渠的主要目的是A.由北向南提供饮食用水B.由北向南提供洗涤用水C.由南向北排放生活污水D.由南向北灌溉农田菜园2.该村落建筑外墙基部大量使用砖石,其主要目的是A.保温隔热B.防震减灾C.防雪防雹D.防潮防蛀3.该村落最可能位A.东南丘陵B.长江三角洲C.河西走廊D.长白山山区"日晕"现象是太阳光通过高空薄薄的云层时,受到云层中冰晶的折射或反射而形成的较为罕见的大气光学现象,往往预示着天气的变化,民间有"日晕三更雨"的谚语,一般持续时间比较短。
山东烟台市是"日晕"现象多发区,春夏之交出现率最高。
2019年4月16日11时,山东烟台市上空出现"日晕"奇观,16日20时烟台市偏北风开始增强,22时天空中飘起了小雨。
据此完成4~6题。
4.烟台"日晕"现象发生时未产生降水,所缺乏的降水条件是A.水汽含量不足B.空气下沉增温C.空气上升冷却D.凝结核缺乏5.导致烟台该日"三更雨"的天气系统最有可能是A.冷锋B.暖锋C.准静止锋D.反气旋6.有利于日晕出现的天气条件是①大气对流运动强烈②微风或无风③足够的水汽④锋面活动强烈A.①②B.②③C.③④D.①④表层土壤水分受降水、气温、植被等因素的综合影响。
下图示意黄土高原某区域表层土壤水分变化情况,该区域年降水量300mm,地面覆盖有人工恢复的植被。
湖南省长沙市雅礼中学2021届高三月考数学试卷
湖南省雅礼中学2021届高三月考试卷(三)数 学时量120分钟 满分150分.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2,3,4A =,集合{},2B m m =+,若{}2AB =,则m =( )A.0B.1C.2D.42.已知i 是虚数单位,复数12aii+-为纯虚数,则实数a 为( ) A.2B.2-C.12-D.123.古希腊时期,人们把宽与长之比为51510.618⎛⎫--≈ ⎪ ⎪⎝⎭的矩形称为黄金矩形,把这个比值51-称为黄金分割比例.下图为希腊的一古建筑,其中图中的矩形ABCD ,EBCF ,FGHC ,FGJI ,LGJK ,MNJK 均为黄金矩形,若M 与K 间的距离超过1.7m ,C 与F 间的距离小于12m ,则该古建筑中A 与B 间的距离可能是( )(参考数据:20.6180.382≈,30.6180.236≈,40.6180.146≈,50.6180.090≈,60.6180.056≈,70.6180.034≈)A.28mB.29.2mC.30.8mD.32.5m 4.已知平面向量a ,b 满足(1,1)=-a ,1=b ,22+=a b ,则a 与b 的夹角为( )A.6πB.56πC.4π D.34π 5.两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有( )A.30种B.20种C.15种D.10种6.设等差数列{}n a 的前n 项和为n S ,且10a >,149S S =,则满足0n S >的最大自然数n 的值为( )A.23B.22C.13D.127.已知A 是双曲线()2222:1,0x y C a b a b-=>的右顶点,过左焦点F 与y 轴平行的直线交双曲线于P ,Q 两点,若APQ △是锐角三角形,则双曲线C 的离心率的取值范围是( )A.(B.(C.()1,2D.()2,+∞8.已知实数a ,b 满足0ab >,则2a aa b a b-++的最大值为( )A.3+B.2+C.2-D.3-二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知函数()11sin 2232f x x π⎛⎫=++ ⎪⎝⎭,则以下说法中正确的是( ) A.()f x 的最小正周期为πB.()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减C.51,62π⎛⎫⎪⎝⎭是()f x 的一个对称中心D.当0,6x π⎡⎤∈⎢⎥⎣⎦时,()f x 10.已知由样本数据点集合(){},1,2,,ii x y i n =,求得的回归直线方程为ˆ 1.50.5yx =+,且3x =,现发现两个数据点()1.2,2.2和()4.8,7.8误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( )A.变量x 与y 具有正相关关系B.去除后的回归方程为ˆ 1.2 1.4yx =+ C.去除后y 的估计值增加速度变快D.去除后相应于样本点()2,3.75的残差为0.0511.已知三棱锥P ABC -中,O 为AB 中点,PO ⊥平面ABC ,90APB ∠=︒,2PA PB ==,则下列说法中正确的是( )A.若O 为ABC △的外心,则2PC =B.若ABC △为等边三角形,则AP BC ⊥C.当90ACB ∠=︒时,PC 与平面PAB 所成角的范围为0,4π⎛⎤⎥⎝⎦D.当4PC =时,M 为平面PBC 内动点,若OM //平面PAC ,则M 在三角形PBC 内的轨迹长度为2 12.关于函数()2ln f x x x=+,下列说法正确的是( ) A.2x =是()f x 的极大值点B.函数()y f x x =-有且只有1个零点C.存在正整数k ,使得()f x kx >恒成立D.对任意两个正实数1x ,2x ,且12x x ≠,若()()12f x f x =,则124x x +> 三、填空题:本大题共4小题,每小题5分,共20分.13.若函数()xf x a =(0a >,且1a ≠)的图象经过点12,2P ⎛⎫ ⎪⎝⎭,则()1f -=________.14.()sin501︒+︒=________.15.O 为坐标原点,F 为抛物线2:4C y x =的焦点,P 为C 上一点,若4PF =,则POF △的面积为________.16.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos 2cos 2cos A C c aB b--=. (1)求sin sin CA的值; (2)若1cos 4B =,2b =,求ABC △的面积.18.(本小题满分12分)如图,在四棱锥P ABCD -中,ABD △是边长为2的正三角形,PC ⊥底面ABCD ,AB BP ⊥,233BC =. (1)求证:PA BD ⊥;(2)若PC BC =,求二面角A BP D --的正弦值.19.(本小题满分12分)已知{}n a 为等差数列,1a ,2a ,3a 分别是下表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在下表的同一列.请从①12a =,②11a =,③13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()121n n nb a +=-,求数列{}n b 的前n 项和n T . 20.(本小题满分12分)为了治疗某种疾病,某科研机构研制了甲、乙两种新药,为此进行白鼠试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.4轮试验后,就停止试验.甲、乙两种药的治愈率分别是25和34,55ββ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭.(1)若35β=,求2轮试验后乙药治愈的白鼠比甲药治愈的白鼠多1只的概率; (2)已知A 公司打算投资甲、乙这两种新药的试验耗材费用,甲药和乙药一次试验耗材花费分别为3千元和()101β-千元,每轮试验若甲、乙两种药都治愈或都没有治愈,则该科研机构和A 公司各承担该轮试验耗材总费用的50%.若甲药治愈,乙药未治愈,则A 公司承担该轮试验耗材总费用的75%,其余由科研机构承担.若甲药未治愈,乙药治愈,则A 公司承担该轮试验耗材总费用的25%,其余由科研机构承担.以A 公司每轮支付试验耗材费用的期望为标准,求A 公司4轮试验结束后支付试验耗材最少费用为多少元?21.(本小题满分12分)已知椭圆()2222:10x y C a b a b+=>>的离心率为3,其右顶点为A ,下顶点为B ,定点()0,2C ,ABC △的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于P ,Q 两点,直线BP ,BQ 分别与x 轴交于M ,N 两点.(1)求椭圆C 的方程;(2)试探究M ,N 的横坐标的乘积是否为定值,说明理由.22.(本小题满分12分)已知函数()()2ln af x ax x a x=--∈R . (1)若()f x 是定义域上的增函数,求a 的取值范围;(2)设35a >,m ,n 分别为()f x 的极大值和极小值,若S m n =-,求S 的取值范围.数学参考答案一、选择题二、填空题14.1三、解答题17.【解析】(1)由正弦定理得2sin a R A =,2sin b R B =,2sin c R C =所以cos 2cos 22sin sin cos sin A C c a C AB b B---==即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=- 即有()()sin 2sin A B B C +=+,即sin 2sin C A =,所以sin 2sin CA= (2)由(1)知sin 2sin c C a A==,即2c a = 又因为2b =,1cos 4B =,所以由余弦定理得: 2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =所以2c =,又因为1cos 4B =,所以sin 4B =故ABC △的面积为11sin 1222ac B =⨯⨯⨯=18.【解析】(1)证明:连接AC 交BD 于O∵PC ⊥底面ABCD ,∴PC AB ⊥ ∵AB BP ⊥,BPCP P =,∴AB ⊥平面PBC ,则AB BC ⊥∵233BC =,∴3tan 3BAC ∠=,即30BAC ∠=︒ ∵60ABD ∠=︒,∴90AOB ∠=︒即AC BD ⊥,∵PC BD ⊥,∴BD ⊥平面ACP ,∴PA BD ⊥(2)由(1)知O 是BD 的中点,过O 作OF //PC 交AP 于F ,以O 为坐标原点,建立如图所示的空间直角坐标系则()0,1,0B ,()0,1,0D -,3,0,03C ⎛⎫- ⎪ ⎪⎝⎭,323,0,33P ⎛⎫- ⎪ ⎪⎝⎭则()0,2,0DB =,323,1,33PB ⎛⎫=- ⎪ ⎪⎝⎭.设平面PBD 的一个法向量(),,x y z =n则00DB PB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20323033y x y z =⎧⎪⎨+-=⎪⎩,令1z =,则2x =,∴()2,0,1=n 取PB 的中点313,,623E ⎛⎫- ⎪ ⎪⎝⎭,连接CE∵PC BC =,∴CE PB ⊥,则CE ⊥平面ABP∴向量313,,623CE ⎛⎫= ⎪ ⎪⎝⎭是平面ABP 一个法向量∴23103cos ,5253CE CE CE⋅〈〉===⨯n n n∴二面角A BP D --的正弦值为519.【解析】(1)若选择条件①,当第一行第一列为1a 时,由题意知,可能的组合有:12a =,26a =,37a =不是等差数列,12a =,29a =,38a =不是等差数列当第一行第二列为1a 时,由题意知,可能的组合有,12a =,24a =,37a =不是等差数列12a =,29a =,312a =不是等差数列;当第一行第三列为1a 时,由题意知,可能的组合有: 12a =,24a =,38a =不是等差数列,12a =,26a =,312a =不是等差数列则放在第一行的任何一列,满足条件的等差数列{}n a 都不存在若选择条件②,则放在第一行第二列,结合条件可知11a =,24a =,37a = 则公差213d a a =-=,所以()1132n a a n d n =+-=-,*n ∈N 若选择条件③,当第一行第一列为1a 时,由题意知,可能的组合有:13a =,26a =,37a =不是等差数列,13a =,29a =,38a =不是等差数列;当第一行第二列为1a 时,由题意知,可能的组合有,13a =,24a =,37a =不是等差数列,13a =,29a =,312a =不是等差数列;当第一行第三列为1a 时,由题意知,可能的组合有: 13a =,24a =,38a =不是等差数列,13a =,26a =,312a =不是等差数列则放在第一行的任何一列,满足条件的等差数列{}n a 都不存在综上可知:32n a n =-,*n ∈N .(2)由(1)知,()()12132n n b n +=--,所以当n 为偶数时22222212312341n n n n T b b b b a a a a a a -=++++=-+-++-()()()()()()1212343411n n n n a a a a a a a a a a a a --=+-++-+++-()()21231329333222n n n a a a a n n +-=-++++=-⨯=-+当n 为奇数时,()()()22219393113222222n n n T T b n n n n n -=+=--+-+-=-- ∴2*2*93,2,22932,21,22n n n n k k T n n n k k ⎧-+=∈⎪⎪=⎨⎪--=-∈⎪⎩N N .20.【解析】(1)记事件A 为“2轮试验后,乙药治愈的白鼠比甲药治愈的白鼠多1只”,事件B 为“2轮试验后,乙药治愈1只白鼠,甲药治愈0只白鼠”,事件C 为“2轮试验后,乙药治愈2只白鼠,甲药治愈1只白鼠”,则()1232331085555625P B C ⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭()212233231085555625P C C C ⎛⎫⎛⎫=⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭∴()()()108108216625625625P A P B P C =+=+=(2)一次实验耗材总费用为()102β+千元.设随机变量X 为每轮试验A 公司需要支付的试验耗材费用的取值, 则()11024X β=+,()11022β+,()31024β+ ()1310245P X ββ⎛⎫=+= ⎪⎝⎭()()122311*********P X ββββ⎛⎫⎛⎫=+=+-⨯-=- ⎪ ⎪⎝⎭⎝⎭()()32102145P X ββ⎛⎫=+=- ⎪⎝⎭随机变量X 的分布列如下:()()()()()313112310210211025455254E X ββββββ⎛⎫=⋅++-⋅++-⋅+ ⎪⎝⎭25116225ββ=-++.令()25116225 f βββ=-++,34,55β⎡⎤∈⎢⎥⎣⎦. 易知()fβ在区间34,55⎡⎤⎢⎥⎣⎦上单调递增 ∴()min 31855f f β⎛⎫==⎪⎝⎭(千元). 则A 公司4轮试验结束后支付实验耗材最少费用为1872414.455⨯==(千元). 即14400元.21.【解析】(1)由已知A ,B 的坐标分别是(),0A a ,()0,B b -,由于ABC △的面积为3∴1(2)32b a +=,又由e =2a b =,解得:1b =,或3b =-(舍去) ∴2a =,1b =∴椭圆C 的方程为2214x y +=. (2)设直线PQ 的方程为2y kx =+,P ,Q 的坐标分别为()11,P x y ,()22,Q x y则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+ 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N x x y =+ ∴()()()()()121212212121212113339M N x x x x x x x x y y kx kx k x x k x x ⋅===+++++++把直线2y kx =+代入椭圆2214x y +=,得()221416120k x kx +++=, ()22(16)41412k k ∆=-⋅+⋅0>,234k >由韦达定理得1221214x x k =+,1221614kx x k +=-+ ∴22222222121241412481248936391414M N k x x k k k k k k k +===-++-+++,是定值. 22.【解析】(1)()f x 的定义域为()0,+∞,()22222a ax x af x a x x x -+'=+-=∵()f x 在定义域内单调递增∴()0f x '≥,即220ax x a -+≥对0x >恒成立,则221xa x ≥+恒成立 ∴2max21x a x ⎛⎫≥⎪+⎝⎭∵2211xx ≤+,∴1a ≥. 所以a 的取值范围是[)1,+∞. (2)由2440a ∆=->且35a >,得315a << 设方程()0f x '=,即220ax x a -+=得两根为1x ,2x ,且120x x <<. 则()1m f x =,()2n f x = ∵121x x =,122x x a+=∴11121023x x a <+=< ∴1113x <<, 将S 表示为关于1x 的函数,112211212ln 2ln a a aS m n ax x ax x ax x x x ⎛⎫=-=-----=- ⎪⎝⎭11111112ln 2ln 22ln a ax ax x ax x x x ⎛⎫⎛⎫---+=-- ⎪ ⎪⎝⎭⎝⎭∵21120ax x a -+=∴12121x a x =+,代入得222111122111114ln 4ln 112x x S x x x x ⎛⎫⎛⎫--=-=- ⎪ ⎪++⎝⎭⎝⎭令21x t =,则119t <<,得()11ln 12t g t t t -=-+,119t <<,则()4S g t =,()()()221021t g t t t --'=<+, ∴()g t 在1,19⎛⎫ ⎪⎝⎭上递减,从而()()119g g t g ⎛⎫<< ⎪⎝⎭即()40ln35g t <<-∴16 04ln35S<<-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.(本小题满分 12 分)
如图,点 A 为椭圆 C1 : x2 2 y2 1 的左顶点,过 A 的直线 l1 交抛物线 C2 : y2 2 px( p 0) 于 B ,C 两点, 点 C 是 AB 的中点.
(1)若点 A 在抛物线 C2 的准线上,求抛物线 C2 的标准方程;
(2)若直线 l2 过点 C ,且倾斜角和直线 l1 的倾斜角互补,交椭圆 C1 于 M , N 两点.
( lg 2 0.3010 ,1g 3 0.4771 )( )
A.12
B.14
C.16
D.18
7.在直角三角形 ABC 中, A 90 , AB 2 , AC 4 , P 在 VABC 斜边 BC 的中线 AD 上,则 uuur uuur uuur AP (PB PC) 的最大值为( )
A. 25 8
B. 5 2
C. 25 4
D. 25 2
8 . 已 知 f ( x) 是 定 义 在 R 上 的 函 数 , 且 对 任 意 x R 都 有 f ( x 2 ) f ( 2 x ) 4f ( 2,)若 函 数
y f (x 1) 的图象关于点 (1,0) 对称,且 f (1) 3 ,则 f (2021) ( )
17.(本小题满分 10 分)
在① sin B 3 cos B 2 ,② cos2 B 3cos 2B 0 ,③ b2 a2 c2 ac3 这三个条件中任选一个,
补充在下面的问题中,并进行解答.
问题:已知 VABC 的三边 a ,b ,c 所对的角分别为 A ,B ,C ,若 a 4 ,c 3b ,________,求VABC
5.B【解析】设事件 A 为只用现金支付,事件 B 为只用非现金支付,则 P( A B) P( A) P(B) P( AB) .因
为 P( A) 0.45 , P( AB) 0.15 ,所以 P(B) 0.4 .故选 B.
10
6.C【解析】根据题意有: 55
25
1 2
h
(85
25)
由回归方程预测我国在 2035 年底人均国内生产总值(单位:万元)约为( )
A.14.04 万元
B.202.16 万元
C.13.58 万元
D.14.50 万元
5.随着网络技术的发达,电子支付变得愈发流行,若电子支付只包含微信支付和支付宝支付两种.某群体
中的成员只用现金支付的概率为 0.45,既用现金支付也用非现金支付的概率为 0.15,则不用现金支付的概
率为( )
A.0.3
B.0.4
C.0.6
D.0.7
6.牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度为 T0 ,则经过一定时间 t 后
的温度 T
将满足 T
Ta
1
t
2
T0
Ta ,其中 Ta 是环境温度,h
称为半衰期.现有一杯
85℃的热茶,放
置在 25℃的房间中,如果热茶降温到 55℃,需要 10 分钟,则欲降温到 45℃,大约需要多少分钟?
信号处理背后的“功臣”就是正弦型函数.函数 f ( x) 4 sin[(2i 1)x] 的图象就可以近似地模拟某种信 i1 2i 1
号的波形,则( )
A.函数 f ( x) 为周期函数,且最小正周期为 B.函数 f ( x) 的图象关于点 (2 ,0) 对称
C.函数 f ( x) 的图象关于直线 x 对称 2
4.A【解析】到 2035 年底对应的年份代号为 23,由回归方程 yˆ 6.60x 50.36 得,我国国内生产总值约
为 6.60 23 50.36 202.16 (万亿元),又 202.16 14.04 ,所以到 2035 年底我国人均国内生产总值约 14.4
为 14.04 万元.故选 A.
A.异面直线 BD1 与 B1C 所成的角大小为 90° B.四面体 D1DBC 的每个面都是直角三角形 C.二面角 D1 BC B1 的大小为 30°
D.正方体 ABCD A1B1C1D1 的内切球上一点与接球上一点的距离的最小值为
3 1 2
12.在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受得到.而
点.若 | AB | 5 ,则 p ________.
14.数列 1, 2 ,2, 3 ,3, 3 ,4, 4 ,4, 4 ,5, 5 ,5, 5 ,5,…的项正负交替,且项的绝 对值为 1 的有 1 个,2 的有 2 个,…, n 的有 n 个,则该数列第 2021 项是________.
15.筒车是我国古代发明的一种水利灌溉工具因其经济又环保,至今还在农业生产中得到使用,如左下图.假
16.正方体 ABCD A1B1C1D1 的长为 1, E , F 分别为 BC , CC1 的中点.则平面 AEF 截正方体所得的
截面面积为________;以点 E 为球心,
10 4
为半径的球面与对角面
ACC1 A1
的交线长为________.
四、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.
h
10 ,
t
∴
45
25
1 2
10
(85
25)
t 10
log 1
2
1 3
t
10
lg 3 lg 2
10
0.4771 0.3010
15.85
,故选
C.
7.B【解析】以 A 为坐标原点,以 AB ,AC 方向分别为 x 轴,y 轴正方向建立平面直角坐标系,则 B(2,0) ,
C(0, 4) ,中点 D(1, 2) ,
A.{x∣ 5 x 4} B.{x∣ 5 x„ 2} C.{x∣ 2剟x 3} D.{x∣3„ x 4}
2.设 z1 3 4i , z2A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.从 5 名同学中选若干名分别到图书馆食堂做志愿者,若每个地方至少去 2 名,则不同的安排方法共有( )
的面积. 18.(本小题满分 12 分)
已知数列an 满足 a1 2a2 3a3 L nan n2 n N * .
(1)求数列an 的通项公式; (2)设 bn (1)n an an1 ,求数列bn 的前 2020 项和 S2020 .
19.(本小题满分 12 分)
如图,在四棱锥 P ABCD 中,PA 平面 ABCD ,PA AB 1,BC CD= 2 ,AB / /CD ,ADC . 2
2
2
8.D【解析】令 x 0 ,得 f (2) f (2) 4 f (2) ,即 f (2) 0 , f (x 2) f (2 x) ,
因为函数 y f (x 1) 的图象关于点 (1,0) 对称,
所以函数 y f (x) 的图象关于点 (0,0) 对称,
即 f (x) f (x),
D.函数 f ( x) 的导函数 f (x) 的最大值为 4
选择题答题卡
题号 1
2
3
4
5
6
7
8
9
10 11 12 得分
答案
第Ⅱ卷
三、填空题:本大题共 4 小题每小题 5 分,共 20 分.
13.已知抛物线 C : y2 2 px( p 0) ,直线 l : y 2x b 经过抛物线 C 的焦点,且与 C 相交于 A 、 B 两
uuur
uuur
设 P(x,2x) ,所以 AP (x,2x) , PD (1 x,2 2x) ,
uuur uuur uuur uuur uuur
AP (PB PC) AP (2PD) 2[x(1 x) 2x(2 2x)] 10 x2 x ,
x 1 时,最大值为 5 .故选 B.
A.20 种
B.50 种
C.80 种
D.100 种
4.党的十九大报告中指出:从 2020 年到 2035 年,在全面建成小康社会的基础上,再奋斗 15 年,基本实
现社会主义现代化.若到 2035 年底我国人口数量增长至 14.4 亿,由 2013 年到 2019 年的统计数据可得国内
生产总值(GDP)y(单位:万亿元)关于年份代号 x 的回归方程为 y 6.60x 50.36(x 1,2,3,4,5,6,7) ,
定在水流量稳定的情况下,半径为 3m 的筒车上的每一个盛水桶都按逆时针方向作角速度为 rad / min 的 3
匀速圆周运动,平面示意图如右下图,已知筒车中心 O 到水面 BC 的距距离为 2m ,初始时刻其中一个盛水
筒位于点
P0
处,且
P0OA
6
(OA
/
/
BC
)
,则 8 min 后该盛水筒到水面的距离为________ m .
(i)证明:点 C 的横坐标是定值,并求出该定值;
(ii)当 VBMN 的面积最大时,求 p 的值.
22.(本小题满分 12 分)
已知函数 f (x) aex 2x 1,(其中常数 e 2.71828L ,是自然对数的底数)
(1)讨论函数 f ( x) 的单调性;
(2)证明:对任意的 a…1,当 x 0 时, f (x)…(x ae)x .
雅礼中学 2021 届高三月考试卷(五) 数学
得分:________ 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 8 页.时量 120 分钟.满分 150 分.
第Ⅰ卷 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.已知集合 A {x∣ 2„ x 4}, B {x∣ 5 x„ 3},则 A B ( )
2.D【解析】由题 z1 3 4i , z2 2 3i ,则 z1 z2 1 i ,对应点为 (1, 1) . 3.B【解析】当去 4 个人时,安排方法有 C54C24 30 种,当去 5 个人时,安排方法有 C53C12 20 种.综上,