初中数学专题复习方程测试题

合集下载

初中数学解方程专项练习

初中数学解方程专项练习

初中数学解方程专项练习
本篇文档将为初中数学学生提供一些解方程的专项练,帮助学生掌握解方程的方法和技巧。

一元一次方程
例题1
解方程:3x - 2 = 7
解答
将3x - 2 = 7移项得到3x = 9,再将x的系数3除掉,得到x = 3,因此方程的解为x = 3。

例题2
解方程:5x + 4 = 6x - 2
解答
将5x + 4 = 6x - 2移项得到-x = -6,再将x的系数-1乘过去,得到x = 6,因此方程的解为x = 6。

一元二次方程
例题1
解方程:x^2 + 4x + 3 = 0
解答
将方程化简为(x + 1)(x + 3) = 0,因此方程的解为x = -1或x = -3。

例题2
解方程:2x^2 - x - 3 = 0
解答
使用求根公式求解二次方程,得到x = (1 ± √13)/4,因此方程的解为x = (1 + √13)/4或x = (1 - √13)/4。

总结
本文提供的例题是初中数学解方程的基本考点和题型,希望能够帮助同学们更好地掌握解方程的方法和技巧。

在练习过程中,同学们需要注意化简和移项的步骤,以及在二次方程中使用求根公式的方法。

通过不断地练习,同学们一定能够在解方程方面取得更好的成绩。

初中数学解方程专题训练及答案

初中数学解方程专题训练及答案

初中数学解方程专题训练及答案解下列方程:1、x 3+x(x 2−x +1)2 = 2 ;2、3x 2+1+3x 2−1= 270 ;3、√3x 2+4x +2 + √3x 2+4x −3 = 5 ;4、x 2 + (x x +1)2 = 54 ;5、31·(1- 221)x = (11+22+32+42 +92025−2024) ;6、x 3 + (2x 3+x −4)3 = 4 ;7、x x 6 = 144 ;8、4x +456 + 4x +460= 257 ;9、6x 3+ 11x 2 -5x -12 =0 ;10、√2−1 - (√2 +1)x=0 。

参考答案1、x 3+x(x 2−x +1)2解:将分母展开,分子不变x 3+xx 4 −2x 3+3x 2−2x +1 = 2去分母,得x 3+x = 2x 4 - 4x 3 +6x 2 - 4x +22x 4 -5x 3+6x 2 -5x +2=0将上式变为2x 4 -2x 3 -3x 3+ 3x 2 + 3x 2 -3x -2x +2=0 上式中,依次两两结合(2x 4 -2x 3)+(-3x 3+ 3x 2)+( 3x 2 -3x )+( -2x +2)=0 2x 3(x-1)-3x 2(x-1)+3x (x-1)-2(x-1)=0 (x-1)(2x 3-3x 2+3x-2)=0将上式第二个括号变为(x-1)(2x 3-2x 2-x 2 +x + 2x-2)=0 (x-1)〔(2x 3-2x 2)+(-x 2 +x )+( 2x-2)〕=0 (x-1)〔2x 2(x-1)-x (x-1)+2( x-1)〕=0 (x-1)〔(x-1)(2x 2 -x +2)〕=0 (x-1)(x-1)(2x 2 -x +2)=0(x −1)2(2x 2 -x +2)=0 因为2x 2 -x +2的判别式△= -15<0,故2x 2 -x +2≠0 所以,只有x-1=0即x=1故方程的解是:x=1。

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4一、选择题1. 若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-4 【答案】A.2. “六.一”儿童节前夕,某超市用3360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A .⎩⎨⎧=+=+33602436120y x y x B .⎩⎨⎧=+=+33603624120y x y xC .⎩⎨⎧=+=+33601202436y x y x D .⎩⎨⎧=+=+33601203624y x y x 【答案】B3. 一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算? ( )A. 甲B. 乙C. 一样D.无法确定 【答案】B .4. 若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值. 解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A5. 方程组125x y x y +=⎧⎨-=⎩的解为A. 12x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=⎩ C. 21x y =⎧⎨=⎩ D. 21x y =⎧⎨=-⎩【答案】D 6.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n -的值是A .1B .2C .3D .4【答案】D7.方程5x+2y=-9与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )(A )x+2y=1 (B )3x+2y=-8(C )5x+4y=-3 (D )3x-4y=-8 【答案】D 。

初中数学专题复习一元二次方程的根与系数的关系(B)

初中数学专题复习一元二次方程的根与系数的关系(B)

一元二次方程的根与系数的关系(B)一、 诊断练习 (一)填空:1.一元二次方程的根与系数的关系(韦达定理) 如果方程ax 2+bx+c=0(a ≠0,Δ≥0)有两个实数根x 1和x 2,那么x 1+x 2=______,x 1x 2=_____.2.韦达定理只能在一元二次方程有实数根的条件下使用,因此等式 x 1+x 2 = -a b ,x 1x 2= ac成立的条件是:a________,Δ________.3.根据乘法公式填空:(1)x 12+x 22=(x 1+x 2)2-______;(2)(x 1-x 2)2=(x 1+x 2)2-_______;(3)221212222121222221)(4___)(___11x x x x x x x x x x -+=+=+;(4). 丨x 1-x 2丨=a ∆. 4.设方程3x 2-9x-1=0的两个根是x 1和x 2,则下列各式的值是:(1)x 1+x 2 =_____;(2)x 1x 2 =____; (3)x 1x 22+x 12x 2=_____;(4)(x 1-3)(x 2-3) =_____;(5)x 12+x 22=____;(6)(x 1-x 2)2=____;(7)2111x x +=____; (8) + =_____;(9)丨x 1-x 2丨=_____。

5. 已知方程2x 2-mx+n=0的两个根是-3和4, 那么由韦达定理得:-3+4=____,-3×4=____, 所以m=____,n=____.6.已知方程x 2-13x+m=0的两根满足 x 1-4x 2+2=0,那么由韦达定理得,所以m=___.7. 方程5x 2+kx -10=0的一根x 1=-5, 另一根是x 2, 那么,所以另一个根是____,k=____.8. 若方程4x 2-12x+n=0的两个根之比是2∶3,设两根为2k 和3k ,则,所以n=____.9.若方程x 2-ax -2a=0的两个根之和是4a -3,则由韦达定理得4a -3=____,a=____,两个根之积是____.10.已知方程x 2-6x+m-3=0的两个根互为倒数,则x 1x 2=______=1, 所以m=_______,此时Δ=_____. 11. 以两个数x 1和x 2为根的一元二次方程(二次项系数为1)是__________________. 12.若x 1+x 2=7,x 1x 2=5,则以x 1和2为根的一元二次方程是________________________________. 13.以3+2和3-2为根的一元二次方程是___________________。

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

中考数学复习 一元二次方程专练 公式法解一元二次方程专项练习106题-人教版初中九年级全册数学试题

word公式法解一元二次方程1.2x2﹣7x+3=0(公式法)2.2t2﹣t﹣3=0,3.2x2﹣7x+4=0.4.2x2+2x=15.5y+2=3y2.6.x2+3x﹣4=0 7. 2x2﹣4x﹣1=08.2x2﹣x﹣2=0.9.2x2﹣5x+1=0.10.x2﹣1=4x.11.x2+3x﹣3=0 12.3x2﹣4x﹣2=0.13.x2+x﹣4=0.14.2x2﹣6x+3=0.15.2x2﹣3x﹣1=0.16.2x2﹣2x﹣1=0 17.3x2﹣4x﹣1=0.18.2x2﹣x﹣4=0 19.2x2+x﹣2=0 20.3x2+6x﹣4=0 21.x2﹣x﹣3=0.22.3x2+4x﹣4=0,23.(3x﹣1)(x+2)=11x ﹣4.24.2x2﹣5x﹣1=0.25..26.3x2+4x+5=0.28.x2﹣x﹣4=0.29..30.2x2﹣2x﹣1=031.3x2+7x+10=1﹣8x.32.5x2﹣3x+2=0.34.x2+3x+1=0,35.4x2=2x+136.5x2﹣3x=x+1.37.3x2+7x+4=038.2x2﹣3x﹣1=0(用公式法)39.3x2+5x+1=0;40.x2﹣4x+1=041. x2﹣4x+5=042. x2+5x+3=043.2x2﹣3x﹣6=0.44.3x2+4x+1=045.x2﹣4x﹣8=046.2x2﹣x﹣2=047.3x2+2(x﹣1)=0.48.x2﹣4x﹣7=049.y2﹣2y﹣4=050.x2﹣3x=2 51.2x2+x﹣=0.52.x2x+1=053.2x2﹣9x+8=0;55. x2+x﹣1=0;56. 2x2﹣6x+3=0;57.2x(x+4)=158.3x2+5(2x+1)=0.59.2x2﹣4x﹣1=060.3x2﹣6x﹣4=061.x2+2x﹣5=0 62.x2﹣4x﹣3=063.4x2﹣3x﹣1=063. x2+2x﹣2=0;65. x2+3=2x.66.x2﹣4x=﹣367. 3x2﹣2x﹣1=0;68.;69. 2x2﹣7x+5=0;70. 2x2﹣7x﹣18=0.71. (x+1)(x+3)=6x+4;73. x2﹣(2m+1)x+m=0.74. x(x+8)=16,76. 2x2﹣2x+1=0,77. 5x2+2x﹣1=078. 6y2+13y+6=079. 3•x2+6x+9=780. 2x2﹣3x+1=0;81. 2y(y﹣1)+3=(y+1)2.82. x2=3x+1;83. (t+1)(t﹣3)=﹣t(3﹣3t).84.x2﹣2ax﹣b2+a2=0.85. 3x2=2﹣5x;87. (x+1)(x﹣1)=2x.88.(2x﹣1)2﹣7=3(x+1);89.x2﹣6x+11=090 .5x2﹣8x+2=0.91.x2﹣3x+1=0.92.x2=5﹣12x93. x2+x﹣1=094.3x2﹣4x﹣1=095.3x2+2(x﹣1)=0,97.3x2﹣4x﹣1=098.99. .101.2x2+5x﹣1=0.102.2x2﹣x﹣1=0.103..104.3x2+5x﹣1=0.105.5x2﹣8x+2=0,106.3x2+7x+10=1﹣8x,公式法解一元二次方程106题参考答案:1.2x2﹣7x+3=0(公式法)a=2,b=﹣7,c=3,∴b2﹣4ac=(﹣7)2﹣4×2×3=49﹣24=25>0,方程有两个不相等的实数根,即:,x1=3,2.2t2﹣t﹣3=0,∵a=2,b=﹣1,c=﹣3,∴x===,3.2x2﹣7x+4=0.∵a=2,b=﹣7,c=4,b2﹣4ac=49﹣32=17,∴x==,∴,∴x1=,x2=4.2x2+2x=1由原方程,得2x2+2x﹣1=0,∴该方程的二次项系数a=2,一次项系数b=2,常数项c=﹣1;∴x===,5.5y+2=3y2.移项,3y2﹣5y﹣2=0,a=3,b=﹣5,c=﹣2,b2﹣4ac=(﹣5)2﹣4×3×(﹣2)=49>0,∴x=,∴x1=2,x2=﹣;6.x2+3x﹣4=0a=1,b=3,c=﹣4,△=9+4×1×4=25>0,∴x==,∴x1=﹣4,x2=1.7. 2x2﹣4x﹣1=0a=2,b=﹣4,c=﹣1,△=16+4×2=24>0,∴x==1±,∴x1=1+,x2=1﹣8.2x2﹣x﹣2=0.∵a=2,b=﹣1,c=﹣2,∴b2﹣4ac=17>0∴x=.即x1=,x2=9.2x2﹣5x+1=0.∵a=2,b=﹣5,c=1,∴b2﹣4ac=17,∴x=,∴x1=,x2=2原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣11.x2+3x﹣3=0a=1,b=3,c=﹣3;∵b2﹣4ac=9+12=21>0∴=∴,12.3x2﹣4x﹣2=0.a=3,b=﹣4,c=﹣2,△=b2﹣4ac=(﹣4)2﹣4×3×(﹣2)=40>0,x==,x1=,x2=13.x2+x﹣4=0.∴x==,∵x1=﹣2,x2=.14.2x2﹣6x+3=0.∵a=2,b=﹣6,c=3∴x=∴x1=,x2=;15.2x2﹣3x﹣1=0.a=2,b=﹣3,c=﹣1,∴△=9+8=17,x1=,x2=16.2x2﹣2x﹣1=0a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=17.3x2﹣4x﹣1=0.∵一元二次方程3x2﹣4x﹣1=0的二次项系数a=3,一次项系数b=﹣4,常数项c=﹣1,∴x===,∴x1=,x2=18.2x2﹣x﹣4=0∵2x2﹣x﹣4=0,∴=,∴x 1=,19.2x2+x﹣2=0∵a=2,b=1,c=﹣2(1分)∵b2﹣4ac=12﹣4×2×(﹣2)=17>0(2分)∴(4分)∴,20.3x 2+6x﹣4=0∵a=3,b=6,c=﹣4,∴b2﹣4ac=62﹣4×3×(﹣4)=84,∴x==,21.x2﹣x﹣3=0.∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>0,∴x==,∴x1=,x2=.22.3x2+4x﹣4=0,这里a=3,b=4,c=﹣4,b2﹣4ac=42﹣4×3×(﹣4)=64,x=,x1=,x2=﹣223.(3x ﹣1)(x+2)=11x﹣4.3x 2+6x﹣x﹣2=11x﹣4,整理得3x2﹣6x+2=0,∵△=(﹣6)2﹣4×3×2=12,∴x==∴x1=,x2=24.2x2﹣5x﹣1=0.2x2﹣5x﹣1=0,∵b2﹣4ac=(﹣5)2﹣4×2×(﹣1)=33,∴x=,即x 1=,x2=25..∵a=1,b=,c=﹣20,b2﹣4ac=()2﹣4×1×(﹣20)=100>0,∴x=,x=,解得x1=﹣+5,x2=﹣﹣5.26.3x2+4x+5=0.∵△=42﹣4×3×5=﹣44<0,∴方程没有实数根.27.x2﹣4x﹣2=0.∵a=1,b=﹣4,c=﹣2,∴△=(﹣4)2﹣4×1×(﹣2)=4×6,∴x===2±,∴x1=2+,x2=2﹣.28.x2﹣x﹣4=0.a=1,b=﹣1,c=﹣4.b2﹣4ac=1+16=17>0.∴=∴x1=,x2=29..由原方程,得t2+2t﹣2=0,这里a=1,b=2,c=2.则t===﹣,即t1=t 2=﹣30.2x2﹣2x﹣1=0∵a=2,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×2×(﹣1)=12,∴x1=,x2=31.3x2+7x+10=1﹣8x.原方程可化为x2+5x+3=0,解得:32.5x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×5×2<0,∴此方程无解33. 5x2﹣3x=x+11(公式法)5x2﹣3x=x+11,整理得:5x2﹣4x﹣11=0,这里a=5,b=﹣4,c=﹣11,∵△=16+220=236,∴x==,则x1=,x2=34.x2+3x+1=0,这里a=1,b=3,c=1,∵△=b 2﹣4ac=9﹣4=5,∴x=,则x1=,x2=35.4x2=2x+1移项得:4x2﹣2x﹣1=0,∵b2﹣4ac=(﹣2)2﹣4×4×(﹣1)=20,∴x==,∴x1=,x2=36.5x2﹣3x=x+1.方程化简为:5x2﹣4x﹣1=0,这里a=5,b=﹣4,c=﹣1,∴x==,∴x1=1,x2=﹣.37.3x2+7x+4=03x2+7x+4=0,∵a=3,b=7,c=4,∴b2﹣4ac=49﹣48=1>0,∴x=,∴x 1=﹣1,x2=﹣.38.2x2﹣3x﹣1=0(用公式法)∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=17,∴x==,所以x1=,x2=39.3x2+5x+1=0;∵原方程的二次项系数a=3,一次项系数b=5,常数项c=1,∴原方程的根是:x==,即x=;40.x2﹣4x+1=0a=1,b=﹣4,c=1,∴x====2±;41. x2﹣4x+5=0a=1,b=﹣4,c=5,∵△=b2﹣4ac=16﹣20=﹣4<0,42. x2+5x+3=0a=1,b=5,c=3,∴x===43.2x2﹣3x﹣6=0.这里a=2,b=﹣3,c=﹣6,∵△=b2﹣4ac=9+48=57,∴x=,则x1=,x2=44.3x2+4x+1=0(用公式法)∵二次项系数a=3,一次项系数b=4,常数项c=1,∴△=b 2﹣4ac=42﹣4×3×1=4>0∴x==∴x1=﹣1 x2=﹣;45.x2﹣4x﹣8=0(公式法)∵方程x2﹣4x﹣8=0的二次项系数a=1、一次项系数b=﹣4、常数项c=﹣8,∴x===2±2,∴x1=2+2,x2=2﹣2;46.2x2﹣x﹣2=0a=2,b=﹣1,c=﹣2,∵b2﹣4ac=(﹣1)2﹣4×2×(﹣2)=1+16=17>0,∴x==,∴x1=,x2=47.3x2+2(x﹣1)=0.2∵a=3,b=2,c=﹣2,△=b2﹣4ac=4+24=28,x==,解得x1=,x2=48.x2﹣4x﹣7=0∵x2﹣4x﹣7=0的二次项系数是a=1、一次项系数是b=﹣4、常数项是c=﹣7,∴x===2±,∴x1=2+,x2=2﹣49.y2﹣2y﹣4=0(公式法)由原方程知,二次项系数a=1,一次项系数b=﹣2,常数项c=﹣4,∴x==,∴,∴x1=1+,x2=1﹣;50.x2﹣3x=2x2﹣3x﹣2=0,∵a=1,b=﹣3,c=﹣2,∴x===,∴x1=,x2=51.2x2+x﹣=0.∵关于x的一元二次方程2x2+x﹣=0的二次项系数a=2,一次项系数b=1,常数项c=﹣,∴原方程的根是:=,即x=52.x2x+1=0这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣153.2x2﹣9x+8=0;∵a=2,b=﹣9,c=8∴x=,x1=,x2=;54. x2﹣6x+1=0;∵a=1,b=﹣6,c=1∴x=,∴x1=3+2,x2=3﹣2;55. x2+x﹣1=0;∵a=1,b=1,c=﹣1,∴x==;56. 2x2﹣6x+3=0;∵a=2,b=﹣6,c=3,∴x===;57.2x(x+4)=12x2+8x﹣1=0,∵a=2,b=8,c=﹣1,△=b2﹣4ac=64+8=72,∴x===.即x1=,x2=58.3x2+5(2x+1)=0.3x2+5(2x+1)=0,整理得:3x2+10x+5=0,∵a=3,b=10,c=5,∴b2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x1=,x2=59.2x2﹣4x﹣1=0(公式法)解:这里a=2,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,∴x==,∴x1=,x2=60.3x2﹣6x﹣4=0(公式法)3x2﹣6x﹣4=0,这里a=3,b=﹣6,c=﹣4,∵b2﹣4ac=36+48=84>0,∴x==,则x1=,x2=61.x2+2x﹣5=0∵a=1,b=2,c=﹣5,b2﹣4ac=24,∴x==﹣1,即x1=,x2=﹣1.62.x2﹣4x﹣3=0由题意得:a=1,b=﹣4,c=﹣3,∴x====2±63.4x2﹣3x﹣1=0a=4,b=﹣3,c=﹣1,△=9+16=25x==∴x1=1,x2=﹣.63. x2+2x﹣2=0;这里a=1,b=2,c=﹣2,∵b2﹣4ac=22﹣4×1×(﹣2)=12>0,∴x==﹣1,∴x1=﹣1+,x2=﹣1﹣;64. y2﹣3y+1=0;这里a=1,b=﹣3,c=1.∵b2﹣4ac=(﹣3)2﹣4×1×1=5>0,∴y=,∴y1=,y 2=;65. x2+3=2x.移项,得x2﹣2x+3=0,这里a=1,b=﹣2,c=3.∵b2﹣4ac=(﹣2)2﹣4×1×3=﹣4<0.∴原方程没有实数根66.x2﹣4x=﹣3移项,得x2﹣4x+3=0.∵a=1,b=﹣4,c=3,∴b2﹣4ac=(﹣4)2﹣4×1×3=4>0,∴x==,∴x1=1,x2=367. 3x2﹣2x﹣1=0;∵a=3,b=﹣2,c=﹣1,∴b2﹣4ac=(﹣2)2﹣4×3×(﹣1)=16,∴x===,∴x1=1,x2=﹣.68.;∵a=2,b=﹣1,c=﹣,∴b2﹣4ac=(﹣1)2﹣4×2×(﹣)=5,∴x==,∴x1=,x2=.69. 2x2﹣7x+5=0;∵a=2,b=﹣7,c=5,∴b 2﹣4ac=(﹣7)2﹣4×2×5=9,∴x==,∴x1=,x2=1.70. 2x2﹣7x﹣18=0.∵a=2,b=﹣7,c=﹣18,∴b2﹣4ac=(﹣7)2﹣4×2×(﹣18)=193,∴x==,∴x1=,x2=71. (x+1)(x+3)=6x+4;去括号,移项方程化为一般式为:x2﹣2x﹣1=0,∵a=1,b=﹣2,=﹣1,∴b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8∴x===1±,∴x1=1+,x2=1﹣;72. x2+2(+1)x+2=0;∵a=1,b=2(+1),c=2,∴b2﹣4ac=[2(+1)]2﹣4×1×2=16,∴x===﹣(+1)±2,∴x 1=﹣﹣3,x2=﹣+1;73. x2﹣(2m+1)x+m=0.∵a=1,b=﹣(2m+1),c=m,∴b2﹣4ac=[﹣(2m+1)]2﹣4×1×m=4m2+1,∴x=,∴x1=,x2=74. x(x+8)=16,x2+8x﹣16=0,a=1,b=8,c=﹣16,b2﹣4ac=82﹣4×1×(﹣16)=128>0,x=,x1=﹣4+4,x2=﹣4﹣4;75. x2﹣4x=4;x 2﹣4x﹣4=0;a=,b=﹣4,c=﹣4,b 2﹣4ac=(﹣4)2﹣4××(﹣4)=48>0,x==±,x1=+,x2=﹣;76. 2x2﹣2x+1=0,a=2,b=﹣2,c=1,b2﹣4ac=(﹣2)2﹣4×2×1=0,x1=x2=.77. 5x2+2x﹣1=0 ∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0∴x1•x2=∴x1=.78. 6y2+13y+6=0∵a=6,b=13,c=6,∴△=b2﹣4ac=169﹣4×6×6=25>0 ∴x=∴x1=﹣,x2=﹣.79. 3•x2+6x+9=7整理,得:x2+6x+2=0∴a=1,b=6,c=2∴△=b2﹣4ac=36﹣4×1×2=28>0 ∴x1•2==﹣3±∴x1=﹣3+,x2=﹣3﹣.80. 2x2﹣3x+1=0;根据原方程,得a=2,b=﹣3,c=1,∵b2﹣4ac=9﹣4×2×1=1>0,∴x=,x==.∴x1=1,x2=;81. 2y(y﹣1)+3=(y+1)2.由原方程,得2y2﹣2y+3=y2+2y+1,即y2﹣4y+2=0,∴a=1,b=﹣4,c=2.b2﹣4ac=(﹣4)2﹣4×1×2=8>0.∴x=x==∴x1=2+,x2=2﹣.82. x2=3x+1;方程化为x2﹣3x﹣1=0,∴a=1,b=﹣3,c=﹣1,b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13.∴x1=.83. (t+1)(t﹣3)=﹣t(3﹣3t).方程化为2t2﹣t+3=0,a=2,b=﹣1,c=3b2﹣4ac=1﹣4×2×3=﹣23<0,∴原方程无实数根84.x2﹣2ax﹣b2+a2=0.∵a=1,b=﹣2a,c=﹣b2+a2∴b2﹣4ac=4a2+4b2﹣4a 2=4b2∴x==a±|b|.85. 3x2=2﹣5x;a=3,b=5,c=﹣2b2﹣4ac=52﹣4×3×(﹣2)=25+24=49>0.x==.所以x1=﹣2,x 2=.86. y2﹣4y=1;原方程变形为:3y2﹣8y﹣2=0.a=3,b=﹣8,c=﹣2.b2﹣4ac=(﹣8)2﹣4×3×(﹣2)=64+24=88.x==.所以x 1=,x2=.87. (x+1)(x﹣1)=2x.原方程变形x2﹣2x﹣1=0.a=1,b=﹣2,c=﹣1.b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8+4=12>0.所以x==.故x1=+,x2=﹣.88.(2x﹣1)2﹣7=3(x+1);整理,得4x2﹣7x﹣9=0,因为a=4,b=﹣7,c=﹣9.所以x=89.x2﹣6x+11=0由原方程,知a=,b=﹣6,c=11将其代入求根公式x=,得x=,∴原方程的根是:x1=4,x2=90 .5x2﹣8x+2=0.这里a=5,b=﹣8,c=2,∵b2﹣4ac=64﹣40=24>0,∴x==,则x1=,x2=.91.x2﹣3x+1=0.x2﹣3x+1=0,这里a=1,b=﹣3,c=1,∵b2﹣4ac=(﹣3)2﹣4×1×1=9﹣4=5>0,∴x==,则x1=,x2=92.x2=5﹣12x方程化为一般形式为:x 2+12x﹣5=0,∴a=1,b=12,c=﹣5,∴△=122﹣4×1×(﹣5)=4×41>0,∴x===﹣6±,所以x1=﹣6+,x2=﹣6﹣.93. x2+x﹣1=0解:x2+x﹣1=0,b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,∴x1=,x2=.94.3x2﹣4x﹣1=0解:3x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴原方程的解是:x1=,x2=,这里a=2,b=﹣2,c=1,∴b2﹣4ac=﹣4×2×1=4,∴x==,∴x1=,x2=,∴原方程的解是x1=,x2=95.3x 2+2(x﹣1)=0,整理得:3x2+2x ﹣2=0,这里a=3,b=2,c=﹣2,∵△=b2﹣4ac=4+24=28,∴x==,则x1=,x2=96.方程整理得:x2﹣2x+1=0,这里a=1,b=﹣2,c=1,∵△=8﹣4=4,∴x==±1,则x1=+1,x2=﹣1.97.3x2﹣4x﹣1=03x2﹣4x﹣1=0,这里a=3,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=16+12=28>0,∴x==,则x1=,x 2=98.2x2﹣x+1=0a=2,b=﹣,c=1△=10﹣8=2x=∴x1=,x2=99. .解:整理得:x2﹣2x﹣1=0,∴b2﹣4ac=﹣4×1×(﹣1)=12,∴x==±,∴x1=+,x2=﹣100.3x2﹣4x﹣1=0.3x2﹣4x﹣1=0,a=3,b=﹣4,c=﹣1,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x 1=,x2=101.2x2+5x﹣1=0.∵a=2,b=5,c=﹣1,△=b 2﹣4ac=25+8=33,∴x===.即x 1=,x2=102.2x2﹣x﹣1=0.∵原方程的二次项系数a=2,一次项系数b=﹣1,常数项c=﹣1,∴x===,∴x1=1,x2=﹣.103..∵a=2,b=﹣,c=﹣,∴△=(﹣)2﹣4×2×(﹣)=6>0,x==.104.3x2+5x﹣1=0.∵一元二次方程3x2+5x﹣1=0的二次项系数a=3,一次项系数b=5,常数项c=﹣1,∴x===,∴x 1=,x2=.105.5x2﹣8x+2=0,a=5,b=﹣8,c=2,b2﹣4ac=(﹣8)2﹣4×5×2=24>0,x==,x1=,x2=.106.3x2+7x+10=1﹣8x,整理得:x 2+5x+3=0,解得:x==,即:x1=,x2=;。

初中数学专题练习:一元一次方程(四)

初中数学专题练习:一元一次方程(四)

初中数学专题练习:一元一次方程(四)一、单选题1.如果方程6x+3a=22与方程3x+5=11的解互为相反数,那么a=( ) A .﹣ 343B .103C .343D .﹣ 1032.若关于x 的方程方程2+x−16=3﹣x 与方程4﹣kx+23=3k-2−2x 4的解相同,则k 的值为( ) A .0B .2C .1D .-13.小亮和家人计划元旦节报团去贞丰县城境内的“圣母峰”游玩,由于节假日旅游旺季,酒店房源紧张,只有混合民宿(一人一个床位)可以选择:若每间房住4人,则有8人无法入住;若每间房住5人,则有一间房空了3个床位.设小亮所在旅游团共有x 人,则可列方程为( ) A .x−84=x+35B .x+85=x−34C .x 4−8=x5+3D .4x +8=5x −34.若多项式 3x 2 - 5x + 6 的值为 12,则多项式 x 2 - 53 x + 6 的值为( ) A .8B .9C .10D .125.若关于x 的方程m (x-1)+5(x+1)=4m 的解为x=3,则m 的值为 ( ) A .10 B .-10C .103D .−1036.把方程 x3−x+16=1 去分母,下列变形正确的是( )A .2x ﹣x+1=1B .2x ﹣(x+1)=1C .2x ﹣x+1=6D .2x ﹣(x+1)=67.如果用“a=b ”表示一个等式,c 表示一个整式,d 表示一个数,那么等式的第一条性质就可以表示为“a ±c=b ±c ”,以下借助符号正确的表示出等式的第二条性质的是( ) A .a •c=b •d ,a ÷c=b ÷d B .a •d=b ÷d ,a ÷d=b •dC .a •d=b •d ,a ÷d=b ÷dD .a •d=b •d ,a ÷d=b ÷d (d ≠0)8.下列方程中,解为x=5的是( ) A .2x+3=5 B .10x =1 C .7-(x ﹣1)=3D .3x ﹣1=2x+69.某书上有一道解方程的题: 1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x=﹣2,那么□处应该是数字( )A .7B .5C .2D .﹣210.有 m 辆校车及 n 名学生,若每辆校车乘坐 40 名学生,则还有 10 名学生不能上车;若每 辆校车乘坐 43 名学生,则只有 1 名学生不能上车.现有下列四个方程: ①40m+10=43m -1;②n+1040= n+143 ;③n−1040= n−143 ;④40m+10=43m+1.其中正确的是( ) A .①② B .②④ C .②③ D .③④二、填空题11.酒泉出租车的收费标准为:起步价为5元,3千米后每千米2.5元,(不足1千米按1千米计费)则某人乘坐出租车行驶x 千米(x>3),付费10元,则列方程为 。

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习05 一次方程(组)与一元二次方程

中考数学复习考点题型专题练习专题05 一次方程(组)与一元二次方程一.选择题1.(2022·内蒙古包头)若12,x x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A .3或9-B .3-或9C .3或6-D .3-或62.(2022·黑龙江)2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?( )A .8B .10C .7D .93.(2022·四川雅安)若关于x 的一元二次方程x 2+6x +c =0配方后得到方程(x +3)2=2c ,则c 的值为( )A .﹣3B .0C .3D .94.(2022·贵州黔东南)已知关于x 的一元二次方程220x x a --=的两根分别记为1x ,2x ,若11x =-,则2212a x x --的值为( ) A .7 B .7- C .6 D .6-5.(2022·广西梧州)一元二次方程2310x x -+=的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定6.(2022·湖北武汉)若关于x 的一元二次方程222410x mx m m -+--=有两个实数根1x ,2x ,且()()121222217x x x x ++-=,则m =( )A .2或6B .2或8C .2D .67.(2022·湖南郴州)一元二次方程2210x x +-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.(2022·广西贵港)若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,09.(2022·北京)若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为( )A .4-B .14-C .14D .4 10.(2022·山东临沂)方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-11.(2022·黑龙江牡丹江)下列方程没有实数根的是( )A .2410x x +=B .23830x x +-=C .2230x x -+=D .()()2312x x --=12.(2022·海南)若代数式1x +的值为6,则x 等于( )A .5B .5-C .7D .7-13.(2022·广西贺州)某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”, “沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm ,高是6cm ;圆柱体底面半径是3cm ,液体高是7cm .计时结束后如图(2)所示,求此时“沙漏”中液体的高度为( )A.2cm B.21cm4C.4cm D.5cm14.(2022·黑龙江)国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.815.(2022·辽宁营口)我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.24015015012x x+=⨯B.24015024012x x-=⨯C.24015024012x x+=⨯D.24015015012x x-=⨯16.(2022·广西)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣717.(2022·贵州铜仁)为了增强学生的安全防范意识,某校初三(1)班班委举行了一次安全知识抢答赛,抢答题一共20个,记分规则如下:每答对一个得5分,每答错或不答一个扣1分.小红一共得70分,则小红答对的个数为( )A .14B .15C .16D .1718.(2022·广东深圳)张三经营了一家草场,草场里面种植上等草和下等草.他卖五捆上等草的根数减去11根,就等下七捆下等草的根数;卖七捆上等草的根数减去25根,就等于五捆下等草的根数.设上等草一捆为x 根,下等草一捆为y 根,则下列方程正确的是( )A .51177255y x y x -=⎧⎨-=⎩B .51177255x y x y +=⎧⎨+=⎩C .51177255x y x y -=⎧⎨-=⎩D .71155257x y x y-=⎧⎨-=⎩ 19.(2022·贵州贵阳)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; ③方程0mx n +=的解为2x =;④当0x =时,1ax b +=-.其中结论正确的个数是( )A .1B .2C .3D .420.(2022·广西河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A .30(1+x )2=50B .30(1﹣x )2=50C .30(1+x 2)=50D .30(1﹣x 2)=50二.填空题21.(2022·湖北鄂州)若实数a 、b 分别满足a 2﹣4a +3=0,b 2﹣4b +3=0,且a ≠b ,则11a b+的值为 _____.22.(2022·福建)推理是数学的基本思维方式、若推理过程不严谨,则推理结果可能产生错误.例如,有人声称可以证明“任意一个实数都等于0”,并证明如下:设任意一个实数为x ,令x m =,等式两边都乘以x ,得2x mx =.①等式两边都减2m ,得222x m mx m -=-.②等式两边分别分解因式,得()()()x m x m m x m +-=-.③等式两边都除以x m -,得x m m +=.④等式两边都减m ,得x =0.⑤所以任意一个实数都等于0.以上推理过程中,开始出现错误的那一步对应的序号是______.23.(2022·广西梧州)一元二次方程()()270x x -+=的根是_________.24.(2022·四川内江)已知x 1、x 2是关于x 的方程x 2﹣2x +k ﹣1=0的两实数根,且2112x x x x +=x 12+2x 2﹣1,则k 的值为 _____.25.(2022·广东深圳)已知一元二次方程260x x m ++=有两个相等的实数根,则m 的值为________________.26.(2022·上海)某公司5月份的营业额为25万,7月份的营业额为36万,已知5、6月的增长率相同,则增长率为_____.27.(2022·山东威海)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.28.(2022·广西贺州)若实数m ,n满足50m n --∣∣,则3m n +=__________.29.(2022·广东)若1x =是方程220x x a -+=的根,则=a ____________.30.(2022·江苏无锡)二元一次方程组321221x y x y +=⎧⎨-=⎩的解为________. 31.(2022·四川雅安)已知12x y =⎧⎨=⎩是方程ax +by =3的解,则代数式2a +4b ﹣5的值为 _____. 32.(2022·广西)阅读材料:整体代值是数学中常用的方法.例如“已知32a b -=,求代数式621a b --的值.”可以这样解:()6212312213a b a b --=--=⨯-=.根据阅读材料,解决问题:若2x =是关于x 的一元一次方程3ax b +=的解,则代数式2244421a ab b a b ++++-的值是________.33.(2022·内蒙古呼和浩特)某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了_______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额(10)x x >的函数解析式为______.34.(2022·山东潍坊)方程组2313320x y x y +=⎧⎨-=⎩的解为___________. 35.(2022·贵州贵阳)“方程”二字最早见于我国《九章算术》这部经典著作中,该书的第八章名为“方程”如: 从左到右列出的算筹数分别表示方程中未知数x ,y 的系数与相应的常数项,即可表示方程423x y +=,则 表示的方程是_______.36.(2022·吉林长春)《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x 间房,可求得x 的值为________.37.(2022·湖南长沙)关于的一元二次方程220x x t ++=有两个不相等的实数根,则实数t 的值为___________.38.(2022·江苏泰州)方程2x 2x m 0-+=有两个相等的实数根,则m 的值为__________.39.(2022·湖北武汉)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.40.(2022·上海)解方程组2213x y x y +=⎧⎨-=⎩的结果为_____. 三.解答题 41.(2022·广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?42.(2022·内蒙古赤峰)某学校建立了劳动基地,计划在基地上种植A 、B 两种苗木共6000株,其中A 种苗木的数量比B 种苗木的数量的一半多600株.(1)请问A 、B 两种苗木各多少株?(2)如果学校安排350人同时开始种植这两种苗木,每人每天平均能种植A 种苗木50株或B 种苗木30株,应分别安排多少人种植A 种苗木和B 种苗木,才能确保同时..完成任务?43.(2022·湖南)中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.44.(2022·四川广安)某企业下属A、B两厂向甲乙两地运送水泥共520吨,A厂比B 厂少运送20吨,从A厂运往甲乙两地的运费分别为40元/吨和35元/吨,从B厂运往甲乙两地的运费分别为28元/吨和25元/吨.(1)求A、B两厂各运送多少吨水泥?(2)现甲地需要水泥240吨,乙地需要水泥280吨.受条件限制,B厂运往甲地的水泥最多150吨.设从A厂运往甲地a吨水泥,A、B两厂运往甲乙两地的总运费为w元.求w 与a之间的函数关系式,请你为该企业设计一种总运费最低的运输方案,并说明理由45.(2022·广西桂林)解二元一次方程组:13x yx y-=⎧⎨+=⎩.46.(2022·江苏常州)第十四届国际数学教育大会(ICME-14)会徽的主题图案有着丰富的数学元素,展现了我国古代数学的文化魅力,其右下方的“卦”是用我国古代的计数符号写出的八进制数3745.八进制是以8作为进位基数的数字系统,有0~7共8个基本数字.八进制数3745换算成十进制数是3210387848582021⨯+⨯+⨯+⨯=,表示ICME-14的举办年份.(1)八进制数3746换算成十进制数是_______;(2)小华设计了一个n进制数143,换算成十进制数是120,求n的值.47.(2022·江苏泰州)如图,在长为50 m,宽为38 m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260 m2,道路的宽应为多少?48.(2022·黑龙江齐齐哈尔)解方程:22+=+(23)(32)x x49.(2022·贵州贵阳)(1)a,b两个实数在数轴上的对应点如图所示.用“<”或“>”填空:a_______b,ab_______0;(2)在初中阶段我们已经学习了一元二次方程的三种解法,他们分别是配方法、公式法和因式分解法,请从下列一元二次方程中任选两个,并解这两个方程.①x2+2x−1=0;②x2−3x=0;③x2−4x=4;④x2−4=0.50.(2022·内蒙古呼和浩特)计算求解:(1)计算112sin45|23-⎛⎫-+- ⎪⎝⎭︒(2)解方程组451223x yx y+=⎧⎪-⎨+=⎪⎩51.(2022·湖南长沙)电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.()②刘三姐的姐妹们给出的答案是唯一正确的答案.()③该歌词表达的数学题的正确答案有无数多种.()(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.52.(2022·四川雅安)某商场购进A,B两种商品,已知购进3件A商品和5件B商品费用相同,购进3件A商品和1件B商品总费用为360元.(1)求A,B两种商品每件进价各为多少元?(列方程或方程组求解)(2)若该商场计划购进A,B两种商品共80件,其中A商品m件.若A商品按每件150元销售,B商品按每件80元销售,求销售完A,B两种商品后获得总利润w(元)与m(件)的函数关系式.53.(2022·海南)我省某村委会根据“十四五”规划的要求,打造乡村品牌,推销有机黑胡椒和有机白胡椒.已知每千克有机黑胡椒比每千克有机白胡椒的售价便宜10元,购买2千克有机黑胡椒和3千克有机白胡椒需付280元,求每千克有机黑胡椒和每千克有机白胡椒的售价.。

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析

(专题精选)初中数学方程与不等式之分式方程难题汇编附解析一、选择题1.解分式方程221112x x x x --=--时,去分母后所得的方程正确的是( ) A .220x x -+= B .4241x x x -+=-C .4241x x x +-=-D .221x x x +-=- 【答案】C【解析】【分析】根据等式的性质,方程两边同时乘以最简公分母2(x-1),整理即可得答案.【详解】 ∵221112x x x x --=--, ∴221112x x x x -+=--, 方程两边同时乘以最简公分母2(x-1)得:4x+2(x-2)=x-1,去括号得:4x+2x-4=x-1,故选:C .【点睛】本题考查解分式方程,正确得出最简公分母是解题关键.2.解分式方程11222x x x -+=--的结果是( ) A .x="2"B .x="3"C .x="4"D .无解【答案】D【解析】【分析】【详解】解:去分母得:1﹣x+2x ﹣4=﹣1,解得:x=2,经检验x=2是增根,分式方程无解.故选D .考点:解分式方程.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.5.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x个零件,根据题意可列方程为()A .60045025x x=- B .60045025x x =- C .60045025x x =+ D .60045025x x =+ 【答案】C【解析】【分析】 原计划平均每天生产x 个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个, ∴60045025x x=+, 故选:C.【点睛】 此题考查分式方程的实际应用,正确理解题意是列方程的关键.6.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.7.已知关于x 的分式方程211x k x x -=--的解为正数,则k 的取值范围为( ) A .20k -<<B .2k >-且1k ≠-C .2k >-D .2k <且1k ≠ 【答案】B【解析】【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案.【详解】 解:211x k x x-=--Q , 21x k x +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠,1k ∴≠-,0x Q >,20k ∴+>,2k ∴>-,2k ∴>-且1k ≠-,故选:B .【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.8.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程.其中正确的是( )A .1101002x x=+ B .1101002x x =+ C .1101002x x =- D .1101002x x =- 【答案】A【解析】 设乙骑自行车的平均速度为x 千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x 千米/时,由题意得:1102x +=100x, 故选A .9.方程10020x +=6020x-的解为( ) A .x =10B .x =﹣10C .x =5D .x =﹣5 【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.14.若关于x 的分式方程2233x m x x -=--有增根,则m 的值为( ). A .3B.CD.【答案】D【解析】 解关于x 的方程2233x m x x -=--得:26x m =-, ∵原方程有增根,∴30x -=,即2630m --=,解得:m =故选D.点睛:解这类题时,分两步完成:(1)按解一般分式方程的步骤解方程,用含待定字母的式子表示出方程的根;(2)方程有增根,则把(1)中所得的结果代入最简公分母中,最简公分母的值为0,由此即可求得待定字母的值.15.关于x 的分式方程26344ax x x -+=---的解为正数,且关于x 的不等式组1722x a x x >⎧⎪⎨+≥-⎪⎩有解,则满足上述要求的所有整数a 的绝对值之和为( ) A .12B .14C .16D .18【答案】C【解析】【分析】根据分式方程的解为正数即可得出a <2且a≠1,根据不等式组有解,即可得出a >-5,找出-5<a <2且a≠1中所有的整数,将其相加即可得出结论.【详解】 解分式方程26344ax x x -+=---得:x=43a -, 因为分式方程的解为正数, 所以43a ->0且43a-≠4, 解得:a <3且a≠2, 解不等式1722x a x x >⎧⎪⎨+≥-⎪⎩,得:x≤a+7, ∵不等式组有解,∴a+7>1,解得:a >-6,综上,-6<a <3,且a≠2,则满足上述要求的所有整数a 的绝对值的和为:|-5|+|-4|+|-3|+|-2|+|-1|+|0|+|1|=16,故选:C .【点睛】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组有解,找出-6<a <3且a≠2是解题的关键.16.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x 棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )A .300300201.2x x -= B .300300201.260x x =- C .300300201.260x x x -=+ D .3002030060 1.2x x -= 【答案】D【解析】【分析】原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,原计划植300棵树可用时300x 小时,实际用了3001.2x 小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x 棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x 棵,由题意得:3002030060 1.2x x-=, 故选:D .【点睛】 此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.20.已知关于x 的分式方程13222mx x x -+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且B .2m ≠C .1m =或2m =D .1m ≠或2m ≠ 【答案】A【解析】【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可.【详解】 13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2)整理得,(m-2)x=-2 ∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2, ∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2, ∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠故选:A.【点睛】 此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.。

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案

(专题精选)初中数学方程与不等式之分式方程经典测试题及答案一、选择题1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个,故选:D .【点睛】 本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数, ∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.4.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg 货物,则可列方程为A .B .C .D .【答案】B【解析】甲种机器人每小时搬运x 千克,则乙种机器人每小时搬运(x+600)千克, 由题意得:, 故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg 所用时间与乙搬运8000kg 所用时间相等建立方程是关键.5.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题6.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29 B .13 C .49 D .59【答案】C【解析】【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率.【详解】解不等式组得:7x a x ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3,∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5,分式方程去分母得:﹣a ﹣x+2=x ﹣3,解得:x =52a - , ∵分式方程有非负整数解,∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个,∴P =49故选:C .【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.7.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x =- D .90606x x=+ 【答案】A解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:90606x x=-.故选A.8.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-【答案】A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x+=100x,故选A.9.方程10020x+=6020x-的解为()A.x=10 B.x=﹣10 C.x=5 D.x=﹣5【答案】C【解析】【分析】方程两边同时乘以(20+x)(20﹣x),解得,x=5,经检验,x=5是方程的根.【详解】解:方程两边同时乘以(20+x)(20﹣x),得100(20﹣x)=60(20+x),整理,得8x=40,解得,x=5,经检验,x=5是方程的根,∴原方程的根是x=5;故选:C.【点睛】本题考查分式方程的解法;熟练掌握分式方程的解法,切勿遗漏验根是解题的关键.10.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 【答案】B【解析】【分析】 设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .2 【答案】B【解析】【分析】利用题中的新定义变形已知等式,然后解方程即可.【详解】 根据题中的新定义化简得:339342x x=+-,去分母得:12﹣6x =27+9x ,解得:x =﹣1,经检验x =﹣1是分式方程的解.故选B .【点睛】本题考查了新定义和解分式方程,利用了转化的思想,解分式方程注意要检验.12.某车间加工12个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,那么采用新工艺前每小时加工的零件数为 ( )A .3个B .4个C .5个D .6个【答案】B【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,得:12121(150%)x x -=+, 解得:4x =;经检验,4x =是原分式方程的解.∴那么采用新工艺前每小时加工的零件数为4个;故选:B .【点睛】此题主要考查了分式方程的应用,其中找出方程的关键语,找出数量关系是解题的关键.注意解分式方程需要检验.13.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x =- C .405012x x =+ D .405012x x=+ 【答案】B【解析】 试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .14.方程31144x x x --=--的解是( ) A .-3B .3C .4D .-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34y y a⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16B .﹣15C .﹣6D .﹣4 【答案】D【解析】【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可.【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4,整理得:(a ﹣2)x =﹣12(a ﹣2≠0),解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10,当a =﹣2时,x =3,原分式方程无解,所以a =1,0,﹣1,﹣4,﹣10,不等式组整理得:y<9y a -⎧⎨≥⎩, 由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4,∴a =1,0,﹣1,﹣4,之和为﹣4,故选:D .【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.16.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的不等式组32212203y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有四个整数解,则所有符合条件的整数a 的和为( ).A.17 B.18 C.22 D.25【答案】C【解析】【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:3221223y yy a--⎧+>⎪⎪⎨-⎪⎪⎩„,不等式组整理得:1 yy a>-⎧⎨⎩„,由不等式组至少有四个整数解,得到-1<y≤a,解得:a≥3,即整数a=3,4,5,6,…,2-322ax x=--,去分母得:2(x-2)-3=-a,解得:x=72a -,∵72a-≥0,且72a-≠2,∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a为4,5,6,7,之和为22.故选:C.【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.17.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A.24x2+-20x=1 B.20x-24x2+=1C.24x-20x2+=1 D.20x2+-24x=1【答案】B【解析】试题解析:设他上月买了x本笔记本,则这次买了(x+2)本,根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.18.初二18班为课外体育活动购买了实心球和跳绳.已知跳绳的单价比实心球的单价贵40元,购买实心球总花费为1610元,购买跳绳总花费为1650元,购买实心球的数量比跳绳的数量多8个,求实心球的单价.设实心球单价为x 元,所列方程正确的是( ) A .16501610840x x -=+ B .16501610840x x -=+ C .16101650840x x -=+ D .16101650840x x -=+ 【答案】C【解析】【分析】设实心球单价为x 元,则跳绳单价为()40x +元,根据“购买实心球的数量比跳绳的数量多8个”即可得到方程.【详解】 解:设实心球单价为x 元,则跳绳单价为()40x +元,根据题意得,16101650840x x -=+. 故选:C【点睛】本题考查了分式方程的实际应用,解答本题的关键是审清题意,找到等量关系即可得解.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x -=+ B .606030(125%)x x -=+ C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】 分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.“母亲节”当天,某花店主打“康乃馨花束”,上午销售额为3000元,下午因市场需求量增大,店家将该花束单价提高30元,且下午比上午多售出40束,销售额为7200元,设该花束上午单价为每束x 元,则可列方程为( )A .300072004030x x -=+ B .720030004030x x -=+ C .720030004030x x-=+ D .300072004030x x -=+ 【答案】C【解析】【分析】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,根据数量=总价÷单价,结合下午比上午多售出40束,即可得出关于x 的分式方程,此题得解.【详解】设该花束上午单价为每束x 元,则下午单价为每束(x+30)元,依题意,得:720030004030x x-=+ 故选:C【点睛】本题考查了列分式方程解决实际问题,审题是基础,难点是找出能够表示应用题全部含义的一个相等关系,关键是设未知数和用未知数的代数式表示有关的未知量.。

初中数学-一元二次方程复习题及答案

初中数学-一元二次方程复习题及答案

初中数学-一元二次方程复习题及答案一元二次方程1.一元二次方程 x(x-1)=0 的解是(B)x=1.2.用配方法解一元二次方程 x-4x=5 的过程中,配方正确的是(D)(x-2)2=9.3.如果关于 x 的一元二次方程 x2+px+q=0 的两根分别为x1=2,x2=1,那么 p,q 的值分别是(A)-3,2.4.若分式 (x-3)/(x-3) 为零,则 x 的值为(A)3.5.已知 3 是关于 x 的方程 x2-5x+c=0 的一个根,则这个方程的另一个根是(B)-1.6.若 a+b+c=0,则关于 x 的一元二次方程 ax2+bx+c=0(a≠0)有一根是(C)2.7.方程 2x(x-1)=x-1 的解是(A)x1=1.8.关于 x 的一元二次方程 x+(m-2)x+m+1=0 有两个相等的实数根,则 m 的值是(D)-3.9.如果 x2+x-1=0,那么代数式 x3+2x2-7 的值是(B)8.10.已知关于 x 的一元二次方程 (a-1)x2-2x+1=0 有两个不相等的实数根,则 a 的取值范围为(C)a<2且a≠1.11.三角形两边的长是 3 和 4,第三边的长是方程 x2-12x+35 的根,则该三角形的周长为(A)14.填空题12.方程 (x-1)2=4 的解是 3.1.若$x=2$是关于$x$的方程$x-x-a+5=0$的一个根,则$a$的值为______.2.已知关于$x$的一元二次方程的一个根是1,写出一个符合条件的方程:3.某城市居民最低生活保障在20XX年是240元,经过连续两年的增加,到20XX年提高到345.6元,则该城市两年来最低生活保障的平均年增长率是_______________.17.已知2是关于$x$的一元二次方程$x^2+4x-p=0$的一个根,则该方程的另一个根是______.18.如果关于$x$的方程$x^2-2x+m=0$有两个相等实数根,那么$m$=______.19.已知一元二次方程$x^2-6x-5=0$的两根为$a$、$b$,则$\frac{a+b}{ab}$的值是______.20.解下列方程:1)$2x-2x-2=0$;2)$(x-3)^2+4x(x-3)=0$.21.已知$|a-1|+b+2=0$,求方程$\frac{a}{x}+bx=1$的解.22.已知关于$x$的一元二次方程$x+kx-1=0$:1)求证:方程有两个不相等的实数根;2)设方程的两根分别为$x_1$,$x_2$,且满足$x_1+x_2=x_1x_2$,求$k$的值.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.20XX年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到20XX年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.1)求每年市政府投资的增长率;2)若这两年内的建设成本不变,求到20XX年底共建设了多少万平方米廉租房.24.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价$x$元.据此规律,请回答:1)商场日销售量增加$2x+60$件,每件商品盈利$50-x$元;2)在上述条件不变、销售正常情况下,每件商品降价$10$元时,商场日盈利可达到2100元.25.由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的$80\%$.经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.1.求4月初猪肉价格下调后每斤多少元?答:4月初猪肉价格下调后每斤10元。

初中数学解一元一次方程精选计算题专题训练含答案

初中数学解一元一次方程精选计算题专题训练含答案

初中数学解一元一次方程精选计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共38题)1、解方程:2、计算:.3、4、利用等式的性质解下列方程:5、解方程:6、7、 x﹣4=2﹣5x8、9、解方程: 9-10x=10-9x10、解方程:11、-2(x-1)=4.12、解关于x的方程b(a+x)-a=(2b+1)x+ab(a≠0).13、解下列方程2y+l=5y+714、 2x+4=-1215、16、-2(x-1)=4.17、 3x-7+4x=6x-218、 -19、20、 4-2(1-x)=-2x21、解方程:22、23、 5x-6=3x+224、;25、;26、用等式的性质解方程3x+1=7.27、解下列方程:12-3(9-x)=5(x-4)-7(7-x); 28、;29、y-=y+330、31、32、.33、34、;35、 ax-1=bx36、 5(x-1)-2(x+1)=3(x-1)+x+1;37、38、============参考答案============一、计算题1、 X=22、分析:,,=1.解:原式.点拨:根据零指数幂、负整数指数幂的运算规律计算即可.3、-----3分4、 x=4.5、6、解:(1)原方程可化为:……2分,解得:………4分7、移项合并得:6x=6,解得:x=1;8、 .解:(1)合并同类项,得2x=6.系数化为1,得x=3.9、解:9-10=10x-9x x=-110、11、 x=-112、解:适当去括号,得ab+bx-a=(2b+1)x+ab,移项,得bx-(2b+1)x=a+ab-ab,合并同类项,得(b-2b-1)x=a,即-(b+1)x=a,当b≠-1时,有b+1 ≠0,方程的解为x=.当b=-1 时,有b+1=0,又因为a≠0,所以方程无解.(想一想,若a=0,则如何?13、14、解:X=-815、 x=1y=-116、 x=-117、 x=518、 x= -2219、解:…………………………2分………………………………2分………………………………1分20、 4-2(1-x)=-2x解:4-2+2x=-2x2x+2x=2-4……2′4x=-2………3′x=…………4′21、22、23、 x=424、(一)解:去分母,得2x - 20 = 60 +3x-移项,得 2x-3x = 60 +20合并同类项,得- x = 80化简,得x = - 80解:移项,得合并同类项化简,得x = - 8025、解:去括号,得 4x– 4 = 2 – 6x -12移项,得 4x + 6x = 2 -12 + 4合并同类项 10x = - 6化简,得26、【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:方程两边都减去1,得3x+1﹣1=7﹣1,化简,得3x=6两边除以3,得x=2.【点评】本题考查了等式的性质,利用等式的性质是解题关键.27、解:去括号,合并-15+3x=12x-69,移项合并,得9x=54,解得x=6;28、;29、解:X=-2130、解: x=3Y=431、32、去分母,…………1分去括号,移项,…………2分合并,…………3分…………5分33、 t=-934、解:先把系数化为整数,得,再去分母,两边都乘以60,得,去括号,合并同类项,得,;35、当a≠b时,方程有惟一解x=;当a=b时,方程无解;36、解:∵5(x-1)-2(x+1)=3(x-1)+x+1∴3x-7 = 3x-3+x+1∴x =-537、=2;38、。

八年级数学线性方程专项练习题及答案

八年级数学线性方程专项练习题及答案

八年级数学线性方程专项练习题及答案一、选择题1. 下列哪个不是线性方程?A. 2x - 3y = 7B. 3x² + 4y = 5C. 5x + 2y = 0D. x + y = 9答案:B2. 解方程组 x + y = 10,x - y = 4,得出 x 和 y 的值分别为:A. x = 6, y = 4B. x = 7, y = 3C. x = 8, y = 2D. x = 9, y = 1答案:A3. 若 x = 3 是线性方程 2x + y = k 的解,则 k 的值为:A. 1B. 2C. 3D. 4答案:D二、填空题1. 解方程 4x - 6 = 10,得出 x 的值为 __________。

答案:42. 若解方程组 2x - 3y = 7,-5x + 4y = -2,得出 x = __________,y = __________。

答案:x = -1,y = -13. 若线性方程 3x + 2y = 12 的一个解为 (3, 2),则这个线性方程的另一个解为 _________。

答案:(6, 0)三、解答题1. 解方程 2(x + 3) = 4x + 10。

解法:首先将方程中的括号去掉,得到 2x + 6 = 4x + 10。

然后移项,将含有 x 的项放在一起,得到 2x - 4x = 10 - 6。

简化得到 -2x = 4。

最后将方程两边除以 -2,得到 x = -2。

答案:x = -22. 解方程组 2x - y = 3,x + 2y = 4。

解法:首先使用第二个方程解出 x 的值,得到 x = 4 - 2y。

然后将 x 的值代入第一个方程,得到 2(4 - 2y) - y = 3。

化简得到 8 - 4y - y = 3。

合并同类项得到 8 - 5y = 3。

移项得到 -5y = -5。

最后将方程两边除以 -5,得到 y = 1。

将 y 的值代入 x = 4 - 2y,得到 x = 4 - 2(1) = 2。

2020年九年级中考数学专题复习:配方法解一元二次方程(含解析)

2020年九年级中考数学专题复习:配方法解一元二次方程(含解析)

九年级中考数学专题训练:配方法解一元二次方程(含解析)班级:姓名:一、单选题1.将方程化成的形式是( )A. B. C. D.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=13.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定4.用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A. (x-2)2=1B. (x-2)2=-1C. (x-2)2=3D. (x+2)2=35.用配方法解方程:x2-4x+2=0,下列配方正确的是( )A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=66.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A. (x+1)2=7B. (x﹣1)2=7C. (x+2)2=10D.(x﹣2)2=107.用配方法解方程x2+4x﹣1=0,下列配方结果正确的是()A. (x+2)2=5B. (x+2)2=1C. (x﹣2)2=1D.(x﹣2)2=58.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A. (x+3)2=14B. (x﹣3)2=14C. (x+3)2=4D.(x﹣3)2=49.用配方法解方程x2+8x+7=0,则配方正确的是( )A. B. C. D.10.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是( )A. (x﹣2)2=3B. (x+2)2=3C. (x﹣2)2=1D.(x﹣2)2=﹣1二、填空题11.方程x2+4x﹣1=0的解是:________.12.把方程变形为的形式后,h=________,k=________.13.用配方法解方程x2+6x+3=0,方程可变为(x+3)2=________.14.解方程x2﹣4x+4=0,得________.15.将方程x2+2x﹣7=0配方为(x+m)2=n的形式为________ .16.用配方法解方程x2﹣4x﹣5=0,则x2﹣4x+________=5+________,所以x1=________,x2=________.17.一元二次方程x2﹣6x+1=0的根为________18.把方程x2+6x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k=________.三、计算题19.解方程:①4x2-4x+1=0 ②x2+2=4x20.x2﹣4x+1=0(用配方法)21.解方程:x(x﹣4)=1.22.解方程:x2+4x﹣4=0.23.配方法解:x2+3x﹣4=0.24.解方程:.四、解答题25.解方程:x2+4x=5.26.请选择适当的方法解下列一元二次方程:(1)x2﹣4=0(2)x(x﹣6)=5.答案解析部分一、单选题1.将方程化成的形式是( )A. B. C. D.【答案】D【考点】解一元二次方程-配方法【解析】【分析】先移项,然后方程两边同加一次项系数一半的平方,最后根据完全平方公式因式分解即可.【解答】故选D.【点评】配方法是初中数学学习中的重要方法,尤其在二次函数的应用问题中极为重要,因而是中考的热点,一般难度不大,需熟练掌握.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A. (x+2)2=9B. (x﹣2)2=9C. (x+2)2=1D. (x﹣2)2=1【答案】A【考点】解一元二次方程-配方法【解析】【解答】x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22 ,(x+2)2=9,故答案为:A.【分析】首先将常数移到等号的右边,然后,方程两边同时加上一次项系数一半的平方,最后,利用完全平方公式进行变形即可.3.对任意实数x,多项式- +6x-10的值是一个()A. 正数B. 负数C. 非负数D. 无法确定【答案】B【考点】配方法解一元二次方程【解析】【解答】解:- +6x-10=-(-6x)-10=-(-6x+9-9)-10=- -1,∵-(≤0,∴- -1<0,即多项式- +6x-10的值是一个负数.故答案为:B【分析】根据配方法的特征,将代数式的二次项系数化为1,再配一个适当的常数项即加一次项系数一半的平方,结合平方的非负性即可求解。

初中数学方程式题目

初中数学方程式题目

初中数学方程式题目篇一:初中数学一元二次方程试题一元二次方程1. 一元二次方程的一般形式是( )A. ax2+bx+c=0B. ax2+bx+c(a≠0)C. ax2+bx+c=0(a≠0)D. ax2+bx+c=0(b≠0)2. 若px2-3x+p2-p=0是关于x的一元二次方程,则( )A. p=1B. p0C. p≠0D. p为任意实数3. 关于x的一元二次方程(3-x)(3+x)-2a(x+1)=5a的一次项系数为( )A. 8aB. -8aC. 2aD. 7a-94. 若(m2-4)x2+3x-5=0是关于x的一元二次方程,则( )A. m≠2B. m≠-2C. m≠-2,或m≠2D. m≠-2,且m≠21.下列方程中是关于x的一元二次方程的是(▲ )x?21x2?0A.B.ax2+bx+c=0 C.(x-1)(x-2)=1 D.3x2-2xy -5y2=02.下列各式中是一元二次方程的是()A3.关于xx2?kx?1?0A、有两个不相等的同号实数根B、有两个不相等的异号实数根C、有两个相等的实数根D、没有实数根2x?6x?8?0 的解,则这个三角形4.三角形的两边长分别是3和6,第三边是方程2B.(x?1)(x?1)?x?x?1 .2x2?3x?1的周长是()A.11B.13C.11或13D.11和135.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下面所列方程中正确的是A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128D.168(1-a2%)=1286..关于xkx2?2x?1?0有两个不相等的实数根,则k() A.k??1C.k02 2B.k?1D.k??1k≠0 7.若关于x的一元二次方程(a?1)x?x?a?1?00,则()A a=-1B a=1C a=±1D a的值不能确定8.关于x的方程(k-2)xk2?2是一元二次方程,则k的值为()A、±2B、2C、-2D、±11. 9.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场()A.4个B.5个C.6个D.7个210.关于x的方程(a -5)x-4x-1=0有实数根,则a 满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠511.已知锐角A满足关系式2sin2A?7sinA?3?0sinA的值为()AB.32 C3 D.4 12.在方程ax?bx?c?0?a?0?中,若有a?b?c?0()。

(必考题)初中七年级数学上册第三单元《一元一次方程》经典复习题(1)

(必考题)初中七年级数学上册第三单元《一元一次方程》经典复习题(1)

一、选择题1.新制作的渗水防滑地板是形状完全相同的长方形.如图,三块这样的地板可以拼成一个大的长方形.如果大长方形的周长为150cm ,那么一块渗水防滑地板的面积是( ).A .2450cmB .2600cmC .2900cmD .21350cm 2.甲乙两人骑摩托车从相距170千米的A ,B 两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行( )A .30千米B .40千米C .50千米D .45千米 3.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元 4.若三个连续偶数的和是24,则它们的积为( )A .48B .240C .480D .120 5.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b= 6.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 7.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5B .1C .-1D .3 8.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 9.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x - = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅2m + 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .410.下列说法正确的是( )A .若a c =b c ,则a=bB .若-12x=4y ,则x=-2y C .若ax=bx ,则a=bD .若a 2=b 2,则a=b 11.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 12.整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( ) x -2-1 0 1 2 mx n +-12 -8 -4 0 4A .1x =-B .0x =C .1x =D .2x = 13.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( )A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 14.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x 15.下列判断错误的是 ( )A .若a =b ,则a −3=b −3B .若a =b ,则7a −1=7b −1C .若a =b ,则a c 2+1=bc 2+1D .若ac 2=bc 2,则a =b 二、填空题16.学校组织一次数学知识竞赛,共有20道题,每一题答对得5分,答错或不答都倒扣1分,小明最终得到76分,那么他答对了______道题.17.如果3m -与21m +互为相反数,则m =________. 18.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 19.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元 20.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.21.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为______厘米2.(1毫升=1立方厘米)22.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.23.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元. 24.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________.25.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 26.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.三、解答题27.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-;(3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x ----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 28.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?29.如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.30.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②.。

初中数学中考复习专题:一元一次方程练习题1(含答案)

初中数学中考复习专题:一元一次方程练习题1(含答案)

一元一次方程测试题一、填一填!1、若3x+6=17,移项得_____, x=____。

2、代数式5m +14与5(m -14)的值互为相反数,则m 的值等于______。

3、如果x=5是方程ax+5=10-4a 的解,那么a=______4、在解方程123123x x -+-=时,去分母得 。

5、若(a -1)x |a|+3=-6是关于x 的一元一次方程,则a =__;x =___。

6、当x=___时,单项式5a2x+1b 2 与8a x+3b 2是同类项。

7、方程5x 4x 123-+-=,去分母可变形为______。

8、如果2a+4=a -3,那么代数式2a+1的值是________。

9、从1999年11月1日起,全国储蓄存款需征收利息税,利息税的税率是20%,张老师于2003年5月1日在银行存入人民币4万元,定期一年,年利率为1.98%,存款到期后,张老师净得本息和共计______元。

10、当x 的值为-3时,代数式-3x 2+ a x -7的值是-25,则当x =-1时,这个代数式的值为 。

11、若()022=-+-y y x ,则x+y=___________ 12、某学校为保护环境,绿化家园,每年组织学生参加植树活动,去年植树x 棵,今年比去年增加20%,则今年植树___________棵.二、慧眼识真!1. 1、下列各题中正确的是( )A. 由347-=x x 移项得347=-x xB. 由231312-+=-x x 去分母得)3(31)12(2-+=-x x C. 由1)3(3)12(2=---x x 去括号得19324=---x xD. 由7)1(2+=+x x 移项、合并同类项得x =52、方程2-2x 4x 7312--=-去分母得___。

A 、2-2(2x -4)=-(x -7) B 、12-2(2x -4)=-x -7C 、24-4(2x -4)=-(x -7)D 、12-4x +4=-x +73、一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住。

初中数学-解分式方程100题

初中数学-解分式方程100题
第 16 页(共 30 页)
(2)去分母得:1+3y﹣6=y﹣1, 解得:y=2, 经检验 y=2 是增根,分式无解.
20.解方程: (1) ﹣ =0
(2)

【解答】解:(1)去分母得:2x﹣x+2=0, 解得:x=﹣2, 经检验 x=﹣2 是原方程的根; (2)去分母得:x2﹣4x+4﹣16=x2﹣4, 解得:x=﹣2, 经检验 x=﹣2 是增根,分式方程无解.
3.解分式方程: (1) = ;
(2) + = .
4.解方程: (1) +3=
(2) ﹣ =1.
5.解方程 (1) + =2
(2) =1﹣ .
6.解分式方程:
(1)
=8.
第 1 页(共 30 页)
(2)

7.解方程
(1)
=1
(2) =2﹣ .
8.解方程: (1) + =1
(2) + = .
9.解方程: (1)
50.解方程: (1) ﹣1= .
(2) + =2.
第 7 页(共 30 页)
解分式方程 100 题
参考答案与试题解析
一.解答题(共 40 小题)
1.解方程:
(1) ﹣1=

(2) =1﹣ .
【解答】解:(1)去分母得:x(x+2)﹣(x﹣1)(x+2)=3, 去括号得:2x﹣2x+x+2=3, 解得:x=1, 经检验 x=1 时,分母为 0,方程无解; (2)去分母得:2x=x﹣2+1, 解得:x=﹣1, 经检验 x=﹣1 是分式方程的解.
(2)

38.解方程求 x: (1) ﹣ =1

中考数学专题练习 一元二次方程与分式方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 一元二次方程与分式方程(含解析)-人教版初中九年级全册数学试题

一元二次方程与分式方程一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④ D.只有②③④2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形 B.平行四边形C.梯形 D.平行四边形或梯形3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值X围是.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值X围是.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为.7.若关于x的方程有增根,则m的值是.8.方程的解是;若关于x的方程﹣1=0无实根,则a的值为.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.15.要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.一元二次方程与分式方程参考答案与试题解析一、选择题1.下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③B.只有①③④C.只有①④ D.只有②③④【考点】抛物线与x轴的交点.【专题】压轴题.【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.2.四边形ABCD中,AB∥CD,且AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,则四边形ABCD是()A.矩形 B.平行四边形C.梯形 D.平行四边形或梯形【考点】根的判别式;梯形.【分析】AB、CD长是关于x的方程x2﹣3mx+2m2+m﹣2=0的两个实数根,即判别式△=b2﹣4ac≥0,可得到AB与CD的关系,再判定四边形的形状.【解答】解:∵a=1,b=﹣3m,c=2m2+m﹣2∴△=b2﹣4ac=(﹣3m)2﹣4×1×(2m2+m﹣2)=(m﹣2)2+4>0∴方程有两个不相等的实数根.∴AB≠CD,∵AB∥CD,∴四边形ABCD是梯形.故选C.【点评】本题利用了一元二次方程的根的判别式与根的关系,梯形的判定求解.3.正比例函数y=(a+1)x的图象经过第二、四象限,若a同时满足方程x2+(1﹣2a)x+a2=0,则此方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定【考点】根的判别式;正比例函数的性质.【分析】正比例函数的图象经过第二、四象限,则(a+1)<0,求出a的X围,结合一元二次方程的△,来判断根的情况.【解答】解:由题意知,(a+1)<0,解得a<﹣1,∴﹣4a>4.因为方程x2+(1﹣2a)x+a2=0的△=(1﹣2a)2﹣4a2=1﹣4a>5>0,所以方程有两个不相等的实数根.故选A.【点评】(1)正比例函数y=kx,当k<0,图象过二、四象限;k>0时,图象过一、三象限.(2)一元二次方程的△>0时,有两个不相等的实数根.(3)本题要会把a<﹣1转化为1﹣4a>5.二、填空题4.已知方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,则m的取值X围是m≠±2 .【考点】一元二次方程的定义.【分析】根据一元二次方程成立的条件列出关于m的不等式,求出m的取值X围即可.【解答】解:∵方程(m2﹣4)x2+(2﹣m)x+1=0是关于x的一元二次方程,∴m2﹣4≠0,∴m≠±2.【点评】此题比较简单,考查的是一元二次方程的定义,即只含有一个未知数,且未知数的最高次数为2的整式方程.5.已知关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,则k的取值X围是0≤k≤1且k≠.【考点】根的判别式.【专题】压轴题.【分析】二次方程有实数根即根的判别式△≥0,找出a,b,c的值代入列出k的不等式,求其取值X围.【解答】解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值X围是0≤k≤1且k≠.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零和被开方数大于零这两个隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为16 .【考点】一元二次方程的应用;三角形三边关系;菱形的性质.【专题】几何图形问题;压轴题.【分析】边AB的长是方程x2﹣7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程x2﹣7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.【点评】由于菱形的对角线和两边组成了一个三角形,根据三角形两边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.7.若关于x的方程有增根,则m的值是 2 .【考点】分式方程的增根.【专题】计算题.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故答案为:2.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.方程的解是x=0 ;若关于x的方程﹣1=0无实根,则a的值为±1 .【考点】分式方程的解.【专题】计算题.【分析】本题考查解分式方程能力,观察可得方程最简公分母为2(x﹣2),去分母,化为整式方程求解.分式方程﹣1=0无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.【解答】解:方程两边同乘2(x﹣2),得2x﹣2=x﹣2,解得x=0.经检验x=0是原方程的根,故方程的解是x=0;(1)x=1为原方程的增根,此时有ax+1﹣(x﹣1)=0,即a+1﹣(1﹣1)=0解得a=﹣1.(2)方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,化简得:(a﹣1)x=﹣2.当a=1时,整式方程无解.综上所述,当a=±1时,原方程无解.【点评】将分式方程化为整式方程的关键是确定最简公分母,要根据分式的分母确定最简公分母.分母是多项式能进行分解的要先进行分解,再去确定最简公分母.分式方程无解,既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.三、解答题9.阅读下列材料:关于x的方程:的解是x1=c,;(即)的解是x1=c;的解是x1=c,;的解是x1=c,;…(1)请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.(2)由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.【考点】解分式方程.【专题】阅读型.【分析】此题为阅读分析题,解此题要注意认真审题,找到规律:x+=c+的解为x1=c,x2=,据规律解题即可.【解答】解:(1)猜想的解是x1=c,x2=.验证:当x=c时,方程左边=c+,方程右边=c+,∴方程成立;当x=时,方程左边=+c,方程右边=c+,∴方程成立;∴的解是x1=c,x2=;(2)由得,∴x﹣1=a﹣1,,∴x1=a,x2=.【点评】解此题的关键是理解题意,认真审题,寻找规律:x+=c+的解为x1=c,x2=.10.已知:关于x的一元二次方程mx2﹣(3m+2)x+2m+2=0(m≠0)(1)若m=1,求出此时方程的实数根;(2)求证:方程总有实数根;(3)设m>0,方程的两个实数根分别为x1,x2(其中x1<x2)、若y是关于m的函数,且y=x2﹣2x1,求函数的解析式,并画出其图象.(画草图即可,不必列表)【考点】根与系数的关系;解一元二次方程﹣公式法;解一元二次方程﹣因式分解法;根的判别式;待定系数法求反比例函数解析式.【专题】计算题;证明题.【分析】(1)把m的值,代入方程,解方程即可;(2)运用根的判别式判断,列出判别式的表达式,再变形成为非负数,得出△≥0即可;(3)可根据求根公式求出x1、x2,代入y=x2﹣2x1中,得出关于m的函数关系式,根据m>0,画出函数图象.【解答】解:(1)若m=1,方程化为x2﹣5x+4=0即(x﹣1)(x﹣4)=0,得x﹣1=0或x﹣4=0,∴x1=1或x2=4;证明:(2)∵mx2﹣(3m+2)x+2m+2=0是关于x的一元二次方程,∴△=[﹣(3m+2)]2﹣4m(2m+2)=m2+4m+4=(m+2)2∵m≠0,∴(m+2)2≥0,即△≥0∴方程有实数根;解:(3)由求根公式,得.∴或x=1∵=2+∵m>0,∴=2+>2∵x1<x2,∴x1=1,∴即为所求.此函数为反比例函数,其图象如图所示:即为所求.此函数为反比例函数,其图象如图所示:【点评】本题重点考查了反比例函数的性质(点评不合题意)及一元二次方程根的判别式和根与系数的关系(此题并没有设计,需要重新检查此题),是一个综合性的题目,也是一个难度中等的题目.11.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于75°或15°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,由已知可求得三角形的顶角为30°,则底角是75°;当高在三角形外部时,三角形顶角的外角是30°,则底角是15°;所以此三角形的底角等于75°或15°【点评】本题考查了等腰三角形的性质及三角形内角和定理;熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出75°一种情况,把三角形简单的化成锐角三角形.12.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?【考点】一次函数综合题.【专题】压轴题.【分析】(1)在解析式y=﹣x+4中,分别令y=0,x=0就可以求出与x,y轴的交点坐标;(2)根据MN∥AB,得到△OMB∽△OAB,根据相似三角形的对应边的比相等,就可以求出,用OM表示出来;(3)根据t的不同值,所对应的阴影部分的图形形状不同,因而应分2<t≤4和当0<t≤2两种个情况进行讨论.【解答】解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);(2)∵MN∥AB,,∴OM=ON=t,∴S1=OM•ON=t2;(3)①当2<t≤4时,易知点P在△OAB的外面,则点P的坐标为(t,t).理由:当t=2时,OM=2,ON=2,OP=MN==2,直角三角形AOB中,设AB边上的高为h,易得AB=4,则×4h=4×4×,解得h=2,故t=2时,点P在l上,2<t≤4时,点P在△OAB的外面.F点的坐标满足,即F(t,4﹣t),同理E(4﹣t,t),则PF=PE=|t﹣(4﹣t)|=2t﹣4,所以S2=S△MPN﹣S△PEF=S△OMN﹣S△PEF,=t2﹣PE•PF=t2﹣(2t﹣4)(2t﹣4)=﹣t2+8t﹣8;②当0<t≤2时,S2=t2,t2=,解得t1=﹣<0,t2=>2,两个都不合题意,舍去;当2<t≤4时,S2=﹣t2+8t﹣8=,解得t3=3,t4=,综上得,当t=或t=3时,S2为△OAB的面积的.【点评】本题主要考查了函数图象与坐标轴的交点的求法,以及利用三角形的相似的性质.是一个难度较大的综合题.13.A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.(1)求y关于x的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚40分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.【考点】一次函数的应用.【专题】压轴题.【分析】(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.(2)根据路程与速度的关系列出方程可解.(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=﹣90x+300.设y=0时,求出x的值可知乙车到达终点所用的时间.【解答】解:(1)方法一:由图知y是x的一次函数,设y=kx+b.∵图象经过点(0,300),(2,120),∴解得,∴y=﹣90x+300.即y关于x的表达式为y=﹣90x+300.方法二:由图知,当x=0时,y=300;x=2时,y=120.所以,这条高速公路长为300千米.甲车2小时的行程为300﹣120=180(千米).∴甲车的行驶速度为180÷2=90(千米/时).∴y关于x的表达式为y=300﹣90x(y=﹣90x+300).(2)由(1)得:甲车的速度为90千米/时,甲乙相距300千米.∴甲乙相遇用时为:300÷(90+60)=2,当0≤x≤2时,函数解析式为s=﹣150x+300,2<x≤时,S=150x﹣300<x≤5时,S=60x;(3)在s=﹣150x+300中.当s=0时,x=2.即甲乙两车经过2小时相遇.因为乙车比甲车晚40分钟到达,40分钟=小时,所以在y=﹣90x+300中,当y=0,x=.所以,相遇后乙车到达终点所用的时间为﹣2=2(小时).乙车与甲车相遇后的速度a=(300﹣2×60)÷2=90(千米/时).∴a=90(千米/时).乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.【点评】本题以行程问题为背景,考查由一次函数图象求解析式.分析相遇问题,求相遇时间及速度,依据速度和时间画函数图象,重点考查学生的观察、理解及分析解决问题的能力.14.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.15.(2009•潍坊)要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB、BC、AD的距离与O2到CD、BC、AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.【考点】一元二次方程的应用;二元一次方程组的应用;相切两圆的性质.【专题】几何图形问题.【分析】(1)把P、Q合并成矩形得长为(60﹣3×硬化路面的宽),宽为(40﹣2×硬化路面的宽),由等量关系S P+S Q=S矩形ABCD÷4求得并检验.(2)两等量关系2×O1到AD的距离=40;2×圆的半径+2×圆心到边的距离=60,列方程组求出并检验.【解答】解:(1)设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得:(60﹣3x)×(40﹣2x)=60×40×,解得,x1=10,x2=30,经检验,x2=30不符合题意,舍去.所以,两块绿地周围的硬化路面宽都为10米.(2)设想成立.设圆的半径为r米,O1到AB的距离为y米,根据题意,得:,解得:y=20,r=10,符合实际.所以,设想成立,则圆的半径是10米.【点评】分析图形特点,根据题意找出等量关系列出方程或方程组,解决问题并检验.16.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【考点】二次函数综合题.【专题】压轴题;动点型.【分析】(1)可在直角三角形CPN中,根据的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形P中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S最大值=(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。

初中数学一元一次方程专题试题

初中数学一元一次方程专题试题

初中数学一元一次方程专题试题满分:100学校 __________ 班级 __________ 学生 __________一、填空题( 本大题共30小题每题1 分)1、甲用40秒跑完一环行跑道,乙反向跑,每隔15秒与甲相遇一次,那么乙跑完这个跑道需要_______秒.2、若3x2m-3+1=5是一元一次方程,则m的值是__________.3、方程2x+8=0的解是______________.4、关于x的方程2(x-1)-a=0的解是3,则a的值为__________.5、设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图(1),图(2)所示,那么▲和■两种物体的质量之间的关系是__________,●与▲两种物体的质量之间的关系是__________.(用含有符号“●”“▲”“■”的等式加以表示)6、甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了__________场,平了__________场,负了__________场.7、小凡在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________”(横线部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.8、若关于x的方程6x+3m=22与5x-6=4的解相同,则m的值为________.9、元代朱世杰所著《算学启蒙》里有这样一道题:“良马日行两百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马________天可以追上驽马.10、西周戎生青铜编钟是由八个大小不同的小编钟组成,其中最大编钟高度比最小编钟高度的3倍少5 cm,且它们的高度相差37 cm.则最大编钟的高度是________cm.11、三角形的周长是84 cm,三边长的比为17∶13∶12,则这个三角形最短的一边长为________.12、某人在地主家干活,工作一年的报酬是年终给他一件衣服和10枚银币,但他干满7个月就决定不干了,结帐时,给了他一件衣服和2枚银币.则这件衣服大约值________枚银币.13、2008年北京奥运会,中国运动员获得金、银、铜牌共100枚,金牌数位列世界第一.其中金牌比银牌与铜牌之和多2枚,银牌比铜牌少7枚.则铜牌____枚,银牌____枚,金牌____枚.14、若商店将商品提价40%,然后再打出“九折酬宾”的广告,结果每个商品的销售仍可获利195元,则商品的进价为________元.15、移项就是把等式一边的某项______后移到另一边.16、王明同学参加教育储蓄活动,把所得压岁钱存入银行.如果月利率是0.2%,那么10个月后,本金与利息的和是40.8元,那么存入银行的压岁钱是________元.(教育储蓄不缴纳利息税)17、某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装的成本价为每件x元,则x满足的方程是________________.18、对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了x千克,共付款5x元.请你对“5x”再给出另一个实际生活方面的合理解释:__________.19、当x=________时,代数式5x+10与4x+14的值相等.20、当n为________时,3x2n-1与-x n+2是同类项.21、利润是商品售价与商品成本价(进价)的____,利润率是指商品的______与______的比率,可以用公式表示为__________.22、只含有____个未知数(元)x,未知数x的指数是____次的方程叫一元一次方程.23、一元一次方程如有括号,解方程时一般要先____,再________、____________、________.24、敌我两军相距14千米,敌军于1小时前以4千米/时的速度逃跑,现我军以7千米/时的速度追击,几小时后可追上敌军?若设x小时后可追上敌军,则列方程为_______________.25、某校学生列队以8千米/时的速度前进,在队尾校长让一名学生跑步到队伍的最前面找带队老师传达一个通知,然后立即返回队尾,这位学生的速度是12千米/时,从队尾赶到排头又回到队尾共用了7.2分钟,则队伍的长为______米.26、学生小明在做作业时,不慎将墨水瓶打翻,使一个题目看到如下的部分:已知甲、乙两地相距40千米,一辆客车的速度为45千米/时,一辆货车的速度为35千米/时,________________?(横线部分表示被墨水覆盖的若干文字),请你先将这个题目补充完整,并列出方程.27、完成一项工程,实际所用时间比原计划时间的多2天,比原计划的少1天,设原计划用x天完成,可列方程为__________.28、在等式的两边都乘______,得m=______,依据__________.29、有一个密码系统,其原理如图所示:,当输出为10时,则输入的x=__________.30、若代数式3x+7的值为-2,则x=________.二、选择题( 本大题共30小题每题1 分)1、下列根据等式的性质变形正确的是()A.由,得x=2yB.由3x-2-2x=2,得x=4C.2x-3=3x,得x=3D.由3x-5=7,得3x=7-52、方程3x+6=0的解的相反数是()A.2 B.-2 C.3 D.-33、某种商品降价20%后出售,一段时间后欲恢复原价,则应在售价的基础上提高的百分数是()A.20% B.30% C.35% D.25%4、解方程时,去分母后,正确结果是( ).A.4x+1-10x+1=1 B.4x+2-10x-1=1C.4x+2-10x-1=6 D.4x+2-10x+1=65、三元一次方程组的解为( ).A.B. C.D.6、某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为( ).A.21元B.19.8元 C.22.4元D.25.2元7、方程2x+1=0的解是( ).A.B. C.2D.-28、甲车队有汽车100辆,乙车队有汽车68辆,要使两队的汽车一样多,则需要从甲车队调x辆汽车到乙车队.由此可列方程为( ).A.100-x=68 B.x+68=100C.100+x=68-x D.100-x=68+x9、下列方程变形后得到的方程与原方程是同解方程的是().A.若2x=4,则x=2B.若2x-2=4,则2x=4-2C.若2x=8,则x=6D.若-2x=4,则x=210、如果代数式5x-4的值与-互为倒数,则x的值是( )A. B.-C. D.-11、一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放两个水龙头,灌满水池需( )A. 小时B. 小时 C.2小时D.3小时12、解方程-=1去分母正确的是( )A.2(x-1)-3(4x-1)=1 B.2x-1-12+x=1 C.2(x-1)-3(4-x)=6 D.2x-2-12-3x=613、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是( )A.1 000元B.1 300元 C.1 350元D.1 400元14、下列方程的变形中,是移项的是( )A.由3=x,得x=3 B.由6x=3+5x,得6x=5x+3C.由2x=-1,得x=- D.由2x-3=x+5,得2x-x =5+315、在解方程2(x-1)-3(2x-3)=8时,去括号正确的是( )A.2x-1-6x-3=8 B.2x-1-6x+3=8C.2x-2-6x-9=8 D.2x-2-6x+9=816、在解方程-=1时,去分母正确的是 ( )A.3x+1-2x-1=1 B.3x+1-2x-1=6C.3(x+1)-2(x-1)=1 D.3(x+1)-2(x-1)=617、对任意四个有理数a,b,c,d定义新运算:=ad-bc.已知=18,则x等于 ( )1 B.2 C.3D.418、请根据图中给出的信息,可得正确的方程是( )A.π×()2x=π×()2×(x+5) B.π×()2x=π×()2×(x-5)C.π×82x=π×62×(x+5) D.π×82x=π×62×519、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( )A.54 B.27 C.72D.4520、x=-3是下列方程______的解.( )A.-5(x-1)=-4(x-2) B.4x+2=1C. x+5=5 D.-3x-1=021、方程4(a-x)-4(x+1)=60的解是x=-1,则a为( )14 B.20 C.14D.-1622、解方程-1=时,去分母正确的是( )A.3x-3=2x-2 B.3x-6=2x-2C.3x-6=2x-1 D.3x-3=2x-123、在某校举办的足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某班足球队参加了12场比赛,共得22分,已知这个足球队只输了两场,那么此队胜的场数是( )A.4 B.5C.6 D.724、笼中有鸡兔共12只,共40条腿,设鸡有x只,根据题意,可列方程为( )A.2(12-x)+4x=40 B.4(12-x)+2x=40C.2x+4x=40 D. -4(20-x)=x25、下列方程是一元一次方程的是( )A. =5x+2 008 B.3x2+1=3xC.2y2+y=3 D.6x-3y=10026、一元一次方程(m-1)x+5=0成立的条件是()A.m=1 B.m≠1 C.m≠0 D.m为任意数27、某商店购进某种商品的价格是1 050元,按进价的150%标价,若他打算获得此商品的利润不低于20%,那么他最低可以打( ).A.7折 B.8折C.9折D.8.5折28、在高速公路上,一辆长4米、速度为110千米/时的轿车准备超越一辆长12米、速度为100千米/时的卡车,则轿车从开始追到超越卡车,需要花费的时间约是( ).A.1.6秒B.4.32秒C.5.76秒D.345.6秒29、关于x的方程mx-1=2x的解为正实数,则m的取值范围是()A.m≤2 B.m≤2C.m>2 D.m<230、阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元 B.27元 C.28元 D.29元三、解答题( 本大题共20小题每题2 分)1、若关于x的方程5x+3=0的解与5x+3k=27的解相同,求k的值.2、小明解方程去分母时,方程右边的式子没有乘以3,求得的解为x=2.试求a的值,并正确地解方程.3、解方程(1)(2)2(3x-4)+7(4-x)=4x4、某人原计划骑车以每小时12千米的速度由A地到B地,这样便可以在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定的时间早4分钟到达,求A、B两地间的距离.5、在括号里填上解方程2x+5=-x-4的根据.解:2x+5=-x-4,2x+x=-4-5(),3x=-9(),x=-3().6、在括号里填上解方程2x+5=-x-4的根据.解:2x+5=-x-4,2x+x=-4-5(),3x=-9(),x=-3().7、解方程:8x+12-9x+5=8.8、“中国竹乡”安吉县有着丰富的毛竹资源.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获利100元;如果对毛竹进行粗加工,每天可加工8吨,每吨可获利1 000元;如果进行精加工,每天可加工0.5吨,每吨可获利5 000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售.为此研究了两种方案:方案一:将毛竹全部粗加工后销售,则可获利__________元.方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利__________元.问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.9、如图所示,两个长方形重叠部分的面积等于大长方形面积的,等于小长方形面积的,已知阴影部分的面积为9 cm2,求重叠部分的面积.10、甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成.否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否完成该合同?为什么?(2)现两人合作了该工作的75%,因别处有急事,必须调走一人,问调走谁更合适一些?为什么?11、甲、乙、丙三个工人生产同一型号的零件,甲、乙两工人每天生产零件个数的比是4∶3,乙、丙两工人每天生产零件个数的比是2∶3.已知丙工人每天生产零件的个数比甲、乙二人每天生产零件的个数之和少25,问三个工人每天各生产多少个零件?12、依据下列解方程的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为,(________)去分母,得3(3x+5)=2(2x-1).(________)去括号,得9x+15=4x-2.(________)(________),得9x-4x=-15-2.(________)合并,得5x=-17.(合并同类项)(________),得.(________)13、解方程.14、解方程:-1=.15、整理一批图书,如果由一个人单独做要花60小时.现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少人?16、某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润4 000元,经精加工后销售,每吨利润7 000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,请说说理由.17、为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于1 200元(不包括780元),求甲种消毒液最多能再购买多少瓶?18、学了“去分母”以后,民辉同学在计算+时,把分母去掉得3+2=5.对吗?19、某商店的老板销售一种商品,他要以不低于进价的20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买标价为360元的这种商品,最多降价多少元商店老板才能出售?20、剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:把)某段时间内,甲厂家销售了8 400把剃须刀,乙厂家销售的刀片数量是刀架数量的50倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀片?。

初中数学专题复习方程与函数(含答案)

初中数学专题复习方程与函数(含答案)

专题复习1 方程与函数◆考点链接方程与函数综合题,历年来是中考热点,主要是以函数为主线,将函数图象、性质和方程的相关知识进行综合运用,渗透数形结合的思想方法.◆典例精析【例题1】(吉林)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子,动点P 、Q 同时从点A 出发,点P 沿A→B→C 方向以每秒2cm 的速度运动,到点C 停止;•点Q 沿A→D 方向以每秒1cm 的速度运动,到点D 停止.P 、Q •两点用一条可伸缩的细像皮筋联结,设x (s )后橡皮筋扫过的面积为y (cm 2).(1)当0≤x≤1时,求y 与x 之间的函数关系式;(2)当橡皮筋刚好触及钉子时,求x 值;(3)当1≤x≤2时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时,∠POQ 的变化范围;(4)当0≤x≤2时,请在给出的直角坐标系中画出y 与x 之间的函数图象.解题思想:不能利用待定系数确定函数解析式时,常常可以通过列方程的思想,•建立两个变量间的关系,而等量关系则是沟通它们之间的桥梁.解:(1)当0≤x≤1时,AP=2x ,AQ=x ,而y=12AP·AQ .即y=x 2; (2)当S 四边形ABPQ =12S 正方形ABCD 时,橡皮筋刚好触及钉子, 这时BP=2x -2,AQ=x ,12(2x -2+x )×2=12×22.∴x=43;(3)当1≤x≤43时,AB=2,BP=2x -2,AQ=x . ∴y=2AQ BP ×AB=3x -2,即y=3x -2. 当43≤x≤2时,BP=2x -2,AQ=x ,过O 点作OE ⊥AB ,E 为垂足, 这时OE=1,y=S 梯形BEOP +S 梯形OEAQ .∴y=32x ,90°≤∠POQ≤180°; (4)作图略.评析:根据时间确定几何图形面积是建立函数关系式的关键,不规则图形面积用规则图形的面积表示,则是求解问题的突破口.【例题2】(哈尔滨)2006年春,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗,甲、乙两处育苗基地均以每株4元的价格出售这种树苗,•并对一次性购买该种树苗不低于1 000株的用户实行优惠:甲处的优惠政策是每株树苗按原价的八折出售;乙处的优惠政策是免收所购树苗中150株的费用,•其余树苗按原价的九折出售.(1)规定购买该树苗只能在甲、•乙两处中的一处购买,•设一次性购买x (•x •≥1000,则x 为整数)株该种树苗,若在甲处育苗基地购买,所花费用为y 1元,写出y 1与x 之间的函数关系式;若在乙处育苗基地购买,所花的费用为y 2元,写出y 2与x 之间的函数关系式(均不要求写出自变量x 的取值范围).(2)若在甲、乙两处分别一次性购买1 500株该种树苗,•在哪一处购买所花的费用少?为什么?(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2 500株,购买这2 500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?解:(1)y 1=0.8×4x=3.2x ,即y 1=3.2x ;y 2=0.9×4(x -150),即y 2=3.6x -540.(2)当x=1 500时,y 1=3.2×1 500=4 800,y2=3.6×1 500-540=4 860,y1<y2.∴在甲处购买所花的费用少.(3)设在乙处购买a株该种树苗,所花费用为w元.则w=3.2(2 500-a)+3.6a-540,即w=0.4a+7 460.∵10002500 100025002500,aa≤≤⎧⎨≤-≤⎩∴1 000≤a≤1 500,且a为整数.∵0.4>0,∴w随a增大而增大.∴当a=1 000时,w最小=7 860.2 500-1 000=1 500(株).答:至少需花费7 860元,应在甲处购买1 500株,在乙处购买1 000株.评析:有关函数型的实际问题,也是考察数学建模的一种形式.它常常可以根据实际问题的意义通过建立一个二元方程的思想来获取函数解析式:这种函数与方程相结合的思想也是中考中的一个热点.探究实践【问题】(海淀)已知:抛物线y=x2-mx+m-2(1)求证:此抛物线与x轴有两个不同的交点;(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值.(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.解题思路:(1)证△>0;(2)求方程x2-mx+m-2=0的整数解;(3)要考虑M点在x•轴与y轴上两种情形.解:(1)△=m2-4m+8=(m-2)2+4>0,所以此抛物线与x轴有两个不同的交点.(2)方程x 2-mx+m -2=0的根为 由m 为整数,当(m -2)2+4为完全平方数时,此抛物线与x 轴才可能交于整数点. 设(m -2)2+4=n 2(其中n 为整数).所以[n+(m -2)][n -(m -2)]=4.因为n+(m -2)与n -(m -2)的奇偶性相同,所以2222222 2.n m n m n m n m +-=+-=-⎧⎧⎨⎨-+=-+=-⎩⎩或解得m=2. 经检验,m=2合题意.(3)当m=2时,抛物线y=x 2-2x ,顶点A (1,-1),与x 轴交点为O (0,0),B (2,0),•易知△AOB 为等腰直角三角形.∴M 1(1,0)为所求的点.若满足条件的点M 2在y 轴上时,设M 2(0,y ),作AN ⊥y 轴于N .由M 2A=M 2B ,得(y+1)2+12=y 2+22,得y=1,∴M 2(0,1)也为所求的点.综上所述满足条件的M 点坐标为(1,0)或(0,1).评析:一元二次方程有整数根,必须判别式△为完全平方数.用因式分解法、整数性质,求一元二次方程整数根是常用技巧.◆中考演练一、填空题1.已知:反比例函数y=k x与一次函数y=2x+k 的图象的一个交点的横坐标是-4,•则k 的值是________.2.函数y=x 2+2(a+2)x+a 2的图象与x 轴有两个交点,且都在x 轴的负半轴上,则a 的取值范围是________.二、选择题1.点P (a ,b )是直线y=-x+5与双曲线y=6x的一个交点,则以a 、b •为两实数根的一元二次方程是( ). A .x 2-5x+6=0 B .x 2+5x+6=0 C .x 2-5x -6=0 D .x 2+5x -6=02.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在( ).A .第一象限B .第二象限C .第三象限D .第四象限三、解答题1.(济南)已知:抛物线y=-12x 2+(6x+m -3与x 轴有A 、B 两个交点,且A 、B •两点关于y 轴对称.(1)求m 的值;(2)写出抛物线解析式及顶点坐标;(3)根据二次函数与一元二次方程的关系将此题的条件换一种说法写出来.2.已知c<0,抛物线y=ax2+bx+c经过正比例函数y=-4x与反比例函数y=-4x的图象的交点.(1)求抛物线的解析式;(2)若抛物线顶点在直线y=mx+n上,此直线与x轴、y轴分别交于点A、•B,•且OA:OB=1:2,求作一个以m和n为根的二次项系数为1的一元二次方程.◆实战模拟一、填空题1.点P(a,b)在第二象限内,a,b是方程4x2-2x-15=0的两个实数根,则直线y=ax+•b不经过第______象限.2.已知:二次函数y=ax2+bx+c(a≠0)图象的顶点坐标(-1,-3.2)•及部分图象如图所示,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3•和x2=_______.3.已知:二次函数y=2x2-4mx+m2的图象与x轴的两交点为A、B,顶点为C,若S△ABC•则m=________.二、选择题1.抛物线y=x 2-(2m -1)x -2m 与x 轴交于不同的两点A (x 1,0),B (x 2,0),且12x x =1,则m •的值为( ). A .-12 B .0 C .±12 D .12 2.抛物线y=x 2+bx+c 交x 轴正半轴于A 、B 两点,交y 轴于C ,若∠OBC=45°,则下列各式成立的是( ).A .b -c -1=0B .b+c+1=0C .b -c+1=0D .b+c -1=03.(武汉)已知关于x 的一元二次方程ax 2+bx+c=3的一个根为x 1=2,•且二次函数y=ax 2+bx+c 的对称轴是直线x=2,则抛物线的顶点坐标为( ).A .(2,-3)B .(2,1)C .(2,3)D .(3,2)三、解答题1.(海南)如图9-1-4,已知二次函数图象的顶点坐标为C (1,0),直线y=x+m 与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在y 轴上.(1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于E 点,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)D 为直线AB 与这个二次函数图象对称轴的交点,在线段AB 上是否存在一点P ,•使得四边形DCEP 是平行四边形?若存在,请求出此时P 点的坐标;若不存在,•请说明理由.2.(四川)已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),•与y轴的正半轴交于点C,如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为152.(1)求此抛物线解析式;(2)求直线AC和BC的方程;(3)如果P是线段AC上的一个动点(不与点A、C重合)过点P作直线y=m(m 为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,•求出点R的坐标;若不存在,请说明理由.答案:中考演练一、1.-8 2.a>-1且a≠0二、1.A 2.A三、1.(1)m=6 (2)y=-12x 2+3,顶点(0,3)(3)方程-12x 2+(6x+m -3=0的两根互为相反数(或两根之和为零等) 2.(1)=2x 2-4x -2 (2)易得m+n=-4,A (n m,0),B (0,n ),m=±2,所求一元二次方程为x 2+4x -12=0或x 2+4x+4=0实战模拟一、1.三 2.-3.3 3.±2二、1.D 2.B 3.C三、1.(1)点A (3,4)在直线y=x+m 上,∴4=3+m ,m=1.设二次函数为y=a (x -1)2,4=a (3-1)2,a=1∴y=(x -1)2,即y=x 2-2x+1(2)设P 、E 两点的纵坐标分别为y P ,y E ,PE=h=y P -y E =(x+1)-(x 2-2x+1)=-x 2+3x即h=-x 2+3x (0<x<3)(3)∵PE=DC ,点D 在y=x+1上,∴点D 坐标为(1,2)∴-x 2+3x=2,解得x 1=2,x 2=1(舍去)∴当P 点坐标为(2,3)时,四边形DCEP 是平行四边形2.(1)y=-12x 2+12x+3 (2)直线AC 方程为y=32x+3,直线BC 方程为y=-x+3 (3)存在,设直线y=m 与y 轴交于点E (0,m ),易知0<m<3.①当PQ 为等腰Rt △PQR 的一腰时,作PR 1⊥x 轴于R 1(如图1),由△CPQ ∽△CAB ,315315915,,,(,),(,)5384888PQ EC m m m P Q AB OC -===-有易求得, ∴R 1(-34,0),作QR 2⊥x 轴于R 2,则R 2(98,0),• 经检验知R 1、R 2是满足条件的点.②当PQ 为等腰Rt △PQR 的底边时,取PQ 的中点S ,•过点S 作SR 3⊥PQ 于R 3(如图2),由△CPQ ∽△CAB ,有32315121518153,,,(,),(,),(53111111111111PQ EC m m m P Q R AB OC -===-即易得可得,0),经检验可知R 3合题意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学复习方程测试题
班级 姓名 学号 成绩______
一、选择题:(每小题5分,共20分)
1、下列是一元二次方程的是( )
A 、x 2+2xy=3
B 、212=+x
x C 、x 3+x 2=6 D 、x 2=3 2、方程02
3122=+--x x x 的根是( ) A 、 -1,1,2 B 、-1,1 C 、-1 D 、1
3、如果方程组⎩
⎨⎧+==m x y x y 242只有一个实数解,则m 的值是( ) A 、全体实数 B 、±21 C 、21 D 、2
1- 4、完成某项工程,甲单独做需a 天,乙单独做需b 天,甲、乙两人共同完成这工程所而天数为( )
A 、ab b a +
B 、b a ab +
C 、2b a +
D 、b
a +1 二、填空题:(每小题5分,共30分)
5、方程x 2=2x 的根是 。

6、方程2x 2-x+a=0没有实数根,则a 的取值范围是 。

7、在实数范围内因式分解:x 2-5x+3= ________________ 。

8、解方程2
52112=+-+-+x x x x 时,可设 ,则原方程可化为整式方程 。

9、设x 1,x 2是方程2x 2+4x -3=0的两根,那么=+2
112x x x x 。

10、当m = 时,方程3
31-=--x m x x 产生增根。

三、解答题:(11、12题每题10分;13、14题每题15分;共50分)
11、解方程:
x
x x x 21422-=-;
12、解方程组:⎩
⎨⎧=-++=-+032012y x x y x
13、在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条直路(如图)把耕地分成大
小相等的六块作为实验田,要使实验田面积为504m 2,问道路的宽为多少米?
14、已知关于x 的方程04)2(2
2
=---m x m x . (1)求证:不论m 取何值,方程总有两个不相等的实数根。

(2)方程的两根为x 1,x 2时,若|x 2|=|x 1|+2,求m 的值。

相关文档
最新文档