力学三大观点的综合应用资料讲解
第8讲力学三大观点的应用
第4讲力学三大观点的应用【必记要点】1.处理力学与动量、能量的综合问题这类问题的基本思路:(1)明确物体的运动过程及其受力情况,了解在该运动过程中的运动状态变化情况及做功情况,有不少问题是需要分段来分析的。
(2)根据物体的运动过程及相应的功能关系的转化情形,选择合适的公式列式求解。
2.力学规律选用的一般原则力学中首先考虑使用两个守恒定律,从两个守恒定律的表达式看出多项都是状态量(速度、位置),所以守恒定律能解决状态问题,不能解决过程(位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及到速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及到位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及到位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,运用动能定理解决曲线运动和变加速运动问题特别方便。
考点一应用动量观点和能量观点分析碰撞问题[例1](多选)(2017·安徽江南十校二模)如图2-4-1所示,光滑水平地面上质量均为m的物体A、B,之间用轻弹簧相连,B紧靠右侧墙面,另一个质量也为m的物体C,以一定的初速度v0向右运动(设向右为正)与A碰撞后立即结合为一体,则下列说法正确的是图2-4-1A .A 、C 碰撞引起的机械能损失为14m v 20B .弹簧的最大弹性势能为12m v 20 C .弹簧第一次恢复原长时B 开始与墙分离D .弹簧第一次拉伸到最长时B 的速度为-v 03[解析] 对A 、C ,碰撞后的速度为v 1,根据动量守恒;m v 0=2m v 1,v 1=v 02,碰撞引起的机械能损失为12m v 20-12(2m )v 21=14m v 20,A 正确;根据能量守恒,最大弹性势能等于碰撞后AC 结合体的动能,B 错误;当弹簧第一次恢复原长时,AC结合体的速度为-v 02,弹簧开始拉伸,B 开始与墙分离,C 正确;弹簧第一次拉伸最长时,A 、B 、C 三者有共同速度v 1,根据动量守恒:-m v 0=3m v 2,v 2=-v 03,D 正确。
用三大观点处理力学问题(解析版)
第六章 碰撞与动量守恒定律用三大观点处理力学问题【考点预测】1.牛顿运动定律和运动学公式解决匀变速直线运动问题2.动能定理和能量守恒定律解决直线或曲线运动问题3.动量定理或动量守恒定律解决非匀变速直线运动问题【方法技巧与总结】1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转变为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转换.作用时间都极短,因此用动量守恒定律去解决.【题型归纳目录】题型一:动力学观点和能量的结合问题题型二:动力学观点和动量的结合问题题型三:动量观点和能量的结合问题题型四:动力学、动量、能量的结合问题【题型一】动力学观点和能量的结合问题【典型例题】1(2022秋·福建龙岩·高三校联考期中)大货车装载很重的货物时,在行驶过程中要防止货物发生相对滑动,否则存在安全隐患。
下面进行安全模拟测试实验:如图1所示,一辆后车厢表面粗糙且足够长的小货车向前以未知速度v匀速行驶,质量m A=10kg的货物A(可看成质点)和质量m B=20kg的货物B(可看成水平长板)叠放在一起,开始时A位于B的右端,在t=0时刻将货物A、B轻放到小货车的后车厢前端,最终货物A恰好没有滑离货物B,货物A、B在0~1s时间内的速度一时间图像如图2所示,已知货物A、B间的动摩擦因数μ1=0.40,取重力加速度g=10m/s2。
力学的三大基本观点及其应用
力学的三大基本观点及其应用一、力学的三个基本观点:力的观点: 牛顿运动定律、运动学规律动量观点:动量定理、动量守恒定律能量观点:动能定理、机械能守恒定律、能的转化和守恒定律例1.质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,速度为v0 ,某时刻拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:先大后小,守恒优先变1:质量为M的汽车带着质量为m的拖车在平直公路上以加速度a匀加速前进,当速度为v0时拖车突然与汽车脱钩,到拖车停下瞬间司机才发现.若汽车的牵引力一直未变,车与路面的动摩擦因数为μ,那么拖车刚停下时,汽车的瞬时速度是多大?小结:涉及时间,动量定理优先变2: 质量为M的汽车带着质量为m的拖车在平直公路上匀速前进,中途拖车脱钩,待司机发现时,汽车已行驶了L 的距离,于是立即关闭油门.设运行过程中所受阻力与重力成正比,汽车牵引力恒定不变,汽车停下时与拖车相距多远?小结:涉及位移,动能定理优先二、力的观点与动量观点结合:例2.如图所示,长 12 m、质量为 50 kg 的木板右端有一立柱,木板置于水平地面上,木板与地面间的动摩因数为 0.1,质量为 50 kg 的人立于木板左端,木板与人均静止,当人以 4 m/s2的加速度匀加速向右奔跑至板右端时立即抱住立柱,(取 g=10 m/s2)试求:(1)人在奔跑过程中受到的摩擦力的大小.(2)人从开始奔跑至到达木板右端所经历的时间.(3)人抱住立柱后,木板向什么方向滑动?还能滑行多远的距离?三、动量观点与能量观点综合:例3.如图所示,坡道顶端距水平面高度为 h,质量为 m1的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失,为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上,另一端与质量为 m2的挡板 B 相连,弹簧处于原长时,B 恰位于滑道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为 g,求:(1)物块 A 在与挡板 B 碰撞前瞬间速度 v 的大小.(2)弹簧最大压缩量为 d 时的弹性势能 E p(设弹簧处于原长时弹性势能为零).四、三种观点综合应用:例4.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B 两物体位于光滑水平面上,仅限于沿同一直线运动.当它们之间的距离大于等于某一定值 d 时,相互作用力为零,当它们之间的距离小于 d 时,存在大小恒为 F 的斥力.设 A 物体质量 m1=1.0 kg,开始时静止在直线上某点;B 物体质量 m2=3。
力学三大观点的综合应用(解析版)--2025高考物理
力学三大观点的综合应用目录题型一应用力学三大观点解决多过程问题 1题型二应用力学三大观点解决板-块模型及传送带模型问题 16题型一应用力学三大观点解决多过程问题力学三大观点对比力学三大观点对应规律表达式选用原则动力学观点牛顿第二定律F 合=ma物体做匀变速直线运动,涉及到运动细节.匀变速直线运动规律v =v 0+atx =v 0t +12at 2v 2-v 20=2ax 等能量观点动能定理W 合=ΔE k涉及到做功与能量转换机械能守恒定律E k 1+E p 1=E k 2+E p 2功能关系W G =-ΔE p 等能量守恒定律E 1=E 2动量观点动量定理I 合=p ′-p 只涉及初末速度、力、时间而不涉及位移、功动量守恒定律p 1+p 2=p 1′+p 2′只涉及初末速度而不涉及力、时间1.(2024·湖北·模拟预测)如图甲所示,小球A 以初速度v 0=2gR 竖直向上冲入半径为R 的14粗糙圆弧管道,然后从管道另一端沿水平方向以速度v 02=gR 冲出,在光滑水平面上与左端连有轻质弹簧的静止小球B 发生相互作用,距离B 右侧s 处有一个固定的弹性挡板,B 与挡板的碰撞没有能量损失。
已知A 、B 的质量分别为3m 、2m ,整个过程弹簧的弹力随时间变化的图像如图乙所示(从A 球接触弹簧开始计时,t 0已知)。
弹簧的弹性势能为E p =12kx 2,x 为形变量,重力加速度为g 。
求:(1)小球在管道内运动的过程中阻力做的功;(2)弹簧两次弹力最大值之比F 2:F 1;(3)小球B 的初始位置到挡板的距离s 。
【答案】(1)-32mgR ;(2)7:5;(3)35t 0gR 【详解】(1)设小球在管道内运动的过程阻力做功为W f ,根据动能定理可得-3mgR +W f =12⋅3m v 02 2-12⋅3mv 20解得W f =-32mgR(2)当A 、B 第一次共速时,弹簧压缩量最大,弹簧弹力最大,设压缩量为x 1,A 、B 共同速度为v 共1,从A 刚接触弹簧到A 、B 共速,根据动量守恒定律和机械能守恒定律可得3mv 02=(3m +2m )v 共112kx 21=12⋅3m v 02 2-12⋅(3m +2m )v 2共1此时弹簧弹力为F 1,有F 1=kx 1由图乙可知,弹簧刚好恢复原长时,B 与挡板相撞,设此时A 、B 速度分别为v 1、v 2,从A 刚接触弹簧到弹簧恢复原长,根据动量守恒定律和机械能守恒定律可得3mv 02=3mv 1+2mv 212⋅3m v 02 2=12⋅3mv 21+12⋅2mv 22解得v 1=15gR ,v 2=65gR此时B 原速率反弹,当A 、B 第二次共速时,弹簧压缩量再一次达到最大,设压缩量为x 2,A 、B 共同速度为v 共2,从B 刚反弹到弹簧第二次压缩最大,根据动量守恒定律和机械能守恒定律可得3mv 1-2mv 2=(3m +2m )v 共212kx 22=12⋅3mv 21+12⋅2mv 22-12(3m +2m )v 2共2此时弹簧弹力为F 2,有F 2=kx 2联立解得F 2:F 1=7:5(3)设A 、B 一起向右运动的过程中,任意时刻A 、B 速度分别为v A 、v B ,根据动量守恒可得3mv 02=3mv A +2mv B 在任意一极短时间∆t 内,有3mv 02Δt =3mv A Δt +2mv B Δt 所以3mv 02Δt =3m Δx A +2m Δx B 等式两边求和得3mv 02t 0=3ms A +2ms B 由图乙可知,t 0时B 与挡板发生碰撞,此时弹簧恰好恢复原长,故从t =0到t =t 0时,A 、B 位移相同,即s A =s B =s联立解得s =35t 0gR 2.(2024·河北·三模)滑雪是人们在冬季喜爱的户外运动。
2025高考物理总复习力学三大观点的综合应用
台最右端 N 点停下,随后滑下的 B 以 2v0 的速度与 A 发
图1
生正碰,碰撞时间极短,碰撞后 A、B 恰好落在桌面上圆盘内直径的两端。已知 A、
B 的质量分别为 m 和 2m,碰撞过程中损失的能量为碰撞前瞬间总动能的14。A 与
传送带间的动摩擦因数为 μ,重力加速度为 g,A、B 在滑至 N 点之前不发生碰撞,
答案 (1)8 N 5 N (2)8 m/s (3)0.2 m
解析 (1)当滑块处于静止时桌面对滑杆的支持力等于滑块和
滑杆的重力,即N1=(m+M)g=8 N 当滑块向上滑动时受到滑杆的摩擦力f=1 N,根据牛顿第三定
律可知滑块对滑杆的摩擦力f′=1 N,方向竖直向上,则此时桌
面对滑杆的支持力为N2=Mg-f′=5 N。
一起竖直向上运动。已知滑块的质量m=0.2 kg,滑杆的质量
M=0.6 kg,A、B间的距离l=1.2 m,重力加速度g取10 m/s2,
不计空气阻力。求:
图4
01 02 03 04
目录
提升素养能力
(1)滑块在静止时和向上滑动的过程中,桌面对滑杆支持力的大
小N1和N2; (2)滑块碰撞前瞬间的速度大小v1; (3)滑杆向上运动的最大高度h。
该过程中弹簧对物体B冲量的大小。
答案 (1)mA 2gH mA+mB
(2)2t 2(mA+mB)gt+2mA 2gH
解析 (1)设A和B碰前瞬间的速度大小为v0,和B碰后瞬间的
速度大小为v,有 mAgH=21mAv20 v0= 2gH
01 02 03 04
目录
提升素养能力
由动量守恒定律有 mAv0=(mA+mB)v 解得 v=mmAA+2mgHB 。 (2)从碰后至返回到碰撞点的过程中,AB结合体做简谐运动。 根据简谐运动的对称性,可得运动时间t总=2t 回到碰撞点时速度大小为 vt=v=mmAA+2mgHB 方向竖直向上 取向上为正方向,由动量定理得I-(mA+mB)g·2t=(mA+mB)vt-[-(mA+mB)v] 解得 I=2(mA+mB)gt+2mA 2gH。
专题六 力学中三大观点的综合应用
(1)最终A、B、C的共同速度为多大;
(2)求运动过程中A的最小速度; (3)整个过程中A与C及B与C因摩擦所 产生的热量之比为多大? 图3
解析
(1)由动量守恒定律有 mv0+2mv0=5mv1
3 得 v1= v0 5 (2)设经时间 t,A 与 C 恰好速度相等,此时 A 的速度最小. aA=-μg aC=μg
(3)滑块经过传送带作用后做平抛运动 1 2 h2= gt3 2 当两滑块速度相差最大时,它们的水平射程相差最大,当 m1≫m2 时,滑块 m1、m2 碰撞后的速度相差最大,经过传送带后速度相差 也最大 m1-m2 v1= v0=v0=5.0 m/s m1+m2 2m1 v2= v0=2v0=10.0 m/s m1+m2
即学即练1 如图2所示,一水平面上P点左侧光滑,右侧粗糙,
质量为m的劈A在水平面上静止,上表面光滑,A右端与 水平面平滑连接,质量为M的 物块B恰好放在水平面上P点,物块B与水平面间的动摩擦 因数为μ.一质量为m的小球C位于劈A的斜面上,距水平面
的高度为h.小球C从静止开始滑下,然后与B发生正碰(碰
撞时间极短,且无机械能损失).
图2
已知M=2m,求:
(1)小球C与劈A分离时,A的速度; (2)小球C的最后速度和物块B的运动时间.
解析 (1)设小球 C 与劈 A 分离时速度大小为 v0,此时劈 A 速度
大小为 vA 小球 C 运动到劈 A 最低点的过程中,规定向右为正方向,由水平 方向动量守恒、机械能守恒有 mv0-mvA=0 1 2 1 2 mgh= mv0+ mvA 2 2 得 v0= gh,vA= gh,之后 A 向左匀速运动
即学即练2 如图4所示,圆管构成的半圆形轨道竖直固定在水
5力学三大观点的综合应用
向右 2m
二、动量观点与能量观点综合
例2、如图所示,坡道顶端距水平面高度为 h,质量为 m1 的小物块 A 从坡道顶端由静止滑下,在进入水平面上的滑道时无机械能损失, 为使 A 制动,将轻弹簧的一端固定在水平滑道延长线 M 处的墙上, 另一端与质量为 m2 的挡板 B 相连,弹簧处于原长时,B 恰位于滑 道的末端 O 点.A 与 B 碰撞时间极短,碰后结合在一起共同压缩 弹簧,已知在 OM 段 A、B 与水平面间动摩擦因数均为μ,其余各 处的摩擦不计,重力加速度为 g,求:
(1)滑雪运动员在水平面 BC 上受到的阻力大小 f. (2)平抛运动的初速度. (3)落地时损失的机械能ΔE.
图 T1-6
解:(1)对 BC 过程运用动能定理得- fs2=-12mv2 解得 f=m2sv22=75 N. (2)在平抛运动过程中因 h=12gt2,有 t= 2gh=2 s,则平抛 运动的初速度为 v0=st1=15 m/s. (3)由能量守恒知,落地时损失的机械能为 ΔE=12mv20+mgh-12mv2=15 750 J.
前小车相对地运动的位移.
s? L 2
(2)求弹簧解除锁定瞬间物块和
小车的速度分别为多少? v1 ? v0 ? 2 ?gL(车),v2 ? 0
解:(1)物块在小车上运动到右壁时,设小车与物块的共同 速度为 v,由动量守恒定律得 mv0=2mv,由能量关系有 μmgl =12mv20-12·2mv2,故 v0=2 μgl,在物块相对小车向右运动的过 程中,小车向右做匀加速运动,加速度为 a=μg,速度由 0 增 加到 v=v20,小车位移为 s,则
图 T1-5
解:因 v0=4 m/s>v=2 m/s,物件在传送带上做匀减速运动, 当速度减小到与传送带速度相同后,随传送带匀速运动.由牛 顿第二定律 F=ma 得 a=μmmg=μg=2 m/s2,减速所经过的位移 s1=v-2-2va20=3 m,所用时间 t1=v--av0=1 s,物件到达右端还需 时间 t2=L-v s1=3.5 s,所以物件到达右端共需时间 t=t1+t2= 4.5 s.
5力学三大观点的综合应用
4.质量为 M 的小物块 A 静止在离地面高 h 的水平桌面的 边缘,质量为 m 的小物块 B 沿桌面向 A 运动并以速度 v0 与之 发生正碰(碰撞时间极短).碰后 A 离开桌面,其落地点离出发 点的水平距离为 L,碰后 B 反向运动,求 B 后退的距离.已知 B 与桌面间的动摩擦因数为μ,重力加速度为 g.
7.如图 T1-10 所示,质量 m=2 kg 的小球以初速度 v0 沿 光滑的水平面飞出后,恰好无碰撞地进入光滑的圆弧轨道,其
中圆弧 AB 对应的圆心角θ=53°,圆半径 R=0.5 m.若小球离
开桌面运动到 A 点所用时间 t=0.4 s.(sin53°=0.8,cos53°=
0.6, g=10 m/s2)
图 T1-8
解:物块在长木板上向右滑行时做减速运动,长木板做加 速运动,碰撞时物块再传递一部分能量给长木板,以后长木板 减速,物块加速直到速度相同为止.设木块和物块最后共同的 速度为v,由动量守恒定律得mv0=(m+M)v
设全过程损失的机械能为 ΔE,则 ΔE=12mv20-12(m+M)v2 因相对滑动而产生的内能为 Q=μmg·2s,在碰撞过程中损 失的机械能为 ΔE′,由能量守恒定律可得 ΔE=Q+ΔE′ 则 ΔE′=2mm+MMv20-2μmgs 代入数据得 ΔE′=2.4 J.
(舍去)
所以 v1=v0=2 μgl,v2=0.
1.有一传送装置如图 T1-5 所示,水平放置的传送带保持 以 v=2 m/s 的速度向右匀速运动.传送带两端之间的距离 L= 10 m,现有一物件以 v0=4 m/s 的初速度从左端滑上传送带,物 件与传送带之间的动摩擦因数μ=0.2.求物件从传送带的左端运 动到右端所用的时间 (取 g=10 m/s2).
专题(19)力学三大观点的综合应用(解析版)
2021年高考物理二轮重点专题整合突破专题(19)力学三大观点的综合应用(解析版)高考题型1应用力学三大观点处理多过程问题1.力学三大观点对比2.选用原则(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向为匀变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题.(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律.(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求解.第1页共15页第 2 页 共 15 页(4)对于碰撞、爆炸、反冲、地面光滑的板—块问题,若只涉及初末速度而不涉及力、时间,应用动量守恒定律求解.【例1】(2019·全国卷Ⅲ·25)静止在水平地面上的两小物块A 、B ,质量分别为m A =1.0 kg ,m B =4.0 kg ;两者之间有一被压缩的微型弹簧,A 与其右侧的竖直墙壁距离l =1.0 m ,如图1所示.某时刻,将压缩的微型弹簧释放,使A 、B 瞬间分离,两物块获得的动能之和为E k =10.0 J .释放后,A 沿着与墙壁垂直的方向向右运动.A 、B 与地面之间的动摩擦因数均为μ=0.20.重力加速度取g =10 m/s 2.A 、B 运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.图1(1)求弹簧释放后瞬间A 、B 速度的大小;(2)物块A 、B 中的哪一个先停止?该物块刚停止时A 与B 之间的距离是多少? (3)A 和B 都停止后,A 与B 之间的距离是多少?【答案】(1)4.0 m/s 1.0 m/s (2)物块B 先停止 0.50 m (3)0.91 m【解析】(1)设弹簧释放瞬间A 和B 的速度大小分别为v A 、v B ,以向右为正方向,由动量守恒定律和题给条件有0=m A v A -m B v B Ⅲ E k =12m A v A 2+12m B v B 2Ⅲ联立ⅢⅢ式并代入题给数据得 v A =4.0 m/s ,v B =1.0 m/sⅢ(2)A 、B 两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a .假设A 和B 发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B .设从弹簧释放到B 停止所需时间为t ,B 向左运动的路程为s B ,则有m B a =μm B g Ⅲ s B =v B t -12at 2Ⅲ第 3 页 共 15 页v B -at =0Ⅲ在时间t 内,A 可能与墙发生弹性碰撞,碰撞后A 将向左运动,碰撞并不改变A 的速度大小,所以无论此碰撞是否发生,A 在时间t 内的路程s A 都可表示为 s A =v A t -12at 2Ⅲ联立ⅢⅢⅢⅢⅢ式并代入题给数据得 s A =1.75 m ,s B =0.25 mⅢ这表明在时间t 内A 已与墙壁发生碰撞,但没有与B 发生碰撞,此时A 位于出发点右边0.25 m 处.B 位于出发点左边0.25 m 处,两物块之间的距离s 为 s =0.25 m +0.25 m =0.50 mⅢ(3)t 时刻后A 将继续向左运动,假设它能与静止的B 碰撞,碰撞时速度的大小为v A ′,由动能定理有12m A v A ′2-12m A v A 2=-μm A g ()2l +s B Ⅲ 联立ⅢⅢⅢ式并代入题给数据得 v A ′=7 m/sⅢ故A 与B 将发生碰撞.设碰撞后A 、B 的速度分别为v A ″和v B ″,由动量守恒定律与机械能守恒定律有 m A (-v A ′)=m A v A ″+m B v B ″Ⅲ 12m A v A ′2=12m A v A ″2+12m B v B ″2Ⅲ 联立ⅢⅢⅢ式并代入题给数据得 v A ″=375 m/s ,v B ″=-275m/sⅢ这表明碰撞后A 将向右运动,B 继续向左运动.设碰撞后A 向右运动距离为s A ′时停止,B 向左运动距离为s B ′时停止,由运动学公式 2as A ′=v A ″2,2as B ′=v B ″2Ⅲ 由ⅢⅢⅢ式及题给数据得第 4 页 共 15 页s A ′=0.63 m ,s B ′=0.28 mⅢs A ′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离 s ′=s A ′+s B ′=0.91 m 【变式训练】1.如图2所示,半径为R 的光滑的34圆弧轨道AP 放在竖直平面内,与足够长的粗糙水平轨道BD 通过光滑水平轨道AB 相连.在光滑水平轨道上,有a 、b 两物块和一段轻质弹簧.将弹簧压缩后用细线(未画出)将它们拴在一起,物块与弹簧不拴接.将细线烧断后,物块a 通过圆弧轨道的最高点C 时,对轨道的压力大小等于自身重力.已知物块a 的质量为m ,b 的质量为2m ,物块b 与BD 面间的动摩擦因数为μ,物块a 到达A 点或物块b 到达B 点前已和弹簧分离,重力加速度为g .求:图2(1)物块b 沿轨道BD 运动的距离x ; (2)烧断细线前弹簧的弹性势能E p . 【答案】(1)3R 4μ (2)92mgR【解析】(1)以水平向左为正方向,弹簧弹开a 、b 过程, 由动量守恒定律得0=mv 1-2mv 2物块a 从A 运动到C 的过程中,由机械能守恒定律得 12mv 12=mg ·2R +12mv C 2 在最高点重力与支持力的合力提供物块a 所需向心力 则有mg +F N =m v C 2R,又F N =mg ,第 5 页 共 15 页联立可解得v 1=6gR ,v 2=6gR2物块b 减速到停下过程中,由动能定理得-μ·2mgx =0-12·2mv 22可解得x =3R4μ(2)弹簧弹开物块a 、b 的过程,弹性势能转化为动能,可得 E p =12mv 12+12·2mv 22解得弹性势能E p =92mgR .2.(2020·四川泸州市质量检测)如图3所示,足够长的固定粗糙水平木板左端的D 点平滑连接半径为R =2 m 、竖直放置的四分之一光滑圆弧轨道,C 、D 分别是圆弧轨道的最高点和最低点,两轨道均固定在地面上.可视为质点的物块A 从C 点开始,以初速度v 0=3 m/s 沿圆弧轨道滑动.水平木板上离D 点距离为3.25 m 的P 点静置另一个可视为质点的物块B .已知物块A 、B 与水平木板间的动摩擦因数均为μ=0.2,物块A 的质量m 1=1 kg ,取g =10 m/s 2.图3(1)求物块A 从C 点滑到D 点时,对圆弧轨道的压力;(2)若物块B 的质量为m 2=1 kg ,物块A 与B 碰撞后粘在一起,求它们最终停止的位置距D 点多远; (3)若B 的质量为m 2′= 5 kg ,物块A 与B 的碰撞为弹性碰撞(且碰撞时间极短),求物块A 与B 均停止后它们相距多远.【答案】(1)34.5 N ,方向竖直向下 (2)5.5 m (3)3.5 m【解析】(1)设物块A 在D 点的速度为v 1,则物块A 从C 点运动到D 点的过程,由动能定理可得: m 1gR =12m 1v 12-12m1v 02第 6 页 共 15 页得v 1=7 m/s设物块A 在D 点受到圆弧轨道向上的支持力大小为F N ,则有F N -m 1g =m 1v 12R得F N =34.5 N由牛顿第三定律可得:物块A 在D 点对圆弧轨道的压力大小为F N ′=34.5 N ,方向竖直向下.(2)设物块A 在P 点与物块B 碰撞前瞬间的速度为v 2,加速度大小为a 1,则从D 点到P 点的过程中,由牛顿第二定律得:μm 1g =m 1a 1 -2a 1L =v 22-v 12 得v 2=6 m/s物块A 与物块B 碰撞的过程中,系统动量守恒,则有 m 1v 2=(m 1+m 2)v 3 解得v 3=3 m/sA 、B 碰撞后粘在一起做减速运动的过程中,设加速度大小为a 2,由牛顿第二定律可得:μ(m 1+m 2)g =(m 1+m 2)a 2 0-v 32=-2a 2x 得x =94m =2.25 m此时距D 的距离为L +x =5.5 m(3)物块A 运动到P 点的速度仍为v 2=6 m/s ,碰撞过后瞬间A 与B 的速度分别为v 4、v 5 ,A 与B 的碰撞为弹性碰撞,则碰撞过程系统动量和动能均守恒,可得m 1v 2=m 1v 4+m 2′v 5 12m 1v 22=12m 1v 42+12m 2′v 52 得v 4=-4 m/s ,v 5=2 m/s由于12m 1v 42<m 1gR +μm 1gL ,故A 反弹后不能达到C 点;设物块A 与B 碰撞过后,直至停止的整个运动过程中,在水平地面上运动的路程为s ,由动能定理可得:第 7 页 共 15 页-μm 1gs =0-12m 1v 42得s =4 m故物块A 向左运动3.25 m 后滑上圆弧返回后又向右运动了x 1=s -L =0.75 m 物块B 向右减速至零,则有0-v 52=-2a 3x 2,μm 2′g =m 2′a 3 解得x 2=1 m故A 、B 相距s ′=L +x 2-x 1=3.5 m .3.如图4,一质量M =6 kg 的木板B 静止于光滑水平面上,物块A 质量m =6 kg ,停在木板B 的左端.质量为m 0=1 kg 的小球用长为L =0.8 m 的轻绳悬挂在固定点O 上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与物块A 发生碰撞后反弹,反弹所能达到的距最低点的最大高度为h =0.2 m ,物块A 与小球可视为质点,不计空气阻力.已知物块A 、木板B 间的动摩擦因数μ=0.1,(取g =10 m/s 2)求:图4(1)小球运动到最低点与物块A 碰撞前瞬间,小球的速度大小; (2)小球与物块A 碰撞后瞬间,物块A 的速度大小;(3)为使物块A 、木板B 达到共同速度前物块A 不滑离木板,木板B 至少多长. 【答案】(1)4 m/s (2)1 m/s (3)0.25 m【解析】(1)对小球下摆过程,由机械能守恒定律得: m 0gL =12m 0v 02,解得v 0=4 m/s(2)对小球反弹后上升到最高点的过程,由机械能守恒定律得 m 0gh =12m 0v 12解得:v 1=2 m/s第 8 页 共 15 页小球与物块A 碰撞过程系统动量守恒,以小球碰前速度的方向为正方向 由动量守恒定律得:m 0v 0=-m 0v 1+mv A 解得v A =1 m/s(3)物块A 与木板B 相互作用过程,系统动量守恒,以物块A 的速度方向为正方向 由动量守恒定律得:mv A =(m +M )v , 解得v =0.5 m/s由能量守恒定律得:μmgx =12mv A 2-12(m +M )v 2,解得x =0.25 m.4.(2018·全国卷Ⅲ·24)一质量为m 的烟花弹获得动能E 后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度. 【答案】(1)1g2E m (2)2E mg【解析】(1)设烟花弹上升的初速度为v 0,由题给条件有 E =12mv 02Ⅲ设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有 0-v 0=-gt Ⅲ 联立ⅢⅢ式得 t =1g2E mⅢ (2)设爆炸时烟花弹距地面的高度为h 1,由机械能守恒定律有第 9 页 共 15 页E =mgh 1Ⅲ火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设爆炸后瞬间其速度分别为v 1和v 2.由题给条件和动量守恒定律有 14mv 12+14mv 22=E Ⅲ 12mv 1+12mv 2=0Ⅲ 由Ⅲ式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动.设爆炸后烟花弹上部分继续上升的高度为h 2,由机械能守恒定律有 14mv 12=12mgh 2Ⅲ 联立ⅢⅢⅢⅢ式得,烟花弹向上运动部分距地面的最大高度为 h =h 1+h 2=2Emg高考题型2 应用力学三大观点解决板—块模型问题1.滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.2.滑块与木板达到相同速度时应注意摩擦力的大小和方向是否发生变化.3.应注意区分滑块、木板各自的对地位移和它们的相对位移.用运动学公式或动能定理列式时位移指对地位移;求系统摩擦生热时用相对位移(或相对路程).【例2】(2019·江苏卷·15)如图5所示,质量相等的物块A 和B 叠放在水平地面上,左边缘对齐.A 与B 、B 与地面间的动摩擦因数均为μ.先敲击A ,A 立即获得水平向右的初速度,在B 上滑动距离L 后停下.接着敲击B ,B 立即获得水平向右的初速度,A 、B 都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g .求:图5(1)A 被敲击后获得的初速度大小v A ;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B.【答案】(1)2μgL(2)3μgμg(3)22μgL【解析】(1)由牛顿第二定律知,A加速度的大小a A=μg由匀变速直线运动规律得2a A L=v A2解得v A=2μgL;(2)设A、B的质量均为m对齐前,B所受合外力大小F=3μmg由牛顿第二定律F=ma B,得a B=3μg对齐后,A、B所受合外力大小F′=2μmg由牛顿第二定律F′=2ma B′,得a B′=μg;(3)设经过时间t,A、B达到共同速度v,位移分别为x A、x B,A加速度的大小为a A 则v=a A t,v=v B-a B tx A=12a A t2,x B=v B t-12a B t2且x B-x A=L解得v B=22μgL.【变式训练】5.(多选)(2019·江西上饶市重点中学六校第一次联考)如图6所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为μ4,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g.现对物块施加一水平向右的拉力F,则木板加速度a大小可能是()第10页共15页第 11 页 共 15 页图6A .0 B.2μg 3 C.μg 2D.F 2m -μg 4【答案】ACD【解析】若F 较小时,木板和物块均静止,则木板的加速度为零,选项A 正确;若物块和木板之间不发生相对滑动,物块和木板一起运动,对木板和物块组成的整体,根据牛顿第二定律可得:F -μ4·2mg =2ma ,解得:a =F 2m -14μg ,选项D 正确;若物块和木板之间发生相对滑动,对木板,水平方向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -μ4·2mg =ma ,解得:a =μg 2,选项C 正确. 6.(2020·云南昆明市高三“三诊一模”测试)如图7甲所示,质量为m =0.3 kg 的小物块B (可视为质点)放在质量为M =0.1 kg 、长度L =0.6 m 的木板A 的最左端,A 和B 一起以v 0=1 m/s 的速度在光滑水平面上向右运动,一段时间后A 与右侧一竖直固定挡板P 发生弹性碰撞.以碰撞瞬间为计时起点,取水平向右为正方向,碰后0.5 s 内B 的速度v 随时间t 变化的图象如图乙所示.取重力加速度g =10 m/s 2,求:图7(1)A 与B 间的动摩擦因数μ;(2)A 与P 第1次碰撞到第2次碰撞的时间间隔;(3)A 与P 碰撞几次,B 与A 分离.【答案】(1)0.1 (2)0.75 s (3)2次【解析】(1)碰后A 向左减速,B 向右减速,由题图乙得:a B =Δv Δt=-1 m/s 2 由牛顿第二定律有μmg =ma B第 12 页 共 15 页解得μ=0.1(2)碰后B 向右减速,A 向左减速到0后,向右加速,最后与B 共速,以水平向右为正方向,对A 、B 由动量守恒定律可得:mv 0-Mv 0=(M +m )v 1解得:v 1=0.5 m/s此过程,对B 由动量定理得:mv 1-mv 0=-μmgt 1解得:t 1=0.5 s对A 由动能定理有:-μmgx A =12Mv 12-12Mv 02 解得:x A =0.125 m此后A 、B 一起向右匀速运动的时间为:t 2=x A v 1=0.25 s 所以一共用的时间:t =t 1+t 2=0.75 s ,即A 与P 第1次碰撞到第2次碰撞的时间间隔为0.75 s(3)A 第1次与挡板P 碰撞后到共速的过程中,对整个系统,由能量守恒有:12mv 02+12Mv 02=12(M +m )v 12+μmgx 相对1 解得x 相对1=0.5 m假设第3次碰撞前,A 与B 不分离,A 第2次与挡板P 相碰后到共速的过程中,以水平向右为正方向,由动量守恒有:mv 1-Mv 1=(M +m )v 2由能量守恒有:12mv 12+12Mv 12=12(M +m )v 22+μmgx 相对2 解得:x 相对2=0.125 m第 13 页 共 15 页由于x 相对=x 相对1+x 相对2>L ,所以A 与P 碰撞2次,B 与A 分离.7.(2020·河南郑州市线上测试)如图8所示,长木板B 的质量为m 2=1.0 kg ,静止放在粗糙的水平地面上,质量为m 3=1.0 kg 的物块C (可视为质点)放在长木板的最右端.一个质量为m 1=0.5 kg 的物块A 从距离长木板B 左侧l =9.5 m 处,以初速度v 0=10 m/s 向着长木板运动.一段时间后物块A 与长木板B 发生弹性正碰(时间极短),之后三者发生相对运动,整个过程物块C 始终在长木板上.已知物块A 及长木板与地面间的动摩擦因数均为μ1=0.1,物块C 与长木板间的动摩擦因数为μ2=0.2,物块C 与长木板间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,求:图8(1)A 、B 碰后瞬间物块A 和长木板B 的速度;(2)长木板B 的最小长度;(3)物块A 离长木板左侧的最终距离.【答案】(1)3 m/s ,方向向左 6 m/s ,方向向右 (2)3 m (3)10.5 m【解析】(1)设物块A 与木板B 碰前瞬间的速度为v ,由动能定理得-μ1m 1gl =12m 1v 2-12m 1v 02 解得v =v 02-2μ1gl =9 m/sA 与B 发生弹性碰撞,假设碰撞后的瞬间速度分别为v 1、v 2,由动量守恒定律得m 1v =m 1v 1+m 2v 2由机械能守恒定律得12m 1v 2=12m 1v 12+12m 2v 22 联立解得v 1=m 1-m 2m 1+m 2v =-3 m/s , v 2=2m 1m 1+m 2v =6 m/s 碰后瞬间物块A 的速度大小为3 m/s 、方向向左,长木板B 的速度大小为6 m/s 、方向向右;(2)碰撞后B 做减速运动,C 做加速运动,B 、C 达到共同速度之前,由牛顿运动定律,对木板B 有 -μ1(m 2+m 3)g -μ2m 3g =-m 2a 1第 14 页 共 15 页对物块C 有μ2m 3g =m 3a 2设从碰撞后到两者达到共同速度经历的时间为t ,则 v 2-a 1t =a 2t木板B 的最小长度d =v 2t -12a 1t 2-12a 2t 2=3 m (3)B 、C 达到共同速度之后,因μ1(m 2+m 3)g =μ2m 3g ,故二者一起减速至停下,设加速度大小为a 3,由牛顿运动定律得μ1(m 2+m 3)g =(m 2+m 2)a 3整个过程B 运动的位移为x B =v 2t -12a 1t 2+0-a 2t 2-2a 3=6 mA 与B 碰撞后,A 做减速运动的加速度大小也为a 4=μm 1g m 1=1 m/s 2,位移为x A =0-v 12-2a 4=4.5 m 物块A 离长木板B 左侧的最终距离为x A +x B =10.5 m .8.如图9甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现使小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:图9(1)小物块与传送带间的动摩擦因数为多大;(2)0~8 s 内小物块与传送带之间的划痕为多长.【答案】(1)78(2)18 m第 15 页 共 15 页【解析】(1)根据v -t 图象的斜率表示加速度可得a =Δv Δt =22m/s 2=1 m/s 2 由牛顿第二定律得μmg cos 37°-mg sin 37°=ma解得μ=78 (2)0~8 s 内只有前6 s 内物块与传送带发生相对滑动, 0~6 s 内传送带匀速运动的距离为:x 带=4×6 m =24 m ,由题图乙可知:0~2 s 内物块位移大小为:x 1=12×2×2 m =2 m ,方向沿斜面向下, 2~6 s 内物块位移大小为:x 2=12×4×4 m =8 m ,方向沿斜面向上 所以划痕的长度为:Δx =x 带+x 1-x 2=(24+2-8) m =18 m.。
力学三大基本观点的综合应用研究
力学三大基本观点的综合应用研究力学三大基本观点,即牛顿运动定律(特别是牛顿第二定律)、动量守恒定律和能量守恒定律,是物理学中解决力学问题的基石。
这些观点不仅各自独立且深刻,而且在实际应用中往往相互关联、相互补充,共同构成了解决复杂力学问题的完整框架。
以下是对力学三大基本观点综合应用的研究。
1. 牛顿运动定律的应用牛顿第二定律(F=ma)是连接力和运动的桥梁,它描述了物体加速度与所受合外力及物体质量之间的关系。
在解决力学问题时,首先需要根据物体的受力情况(包括重力、弹力、摩擦力等)确定合外力,然后利用牛顿第二定律求出物体的加速度,进而通过运动学公式求解物体的速度、位移等运动学量。
2. 动量守恒定律的应用动量守恒定律(在没有外力作用或外力作用远小于内力作用时,系统总动量保持不变)是处理碰撞、爆炸等涉及多个物体相互作用问题的重要工具。
在应用动量守恒定律时,需要明确系统的边界(即哪些物体构成系统),判断系统是否满足动量守恒的条件,然后建立动量守恒的等式进行求解。
动量守恒定律不仅简化了问题的求解过程,还揭示了物体间相互作用的本质。
3. 能量守恒定律的应用能量守恒定律(能量既不会被消灭,也不会创生,能量只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变)是自然界普遍遵循的基本定律之一。
在力学中,它表现为机械能守恒(在只有重力或弹力做功的情况下,物体的动能和势能之和保持不变)或更一般的能量转化与守恒。
通过分析物体的受力情况和运动过程,确定能量的转化与守恒关系,可以建立能量等式进行求解。
这种方法在处理复杂力学问题时尤为有效。
4. 三大观点的综合应用在实际问题中,力学三大基本观点往往不是孤立地应用,而是需要综合运用。
例如,在处理碰撞问题时,可以首先利用动量守恒定律确定碰撞前后物体的速度关系,然后利用牛顿第二定律分析碰撞过程中的受力情况,最后通过能量守恒定律验证结果的正确性。
三大力学观点的综合应用
(2)设 A 车的质量为 mA,碰后加速度大小为 aA,根据牛顿 第二定律有
μmAg=mAaA④ 设碰撞后瞬间 A 车速度的大小为 vA′,碰撞后滑行的距离 为 sA,由运动学公式有 vA′2=2aAsA⑤ 设碰撞前的瞬间 A 车速度的大小为 vA。两车在碰撞过程中 动量守恒,有 mAvA=mAvA′+mBvB′⑥ 联立③④⑤⑥式并利用题给数据得 vA=4.3 m/s。⑦
(1)求物块 M 碰撞后的速度大小; (2)若平台表面与物块 M 间的动摩擦因数 μ=0.5,物块 M 与 小球的初始距离为 x1=1.3 m,求物块 M 在 P 处的初速度大小。
[解析] (1)碰后物块 M 做平抛运动,设其平抛运动的初速 度为 v3,平抛运动时间为 t,由平抛运动规律得
h=12gt2① x=v3t② 得:v3=x 2gh=3.0 m/s。③ (2)物块 M 与小球在 B 点处碰撞,设碰撞前物块 M 的速度 为 v1,碰撞后小球的速度为 v2,由动量守恒定律: Mv1=mv2+Mv3④
解析:(1)由题图乙可知: 长木板的加速度 a1=12 m/s2=0.5 m/s2 由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力 Ff= m1a1=2 N 小物块与长木板之间的动摩擦因数:μ=mF2fg=0.2。 (2)由题图乙可知,小物块的加速度 a2=42 m/s2=2 m/s2 由牛顿第二定律可知:F-μm2g=m2a2 解得 F=4 N。
碰后小球从 B 点处运动到最高点 A 过程中机械能守恒,设 小球在 A 点的速度为 vA,则12mv22=12mvA2+2mgL⑤
小球在最高点时有:2mg=mvLA2⑥ 由⑤⑥解得:v2=6.0 m/s⑦ 由③④⑦解得:v1=mv2+MMv3=6.0 m/s⑧ 物块 M 从 P 点运动到 B 点过程中,由动能定理: -μMgx1=12Mv12-12Mv02⑨ 解得:v0= v12+2μgx1=7.0 m/s。 [答案] (1)3.0 m/s (2)7.0 m/s
专题07力学三大观点的综合应用(讲义)(原卷版)
专题03 力学三大观点的综合应用01专题网络·思维脑图 02考情分析·解密高考 03高频考点·以考定法 04核心素养·难点突破 05创新好题·轻松练考点内容 学习目标传送带问题 1.掌握传送带中的动力学和能量问题;2.掌握板块模型中的动力学和能量问题;3.掌握碰撞模型中的动量和能量计算;4.掌握子弹打木块问题中的动量和能量转化问题;5.掌握弹簧问题及斜面问题中的动量和能量转化;板块问题碰撞模型及多过程问题 子弹打木块问题 碰撞模型拓展 动量和能量综合问题一、动力学三大观点考系。
② 应用动能定理的关键在于准确分析研究对象的受力情况及运动情况,可以画出运动过程的草图,借助草图理解物理过程之间的关系。
③ 当物体的运动包含多个不同过程时,可分段应用动能定理求解;也可以全过程应用动能定理。
④列动能定理方程时,必须明确各力做功的正、负,确实难以判断的先假定为正功,最后根据结果加以检验。
二、传送带问题1.水平传送带(摩擦力方向一定沿斜面向上)①静摩擦力做功的特点:①静摩擦力可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总是等于零,不会转化为内能.②滑动摩擦力做功的特点:①滑动摩擦力可以做正功,也可以做负功,还可以不做功.②相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功之和的绝对值等于产生的内能.③摩擦生热的计算:①Q=F f·s相对,其中s相对为相互摩擦的两个物体间的相对路程.②传送带因传送物体多消耗的能量等于物体增加的机械能与系统产生的内能之和.三、板块问题1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移大小之和x2+x1=L.3.解题关键点①由滑块与木板的相对运动来判断“板块”间的摩擦力方向.②当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动).4.板块模型的几个关系6.板块模型中摩擦力做功与动量、能量转化①滑块和木板组成的系统所受的合外力为零时,优先选用动量守恒定律解题;若地面不光滑或受其他外力时,需选用动力学观点解题.②应注意区分滑块、木板各自相对地面的位移和它们的相对位移.用运动学公式或动能定理列式时位移指相对地面的位移;求系统摩擦生热时用相对位移(或相对路程).四、子弹打木块模型1.模型图示 2.模型特点① 子弹水平打进木块的过程中,系统的动量守恒. ② 系统的机械能有损失. 3.两种情景① 子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)。
力学三大观点的综合应用
力学三大观点得综合应用1.动量定理得公式Ft=p′-p除表明两边大小、方向得关系外,还说明了两边得因果关系,即合外力得冲量就是动量变化得原因.动量定理说明得就是合外力得冲量与动量变化得关系,反映了力对时间得累积效果,与物体得初、末动量无必然联系.动量变化得方向与合外力得冲量方向相同,而物体在某一时刻得动量方向跟合外力得冲量方向无必然联系.动量定理公式中得F就是研究对象所受得包括重力在内得所有外力得合力,它可以就是恒力,也可以就是变力,当F为变力时,F应就是合外力对作用时间得平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之与为零,这个系统得总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量得增量为零);或Δp1=-Δp2(相互作用得两个物体组成得系统,两物体动量得增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力得合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题得三个基本观点(1)力得观点:主要就是牛顿运动定律与运动学公式相结合,常涉及物体得受力、加速度或匀变速运动得问题.(2)动量得观点:主要应用动量定理或动量守恒定律求解,常涉及物体得受力与时间问题,以及相互作用物体得问题.(3)能量得观点:在涉及单个物体得受力与位移问题时,常用动能定理分析;在涉及系统内能量得转化问题时,常用能量守恒定律.1.力学规律得选用原则(1)单个物体:宜选用动量定理、动能定理与牛顿运动定律.若其中涉及时间得问题,应选用动量定理;若涉及位移得问题,应选用动能定理;若涉及加速度得问题,只能选用牛顿第二定律.(2)多个物体组成得系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就就是根据众多得已知要素、事实,按照一定得联系方式,将其各部分连接成整体得方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂得运动.(2)对多个研究对象进行整体思维,即把两个或两个以上得独立物体合为一个整体进行考虑,如应用动量守恒定律时,就就是把多个物体瞧成一个整体(或系统)、考向1动量与能量得观点在力学中得应用例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B、物块与左右两边槽壁得距离如图1所示,L为1、0 m,凹槽与物块得质量均为m,两者之间得动摩擦因数μ为0、05、开始时物块静止,凹槽以v0=5 m/s得初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2、求:图1(1)物块与凹槽相对静止时得共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞得次数;(3)从凹槽开始运动到两者刚相对静止所经历得时间及该时间内凹槽运动得位移大小.解析(1)设两者间相对静止时速度为v,由动量守恒定律得m v0=2m vv=2、5 m/s,方向向右.(2)设物块与凹槽间得滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动得路程为s1,由动能定理得-F f·s1=12-12m v202(m+m)v解得s 1=12、5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前得速度分别为v 1、v 2,碰后得速度分别为v 1′、v 2′、有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者得速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块得v —t 图象在两条连续得匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+at a =-μg 解得t =5 s凹槽得v —t 图象所包围得阴影部分面积即为凹槽得位移大小s 2、(等腰三角形面积共分13份,第一份面积为0、5L ,其余每份面积均为L )s 2=12(v 02)t +6、5L解得s 2=12、75 m答案 (1)2、5 m/s ,方向向右 (2)6次 (3)5 s 12、75 m如图2,半径R =0、8 m 得四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 得水平面相切于D 点,质量M =1、0 kg 得小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0、5 kg 得静止物块B 相碰,碰后A 得速度变为v A =2、0 m /s ,仍向右运动.已知两物块与水平面间得动摩擦因数均为μ=0、1,若B 与E 处得竖直挡板相碰,没有机械能损失,取g =10 m/s 2、求:图2(1)滑块A 刚到达圆弧得最低点D 时对圆弧得压力;(2)滑块B 被碰后瞬间得速度;(3)讨论两滑块就是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点得速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧得压力为30 N ,方向竖直向下. (2)设B 滑块被碰后得速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后得速度v B =4 m/s(3)讨论:由于B 物块得速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大得路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板得碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑得水平面上有一质量为m =1 kg 得足够长得木板C ,在C 上放置有A 、B 两物体,A 得质量m A =1 kg ,B 得质量为m B =2 kg 、A 、B 之间锁定一被压缩了得轻弹簧,弹簧储存得弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 得初速度,且同时弹簧由于受到扰动而解除锁定,并在极短得时间内恢复原长,之后与A 、B 分离.已知A 与C 之间得动摩擦因数为μ1=0、2,B 、C 之间得动摩擦因数为μ2=0、1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离得瞬间,A 、B 得速度分别就是多大?(2)已知在C 第一次碰到右边得固定挡板之前,A 、B 与C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 得加速度分别就是多大及该过程中产生得内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体得过程中,由于作用时间极短,对A 、B 、弹簧组成得系统由动量守恒定律与能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s 、 (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 得共同加速度为a =1 m/s 2、对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律与能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B -12(m A +m B +m )v 2 解得:Q =4、5 J ,v =1、5 m/s(2014·广东·35)如图4所示得水平轨道中,AC 段得中点B 得正上方有一探测器,C处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点得物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2得质量都为m =1 kg ,P 与AC 间得动摩擦因数为μ=0、1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2与P 均视为质点,P 与挡板得碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间得速度大小v 与碰撞损失得动能ΔE ;(2)若P 与挡板碰后,能在探测器得工作时间内通过B 点,求v 1得取值范围与P 向左经过A 点时得最大动能E 、答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1与P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失得动能为:ΔE k =12m v 21-12×2m v 22②解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点得全过程瞧作匀减速直线运动,根据运动学公式有3L=v 2t +12at 2④由①③④式得v 1=6L -at 2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1得取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点得速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时得动能最大,E k A max =17 J 、(限时:45分钟)1.如图1所示,质量为M =4 kg 得木板静置于足够大得水平地面上,木板与地面间得动摩擦因数μ=0、01,板上最左端停放着质量为m =1 kg 可视为质点得电动小车,车与木板右端得固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车得电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2、)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面就是静止还就是运动得? (2)求出小车与挡板碰撞前,车得速率v 1与板得速率v 2; (3)求出碰后木板在水平地面上滑动得距离s 、答案 (1)向左运动 (2)v 1=4、2 m /s ,v 2=0、8 m/s (3)0、2 m 解析 (1)假设木板不动,电动车在板上运动得加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2、5 m/s 2此时木板使车向右运动得摩擦力:F f =ma 0=2、5 N 木板受车向左得反作用力:F f ′=F f =2、5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0、5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板得加速度分别为a 1与a 2,相互作用力为F ,由牛顿第二定律与运动学公式:对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者得位移得关系:v 12t +v 22t =L联立并代入数据解得:v 1=4、2 m /s ,v 2=0、8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 得过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0、2 m2.如图2所示,在倾角为30°得光滑斜面上放置一质量为m 得物块B ,B 得下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧得压缩量为x 0,O 点为弹簧得原长位置.在斜面顶端另有一质量也为m 得物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间得共同速度得大小; (2)A 、B 相碰前弹簧具有得弹性势能;(3)若在斜面顶端再连接一光滑得半径R =x 0得半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上得速度,试问:v 为多大时物块A 恰能通过圆弧轨道得最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前得速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有得弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前得速度为v 3,碰后A 、B 得共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0、3.如图3所示,光滑得水平面AB (足够长)与半径为R =0、8 m 得光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点得右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 得传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲得质量为m 1=3 kg ,乙得质量为m 2=1 kg ,甲、乙均静止在光滑得水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道得压力恰好等于甲得重力.传送带与乙物体间得动摩擦因数为0、6,重力加速度g 取10 m/s 2,甲、乙两物体可瞧作质点.图3(1)求甲球离开弹簧时得速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行得最远距离;(3)甲、乙均不固定,烧断细线以后,求甲与乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙得速度;若不会再次碰撞,请说明原因.答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时得速度大小为v 0,运动至D 点得过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙得速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a=12 m<20 m 即乙在传送带上滑行得最远距离为12 m 、(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成得系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0、6 m<0、8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然就是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲得速度为2 3 m/s ,方向向右,乙得速度为6 3 m/s ,方向向左4.如图4所示,一倾斜得传送带倾角θ=37°,始终以v =12 m /s 得恒定速度顺时针转动,传送带两端点P 、Q 间得距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑得半径R =1、6 m 得竖直半圆轨道相切于M 点,MN 为竖直得直径.现有一质量M =2、5 kg得物块A 以v 0=10 m/s 得速度自P 点沿传送带下滑,A 与传送带间得动摩擦因数μ1=0、75,到Q 点后滑上水平面(不计拐弯处得能量损失),并与静止在水平面最左端得质量m =0、5 kg 得B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面得动摩擦因数相同均为μ2,忽略物块得大小.已知sin 37°=0、6,cos 37°=0、8,求:图4(1)A 滑上传送带时得加速度a 与到达Q 点时得速度; (2)若A 、B 恰能通过半圆轨道得最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?答案 (1)12 m /s 2 12 m/s (2)0、5 (3)0、09≤μ2≤0、5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带得速度,由v 2-v 20=2ax 0得运动得位移x 0=116 m<L则到达Q 点前A 已与传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点得速度为v =12 m/s 、 (2)设A 、B 碰后得共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得: 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0、5(3)①若以v 3由N 点抛出,则有:2R =12gt 2 x 1=v 3t =3、2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0、5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2 x +L cos θ=v 3′t ′由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 与12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0、09综上所述,μ2应满足:0、09≤μ2≤0、5。
专题(29)专题五 力学三大观点的综合应用(解析版)
2021年高考物理一轮复习必热考点整合回扣练专题(29)专题五力学三大观点的综合应用(解析版)知识点一力的三个作用效果与五个规律知识点二常见的力学模型及其结论命题热点 动力学、动量和能量观点在力学中的应用 力学三大观点的综合应用 选择力学三大观点的一般原则1、在光滑的水平面上有a 、b 两球,其质量分别为m a 、m b ,两球在t 0时刻发生正碰,并且在碰撞过程中无机械能损失,两球碰撞前后的速度—时间图象如图所示,下列关系正确的是( )A .m a >m bB .m a <m bC .m a =m bD .无法判断【答案】B【解析】由图象知a 球以一初速度向原来静止的b 球运动,碰后a 球反弹且速度大小小于其初速度大小,根据动量守恒定律,a 球的质量小于b 球的质量。
2、如图所示,质量为M 的盒子放在光滑的水平面上,盒子内表面不光滑,盒内放有一块质量为m 的物体,某时刻给物体一个水平向右的初速度v 0,那么在物体与盒子前后壁多次往复碰撞后( )A .两者的速度均为零B .两者的速度总不会相等C .盒子的最终速度为mv 0M ,方向水平向右D .盒子的最终速度为mv 0M +m ,方向水平向右【答案】D【解析】由于盒子内表面不光滑,在多次碰后物体与盒相对静止,由动量守恒得:mv 0=(M +m )v ′,解得:v ′=mv 0M +m,故D 正确。
3、(多选)A 、B 两球沿同一条直线运动,如图所示的x -t 图象记录了它们碰撞前后的运动情况,其中a 、b 分别为A 、B 碰撞前的x -t 图象。
c 为碰撞后它们的x -t 图象。
若A 球质量为1 kg ,则B 球质量及碰后它们的速度大小为( )A .2 kg B.23kgC .4 m/sD .1 m/s【答案】BD【解析】由图象可知碰撞前二者都做匀速直线运动,v a =4-102 m/s =-3 m/s ,v b =4-02 m/s=2 m/s ,碰撞后二者连在一起做匀速直线运动,v c =2-44-2m/s =-1 m/s 。
18.2021高考物理力学三大观点的综合利用
课堂精讲
(2)A、B两球碰撞后A球弹回,向左做匀减速直线运动,B球向右做匀速直线运动,A 球速度减小到零后反向向右做匀加速直线运动,当二者速度相同时,距离最远。 设从碰撞到共速经历的时间为t 对A球a=qmE=9 m/s2 v2=v1+at 解得t=23 s 对两球xA=v1t+12at2,xB=v2t 最大距离Δx=xB-xA=2 m。 答案 (1)-2 m/s 4 m/s (2)2 m
首页
课堂精讲
(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送 带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再 碰撞。则对A、B和弹簧组成的系统,从第二次碰撞后到不再碰撞,满足 2nμ1mgl=12mv2 解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5≈6(取 整数) 答案 (1)4 m/s (2)12.25 J (3)6次
A.导体棒克服安培力做的功等于导体棒上 产生的焦耳热 B.质量m=0.2 kg,加速度a=1.5 m/s2 C.前4 s内拉力F的冲量大小为9.2 N·s D.若4 s末撤去拉力F,则拉力F撤去后定值 电阻R上产生的焦耳热为3.6 J
首页
课堂精讲
解析 导体棒克服安培力做的功等于产生的电能,等于系统(导体棒和电阻)所产生的
首页
课堂精讲
1.如图所示,间距 L=1 m、电阻不计的足够长的光滑平行金属导轨水平放置,导轨右 侧接入 R=2 Ω 的定值电阻。长 L=1 m、电阻 r=1 Ω、质量为 m 的导体棒垂直导轨放 置,整个装置处于方向竖直向下的匀强磁场中,磁感应强度 B=1 T,现在导体棒上施 加水平向左的拉力 F,拉力 F 随时间变化的关系为 F=12t+130(N),导体棒从静止开始以 大小为 a 的加速度做匀加速直线运动,运动过程中始终保持与导轨垂直并接触良好。下 列说法正确的是( B )
高中物理专题【力学“三大观点”的综合应用】
14
(1)若木板长 L=1 m,在铁块上加一个水平向右的恒力 F=8 N,经过多长时间铁块运 动到木板的右端?
(2)若在木板(足够长)的右端施加一个大小从零开始连续增加的水平向左的力 F,请在 图乙中画出铁块受到的摩擦力 f 随力 F 大小变化的图象.
解析:(1)以铁块为研究对象 F-μ2mg=ma1 对木板有 μ2mg-μ1(mg+Mg)=Ma2 L=12a1t2-12a2t2 解得 t=1 s.
栏目导航
16
③当 F>10 N 时,铁块相对木板滑动,此时摩擦力 f=μ2mg=4 N 故铁块受到的摩擦力 f 随力 F 大小变化的图象如图所示.
答案:(1)1 s (2)见解析图
栏目导航
17
C 考点二
用动力学和能量观点解决多过程问题
[考点分析] 1.命题特点:动力学观点和能量观点是解答力学问题的两种重要方法,等级考题中 常把这两种方法综合起来考查,题型多为计算题,难度较大. 2.思想方法:守恒思想、全程法和分段法、模型法等.
栏目导航
32
A.物体的加速度大小为 2 m/s2 B.弹簧的伸长量为 3 cm C.弹簧的弹力做功为 30 J D.物体的重力势能增加 36 J
栏目导航
33
解析:B 根据 v-t 图象的斜率可知,物体的加速度大小为 a=ΔΔvt =1 m/s2,选项 A 错 误;对物体受力分析,受到竖直向下的重力 mg、斜面的支持力和轻弹簧的弹力 F,由牛 顿第二定律,F-mgsin 30°=ma,解得 F=6 N.由胡克定律 F=kx 可得弹簧的伸长量 x =3 cm,选项 B 正确;在 t=1 s 到 t=3 s 这段时间内,物体动能增加 ΔEk=12mv22-12mv21= 6 J,根据 v-t 图象与时间轴所围面积等于位移,可知物体沿斜面向上运动的位移 x=6 m, 物体重力势能增加 ΔEp=mgxsin 30°=30 J,根据功能关系可知,弹簧弹力做功 W=ΔEk+ ΔEp=36 J,选项 C、D 错误.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力学三大观点的综合应用1.动量定理的公式Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.动量定理说明的是合外力的冲量与动量变化的关系,反映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟合外力的冲量方向无必然联系.动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值.2.动量守恒定律(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′;或p=p′(系统相互作用前总动量p等于相互作用后总动量p′);或Δp=0(系统总动量的增量为零);或Δp1=-Δp2(相互作用的两个物体组成的系统,两物体动量的增量大小相等、方向相反).(3)守恒条件①系统不受外力或系统虽受外力但所受外力的合力为零.②系统合外力不为零,但在某一方向上系统合力为零,则系统在该方向上动量守恒.③系统虽受外力,但外力远小于内力且作用时间极短,如碰撞、爆炸过程.3.解决力学问题的三个基本观点(1)力的观点:主要是牛顿运动定律和运动学公式相结合,常涉及物体的受力、加速度或匀变速运动的问题.(2)动量的观点:主要应用动量定理或动量守恒定律求解,常涉及物体的受力和时间问题,以及相互作用物体的问题.(3)能量的观点:在涉及单个物体的受力和位移问题时,常用动能定理分析;在涉及系统内能量的转化问题时,常用能量守恒定律.1.力学规律的选用原则(1)单个物体:宜选用动量定理、动能定理和牛顿运动定律.若其中涉及时间的问题,应选用动量定理;若涉及位移的问题,应选用动能定理;若涉及加速度的问题,只能选用牛顿第二定律.(2)多个物体组成的系统:优先考虑两个守恒定律,若涉及碰撞、爆炸、反冲等问题时,应选用动量守恒定律,然后再根据能量关系分析解决.2.系统化思维方法,就是根据众多的已知要素、事实,按照一定的联系方式,将其各部分连接成整体的方法.(1)对多个物理过程进行整体思维,即把几个过程合为一个过程来处理,如用动量守恒定律解决比较复杂的运动.(2)对多个研究对象进行整体思维,即把两个或两个以上的独立物体合为一个整体进行考虑,如应用动量守恒定律时,就是把多个物体看成一个整体(或系统).考向1动量和能量的观点在力学中的应用例1(2014·安徽·24)在光滑水平地面上有一凹槽A,中央放一小物块B.物块与左右两边槽壁的距离如图1所示,L为1.0 m,凹槽与物块的质量均为m,两者之间的动摩擦因数μ为0.05.开始时物块静止,凹槽以v0=5 m/s的初速度向右运动,设物块与凹槽槽壁碰撞过程中没有能量损失,且碰撞时间不计,g取10 m/s2.求:图1(1)物块与凹槽相对静止时的共同速度;(2)从凹槽开始运动到两者刚相对静止物块与右侧槽壁碰撞的次数;(3)从凹槽开始运动到两者刚相对静止所经历的时间及该时间内凹槽运动的位移大小.解析(1)设两者间相对静止时速度为v,由动量守恒定律得m v0=2m vv=2.5 m/s,方向向右.(2)设物块与凹槽间的滑动摩擦力F f=μF N=μmg设两者相对静止前相对运动的路程为s1,由动能定理得-F f·s1=12-12m v202(m+m)v解得s 1=12.5 m已知L =1 m ,可推知物块与右侧槽壁共发生6次碰撞.(3)设凹槽与物块碰前的速度分别为v 1、v 2,碰后的速度分别为v 1′、v 2′.有m v 1+m v 2=m v 1′+m v 2′12m v 21+12m v 22=12m v 1′2+12m v 2′2 得v 1′=v 2,v 2′=v 1即每碰撞一次凹槽与物块发生一次速度交换,在同一坐标系上两者的速度图线如图所示,根据碰撞次数可分为13段,凹槽、物块的v —t 图象在两条连续的匀变速运动图线间转换,故可用匀变速直线运动规律求时间.则 v =v 0+at a =-μg 解得t =5 s凹槽的v —t 图象所包围的阴影部分面积即为凹槽的位移大小s 2.(等腰三角形面积共分13份,第一份面积为0.5L ,其余每份面积均为L )s 2=12(v 02)t +6.5L解得s 2=12.75 m答案 (1)2.5 m/s ,方向向右 (2)6次 (3)5 s 12.75 m如图2,半径R =0.8 m 的四分之一圆弧形光滑轨道竖直放置,圆弧最低点D 与长为L =6 m 的水平面相切于D 点,质量M =1.0 kg 的小滑块A 从圆弧顶点C 由静止释放,到达最低点后,与D 点右侧m =0.5 kg 的静止物块B 相碰,碰后A 的速度变为v A =2.0 m /s ,仍向右运动.已知两物块与水平面间的动摩擦因数均为μ=0.1,若B 与E 处的竖直挡板相碰,没有机械能损失,取g =10 m/s 2.求:图2(1)滑块A 刚到达圆弧的最低点D 时对圆弧的压力;(2)滑块B 被碰后瞬间的速度; (3)讨论两滑块是否能发生第二次碰撞.答案 (1)30 N ,方向竖直向下 (2)4 m/s (3)见解析解析 (1)设小滑块运动到D 点的速度为v ,由机械能守恒定律有:MgR =12M v 2由牛顿第二定律有F N -Mg =M v 2R联立解得小滑块在D 点所受支持力F N =30 N由牛顿第三定律有,小滑块在D 点时对圆弧的压力为30 N ,方向竖直向下. (2)设B 滑块被碰后的速度为v B ,由动量守恒定律: M v =M v A +m v B解得小滑块在D 点右侧碰后的速度v B =4 m/s(3)讨论:由于B 物块的速度较大,如果它们能再次相碰一定发生在B 从竖直挡板弹回后,假设两物块能运动到最后停止,达到最大的路程,则对于A 物块 -μMgs A =0-12M v 2A解得s A =2 m对于B 物块,由于B 与竖直挡板的碰撞无机械能损失,则-μmgs B =0-12m v 2B解得s B =8 m(即从E 点返回2 m)由于s A +s B =10 m<2×6 m =12 m ,故它们停止运动时仍相距2 m ,不能发生第二次碰撞. 考向2 综合应用力学三大观点解决多过程问题例2 如图3所示,在光滑的水平面上有一质量为m =1 kg 的足够长的木板C ,在C 上放置有A 、B 两物体,A 的质量m A =1 kg ,B 的质量为m B =2 kg.A 、B 之间锁定一被压缩了的轻弹簧,弹簧储存的弹性势能E p =3 J ,现突然给A 、B 一瞬时冲量作用,使A 、B 同时获得v 0=2 m/s 的初速度,且同时弹簧由于受到扰动而解除锁定,并在极短的时间内恢复原长,之后与A 、B 分离.已知A 和C 之间的动摩擦因数为μ1=0.2,B 、C 之间的动摩擦因数为μ2=0.1,且滑动摩擦力略小于最大静摩擦力.求:图3(1)弹簧与A 、B 分离的瞬间,A 、B 的速度分别是多大?(2)已知在C 第一次碰到右边的固定挡板之前,A 、B 和C 已经达到了共同速度,求在到达共同速度之前A 、B 、C 的加速度分别是多大及该过程中产生的内能为多少? 答案 见解析解析 (1)在弹簧弹开两物体的过程中,由于作用时间极短,对A 、B 、弹簧组成的系统由动量守恒定律和能量守恒定律可得:(m A +m B )v 0=m A v A +m B v BE p +12(m A +m B )v 20=12m A v 2A +12m B v 2B 联立解得:v A =0,v B =3 m/s. (2)对物体B 有:a B =μ2g =1 m/s 对A 、C 有:μ2m B g =(m A +m )a 又因为:m A a <μ1m A g故物体A 、C 的共同加速度为a =1 m/s 2.对A 、B 、C 整个系统来说,水平方向不受外力,故由动量守恒定律和能量守恒定律可得: m B v B =(m A +m B +m )vQ =12m B v 2B -12(m A +m B +m )v 2 解得:Q =4.5 J ,v =1.5 m/s(2014·广东·35)如图4所示的水平轨道中,AC 段的中点B 的正上方有一探测器,C处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.图4(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案 (1)3 m /s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J解析 (1)设P 1和P 2发生弹性碰撞后速度为v 2,根据动量守恒定律有:m v 1=2m v 2①解得:v 2=v 12=3 m/s碰撞过程中损失的动能为:ΔE k =12m v 21-12×2m v 22②解得ΔE k =9 J(2)P 滑动过程中,由牛顿第二定律知ma =-μmg ③可以把P 从A 点运动到C 点再返回B 点的全过程看作匀减速直线运动,根据运动学公式有3L=v 2t +12at 2④由①③④式得v 1=6L -at 2t①若2 s 时通过B 点,解得:v 1=14 m/s ②若4 s 时通过B 点,解得:v 1=10 m/s 故v 1的取值范围为:10 m /s ≤v 1≤14 m/s设向左经过A 点的速度为v A ,由动能定理知 12×2m v 2A -12×2m v 22=-μ·2mg ·4L 当v 2=12v 1=7 m/s 时,复合体向左通过A 点时的动能最大,E k A max =17 J.(限时:45分钟)1.如图1所示,质量为M =4 kg 的木板静置于足够大的水平地面上,木板与地面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1 kg 可视为质点的电动小车,车与木板右端的固定挡板相距L =5 m .现通电使小车由静止开始从木板左端向右做匀加速运动,经时间t =2 s ,车与挡板相碰,车与挡板粘合在一起,碰撞时间极短且碰后自动切断小车的电源.(计算中取最大静摩擦力等于动摩擦力,并取g =10 m/s 2.)图1(1)试通过计算说明:车与挡板相碰前,木板相对地面是静止还是运动的? (2)求出小车与挡板碰撞前,车的速率v 1和板的速率v 2; (3)求出碰后木板在水平地面上滑动的距离s .答案 (1)向左运动 (2)v 1=4.2 m /s ,v 2=0.8 m/s (3)0.2 m 解析 (1)假设木板不动,电动车在板上运动的加速度为a 0,由L =12a 0t 2得:a 0=2Lt 2=2.5 m/s 2此时木板使车向右运动的摩擦力:F f =ma 0=2.5 N木板受车向左的反作用力:F f ′=F f =2.5 N木板受地面向右最大静摩擦力:F f0=μ(M +m )g =0.5 N 由于F f ′>F f0,所以木板不可能静止,将向左运动.(2)设车与挡板碰前,车与木板的加速度分别为a 1和a 2,相互作用力为F ,由牛顿第二定律与运动学公式:对小车:F =ma 1 v 1=a 1t对木板:F -μ(m +M )g =Ma 2 v 2=a 2t两者的位移的关系:v 12t +v 22t =L联立并代入数据解得:v 1=4.2 m /s ,v 2=0.8 m/s(3)设车与木板碰后其共同速度为v ,两者相碰时系统动量守恒,以向右为正方向,有 m v 1-M v 2=(m +M )v对碰后滑行s 的过程,由动能定理得: -μ(M +m )gs =0-12(M +m )v 2联立并代入数据,解得:s =0.2 m2.如图2所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,并恰好回到O 点(A 、B 均视为质点).试求:图2(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆轨道与斜面相切于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,试问:v 为多大时物块A 恰能通过圆弧轨道的最高点?答案 (1)123gx 0 (2)14mgx 0 (3) (20+43)gx 0解析 (1)设A 与B 相碰前的速度为v 1,A 与B 相碰后共同速度为v 2由机械能守恒定律得mg 3x 0sin 30°=12m v 21由动量守恒定律得m v 1=2m v 2解以上二式得v 2=123gx 0(2)设A 、B 相碰前弹簧所具有的弹性势能为E p ,从A 、B 相碰后一起压缩弹簧到它们恰好到达O 点过程中,由机械能守恒定律知E p +12(2m )v 22=2mgx 0sin 30° 解得E p =14mgx 0(3)设物块A 与B 相碰前的速度为v 3,碰后A 、B 的共同速度为v 4 12m v 2+mg 3x 0sin 30°=12m v 23 m v 3=2m v 4A 、B 一起压缩弹簧后再回到O 点时二者分离,设此时共同速度为v 5,则 12(2m )v 24+E p =12(2m )v 25+2mgx 0sin 30° 此后A 继续上滑到半圆轨道最高点时速度为v 6,则 12m v 25=12m v 26+mg 2x 0sin 30°+mgR (1+sin 60°) 在最高点有mg =m v 26R联立以上各式解得v =(20+43)gx 0.3.如图3所示,光滑的水平面AB (足够长)与半径为R =0.8 m 的光滑竖直半圆轨道BCD 在B 点相切,D 点为半圆轨道最高点.A 点的右侧等高地放置着一个长为L =20 m 、逆时针转动且速度为v =10 m /s 的传送带.用轻质细线连接甲、乙两物体,中间夹一轻质弹簧,弹簧与甲、乙两物体不拴接.甲的质量为m 1=3 kg ,乙的质量为m 2=1 kg ,甲、乙均静止在光滑的水平面上.现固定乙,烧断细线,甲离开弹簧后进入半圆轨道并可以通过D 点,且过D 点时对轨道的压力恰好等于甲的重力.传送带与乙物体间的动摩擦因数为0.6,重力加速度g 取10 m/s 2,甲、乙两物体可看作质点.图3(1)求甲球离开弹簧时的速度;(2)若甲固定,乙不固定,细线烧断后乙可以离开弹簧滑上传送带,求乙在传送带上滑行的最远距离;(3)甲、乙均不固定,烧断细线以后,求甲和乙能否再次在AB 面上水平碰撞?若碰撞,求再次碰撞时甲、乙的速度;若不会再次碰撞,请说明原因. 答案 (1)4 3 m/s (2)12 m (3)见解析解析 (1)设甲离开弹簧时的速度大小为v 0,运动至D 点的过程中机械能守恒:12m 1v 20=m 1g ·2R +12m 1v 2D 在最高点D ,由牛顿第二定律,有2m 1g =m 1v 2DR联立解得:v 0=4 3 m/s(2)甲固定,烧断细线后乙的速度大小为v 乙,由能量守恒得E p =12m 1v 20=12m 2v 2乙 得v 乙=12 m/s之后乙滑上传送带做匀减速运动:μm 2g =m 2a 得a =6 m/s 2乙速度为零时离A 端最远,最远距离为: s =v 2乙2a=12 m<20 m 即乙在传送带上滑行的最远距离为12 m.(3)甲、乙均不固定,烧断细线后,设甲、乙速度大小分别为v 1、v 2,甲、乙分离瞬间动量守恒:m 1v 1=m 2v 2甲、乙弹簧组成的系统能量守恒:E p =12m 1v 20=12m 1v 21+12m 2v 22 解得:v 1=2 3 m/s ,v 2=6 3 m/s 甲沿轨道上滑时,设上滑最高点高度为h , 则12m 1v 21=m 1gh 得h =0.6 m<0.8 m则甲上滑不到等圆心位置就会返回,返回AB 面上时速度大小仍然是v 1=2 3 m/s 乙滑上传送带,因v 2=6 3 m /s<12 m/s ,则乙先向右做匀减速运动,后向左匀加速. 由对称性可知乙返回AB 面上时速度大小仍然为v 2=6 3 m/s故甲、乙会再次相撞,碰撞时甲的速度为2 3 m/s ,方向向右,乙的速度为6 3 m/s ,方向向左4.如图4所示,一倾斜的传送带倾角θ=37°,始终以v =12 m /s 的恒定速度顺时针转动,传送带两端点P 、Q 间的距离L =2 m ,紧靠Q 点右侧有一水平面长x =2 m ,水平面右端与一光滑的半径R =1.6 m 的竖直半圆轨道相切于M 点,MN 为竖直的直径.现有一质量M =2.5 kg 的物块A 以v 0=10 m/s 的速度自P 点沿传送带下滑,A 与传送带间的动摩擦因数μ1=0.75,到Q 点后滑上水平面(不计拐弯处的能量损失),并与静止在水平面最左端的质量m =0.5 kg 的B 物块相碰,碰后A 、B 粘在一起,A 、B 与水平面的动摩擦因数相同均为μ2,忽略物块的大小.已知sin 37°=0.6,cos 37°=0.8,求:图4(1)A 滑上传送带时的加速度a 和到达Q 点时的速度; (2)若A 、B 恰能通过半圆轨道的最高点N ,求μ2;(3)要使A 、B 能沿半圆轨道运动到N 点,且从N 点抛出后能落到传送带上,则μ2应满足什么条件?答案 (1)12 m /s 2 12 m/s (2)0.5 (3)0.09≤μ2≤0.5解析 (1)对A 刚上传送带时进行受力分析,由牛顿第二定律得:Mg sin θ+μ1Mg cos θ=Ma 解得:a =12 m/s 2设A 能达到传送带的速度,由v 2-v 20=2ax 0得运动的位移x 0=116 m<L则到达Q 点前A 已和传送带共速 由于Mg sin θ=μ1Mg cos θ,所以A 先加速后匀速,到Q 点的速度为v =12 m/s. (2)设A 、B 碰后的共同速度为v 1, 由动量守恒定律得:M v =(M +m )v 1 解得:v 1=10 m/sA 、B 在最高点时速度为v 3有:(M +m )v 23R =(M +m )g设A 、B 在M 点速度为v 2,由机械能守恒得: 12(M +m )v 22=12(M +m )v 23+(M +m )g ×2R 在水平面上由动能定理得:学习资料仅供学习与参考 12(M +m )v 21-12(M +m )v 22=μ2(M +m )gx 解得:μ2=0.5(3)①若以v 3由N 点抛出,则有:2R =12gt 2 x 1=v 3t =3.2 m>x则要使AB 能沿半圆轨道运动到N 点,并能落在传送带上,则μ2≤0.5②若AB 恰能落在P 点,则有:2R -L sin θ=12gt ′2 x +L cos θ=v 3′t ′由12(M +m )v 2′2=12(M +m )v 3′2+(M +m )g ×2R 和12(M +m )v 21-12(M +m )v 2′2=μ2(M +m )gx 联立可得:μ2=0.09综上所述,μ2应满足:0.09≤μ2≤0.5。