人教版八年级上册数学:第13章 轴对称_单元测试试卷B(含答案)
数学八年级上册《轴对称》单元检测(含答案)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
人教版八年级数学上册第13章 轴对称单元测试(配套练习附答案)
一、选择题(本大题共10小题,共40.0分)
1.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,是整个阴影部分组成的图形成轴对称图形,那么符合条件的小正方形共有()
A.4个B.3个C.2个D.1个
【答案】B
A. B. C. D.
【答案】B
【解析】
【详解】试题分析:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P1P2的长,∵OP=5,∴OP2=OP1=OP=5.又∵P1P2=5,,∴OP1=OP2=P1P2,∴△OP1P2是等边三角形, ∴∠P2OP1=60°,即2(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
【详解】 , ,
,
是 的外角,
,
,
.
【点睛】考查等腰三角形的性质,关键是根据三角形外角的性质以及三角形内角和定理解答.
19.已知点A(2m+n,2),B (1,n-m),当m、n分别为何值时,
(1)A、B关于x轴对称;
(2)A、B关于y轴对称.
【答案】 (2)
【解析】
【分析】(1)根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得
【分析】首先证明△ACD≌△BAE可得∠ACD=∠BAE,根据∠BAE+∠EAC=60°可得∠ACD+∠EAC=60°,再根据三角形内角与外角的关系可得∠APD=60°.
【详解】∵△ABC是等边三角形,
∴
在△ACD和△BAE中,
第13章《轴对称》全章检测题(含答案)
第十三章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·遵义)观察下列图形,是轴对称图形的是( A )2.点P(5,-4)关于y 轴的对称点是( D )A .(5,4)B .(5,-4)C .(4,-5)D .(-5,-4)3.如图,△ABC 与△ADC 关于AC 所在的直线对称,∠BCD =70°,∠B =80°,则∠DAC 的度数为( B )A .55°B .65°C .75°D .85°,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,在Rt △ABC 中,∠C =90°,∠B =15°,DE 垂直平分AB 交BC 于点E ,BE =4,则AC 长为( A )A .2B .3C .4D .以上都不对5.如图,AB =AC =AD ,若∠BAD =80°,则∠BCD =( C )A .80°B .100°C .140°D .160°6.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A )A .①B .②C .⑤D .⑥7.(2015·玉林)如图,在△ABC 中,AB =AC ,DE ∥BC ,则下列结论中不正确的是( D )A .AD =AEB .DB =EC C .∠ADE =∠CD .DE =12BC,第7题图) ,第8题图) ,第9题图) ,第10题图)8.如图,D 为△ABC 内一点,CD 平分∠ACB ,BE ⊥CD ,垂足为D ,交AC 于点E ,∠A =∠ABE ,AC =5,BC =3,则BD 的长为( A )A .1B .1.5C .2D .2.59.如图,已知S △ABC =12,AD 平分∠BAC ,且AD ⊥BD 于点D ,则S △ADC 的值是( C )A.10 B.8 C.6 D.410.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC 和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正确的结论的个数是( C )A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.正方形是轴对称图形,它共有__4__条对称轴.12.如图,D,E为△ABC两边AB,AC的中点,将△ABC沿线段DE折叠,使点A 落在点F处,若∠B=55°,则∠BDF等于__70°__.,第12题图),第13题图),第14题图)13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__5__种.14.如图,在△ABC中,AB=AC,AB的垂直平分线交BC于点D,垂足为E.若∠B =35°,则∠DAC的度数为__75°__.15.在△ABC中,AC=BC,过点A作△ABC的高AD,若∠ACD=30°,则∠B=__75°或15°__.16.如图,△ABC中,D,E分别是AC,AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):__①③或②③__.,第16题图),第17题图),第18题图)17.如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是__60__.18.如图,已知∠AOB=30°,OC平分∠AOB,在OA上有一点M,OM=10 cm,现要在OC,OA上分别找点Q,N,使QM+QN最小,则其最小值为__5_cm__.三、解答题(共66分)19.(7分)如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.(不写作法,保留作图痕迹)解:作∠B的平分线与线段AD的垂直平分线,它们的交点即为点P20.(9分)如图,在平面直角坐标系中,A(-2,2),B(-3,-2).(1)若点D 与点A 关于y 轴对称,则点D 的坐标为__(2,2)__;(2)将点B 先向右平移5个单位再向上平移1个单位得到点C ,则点C 的坐标为__(2,-1)__;(3)求A ,B ,C ,D 组成的四边形ABCD 的面积.解:(3)31221.(9分)如图,在△ABC 中,AB =AC ,D 为BC 为上一点,∠B =30°,∠DAB =45°.(1)求∠DAC 的度数;(2)求证:DC =AB.解:(1)∠DAC =120°-45°=75°(2)∵∠ADC =180°-75°-30°=75°,∴∠DAC =∠ADC ,∴DC =AC ,又AB =AC ,∴DC =AB22.(9分)(2015·潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AB =CB ,AD =CD ,请你写出与筝形ABCD 的角或者对角线有关的一个结论,并证明你的结论.解:(答案不唯一)AC ⊥BD.理由:证△ABD ≌△CBD (SSS ),∴∠ABO =∠CBO ,∵AB=CB ,∴BD ⊥AC23.(10分)如图,△ABC ,△ADE 是等边三角形,B ,C ,D 在同一直线上.求证:(1)CE=AC+DC;(2)∠ECD=60°.解:(1)∵△ABC,△ADE是等边三角形,∴AE=AD,BC=AC=AB,∠BAC=∠DAE =60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC.∵BD=BC+CD=AC +CD,∴CE=BD=AC+CD(2)由(1)知△BAD≌△CAE,∴∠ACE=∠ABD=60°,∴∠ECD=180°-∠ACB-∠ACE=60°24.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.解:(1)∵BF∥AC,∠ACB=90°,∴∠CBF=90°,∵∠ABC=45°,DE⊥AB,∴∠BDF=45°,从而∠BFD=45°=∠BDF,∴BD=BF=CD,又AC=BC,∴△ACD≌△CBF(SAS),∴∠CAD=∠BCF,∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=90°,∴AD⊥CF(2)△ACF是等腰三角形.理由:由(1)知BD=BF,又DE⊥AB,∴AB是DF的垂直平分线,∴AD=AF,由(1)知△ACD≌△CBF,∴AD=CF,∴AF=CF,∴△ACF是等腰三角形25.(12分)如图,已知AE⊥FE,垂足为E,且E是DC的中点.(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD 的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;(3)如图③,如果(1)的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.解:(1)AE是∠FAD的角平分线(2)成立.理由如下:延长FE交AD的延长线于G.∵E为CD的中点,∴CE=DE.证△CEF≌△DEG(ASA),∴EF=EG.∵AE⊥FG,∴AF=AG,∴AE是∠FAD的平分线(3)结论仍成立,证明方法同(2)。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)
人教版八年级数学上册《第十三章轴对称》单元测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.如图,ABC 与A B C '''关于直线l 对称,若78A ∠=︒,48C '∠=︒则B ∠的度数为( )A .48︒B .54︒C .74︒D .78︒2.如图,ABC 中36A ∠=︒,AB=AC , BD 平分ABC ∠, DE BC ∥则图中等腰三角形有( )个A .4个B .5个C .6个D .7个3.如图,在ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于点E ,下列结论错误的是( )A .DB 平分CDE ∠ B .DE 平分ADB ∠C .AD BD BC == D .BD 平分ABC ∠ 4.已知ABC 中6BC AB =,、AC 的垂直平分线分别交边BC 于点M 、N ,若2MN =,则AMN 的周长是( )A .4B .6C .4或8D .6或105.如图AB AC BD CD ==,,若70B ∠=︒,则DAC ∠=( )A .15︒B .20︒C .25︒D .30︒6.若点A 和点B ()2,3-关于y 轴对称,则点A 与点B 的距离为( )A .4B .5C .6D .107.若等腰三角形一腰上的高与另一腰的夹角为20︒,则它的底角为( ) A .35︒ B .55︒ C .55︒或35︒ D .70︒或35︒ 8.下列说法错误的有( )个①三角形的高不在三角形内就在三角形外;①多边形的内角和必小于它的外角和; ①周长和面积相等的两个三角形全等;①周长相等的两个等边三角形全等; ①两边和一角分别对应相等的两个三角形全等;①等腰三角形顶角的外角平分线平行于这个等腰三角形的底A .2个B .3个C .4个D .5个二、填空题9.在ABC 中,AB=AC ,=60B ∠︒则A ∠的度数是 .10.在ABC 中,AB=AC ,DE 垂直平分AB ,若10cm 6cm AB AC BC ===,,则BCE 的周长是 .11.如图,在ABC 中90ACB ∠=︒与30B ∠=︒,CD 是AB 边上的中线,则ACD 是 三角形.12.如图ABC 中,AB AC DE AB D =⊥,,是AB 的中点,DE 交AC 于E 点,连接10BE BC =,,BEC 的周长是21,那么AB 的长是 .13.如图,ABC 中70C ∠=︒,AC 边上有一点D ,使得A ABD ∠=∠,将ABC 沿BD 翻折得A BD ',此时∥A D BC ',则ABC ∠= 度.14.点()1,5P -关于x 轴的对称点P '的坐标是 .15.把一张长方形纸条按如图所示的方式折叠,则1∠= .16.如图,Rt ABC △中,906810ACB AC BC AB BD ∠=︒===,,,,平分①ABC ,如果点M ,N 分别为BD BC ,上的动点,那么CM MN +的最小值是 .三、解答题17.如图,ABC 是等边三角形,BD 是中线,延长BC 至E ,使CE CD =,连接DE .求证:DB DE =.18.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题.(1)画出格点ABC (顶点均在格点上)关于直线l 对称的111A B C △;(2)在直线l 上画出点P ,使得PB PC +最短;19.若等腰三角形一腰上的中线分周长为9和12两部分,请你画出示意图,并结合图形,求这个等腰三角形的各边长20.如图,在直角坐标系中,ABC 的三个顶点坐标分别为()()()144235A B C ,,,,,,请回答下列问题.(1)作ABC 的关于y 轴的对称图形, A 、B 、C 对应点坐标分别为A B C '''、、.(2)分别写出A B C '''的坐标:A ' ;B ' ;C ' ;(3)求ABC 的面积.21.如图,BA AF ⊥于点A ,ED DC ⊥于点D ,点E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE=CF .(1)求证:AF DE =;(2)若OP 平分EOF ∠,求证:OP 垂直平分EF .22.在ABC 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O .ADE 的周长为12cm =110BAC ∠︒(1)求BC 的长和DAE ∠的度数;(2)分别连接OA 、OB 、OC ,若OBC △的周长为29cm ,求OA 的长.23.如图,在ABC 中,AB AC AB =,的垂直平分线交AB 于M ,交AC 于N(1)若70ABC ∠=︒,求MNA ∠的度数.(2)连接NB ,若8AB cm BC =,的长6cm ,求NBC 的周长.24.如图,在等腰ABC 中CA CB =,点D 是AB 边上一点,连接DC ,且DA DC =.(1)如图1,CH AB ⊥若78ACB ∠=︒,求HCD ∠的度数.(2)如图2,若点E 在BC 边上且DE DB =,连接AE .点M 为线段CE 的中点,过M 点作MN DE ∥交AB 于点N ,求证:CD BN DN =+.第 1 页 共 7 页 参考答案: 1.B2.B3.A4.D5.B6.A7.C8.C9.60度10.16cm11.等边12.1113.82.514.()1,5--15.65︒16.4.819.这个等腰三角形的底为9或5,这个等腰三角形的腰为6或820. (2)()()()144235-,,-,,-,(3)7222.(1)12cm BC = 40︒(2)8.5cm OA =23.(1)50︒(2)14cm24.(1)12︒。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
八年级数学上册《第十三章 轴对称》单元测试卷-含答案(人教版)
八年级数学上册《第十三章轴对称》单元测试卷-含答案(人教版)一、选择题(共8题)1.下列图形中不一定是轴对称图形的是( )A.等腰三角形B.直角三角形C.角D.线段2.点M(2,−3)关于y轴的对称点坐标为( )A.(−2,3)B.(2,3)C.(−3,2)D.(−2,−3)3.到三角形各顶点的距离相等的点是三角形( )A.三边的垂直平分线的交点B.三条高的交点C.三条角平分线的交点D.三条中线的交点4.如图,在△ABC中,AB=AC,∠A=38∘,AB的垂直平分线MN交AC于D点,则∠DBC的度数是( )A.33∘B.38∘C.43∘D.48∘5.如图,△ABC中∠B=60∘,AB=AC,BC=3则△ABC的周长为( )A.12B.8C.6D.96.如图,在Rt△ABC中∠BAC=90∘,AB=AC点A,点C分别在直线a,b上,且a∥b若∠1=60∘则∠2的度数为( )A.75∘B.105∘C.135∘D.155∘7.如图AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∘角的直角三角尺按如图所示的方式摆放,若∠EMB=75∘,则∠PNM等于( )A.15∘B.25∘C.30∘D.45∘8.如图,△ABC中∠ACB=90∘,BA的垂直平分线交CB边于D,若AC=6,BC=8则△ACD的周长是( )A.10B.12C.14D.16二、填空题(共5题)9.若等腰三角形有两边长为2cm,5cm,则第三边长为cm.10.在△ABC中∠A=100∘,当∠B=∘时,△ABC是等腰三角形.11.已知点M(1−2m,m−1)关于x轴的对称点在第二象限,则m的取值范围是.12.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,∠B=40∘,∠C=36∘则∠DAC的度数是.13.如图,已知∠AOB=60∘,点P在OA上,OP=8点M,N在边OB上PM=PN,若MN=2则OM=.三、解答题(共6题)14.如图,方格纸中的每个小方格都是边长为1个单位的正方形,点A,B,C在小正方形的顶点上.(1) 在图中画出与△ABC关于直线l成轴对称的△ABʹCʹ.(2) △ABC的面积为.(3) 在如图所示的方格纸中,以AC为一边作与△ABC全等的三角形,则可作出个三角形与△ABC 全等.15.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.(1) 求证:BC=AD;(2) 求证:△OAB是等腰三角形.16.已知:如图∠ACB=90∘,AC=BC,D是边BC上一动点(与点B,C不重合),连接AD,延长BC至点E,使得CE=CD,过点E作EG⊥AD于点G,交AB于点F.(1) 若∠CAD=20∘,求∠AFE的大小.(2) 若∠CAD=α,过点F作FH⊥BC于点H,试写出线段BH与DE之间的数量关系,并说明理由.17.如图,点D是等边三角形ABC的边AC上一点,DE∥BC交AB于E,延长CB至F,使BF=AD连接DF交BE于G.(1) 求证:△ADE是等边三角形;(2) 求证:BG=EG.18.如图,在△ABC中AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CFAD+EC=AB.(1) 求证:△DEF是等腰三角形;(2) 当∠A=40∘时,求∠DEF的度数;(3) △DEF可能是等腰直角三角形吗?为什么?19.如图,已知△ABC,∠BAC=90∘.(1) 尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法);(2) 若∠C=30∘求证:DC=DB.参考答案1. B2. D3. A4. A5. D6. B7. C8. C9. 510. 4011. 12<m <112. 34∘13. 314. (1) 略(2) 3(3) 215. (1) ∵ AC ⊥BC ,BD ⊥AD∴ ∠ADB =∠ACB =90∘在 Rt △ABC 和 Rt △BAD 中∵ {AB =AB,AC =BD,∴ Rt △ABC ≌Rt △BAD (HL )∴ BC =AD .(2) ∵ Rt △ABC ≌Rt △BAD∴ ∠CAB =∠DBA∴ OA =OB∴ △OAB 是等腰三角形.16. (1) 在Rt△ACD中∠ADC=90∘−∠CAD=70∘∵CA=CB,∠ACB=90∘∴∠B=45∘∵∠ADC=∠B+∠DAB∴∠DAB=25∘∵AD⊥EF∴∠AGF=90∘∴∠AFE=90∘−25∘=65∘.(2) 结论:DE=2BH.理由:∵EC=DC,AC⊥DE∴AE=AD∴∠CAE=∠CAD=α∵∠DEG+∠ADC=90∘,∠CAD+∠ADC=90∘∴∠DEG=∠CAD=α∵∠AFE=∠DEF+∠B=α+45∘,∠EAF=∠AEC+∠CAB=α+45∘∴∠EFA=∠EAF∴AE=EF=AD∵∠ACD=∠EHF,∠CAD=∠FEH,AD=EF∴△ACD≌△EHF(AAS)∴CD=FH∵△FHB是等腰直角三角形∴FH=BH∴ED=2CD=2B=FH=2BH.17. (1) △ADE是等边三角形.理由如下:∵△ABC是等边三角形∴∠A=∠ABC=∠ACB=60∘.∵DE∥BC∴∠AED=∠ABC=60∘,∠ADE=∠C=60∘.∴∠A=∠AED=∠ADE.∴△ADE是等边三角形.(2) ∵△ADE是等边三角形∴AD=DE=BF.∵BF=AD∴BF=DE.∵DE∥BC∴∠EDG=∠F,∠DEG=∠FBG.在△DEG和△GFB中∴△DEG≌△GFB.∴BG=EG.18. (1) ∵AD+EC=AB=AD+DB∴EC=DB .又AB=AC∴∠B=∠C .又BE=CF∴△BED≌△ECF .∴DE=EF .∴△DEF是等腰三角形.(2) ∵∠A=40∘∴∠B=∠C=70∘ .由(1)知∠BDE=∠FEC .∴∠DEF=∠B=70∘ .(3) 若△DEF是等腰直角三角形,则∠DEF=90∘ . ∴∠DEB+∠BDE=90∘ .∴∠B=∠C=90∘ .∴△DEF不可能是等腰直角三角形.19. (1) 射线BD即为所求.(2) ∵∠A=90∘,∠C=30∘∴∠ABC=90∘−30∘=60∘∵BD平分∠ABC∠ABC=30∘∴∠CBD=12∴∠C=∠CBD=30∘∴DC=DB.。
第13章轴对称单元测试题B卷[含答案解析]
第13章轴对称单元测试题B卷(考试时间:120分钟满分:120分)第一卷选择题一、选择题(每小题3分,共30分)1.下列四个交通标志中,轴对称图形是()..2.从镜子里看到位于镜子对面电子钟的像如图所示,则实际时间是()A.12:01 B. 10:21 C. 15:01 D. 10:51 3.将三角形ABC的各顶点的横坐标都乘以﹣1,则所得三角形与三角形ABC的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将三角形ABC向左平移了一个单位4.已知等腰三角形的一个内角为70°,则另两个内角的度数是()A.55°,55°B. 70°,40°C.55°,55°或70°,40°D.以上都不对5.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B. 11 C. 7或11 D. 7或10 6.在平面直角坐标系xOy内,已知A(3,﹣3),点P是y轴上一点,则使△AOP为等腰三角形的点P共有()A.2个B. 3个C. 4个D. 5个7.等腰三角形一腰上的高是腰长的一半,则这个三角形的顶角的度数是()A.30°B. 60°C. 150°D. 30°或150°8.如图所示,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()..9.如图,在边长为1正方形ABCD 中,E 、F 、G 分别是AB 、BC 、CD 、DA 上的点,3AE =EB ,有一只蚂蚁从E 点出发,经过F 、G 、H ,最后回点E 点,则蚂蚁所走的最小路程是( ) A . 2B . 4C .D .第9题 第10题10.如图,已知点B 、C 、D 在同一条直线上,△ABC 和△CDE 都是等边三角形.BE 交AC于F ,AD 交CE 于G .则下列结论中错误的是( ) A . AD =BEB . BE ⊥AC C .△CFG 为等边三角形D . FG ∥BC第二卷非选择题二、填空题(每小题3分,共18分)11.已知点P 到x 轴,y 轴的距离分别是2和3,且点P 关于y 轴对称的点在第四象限,则点P 的坐标是 .12.如图在Rt △ABC 中,∠ACB =90°,∠B =30°,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,连接CE ,则图中的等腰三角形共有 个.13.已知如图,BC=3,∠ABC和∠ACB的平分线相交于点O,OE∥AB,OF∥AC,则三角形OEF的周长为.第13题第14题第15题第16题14.如图,等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD交于点P,若∠ABE:∠CBE=1:2,则∠BDP=度.15.如图,光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角.若已知∠1=50°,∠2=55°,则∠3=°.16.如图,矩形纸片ABCD,AB=2,∠ADB=30°,沿对角线BD折叠(使△ABD和△EBD 落在同一平面内),则A、E两点间的距离为.三、解答题(共8小题,共72分)17.如图画出△ABC关于y轴对称的△,再写出△ABC关于x轴对称的△各点坐标(不用画).(5分)18.已知△ABC中,BC=a,AB=c,∠B=30°,P是△ABC内一点,求P A+PB+PC的最小值.(6分)19.在△ABC中,D,E分别是AC,AB上的点,BD与CE交于O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(8分)(1)请你从上述四个条件中选出两个能证明△ABC是等腰三角形的条件(选出所有满足要求的情况,用序号表示)(2)选择其中一种进行证明.20.如图,在长方形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE 折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.(1)试求BF的长;(2)试求AD的长;(3)试求ED的长.(9分)21.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(10分)(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)22.(10分)如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD 于点M,CD交BE于点N,求证:(1)∠BDN=∠BEM;(2)△BMN是等边三角形.23.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为α,且0°<α<180°,连接AD、BD.(12分)(1)如图1,当∠BAC=100°,α=60°时,∠CBD的大小为;(2)如图2,当∠BAC=100°,α=20°时,求∠CBD的大小;(3)已知∠BAC的大小为m(60°<m<120°),若∠CBD的大小与(2)中的结果相同,请直接写出α的大小.24.如图所示,△ABC为直角三角形,∠ACB=90°,BF平分∠ABC,CD⊥AB于D,CD交BF于点G,GE∥CA,求证:CE与FG互相垂直平分.(12分)参考答案一、选择题(每小题3分,共30分)3、解:将三角形ABC的各顶点的横坐标都乘以﹣1,则所得三角形与三角形ABC的关系是关于y轴对称.故选:B.4、解:当70°为顶角时,另外两个角是底角,它们的度数是相等的,为(180°﹣70°)÷2=55°,当70°为底角时,另外一个底角也是70°,顶角是180°﹣140°=40°.故选C.5、解:设等腰三角形的底边长为x,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;7、解:①如图1,高BD在三角形的内部时,∵高BD是腰长AB的一半,∴∠A=30°,②如图2,高在三角形的外部时,∵高CD是腰长AC的一半,∴∠1=30°,∴∠BAC=180°﹣30°=150°,综上所述,这个三角形的顶角的度数是30°或150°.故选D.最小路程为EE'===2.故选C.10、解:A、∵△ABC和△CDE均为等边三角形,∴AC=BC,EC=DC,∠ACB﹦∠ECD=60°,∴∠ACD﹦∠ECB,在△ACD与△BCE中,∵,故选B.第二卷非选择题二、填空题(每小题3分,共18分)11、解:因为点P关于y轴对称的点在第四象限,所以点P在第3象限,点P的坐标是(﹣3,﹣2).∴∠1=∠2,∠4=∠5,∵OE∥AB,OF∥AC,∴∠1=∠3,∠4=∠6,∴∠2=∠3,∠5=∠6,∴BE=OE,OF=FC,∴BC=BE+EF+FC=OF+OE+EF,∵BC=3,∴OF+OE+EF=3∴△OEF的周长=OF+OE+EF=3.有AE=AF=AB=2.三、解答题(共8小题,共72分)从而P A+PB+PC=AP+PP′+P′C′≥AC′=,当A、P′、P、C′四点共线时取等号,最小值为;(2)若有一个角大于120°时,此时以该点为中心,以180°减去该角大小为旋转角进行旋转,①∠A≥120°时,当P点与A重合时,P A+PB+PC最小,最小值为a+;②∠C≥120°时,当P点与C重合时,P A+PB+PC最小,最小值为a+.故答案为:或a+.∴AD=AF=13cm.(3)设DE=x,则EC=(5﹣x)cm,∵BF=12cm,AD=13cm,∴FC=AD﹣BF=13﹣12=1cm,在Rt△EFC中,12+(5﹣x)2=x2,解得x=,∴ED=cm.21、(1)解:∵∠BAC=90°,AB=AC,∴∠B=∠C=(180°﹣∠BAC)=45°,∴∠ADC=∠B+∠BAD=45°+30°=75°,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS)∴∠BDN=∠BEM;(2)∵△ABE≌△DBC,∴∠AEB=∠DCB,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠F AC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠F AD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.24、证明:过G作GK⊥BC于K,连接EF,∵BF平分∠ABC,∴∠GBK=∠GBD,GK=GD,∵∠GKB=∠GDB∴△GBK≌△GBD(AAS),。
人教版八年级上册数学《轴对称》单元检测(附答案)
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
人教版八年级数学上《第13章轴对称》单元测试题(含答案解析)
2018年秋人教版八年级上册数学《第13章轴对称》单元测试题一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.204.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是.14.等腰三角形ABC中,∠A=110°,则∠B=°.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于°.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).2018年秋人教版八年级上册数学《第13章轴对称》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()A.25°B.45°C.30°D.20°【分析】首先根据对称的两个图形全等求得∠C的度数,然后在△ABC中利用三角形内角和求解.【解答】解:∠C=∠C'=30°,则△ABC中,∠B=180°﹣105°﹣30°=45°.故选:B.【点评】本题考查了轴对称的性质,理解轴对称的两个图形全等是关键.3.如图,在△ABC中,边AB的垂直平分线DE交AB于点E,交BC于点D,若BC =10,AC=6,则△ACD的周长是()A.14B.16C.18D.20【分析】由AB的垂直平分线DE交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,继而可得△ACD的周长为:AC+BC,则可求得答案.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=6,BC=10,∴△ACD的周长为:AC+CD+AD=AC+CD+BD=AC+BC=6+10=16.故选:B.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.4.在平面直角坐标系中,点P(2,1)向右平移3个单位得到点P1,点P1关于x轴的对称点是点P2,则点P2的坐标是()A.(5,1)B.(5,﹣1)C.(﹣5,1)D.(﹣5,﹣1)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P1的坐标,再根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答.【解答】解:∵将点P(2,1)向右平移3个单位得到点P1,∴点P1的坐标是(5,1),∴点P1关于x轴的对称点P2的坐标是(5,﹣1).故选:B.【点评】本题考查了坐标与图形变化﹣平移,以及关于x轴、y轴对称点的坐标的关系,熟练掌握并灵活运用是解题的关键.5.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm【分析】题目给出等腰三角形有两条边长为6cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:①6cm为腰,2cm为底,此时周长为14cm;②6cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.∴其周长是14cm.故选:A.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握情况.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条【分析】根据等腰三角形的性质分别利用AB为底以及AB为腰得出符合题意的图形即可.【解答】解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.【点评】此题主要考查了等腰三角形的判定等知识,正确利用图形分类讨论得出等腰三角形是解题关键.7.在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交直线AC于点E,∠AEB =80°,那么∠EBC等于()A.15°B.25°C.15°或75°D.25°或85°【分析】分两种情况:∠BAC为锐角,∠BAC为钝角,根据线段垂直平分线的性质可求出AE=BE,然后根据三角形内角和定理即可解答.【解答】解:如图1,∵DE垂直平分AB,∴AE=BE,∴∠BAC=∠ABE,∵∠AEB=80°,∴∠BAC=∠ABE=50°,∵AB=AC,∴∠ABC==65°,∴∠EBC=∠ABC﹣∠ABE=15°如图2,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠ABE,∵∠AEB=80°,∴∠BAE=∠EBA=50°,∴∠BAC=130°∵AB=AC,∴∠ABC==25°∴∠EBC=∠EBA+∠ABC=75°故选:C.【点评】此题主要考查线段的垂直平分线及等腰三角形的判定和性质.线段的垂直平分线上的点到线段的两个端点的距离相等.8.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.【点评】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.9.下列三角形,不一定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120°的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形【分析】分别利用等边三角形的判定方法分析得出即可.【解答】解:A、根据有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120°的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角一定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.故选:D.【点评】此题主要考查了等边三角形的判定,注意熟练掌握:由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.10.如图:等腰△ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.9D.10【分析】连接AD,AM,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,MA=MC,推出MC+DM=MA+DM≥AD,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,MA.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×6×AD=18,解得AD=6,∴S△ABC∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,MA=MC,∴MC+DM=MA+DM≥AD,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=6+×6=6+3=9.故选:C.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二.填空题(共8小题)11.如图,DE是△ABC边AC的垂直平分线,若BC=9,AD=4,则BD=5【分析】根据垂直平分线的性质可得AD=CD,进而求出BD的长度.【解答】解:∵DE是△ABC边AC的垂直平分线,∴AD=CD,∵BC=9,AD=4,∴BD=BC﹣CD=BC﹣AD=9﹣4=5,故答案为:5.【点评】本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.12.如图,△ABC中,∠C=90°,DE是AB的垂直平分线,且BC=8,AC=6,则△ACD的周长为14.【分析】根据线段的垂直平分线的性质得到DA=DB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴DA=DB,∴△ACD的周长=AC+CD+AD=AC+CD+DB=AC+BC=14,故答案为:14.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.已知点P关于y轴的对称点P1的坐标是(﹣1,2),则点P的坐标是(1,2).【分析】直接利用关于y轴对称点的性质得出点P坐标.【解答】解:∵P关于y轴的对称点P1的坐标是(﹣1,2),∴点P坐标是(1,2).故答案是:(1,2).【点评】此题主要.考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.等腰三角形ABC中,∠A=110°,则∠B=35°.【分析】根据钝角只能是顶角和等腰三角形的性质求得两个底角即可确定答案.【解答】解:∵等腰三角形中,∠A=110°>90°,∴∠B==35°,故答案为:35.【点评】本题考查了等腰三角形的性质,解题的关键是了解钝角只能是等腰三角形的顶角.15.等腰三角形的一个底角比顶角大30°,那么顶角度数为40°.【分析】设顶角的度数为x,表示出底角的度数.根据三角形内角和定理列方程求解.【解答】解:设顶角的度数为x°,则底角的度数为(x+30)°.根据题意,得x+2(x+30)=180,解得x=40.故答案为:40°.【点评】此题考查等腰三角形性质和三角形内角和定理,属基础题.16.如图:∠EAF=15°,AB=BC=CD,则∠ECD等于45°.【分析】根据等腰三角形的性质以及三角形的外角的性质即可解决问题;【解答】解:∵AB=BC,∴∠BAC=∠BCA=15°,∴∠CBD=∠A+∠BCA=30°,∵CB=CD,∴∠CBD=∠CDB=30°,∴∠ECD=∠A+∠CDB=15°+30°=45°,故答案为45.【点评】本题考查等腰三角形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.如图,在△ABC中,AB=AC,DE垂直平分AB.若BE⊥AC,AF⊥BC,垂足分别为点E,F,连接EF,则∠EFC=45°.【分析】先根据线段垂直平分线的性质及BE⊥AC得出△ABE是等腰直角三角形,再由等腰三角形的性质得出∠ABC的度数,由AB=AC,AF⊥BC,可知BF=CF,BF =EF;根据三角形外角的性质即可得出结论.【解答】解:∵DE垂直平分AB,∴AE=BE,∵BE⊥AC,∴△ABE是等腰直角三角形,∴∠BAC=∠ABE=45°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣45°)=67.5°,∴∠CBE=∠ABC﹣∠ABE=67.5°﹣45°=22.5°,∵AB=AC,AF⊥BC,∴BF=CF,∴BF=EF;∴∠BEF=∠CBE=22.5°,∴∠EFC=∠BEF+∠CBE=22.5°+22.5°=45°.故答案为:45°.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.18.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是9.6.【分析】由等腰三角形的三线合一可得出AD垂直平分BC,过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,在△ABC中,利用面积法可求出BQ的长度,此题得解.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ 的长,如图所示.=BC•AD=AC•BQ,∵S△ABC∴BQ===9.6.故答案为:9.6.【点评】本题考查了轴对称﹣最短路线问题、等腰三角形的性质以及三角形的面积,利用点到直线垂直线段最短找出PC+PQ的最小值为BQ是解题的关键.三.解答题(共7小题)19.如图,直线MN和直线DE分别是线段AB,BC的垂直平分线,它们交于P点,请问PA和PC相等吗?请说明理由.【分析】连接PB,根据线段垂直平分线的性质即可得出结论.【解答】解:PA=PC.理由:∵直线MN和直线DE分别是线段AB,BC的垂直平分线,∴PA=PB,PC=PB,∴PA=PC.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上的点到线段两端的距离相等是解答此题的关键.20.如图,在△ABC中,∠C=90,DE是AB的垂直平分线,∠CAE=∠B+30°,求∠AEB的度数.【分析】利用线段垂直平分线的性质计算.【解答】解:已知DE垂直且平分AB⇒AE=BE⇒∠EAB=∠B又因为∠CAE=∠B+30°故∠CAE=∠B+30°=90°﹣2∠B⇒∠B=20°∴∠AEB=180°﹣20°×2=140°.【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识,注意角与角之间的转换.21.如图,在直角坐标系中,A(﹣1,5),B(﹣3,0),C(﹣4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.【分析】(1)、(2)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(3)用一个矩形的面积减去三个三角形的面积计算△ABC的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)点C1的坐标为(4,3);(3)△ABC的面积=3×5﹣×3×1﹣×3×2﹣×5×2=.【点评】本题考查了作图﹣对称性变换:在画一个图形的轴对称图形时,先从确定一些特殊的对称点开始的,一般的方法是:由已知点出发向所给直线作垂线,并确定垂足;直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;连接这些对称点,就得到原图形的轴对称图形.22.已知等腰三角形△ABC的一边长为5,周长为22.求△ABC另两边的长.【分析】分两种情况:①设AB=AC=5,②设BC=5,根据等腰三角形的性质和三角形的三边关系即可得到结论.【解答】解:∵△ABC是等腰三角形,∴不妨设AB=AC,又∵一边长为5,①设AB=AC=5,∵△ABC的周长为22,∴BC=22﹣5﹣5=12;∵5+5<12,∴不成立(舍);②设BC=5,∵△ABC的周长为22,∴AB=AC=(22﹣5)÷2=8.5,∵8.5+5>8.5,符合题意,∴△ABC另两边长分别为8.5,8.5.【点评】本题考查了等腰三角形的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.23.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.【分析】根据角平分线的定义和余角的性质即可得到结论.【解答】解:∵BF平分∠ABC,∴∠ABF=∠CBF,∵∠BAC=90°,AD⊥BC,∴∠ABF+∠AFB=∠CBF+∠BED=90°,∴∠AFB=∠BED,∵∠AEF=∠BED,∴∠AFE=∠AEF,∴AE=AF.【点评】此题考查了等腰三角形的判定、直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.24.如图,△ABC中,点O是∠BCA与∠ABC的平分线的交点,过O作与BC平行的直线分别交AB、AC于D、E.已知△ABC的周长为15,BC的长为6,求△ADE的周长.【分析】先利用角平分线的定义和平行线的性质得到∠1=∠2,所以DB=DO,同理可得EO=CE,利用等线段代换得到△ADE的周长=AB+AC,然后利用△ABC的周长为15得到AB+AC=9,从而得到△ADE的周长.【解答】解:∵点O是∠BCA与∠ABC的平分线的交点,∴∠1=∠3,∵DE∥BC,∴∠2=∠3,∴∠1=∠2,∴DB=DO,同理可得EO=CE,∴△ADE的周长=AD+AE+DE=AD+DO+AE+OE=AD+BD+AE+CE=AB+AC,∵△ABC的周长为15,∴AB+AC+BC=15,而BC的长为6,∴AB+AC=9,∴△ADE的周长为9.【点评】本题考查了等腰三角形的判定与性质:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.也考查了平行线的性质.25.如图,在△ABC中,AB=AC,CD垂直AB于D,P为BC上的任意一点,过P点分别作PE⊥AB,PF⊥CA,垂足分别为E,F.①若P为BC边中点,则PE,PF,CD三条线段有何数量关系(写出推理过程)?②若P为线段BC上任意一点,则①中关系还成立吗?③若P为直线BC上任意一点,则PE,PF,CD三条线段间有何数量关系(请直接写出).【分析】①如图1,连接PA,根据三角形的面积公式列方程即可得到结论;②连接PA ,根据三角形的面积公式即可得到结论;(3)如图2,连接PA ,根据三角形的面积列方程即可得到结论;如图3,过点C 作CG ⊥PE 于G ,根据矩形的性质和全等三角形的性质即可得到结论.【解答】解:(1)CD =PE +PF ,理由:如图1,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(2)①中关系还成立,理由:连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAB +S △PAC∴AB ×CD =AB ×PE +AC ×PF ,∵AB =AC∴CD =PE +PF ;(3)结论:PE ﹣PF =CD 或PF ﹣PE =CD ,如图2,连接PA ,∵CD ⊥AB 于D ,PE ⊥AB 于E ,PF ⊥AC 于F∵S △ABC =AB ×CD ,S △PAB =AB ×PE ,S △PAC =AC ×PF ,又∵S △ABC =S △PAC ﹣S △PAB∴AB ×CD =AC ×PF +AB ×PE ,∵AB =AC ,∴CD =PF ﹣PE ;如图3,过点C 作CG ⊥PE 于G ,∵PE ⊥AB ,CD ⊥AB ,∴∠CDE=∠DEG=∠EGC=90°.∴四边形CGED为矩形.∴CD=GE,GC∥AB.∴∠GCP=∠B.∵AB=AC,∴∠B=∠ACB.∴∠FCP=∠ACB=∠B=∠GCP.在△PFC和△PGC中,,∴△PFC≌△PGC(AAS),∴PF=PG.∴PE﹣PF=PE﹣PG=GE=CD;【点评】本题考查了等腰三角形的性质;在解决一题多变的时候,基本思路是相同的;注意通过不同的方法计算同一个图形的面积,来进行证明结论的方法,是非常独特的,也是一种很好的方法,注意掌握应用.。
第13章 轴对称 人教版数学八年级上册单元测试卷(含答案)
第十三章 轴对称时间:60分钟 满分:100分一、选择题(本大题共10小题,每小题3分,满分30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·辽宁盘锦双台子区期末)下列由黑白棋子摆成的图案中,是轴对称图形的是( ) A B C D2.(2022·福建福州鼓楼区期中改编)在平面直角坐标系中,若点(2,m)与点(n,3)关于x 轴对称,则(m+n)2 023的值为( )A.0B.-1C.1D.32 0233.如图是3×3的正方形网格,其中已有2个小方格被涂成了黑色.现在要从编号为①—④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A.①B.②C.③D.④4.(2022·四川遂宁期末)若等腰三角形的一个外角等于70°,则它的底角的度数为( ) A.35° B.70° C.110° D.55°5.(2022·河南周口期末)元旦联欢会上,同学们玩抢凳子游戏,在与A,B,C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A,B,C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的( )A.三边中线的交点处B.三边垂直平分线的交点处C.三边上高的交点处D.三条角平分线的交点处6.(2022·山东菏泽期中)如图,在△ABC中,AB=AC,AD,BE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ABE的度数为( ) A.20° B.35° C.40° D.70°(第6题) (第7题)7.如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b 上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点B有( )A.4个B.3个C.2个D.1个8.(2022·广东广州天河区期末)在△ABC中,AB=AC,∠A=36°,若按如图所示的尺规作图方法作出线段BD,则下列结论错误的是( )A.AD=BDB.∠BDC=72°C.S△ABD∶S△BCD=BC∶ACD.△BCD的周长=AB+BC9.(2022·山东烟台期末)如图,∠AOB=60°,点P在射线OA上,OP=22,点M,N在射线OB上(点M在点N的左侧),且PM=PN.若MN=4,则OM的长为( ) A.7 B.8 C.9 D.11(第9题) (第10题) 10.(2022·辽宁大连期末)如图,∠ABC=30°,点D是∠ABC内部的一点,连接BD.若BD=1m,点E,F分别是边BA,BC上的动点,则△DEF的周长的最小值为( )A.0.5mB.1mC.1.5mD.2m二、填空题(本大题共6小题,每小题3分,共18分)11.新风向开放性试题汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性,黑体的汉字“王”“中”“田”等都是轴对称图形,请再写出两个这样的汉字: .12.(2022·安徽合肥庐阳区期末改编)如图,在Rt△ABC中,∠C=90°,∠A=30°,线段AB的垂直平分线交AB于点D,交AC于点E,连接BE.若CE=3,则AE= .(第12题) (第13题)13.如图,在△ABC中,AB=AD=DC,若∠BAD=24°,则∠C的度数为 .14.新风向新定义试题(2021·江苏苏州期末)定义:等腰三角形的一个底角与其顶角的度数的比值k(k>1)称为这个等腰三角形的优美比.若在等腰三角形ABC中,∠A=36°,则它的优美比为 .15.(2022·河南济期末)在平面直角坐标系中,对△ABC进行如图所示的轴对称变换.若原来点A的坐标是(a,b),则经过第2 023次变换后,点A所对应的坐标是 .16.(2021·北京西城区期末)如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于三、解答题(共6小题,共52分)17.(6分)(2022·湖北十堰期末节选)如图,△ABC的顶点A,B,C都在小正方形的格点上,利用网格线按下列要求画图.(1)画出△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A,B的距离之和最短.(要求:不写作法,保留作图痕迹)18.(8分)(2022·湖北十堰郧阳区期中改编)某市发生地震后,为了抢救伤员,一架救援直升机从该市A地起飞,运送一批地震伤员沿正北方向到机场N,如图.上午8时,直升机从A地出发,以200 km/h的速度向正北方向飞行,9时到达B地,此时,机场的导航站传来信息:在C处有一座高山,因受天气影响,高山周围80 km内能见度低,飞行时会遇到危险.经测量得∠NAC=15°,∠NBC=30°.问该直升机继续向机场N飞行是否有危险,请说明理由.19.(8分)新风向开放性试题(2022·江苏南京鼓楼区期中)证明:有两个角相等的三角形是等腰三角形.已知:如图,在△ABC中, .求证: .证明:20.(8分)如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=15°,求∠AEB的度数;21.(10分)新风向探究性试题(2022·河北石家庄裕华区期末)【问题】如图,在△ABC中,点D为BC边上一点,BD=BA.EF垂直平分AC,交AC 于点E,交BC于点F,连接AD,AF.若∠B=30°,∠BAF=90°,求∠DAC的度数.【探究】如果把【问题】中的条件“∠B=30°”去掉,其他条件不变,那么∠DAC的度数会变吗?请说明理由.22.(12分)如图,在△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N 第一次到达点B时,M,N同时停止运动.(1)当点M,N运动几秒时,M,N两点重合?(2)当点M,N运动几秒时,可得到等边三角形AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如果能,请求出此时M,N运动的时间.第十三章 轴对称选择填空题答案速查12345678910D B D A B B A C C B11.甲,本(答案不唯一)12.613.39°14.215.(-a,b)16.181.D高分锦囊判断一个图形是不是轴对称图形,关键看能否找到这样一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合.2.B ∵点(2,m)与点(n,3)关于x轴对称,∴m=-3,n=2,∴(m+n)2 023=(2-3)2 023=-1.3.D 图示速解如图,将编号为④的小方格涂成黑色,黑色部分不是轴对称图形.4.A 由题意可得,与等腰三角形的这个外角相邻的内角等于110°.∵三角形的内×(180°-110°)=35°.角和为180°,∴底角不可能等于110°,∴底角度数为125.B ∵三角形的三边垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC的三边垂直平分线的交点处.6.B ∵AD是△ABC的中线,AB=AC,∠CAD=20°,【关键】等腰三角形的“三线合一”∴∠CAB=2∠CAD=40°,∴∠ABC=1×(180°-40°)=70°.∵BE是△ABC的角平分线,2∴∠ABE=1∠ABC=35°.2一题多解∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴AD⊥BC,∴∠C=90°-20°=70°,∴∠ABC=∠C=70°.又BE是△ABC的角平分线,∴∠ABE=1∠ABC=35°.27.A 图示速解如图,要使△OAB为等腰三角形,应分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B1;②当OA=AB时,以点A为圆心,OA 的长为半径作圆,与直线b交于点B2;③当OA=OB时,以点O为圆心,OA的长为半径作圆,与直线b交于点B3,B4.故选A.8.C ∵AB=AC,∠A=36°,∴∠ABC=∠C=72°.由作图痕迹可知BD平分∠ABC∴∠DBC=∠ABD=∠A=36°,【关键】由尺规作图可以得出BD平分∠ABC∴AD=BD,∠BDC=72°.故A,B选项不符合题意.由以上可知∠C=∠BDC,∴BD=BC,∴AD=BC.∵S△ABD∶S△BCD=AD∶CD,∴S△ABD∶S△BCD=BC∶CD.【关键】两三角形同高不同底故C选项符合题意.∵BD=AD,△BCD的周长=BC+CD+BD,∴△BCD的周长=BC+CD+AD=BC+AC=AB+BC.故D选项不符合题意.7.C 如图,过点P作PC⊥OB于点C,∵∠AOB=60°,∴∠OPC=90°-∠AOB=30°.∵OP=22,∴OC=1OP=11.∵2MN=2,∴OM=OC-MC=11-2=9.PM=PN,MN=4,∴MC=1210.B (转化思想)如图,作点D关于AB的对称点G,作点D关于BC的对称点H,连接GH交AB于点E,交BC于点F,此时△DEF的周长有最小值,连接GB,BH.由线段垂直平分线的性质可得,GE=ED,DF=FH,由轴对称的性质得BG=BD,BD=BH,∴ED+DF+EF=GE+EF+FH=GH,此时△DEF的周长最小值为GH.∵∠GBA=∠ABD,∠DBC=∠CBH,BD=m,∴∠GBH=2∠ABC=2×30°=60°,∴△GBH是等边三角形,∴GH=BG=BD=m,∴△DEF的周长的最小值为m.【关键】发现△GBH是等边三角形11.甲,本(答案不唯一,只要是轴对称图形即可)12.6 ∵∠C=90°,∠A=30°,∴∠CBA=60°.∵DE是线段AB的垂直平分线,∴BE=AE,∴∠ABE=∠A=30°,∴∠CBE=60°-30°=30°.∵∠C=90°,CE=3,∴BE=2CE=2×3=6,∴AE=6.13.39° ∵AB=AD,∠BAD=24°,∴∠B=∠ADB=1×(180°-24°)=78°.2又AD=DC ,∴∠C=∠CAD=12∠ADB=12×78°=39°.14.2 (分类讨论思想)当∠A 为顶角时,则底角∠B=∠C=72°,此时,优美比=72°36°=2;当∠A 为底角时,则顶角为108°,此时,优美比=36°108°=13(不合题意,舍去).15.(-a ,b ) 第1次变换后,点A 在第四象限;第2次变换后,点A 在第三象限;第3次变换后,点A 在第二象限;第4次变换后,点A 在第一象限,回到原始位置,…,以此类推,每4次变换为一组循环.因为2 023÷4=505……3,所以第2 023次变换后,点A 在第二象限,坐标为(-a ,b ).16.18 ∵△ABC 是等边三角形,∴∠C=∠BAC=60°.∵AD ⊥BC ,∴BD=CD ,∠DAC=12∠BAC=30°.∵AD=12,∴DE=12AD=6.∵DE ⊥AC ,∴∠EDC=90°-∠C=90°-60°=30°,∴EC=12DC ,∴BC=4EC.∵S △EDC =12ED ·EC=12×6×EC=3EC ,S △ABC =12AD×BC=12×12×BC=6BC=24EC ,∴S △EDCS △ABC =3EC24EC =18.17.【参考答案】(1)如图,△A 1B 1C 1即为所求作.(3分)(2)如图,点P 即为所求作.(6分)18.【参考答案】该直升机继续向机场N 飞行无危险.(1分)理由:如图,过点C 作CD ⊥AN 于点D ,∵∠NAC=15°, ∠NBC=30°,∴∠ACB=15°,CD=12BC ,∴∠ACB=∠NAC ,∴BC=AB.(5分)由题意可得,AB=200 km,∴BC=200 km,∴CD=100 km.∵100>80,∴该直升机继续向机场N飞行无危险.(8分)19.【参考答案】已知:如图,在△ABC中,∠B=∠C.(2分)求证:△ABC是等腰三角形.(4分)证明:如图,过点A作AD⊥BC,垂足为点D.∵AD⊥BC,∴∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.(8分)20.【参考答案】(1)补全图形如图所示. (3分) (2)在等边三角形ABC中,AC=AB ,∠BAC=60°.由对称可知AD=AC ,∠PAD=∠PAC=15°,∴∠BAD=90°,AB=AD ,∴∠ABD=∠D=45°,∴∠AEB=∠D+∠PAD=60°.(8分)21.思路导图【参考答案】【问题】∵AB=BD ,∠B=30°,∴∠BAD=∠ADB=180°―30°2=75°.∵∠BAF=90°,∴∠AFB=90°-30°=60°.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=30°,∴∠CAD=∠ADB-∠C=75°-30°=45°.(5分)【探究】不变.(6分)理由:∵AB=BD ,∴∠BAD=∠ADB=180°―∠B 2=90°-12∠B.∵∠BAF=90°,∴∠AFB=90°-∠B.∵EF 垂直平分AC ,∴∠CAF=∠C.∵∠AFB=∠C+∠CAF=2∠C ,∴∠C=∠CAF=12∠AFB=45°-12∠B ,∴∠CAD=∠ADB-∠C=90°-12∠B-(45°-12∠B )=45°.(10分)22.【参考答案】(1)设当点M ,N 运动x s 时,M ,N 两点重合,由题意,可得x×1+12=2x ,解得x=12.故当点M ,N 运动12 s 时,M ,N 两点重合.(2分)(2)设当点M ,N 运动t s 时,可得到等边三角形AMN ,此时AM=t ,AN=AB-BN=12-2t ,∴t=12-2t ,解得t=4.(4分)故当点M ,N 运动4 s 时,可得到等边三角形AMN.(5分)(3)当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形.(6分)若△AMN 是以MN 为底边的等腰三角形,则AN=AM ,∴∠AMN=∠ANM ,∴∠AMC=∠ANB.∵在△ABC 中,AB=BC=AC ,∴△ACB 是等边三角形,∴∠C=∠B=60°.(8分)在△ACM 和△ABN 中,∠AMC =∠ANB ,∠C =∠B ,AC =AB ,∴△ACM ≌△ABN ,∴CM=BN.(10分)设当点M ,N 运动时间为y s 时,△AMN 是以MN 为底边的等腰三角形,∴CM=y-12,NB=36-2y ,∴y-12=36-2y ,解得y=16.故能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16 s .(12分)。
人教版八年级上册数学第13章《轴对称》单元测试卷(含答案解析)
人教版八年级上册数学第13章《轴对称》单元测试卷班级_________ 姓名__________ 考号_____________ 得分____________一、选择题(每小题3分,共30分)1、下列图形中一定是轴对称图形的是()A.B.C.D.2、点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是()A.a=1,b=﹣3 B.a=1,b=﹣1 C.a=5,b=﹣3 D.a=5,b=﹣13、如图,在△ABC中,AB=AD=DC,若∠BAD=36°,则∠C的大小为()A.36°B.38°C.40°D.42°4、等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5、等腰三角形的周长为15,其中一边长为3,则该等腰三角形的底边长为()A.3 B.4 C.5 D.66、如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数为()A.58°B.56°C.62°D.60°7、如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=100°,则∠ACB的度数为()A.40°B.45°C.60°D.80°8、如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.9、在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO为()A.2 B.10 C.2或10 D.无法测量10、如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)11、在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴对称得到点A′,再将点A′向上平移2个单位,得到点A″,则点A″的坐标是(1,4).12、一个等腰三角形一腰上的中线把这个三角形的周长分为12和30两部分,则这个等腰三角形的腰长为20.13、如图,等腰△ABC中,AB=AC,∠A=54°,AB的垂直平分线MN交AC于点D,则∠DBC的度数是9°.14、如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为.15、如图,在平面直角坐标系xOy中,已知点A(6,2),B(0,1).在x轴上找一点P,使得PA+PB最小,则点P的坐标是(2,0),此时△PAB的面积是4.16、在Rt△ABC中,∠ACB=90°,∠CAB=36°,在直线AC或BC上取点M,使得△MAB为等腰三角形,符合条件的M点有8个.。
人教版八年级上册数学单元测试第13章测试卷及答案
《轴对称》综合测试一一、选择题(每小题3分,共24分)1.下列剪纸作品都是轴对称图形.其中对称轴条数最多的作品是()A.B.C.D.2.下列说法不正确的是()A.两个关于某直线对称的图形一定全等B.对称图形的对称点一定在对称轴的两侧C.两个轴对称的图形对应点的连线的垂直平分线是它们的对称轴D.平面上两个全等的图形不一定关于某直线对称3.下列条件中,不能得到等边三角形的是()A.有两个角是60°的三角形B.有一个角是60°的等腰三角形C.有两个外角相等的等腰三角形D.三边都相等的三角形4.如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC 于点E,则△BEC的周长为()A.13 B.14 C.15 D.165.如图,△ABC中,∠ACB=90°,CD是高,∠A=30°,则BD与AB的关系是()A.BD=AB B.BD=AB C.BD=AB D.BD=AB6.如图,△ABC中,AB=AC,点D是BC的中点,E是AC上一点,且AE=AD,若∠AED=75°,则∠EDC的度数是()A. 10°B. 15°C. 20°D. 25°7.如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A.(0,3)B.(1,2) C.(0,2)D.(4,1)8. 如图,已知△ABC的面积为10cm2,BP为∠ABC的角平分线,AP垂直BP于点P,则△PBC的面积为( B )A. 6cm2B. 5cm2C. 4cm2D. 3cm2二、填空题(每小题4分,共24分)9.已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为.10.等腰三角形一个角等于100°,则它的一个底角的度数是.11.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB的度数为.12.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC的面积为18cm2,则图中阴影部分面积为cm2.13.如图,在△ABC中,∠B与∠C的平分线交于点O.过O点作DE∥BC,分别交AB、AC 于D、E.若AB=8,AC=6,则△ADE的周长是 .。
人教版八年级数学上册第13章单元测试卷及答案
人教版八年级数学上册第13章单元测试卷及答案一.选择题(每小题3分,共30分)1.下面四个图形分别是节能.节水.低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A.B.C.D.2.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为( )A.(﹣3,﹣2) B.(﹣2,2)C.(2,2)D.(2,﹣2)3.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°第3题图第4题图第5题图4.如图,直线l1∥l2,以直线l1上的点A为圆心.适当长为半径画弧,分别交直线l1.l2于点B.C,连接AC.BC.若∠ABC=67°,则∠1=( )A.23°B.46°C.67°D.78°5.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为( )A.105°B.100°C.95°D.90°6.等腰三角形两边长分别是2cm和5cm,则这个三角形周长是( )A.9cm B.9cm或12cm C.12cm D.14cm7.如图,OB.OC分别平分∠ABC和∠ACB,MN∥BC,若AB=6,AC=4,则△AMN的周长是( )A.5B.7C .9D.10第7题图第8题图第9题图第10题图8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )A.40°B.36°C.30°D.25°9.如图,在平面直角坐标系中,点B.C在y轴上,△ABC是等边三角形,AB=4,AC与x轴的交点D为AC边的中点,则点D的坐标为( )A.(1,0)B.(2,0)C.(2,0)D.(,0)10.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3C.4D.2二.填空题(每小题3分,共15分)11.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为 .第11题图第12题图第13题图12.在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有 个.13.如图,在△ABC中,AB=AC,D.E分别在BC.AC上,且AD=AE,若∠BAD=20°,则∠CDE= .14.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为 .第14题图第15题图15.如图,△ABC是边长3cm的等边三角形,动点P.Q同时从A.B两点出发,分别沿AB.BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P.Q两点停止当t时,△PBQ是直角三角形.三.解答题(本大题共8个小题,满分75分)16.(8分)作图题:如图,某地有两所学校M.N和两条交叉的公路AO.BO,现计划建一个体育馆,希望体育馆到两所学校的距离相同,到两条公路的距离也相同,请你用尺规作图的方法确定体育馆的具体位置.(要求:尺规作图,不用写出作法,但要保留作图痕迹)17.(9分)已知:如图,在平面直角坐标系中.(1)作出△ABC 关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );(2)直接写出△ABC的面积为 ;(3)在x轴上画点P,使PA+PC最小.18.(9分)如图,已知AB比AC长3cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是15cm,求AB和AC的长.19.(9分)已知BC=ED,AB=AE,∠B=∠E,F是CD的中点,求证:AF ⊥CD.20.(9分)如图,在△ABC中,AB=AC,AM是外角∠DAC的平分线.(1)实践与操作:尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法),作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE.(2)猜想并证明:∠EAC与∠DAC的数量关系并加以证明.21.(10分)如图,点D.E是等边△ABC的BC.AC上的点,且CD=AE,AD.BE相交于P点,BQ⊥AD.(1)求证:△ABE≌△ADC;(2)已知PE=2,AD=8,求PQ的长度.22.(10分)如图,在△ABC中,AD为∠BAC的平分线,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC交AC的延长线于F.(1)求证:BE=CF;(2)如果AB=6,AC=4,求AE,BE的长.23.(11分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(不与B.C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠ADB=115°时,∠BAD= °,∠DEC= °;(2)线段DC的值为多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠ADB的度数;若不可以,请说明理由.参考答案一.选择题1.A 2.C 3. B4.B 5.A 6.C 7.D8.B9.D10.D 二.填空题11.105°12.313.10°14.A15.1或2.三.解答题(共8小题)16.解:如图所示:,点P就是体育馆的具体位置.17.解:(1)如图所示:A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;故答案为:5;(3)如图所示:点P即为所求.18.解:∵DE是BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+AD+CD=AC+BD+AD=AC+AB,由题意得,,解得.∴AB和AC的长分别为9cm,6cm.19.解:如图,连接AC.AD,在△ABC和△AED中,,∴△ABC≌△AED(SAS).∴AC=AD.∴△ACD是等腰三角形.又∵点F是CD的中点,∴AF⊥CD.20.解:(1)如图所示:(2)猜想:∠EAC=∠DAC,理由如下:∵AB=AC∴∠B=∠C,∵∠DAC是△ABC的外角∴∠DAC=∠B+∠C=2∠C,∵EF垂直平分AC,∴EA=EC,∴∠EAC=∠C=∠DAC.21.解:(1)∵CD=AE,∴BD=CE,在△ABE和△ADC中,,∴△ABE≌△ADC(SAS);(2)∵△ABE≌△ADC,∴∠CAD=∠ABE,BE=AD=8,∵∠APE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,∴∠BPD=∠APE=∠BAC=60°,即∠BPD的度数为60°;∵BQ⊥AD,在Rt△BPQ中,∠BPQ=60°,∴∠PBQ=30°,∵PB=BE﹣PE=8﹣2=6,∴PQ=PB=3.22.解:(1)连接DB.DC,∵DG⊥BC且平分BC,∴DB=DC.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF.∠AED=∠BED=∠ACD=∠DCF=90°在Rt△DBE和Rt△DCF中,Rt△DBE≌Rt△DCF(HL),∴BE=CF.(2)在Rt△ADE和Rt△ADF中∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.∵AC+CF=AF,∴AE=AC+CF.∵AE=AB﹣BE,∴AC+CF=AB﹣BE∵AB=6,AC=4,∴4+BE=6﹣BE,∴BE=1,∴AE=6﹣1=5.答:AE=5,BE=1.23.解:(1)25°,115°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.。
人教版八年级上册第13章《轴对称》单元测试含答案
人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。
2022-2023学年人教版数学八年级上册第十三章《轴对称》单元测试
人教版数学八年级上册《第十三章轴对称》单元测试一、单选题(本大题共15小题,共45分)1.(3分)在平面直角坐标系中,点P(3,-2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(3分)如图,∠DAE=∠ADE=15°,DE//AB,DF⊥AB,若AE=6,则DF等于()A. 2B. 3C. 4D. 63.(3分)直角坐标系中,点(-2,3)与(-2,-3)关于()A. 原点中心对称B. x轴轴对称C. y轴轴对称D. 以上都不对4.(3分)一个等腰三角形的顶角是50°,则它的底角是()A. 65°B. 70°C. 75°D. 100°5.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.(3分)在等腰三角形ABC中,AB=AC,那么下列说法中不正确的是()A. BC边上的高线和中线互相重合B. AB和AC边上的中线相等C. 三角形ABC中∠B和∠C的角平分线相等D. 等腰三角形最多有一条对称轴7.(3分)2022年北京和张家口成功举办了第24届冬奥会和冬残奥会.下面关于奥运会的剪纸图片中是轴对称图形的是()A. B.C. D.8.(3分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A. 菱形B. 矩形C. 等腰梯形D. 正五边形9.(3分)若ΔABC是等边三角形,且点D、E分别是AC、BC上动点,始终保持CD=BE,不与顶点重合,则∠AFD的度数是()度.A. 30B. 45C. 60D. 无法确定10.(3分)下列图形中,是轴对称图形的个数是()A. 1B. 2C. 3D. 411.(3分)点M(3,-4)关于x轴的对称点M′的坐标是()A. (3,4)B. (-3,-4)C. (-3,4)D. (-4,3)12.(3分)ΔABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A. 9cmB. 8cmC. 7cmD. 6cm13.(3分)点(5,-6)关于x轴的对称点的坐标是()A. (-6,5)B. (-5,-6)C. (5,6)D. (-5,6)14.(3分)在四边形ABCD中,AB=AD,BC=CD,则两对角线AC与BD的关系是()A. AC垂直平分BDB. BD垂直平分ACC. AC与BD互相垂直平分D. BD平分∠ADC15.(3分)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.将右图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A. B.C. D.二、填空题(本大题共5小题,共15分)16.(3分)如图,在3×3的正方形网格中,网格纸的交点称为格点.已知A,B是两格点,C 也是图中的格点,且以A,B,C为顶点的三角形是等腰三角形,则满足条件的点C的个数是________.17.(3分)已知点P(−1,2),那么点P关于直线x=1的对称点Q的坐标是______.18.(3分)已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012=____.19.(3分)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是______.20.(3分)已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.三、解答题(本大题共5小题,共40分)21.(8分)如图,在正方形网格中,每个小正方形的边长为1,格点ΔABC的顶点A、C的坐标分别为(−4,5)、(−1,3).(1)请在图中正确作出平面直角坐标系;(2)请作出ΔABC关于y轴对称的ΔA′B′C′;(3)点B′的坐标为 ______ ,ΔA′B′C′的面积为 ______ .22.(8分)如图,在平面直角坐标系中,A(1,3),B(−4,1),C(−3,−2)(1)画出ΔABC关于y轴对称的ΔA1B1C1;(2)ΔA1B1C1的面积是______;(3)在如图的网格中规定每个小正方形的顶点叫做格低,点D是第二象限内的格点,若ΔDBC是等腰三角形,则点D的坐标是______.23.(8分)在图示的方格纸中:(1)作出ΔABC关于MN对称的图形ΔA1B1C1;(2)说明ΔA2B2C2是由ΔA1B1C1经过怎样的平移得到的?(3)若方格的边长为1,求出四边形A1A2C2C1的面积.24.(8分)在等边ΔABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数理关系,若成立,请给予证明.25.(8分)如图1,等边ΔABC中,D是AB上一点,以CD为边向上作等边ΔCDE,连结AE.(1)求证:AE//BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.答案和解析1.【答案】C;【解析】∵点P(3,-2)关于y轴的对称点是(-3,-2),∴点P(3,-2)关于y轴的对称点在第三象限.故选C.2.【答案】B;【解析】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=6,过D作DG⊥AC于G,则DG=12DE=12×6=3,∵DE//AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=3.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG= 30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是3,又DE//AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.这道题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解答该题的关键.3.【答案】B;【解析】解:点(-2,3)与(-2,-3)关于x轴轴对称.故选:B.4.【答案】A;【解析】解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°−50°)÷2=65°.故选:A.等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.这道题主要考查了等腰三角形的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.5.【答案】C;【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.该题考查了三角形三边关系与周长的求解.6.【答案】D;【解析】该题考查了等腰三角形的两腰相等,等边对等角,三线合一的性质以及轴对称图形的定义,是基础题型,比较简单.根据等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.(简称:等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一),和根据轴对称图形的对称轴的定义即可求解.解:A、BC边上的高线和中线互相重合,故本选项正确,不符合题意;B、AB和AC边上的中线相等,故本选项正确,不符合题意;C、三角形ABC中∠B和∠C的角平分线相等,故本选项正确,不符合题意;D、等腰三角形最多有3条对称轴,故本选项不正确,符合题意.故选D.7.【答案】D;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.不是轴对称图形,故C选项不符合题意;D.是轴对称图形,故D选项符合题意;故选:D.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.8.【答案】B;【解析】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、矩形,对边中点的所在的直线,只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一等腰三角形与以等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.针对各图形的对称轴,对各选项分析判断后利用排除法求解.这道题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解答该题的关键.9.【答案】C;【解析】解:∵ΔABC是等边三角形,∴AB=AC,∠ABE=∠BCD,∠ABF+∠CBF=60°,在ΔABE和ΔBCD中,{AB=AC∠ABE=∠BCDCD=BE,∴ΔABE≌ΔBCD(SAS),∴∠BAF=∠CBF,∴∠AFD=∠ABF+∠BAF=∠ABF+∠CBF=60°,故选:C.抓住题中“等边三角形的每个内角是60度”这一关键点入手,三角形全等后,再利用对应角相等进行等量代换,结合外角的知识,得出∠AFD的大小.此题主要考查了全等三角形的判定与性质,结合等边三角形的性质,外角等知识解决问题,体现数学的转化思想,培养学生的推理能力,综合应用能力.10.【答案】B;【解析】解:第一个图形、第三个图形是轴对称图形,共2个.故选:B.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.【答案】A;【解析】点M(3,-4)关于x轴的对称点M′的坐标是(3,4).故选A.12.【答案】D;【解析】解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选D.根据比例设∠A、∠B、∠C分别为k、2k、3k,利用三角形内角和定理求出三个角,判断出ΔABC是直角三角形,并且有一个角是30°,然后根据30°角所对的直角边等于斜边的一半解答.该题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”表示出三个角求解更加简便.13.【答案】C;【解析】解:点(5,-6)关于x轴的对称点的坐标是(5,6).故选C.14.【答案】A;【解析】解:∵AB=AD,∴点A在线段BD的垂直平分线,∵BC=CD,∴点C在线段BD的垂直平分线,∴AC垂直平分线段BD,故选:A.只要证明直线AC是线段BD的垂直平分线即可;此题主要考查线段的垂直平分线的判定,解答该题的关键是熟练掌握基本知识,属于中考常考题型,本题也可以用全等三角形的知识解决问题.15.【答案】C;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.是轴对称图形,故C选项符合题意;D.不是轴对称图形,故D选项不符合题意;故选:C.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.16.【答案】8;【解析】该题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.解:如图,分情况讨论:①AB为等腰ΔABC的底边时,符合条件的C点有4个;②AB为等腰ΔABC其中的一条腰时,符合条件的C点有4个.故答案为8.17.【答案】(3,2);【解析】解:设点Q的坐标为(x,y),∵点P(−1,2)与点Q(x,y)关于直线x=1的对称,∴y=2,−1+x2=1,∴x=3,∴点Q的坐标为(3,2),故答案为:(3,2).根据关于直线x=1的对称点的连线的中点在对称轴上,纵坐标相等进行解答.考查了坐标与图形变化−对称,熟练掌握轴对称的性质以及对称点的坐标关系是解答该题的关键.18.【答案】1;【解析】解:∵点P(a-1,5)和点Q(2,b-1)关于x轴对称,∴a-1=2,b-1=-5,解得a=3,b=-4,∴(a+b)2012=(3-4)2012=1.故答案为:1.19.【答案】25°或40°或10°;【解析】解:由题意知ΔABD与ΔDBC均为等腰三角形,对于ΔABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°−∠ADB=180°−80°=100°,∠C=12(180°−100°)=40°,①AB=AD,此时∠ADB=12(180°−∠A)=12(180°−80°)=50°,∴∠BDC=180°−∠ADB=180°−50°=130°,∠C=12(180°−130°)=25°,①AD=BD,此时,∠ADB=180°−2×80°=20°,∴∠BDC=180°−∠ADB=180°−20°=160°,(180°−160°)=10°,∠C=12综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.该题考查了等腰三角形的性质,难点在于分情况讨论.20.【答案】0或3;【解析】解:∵等腰三角形的一边长为5,周长为12,∴当5为底时,其它两边都为3.5、3.5;当5为腰时,其它两边为5和2;∴另外两边差的绝对值是0或3.故答案为:0或3.已知给出的等腰三角形的一边长为5,但没有明确指明是底边还是腰,因此要分两种情况,分类讨论解答.此题主要考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.21.【答案】解:(1)(2)所作图形如图所示:(3)(2,1);4;【解析】解:(1)(2)所作图形如图所示:(3)点B′的坐标为(2,1),ΔA′B′C′的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为:(2,1),4.(1)根据点A、C的坐标作出直角坐标系;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(3)根据直角坐标系的特点写出点B′的坐标,求出面积.该题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点的坐标.22.【答案】172D1(-1,2),D2(-2,1),D3(-3,4);【解析】解:(1)如图所示,ΔA1B1C1即为所求.(2)ΔA1B1C1的面积是5×5−12×5×2−12×1×3−12×5×4=172,故答案为:172.(3)如图所示,使ΔDBC是等腰三角形的点D的坐标为D1(−1,2),D2(−2,1),D3(−3,4),故答案为:D1(−1,2),D2(−2,1),D3(−3,4).(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得;(3)利用等腰三角形的概念结合网格求解可得.此题主要考查作图−轴对称变换,解答该题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.【答案】解:(1)如图所示:ΔA1B1C1,即为所求;(2)ΔA2B2C2是由ΔA1B1C1向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位)得到的;(3)如图:四边形A1A2C2C1为平行四边形.则四边形A1A2C2C1的面积为:4×7−2[12×1×2+12(1+7)×2]=10,所以四边形A1A2C2C1的面积为10.; 【解析】该题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解答该题的关键.(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答;(3)由作图可知四边形A1A2C2C1为平行四边形,根据平行四边形的面积计算公式即可.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点E是AB的中点,∴CE平分∠ACB,AE=BE,∴∠BCE=30°,∵ED=EC,∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED,∴∠BED=30°,∴∠D=∠BED,∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC,∠AFE=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形.∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠BED=∠ECF.在△DEB和△ECF中,{∠DEB=∠ECF ∠DBE=∠EFCDE=EC,∴△DEB≌△ECF(AAS),∴DB=EF,∴AE=BD.;【解析】(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.此题主要考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.25.【答案】证明:(1)∵ΔABC和ΔDCE是等边三角形,∴BC=AC,DC=EC,∠BCA=∠DCE=60°,∴∠BCA−∠ACD=∠DCE−∠ACD,即∠BCD=∠ACE,在ΔBCD与ΔACE中,箼=AC∠BCD=∠ACE DC=EC,∴ΔBCD≌ΔACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠ACB=60°,∴AE//BC;(2)成立,证明如下:∵同(1)可证ΔDBC≌ΔEAC,∴∠BDC=∠AEC,∵∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,∴∠BCE=∠BDC,∴AE//BC.;【解析】【试题解析】这道题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能证出∠B=∠CAE=∠ACB,熟练掌握三角形全等的判定与性质定理.(1)根据已知条件先证出∠BCD=∠ACE,再根据SAS证出ΔBCD≌ΔACE,得出∠B=∠CAE=∠ACB=60°,再根据平行线的判定即可证出AE//BC;(2)根据(1)证出的ΔDBC≌ΔEAC,得出∠BDC=∠AEC,由∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,得出∠BCE=∠BDC,从而得到∠AEC=∠BCE,即可得出AE//BC.。
八年级数学上册《第十三章 轴对称》单元测试卷含答案(人教版)
八年级数学上册《第十三章 轴对称》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列交通指示标识中,不是轴对称图形的是( )A .B .C .D .2.点 ()2,3P 关于 x 轴的对称点是( )A .()2,3-B .()2,3-C .()2,3--D .()3,2--3.等腰三角形的一边长为6cm ,另一边长为12cm ,则其周长为( )A .24cmB .30cmC .24cm 或30cmD .18cm4.有一等腰三角形纸片ABC ,AB=AC ,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是( )A .甲B .乙C .丙D .丁5.如图,已知O 是四边形ABCD 内一点,OA=OB=OC ,∠ABC=∠ADC=70︒,则∠DAO+∠DCO 的大小是( )A .70︒B .110︒C .140︒D .150︒6.如图,△ABC 为等边三角形,点D ,E 分别在AC ,BC 上,且AD =CE ,AE 与BD 相交于点P ,BF ⊥AE 于点F.若PF =3,则BP =( )A .6B .5C .4D .37.如图,在ABC ∆中,AB=AC ,BC=4,ABC ∆的面积是24,AC 的垂直平分线EF 分别交AC 、AB 边于点E ,F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,连接CM ,DM ,则CM DM +的最小值为( )A .6B .10C .12D .138.如图,过边长为2的等边 ABC ∆ 的边 AB 上一点 P ,作 PE AC ⊥ 于点 E ,点 Q 为 BC 延长线上一点,当 PA CQ = 时,连接 PQ 交 AC 边于点 D ,则 DE 的长为( )A .1B .2C .12D .329.如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=( )A .18°B .20°C .25°D .15°二、填空题10.等腰三角形的一个角是72º,则它的底角是 .11.在4×4的方格中有五个同样大小的正方形如图摆放,添加一个正方形与其余五个正方形组成的新图形是一个轴对称图形,这样的方法共有 种.12.如图,∠A=100°,∠E=25°,△ABC 与△DEF 关于直线l 对称,则△ABC 中的∠C= °.13.如图所示,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是14.如图,在Rt ABC 中90C ∠=︒,点D 在直角边BC 上,AD 平分BAC ∠,DE 是AB 的垂直平分线8CD cm =,则BD = cm .15.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为 .16.如图,在 ABC 中 8AB AC ==和120BAC ︒∠= ,AD 是 ABC 的中线,AE 是 BAD ∠ 的角平分线, DF AB 交AE 的延长线于点F ,则DF 的长为 .三、解答题17.如图,在△ABC 中,AC 的垂直平分线交BC 于D ,垂足为E ,△ABD 的周长为13cm ,AC=5cm ,求△ABC 的周长.18.如图,在 ABC ∆ 中 AB AC = , AD BC ⊥ 于点 D DE AC ⊥, 于点 E . 求证: BAD CDE ∠=∠ .19.如图,在等边 ABC 中,点D 在BC 边上,点E 在△ABC 外,AD =AE.若∠BAD =20°,∠DAE =70°,求∠CAE 和∠CDE 的度数.20.如图,BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,垂足分别是E ,F ,连接EF ,EF 与BD 相交于点P.求证:EP =FP.21.如图,点 O 是等边 ABC 内一点 110AOB ∠=︒ , BOC α∠= 以 OC 为一边作等边三角形 OCD ,连接 AC 、 AD .(1)求证: OBC DAC ∠=∠ ;(2)求 OAD ∠ 的度数;(3)当 α 为多少度时, AOD 是等腰三角形?参考答案:1.C 2.A 3.B 4.D 5.D 6.A 7.C 8.A 9.A10.7254︒︒,11.412.5513.1514.1615.100°16.417.解:∵DE 是边AC 的垂直平分线∴AD=CD∵△ABD 的周长为13cm ,AC6=5m△ABD 的周长=AB+AD+BD=AB+CD+BD=AB+BC=13cm所以,△ABC 的周长=AB+BC+AC=13+5=18cm18.证明:∵AB AC = ∴B C ∠=∠∵AD BC ⊥∴90ADB ∠=︒∵90BAD B ∠+∠=︒∴DE AC ⊥∴90DEC ∠=︒∴90CDE C ∠+∠=︒∴BAD CDE ∠=∠19.解:∵△ABC 是等边三角形∴∠ABC=∠BAC=60°又∵∠BAD=20°,∠DAE=70°∴∠DAC=∠BAC-∠BAD=60°-20°=40°∴∠CAE=∠DAE-∠DAC=70°-40°=30°∵AD=AE ∴()21180552ADE AED DAE ∠=∠=⨯-∠= 又∵∠ADC=∠ABC+∠BAD =60°+20°=80°∴∠CDE=∠ADC-∠ADE =80°-55°=25°.20.证明:∵BD 平分∠ABC∴∠ABD=∠CBD∵DE ⊥AB ,DF ⊥BC∴∠DEB=∠DFB=90°,且BD=BD ,∠ABD=∠CBD∴△BDE ≌△BDF (AAS )∴DE=DF ,BE=BF∴BD 是EF 的垂直平分线∴EP=FP.21.(1)证明:如图1, ABC ∆ 和 ODC ∆ 都是等边三角形CB CA ∴= , CO CD = 和60BCA OCD ∠=∠=︒BCO ACD ∴∠=∠在 BOC ∆ 和 ADC ∆ 中BC AC BCO ACD OC CD =⎧⎪∠=∠⎨⎪=⎩()BOC ADC SAS ∴∆≅∆OBC DAC ∴∠=∠ ;(2)解: BOC ADC ∆≅∆ADC BOC α∴∠=∠=COD ∆ 是等边三角形60CDO COD ∴∠=∠=︒60ADO α∴∠=-︒110AOB ∠=︒36011060190AOD αα∴∠=︒-︒--︒=︒-AOD ∆ 中 180180(60)(190)50OAD ADO AOD αα∠=︒-∠-∠=︒--︒-︒-=︒ ;(3)解:由(2)知: 60ADO α∠=-︒ 190AOD α∠=︒- 和 50OAD ∠=︒ ①当 AO AD = 时, AOD ∆ 是等腰三角形ADO AOD ∴∠=∠即 60190αα-=-解得: 125α=︒ ;②当 AO OD = 时, AOD ∆ 是等腰三角形ADO DAO ∴∠=∠即 6050α-=解得: 110α=︒ ;③当 OD AD = 时, AOD ∆ 是等腰三角形DAO AOD ∴∠=∠即 19050α-=解得: 140α=︒ ;综上,当α为125︒或110︒或140︒时,AOD ∆是等腰三角形。
《第十三章 轴对称》单元测试卷含答案(共6套)
《第十三章轴对称》单元测试卷(一)时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是( )2.已知等腰三角形的一边长为6,一个内角为60°,则它的周长是( ) A.12 B.15 C.18 D.203.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为( )A.40海里 B.60海里C.70海里 D.80海里4.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是( )A.DE=DC B.AD=DBC.AD=BC D.BC=AE5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30° B.36°C .54° D.72°6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ) A .(-2,1) B .(-1,1) C .(1,-2) D .(-1,-2)7.如图,△ABC 是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE 的长为( ) A .7 B .8 C .9 D .108.如图,∠A =80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是( ) A .40° B.30° C.20° D.10°9.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4……若∠A =70°,则∠A n-1A nB n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +210.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A.3条 B.5条 C.7条 D.8条二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有________条.12.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.14.如图,树AB垂直于地面,为测树高,小明在C处测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,则计算出树的高度是________米.15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是__________.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为________.18.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P.若∠BAC=84°,则∠BDC的度数为________.三、解答题(共66分)19.(7分)如图,已知AB=AC,AE平分∠BAC的外角,那么AE∥BC吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC于点E,D为AB上一点,△BDE 是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边向下侧作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边向下侧作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.A 2.C 3.D 4.C 5.B 6.B 7.C8.D 解析:如图,连接OA,OB.∵∠BAC=80°,∴∠ABC+∠ACB=100°.∵O 是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴OB=OC,∠OAB=∠OBA,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∴∠BCO =∠CBO =10°,故选D.9.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.同理可得∠B 2A 3A 2=∠B 1A 2A 12=17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C. 10.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①所示,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②所示,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.5 12.3 13.-10 14.10 15.13 16.10:4517.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°. 18.96° 解析:如图,过点D 作DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分)21.解:(1)依题意,S △ABC =12×5×3=152.(3分)(2)△A 1B 1C 1如图所示.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎨⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD ⊥BE ,BD =DE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =180°-∠BAE 2=70°,(3分)∴∠C =12∠AED =35°.(5分)(2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分) 24.解:(1)∠BAD =∠CAE .(2分)(2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .(6分)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD中,⎩⎨⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt△AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)《第十三章 轴对称》单元测试卷(二)一、选择题(每小题4分,共24分)1.下列图形中不是轴对称图形的是 ……… ( )A B C D2.在下列说法中,正确的是……… ( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形3.在平面直角坐标系中,点P (2,-3)关于Y 轴的对称点在… ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 等腰三角形的一个外角为110°,则它的底角是………()A、70°B、50°或70°C、40°或70°D、40°5. 点M(-5,3)关于直线x=1的对称点的坐标是………()A.(-5,-3) B.(6,-3) C.(5,3) D.(6,3)6.如图,在△ABC中,DE是AC的垂直平分线,AB=12cm,BC=10cm,则△BCD的周长为()A.22 cm B.16cm C.26cm D.25cm二、填空题(每小题4分,共40分)1. 若三角形是轴对称图形,且有一个角是60°,则这个三角形是三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D C
B
A
36°
36° 72° 72° 3题
第十三章 轴对称 单元测试(B )
答题时间:120 满分:150分
一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)
题号 1 2 3 4 5 6 7 8 9 10 答案
1是( )
2、桌面上有A 、B 两球,若要将B 球射向桌面任意一边,使一次反弹后击 中A 球,则如图所示8个点中,可以瞄准的点有( )个. A 1 B 2 C 4 D 6
3、如图所示,共有等腰三角形( )
A 、5个
B 、4个
C 、3个
D 、2个
4、若等腰三角形一边长为5,另一边长为6,则这个三角形的周长是( ) A 18或15 B 18 C 15 D 16或17
5、如图,在△ABC 中,AB=AC ,AD=BD=BC ,则∠C=( ) A .72 ° B。
60° C。
75° D。
45°
6、已知A (2,3),其关于x 轴的对称点是B ,B 关于y 轴对称点是C ,那么相当于 将A 经过( )的平移到了C 。
A 、向左平移4个单位,再向上平移6个单位。
B 、向左平移4个单位,再向下平移6个单位。
C 、向右平移4个单位,再向上平移6个单位。
D 、向下平移6个单位,再向右平移4个单位。
7、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕
2题
5题
MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下, 这样剪得的△ADH 中 ( )
A :AH=DH ≠AD
B :AH=DH=AD
C :AH=A
D ≠DH D :AH ≠DH ≠AD 8、如图,一张长方形纸沿AB 对折,以AB 中点O 为顶点将平角五等分,并
沿五等分的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于( )
A 108°
B 114°
C 126°
D 129°
9、若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为( )
A 、关于x 轴成轴对称图形
B 、关于y 轴成轴对称图形
C 、关于原点成中心对称图形
D 、无法确定
10、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;•③三个外角(每个顶点处各取一个外角)都相等的三角形;•④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有( ) A .①②③ B .①②④ C .①③ D .①②③④
二、填空题(每题3分,共30)
11、等腰三角形有一个角等于70o ,则它的底角是 ( )
12、如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( ) 13、请写出
3
个是轴对称图形的汉
字: .
14、身高 1.80米的人站在平面镜前2米处,它在镜子中的像高______米,人与像之间距离为_______米;如果他向前走0.2米,人与像之间距离为_________米.
15、已知:如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB
的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .
16、如图,在△ABC 中,AB=AC ,∠BAC=36°,
(1)作出AB 边的垂直平分线DE ,交AC 于点D ,交AB 于点E ,连接BD ;
A
B
C
D
M
N H
E
P2
P 1P
N
M
O
B
A
A
A
B
D
C
E
C
(2)下列结论正确的是: ① BD 平分∠ABC ; ② AD=BD=BC ;
③ △BDC 的周长等于AB+BC ; ④ D 点是AC 中点;
17、等腰三角形边长为5cm ,一腰上中线把其周长分为两部分之差为3cm ,则腰长为 。
18.已知点A (a ,-2)和B (3,b ),当满足条件 时,点
A 和点
B 关于y 轴对称。
19.如图
,△ABC 中,DE 是AC 的垂直平分线,AE=3cm,△ABD 的周长 为13cm,则△ABC 的周长为____________.
20.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是三等分点,若△ABC 的面积为12cm 2cm 2.
三、解答题(每题9分,共36分)
21、茅坪民族中学八⑵班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿桔子再拿糖果,然后到D 处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?
22、如图,四边形ABCD 的顶点坐标为A (—5,1),B (—1,1), C (—1,6),D (—5,4),请作出四边形ABCD 关于x 轴及y 轴的
对称图形,并写出坐标。
23、如图,已知△ABC ,∠CAE 是△ABC 的外角,在下列三项中:①AB =AC ;②AD 平分∠CAE ;③AD ∥BC .选择两项为题设,另一项为结论,组成一个真命题,并证明.
24、如图,已知:在Rt △ABC 中,∠ACB=90°,∠B=30°,C D ⊥AB 于D
y
x
A B C D E
求证:
AD=
4
1
AB
四、解答题(每题10分,共30分)
25.如图,已知△ABC 中,AH ⊥BC 于H ,∠C =35°,且AB +BH =HC ,求∠B 度数.
26、如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,
C
A
B
H
DM⊥BC,垂足为M,求证:M是BE的中点。
A
B
D
C
M E
27、如图,点A、B、C在同一直线上,△ABD,△BCE都是等边三角形。
(1)求证:AE=CD;(4分)
(2)若M,N分别是AE,CD的中点,试判断△BMN的形状,并证明你的结论。
(4分)
五、解答题(每题12分,共24分)
B
A C
E
D
N
M
B
B
D 28、 (1)、如图① △ABC 中,BD=CD, ∠1=∠2, 求证:AB=AC
(2)、如图② BD=CD, ∠1=∠2, 此时 EB=AC 是否成立吗?请说明你的理由。
29、如图,△ABC 是等腰直角三角形,,BC=AC ,直角顶点C 在x 轴上,一锐角顶点
B在y轴上。
(1)如图①,若点C的坐标是(2,0),点A的坐标是(-2,-2),求B点的坐标;(2)如图②,若y轴恰好平分∠ABC,AC与y轴交与点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由。
(3)如图③,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y 轴于F,在滑动的过程中,猜想OC、AF、OB
参考答案
一、选择
1-5 CBADA 6-10BBAAA
二、填空
11.550或700 12.直角三角形13. “品”或“日”等(答案不唯一) 14. 1.8m 4m
15. 15
16. ①②③ 17. 8cm 18. a=-3,b=-2 19. 19cm 20. 6
三、
21.分别过点C、D作关于OA、OB的对称点E、F,连结EF交OA、OB于M,N则CMND 就是最短路程。
22-24略
25.在CH上截取DH=BH,连结AD,先证△ABH≌△ADH,再证∠C=∠DAC,得到∠B=70°
26、方法一:设MC=x,则可求得CE=CD=2x,BC=AC=4x,BM=ME=3x.
方法二:连BD,可求得∠DBC=∠E=30°,则BD=ED,又DM⊥BC,∴M是BE 的中点.
27.(1)
因为,△ABD,△BCE都是等边三角形
AB=BD
BE=BC
∠ABD+∠DBE=∠EBC+∠DBE
所以∠ABE=∠DBC
所以△ABE全等△DBC
所以AE=CD
(2)等边三角形
28.(1)提示:延长AD至E,连结BE。
(2)方法同一。
29(1)B(0,4)(2) BD=2AE (3)OC-AF=OB或 OB+AF=OC。