算法与算法分析

合集下载

计算机算法的设计与分析

计算机算法的设计与分析

计算机算法的设计与分析计算机算法的设计和分析随着计算机技术的不断发展,算法成为了关键的核心技术之一。

算法的设计和分析是指通过一系列的步骤和方法来解决计算机问题的过程。

本文将详细介绍计算机算法的设计和分析。

一、算法设计的步骤:1. 理解和定义问题:首先需要明确所要解决的问题,并对其进行深入的理解,确定问题的输入和输出。

2. 分析问题:对问题进行分析,确定问题的规模、特点和约束条件,以及可能存在的问题解决思路和方法。

3. 设计算法:根据问题的性质和特点,选择合适的算法设计方法,从而得到解决问题的具体算法。

常见的算法设计方法包括贪心算法、分治算法、动态规划算法等。

4. 实现算法:将步骤3中设计的算法转化为计算机程序,并确保程序的正确性和可靠性。

5. 调试和测试算法:对实现的算法进行调试和测试,包括样本测试、边界测试、异常输入测试等,以验证算法的正确性和效率。

二、算法分析的步骤:1. 理解算法的效率:算法的效率是指算法解决问题所需的时间和空间资源。

理解算法的时间复杂度和空间复杂度是进行算法分析的基础。

2. 计算时间复杂度:时间复杂度用来表示算法解决问题所需的时间量级。

常用的时间复杂度包括常数时间O(1)、对数时间O(logn)、线性时间O(n)、平方时间O(n^2)等。

3. 计算空间复杂度:空间复杂度用来表示算法解决问题所需的空间资源量级。

常用的空间复杂度包括常数空间O(1)、线性空间O(n)、指数空间O(2^n)等。

4. 分析算法的最坏情况和平均情况:算法的最坏情况时间复杂度和平均情况时间复杂度是进行算法分析的关键指标。

最坏情况时间复杂度表示在最不利条件下算法所需的时间量级,平均情况时间复杂度表示在一般情况下算法所需的时间量级。

5. 比较算法的优劣:通过对不同算法的时间复杂度和空间复杂度进行分析,可以对算法的优劣进行比较,从而选择合适的算法。

三、常见的算法设计与分析方法:1. 贪心算法:贪心算法通过每一步的选择来寻求最优解,并且这些选择并不依赖于其他选择。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

《算法设计与分析》课件

《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。

算法设计与分析

算法设计与分析

算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。

在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。

本文将探讨算法设计和分析的相关概念、技术和重要性。

一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。

2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。

3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。

4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。

5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。

二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。

2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。

3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。

4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。

5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。

三、算法分析的重要性算法分析可以评估算法的效率和性能。

通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。

2. 比较不同算法在同一问题上的性能,从而选择最优的算法。

3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。

四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。

3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

算法设计与分析基础

算法设计与分析基础

2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

算法设计与分析

算法设计与分析

算法设计与分析算法设计是计算机科学重要的研究方向之一。

其核心目的是在给定的计算机问题下,设计出一种能够高效完成任务的算法。

在算法设计的过程中,需要考虑多种因素,如算法的正确性、可理解性、可维护性、可移植性以及算法的时间和空间复杂度等。

常用的算法设计策略包括贪心算法、动态规划算法、回溯算法、分治算法等多种。

算法的正确性是算法设计的首要考虑因素之一。

如果一个算法不能够正确地解决问题,那么它的时间复杂度和空间复杂度再低也没有用处。

一般来说,算法的正确性可以通过数学证明来进行验证。

根据不同的算法类型,其正确性验证需要应用不同的证明方法。

时间复杂度和空间复杂度也是算法设计的关键考虑因素。

通常,一个算法的时间复杂度越低,运行时间就越短。

同样地,一个算法的空间复杂度越低,需要占用的内存就越少。

时间复杂度和空间复杂度之间通常是矛盾的,因此需要在两者之间做出权衡。

常用的算法比较基准是时间复杂度,时间复杂度大致可以分为常数阶、对数阶、线性阶、平方阶、立方阶等多个级别,并且可能还存在更高阶的时间复杂度。

在算法设计之后,需要进行算法的分析。

算法分析通常包括平均时间复杂度、最坏时间复杂度和最好时间复杂度的分析。

平均时间复杂度指的是在一组随机输入下的平均运行时间,通常是指输入数据分布的随机分布;最坏时间复杂度指的是运行时间的上界,通常是指特殊的输入情况时,算法运行时间达到最大值;最好时间复杂度指的是算法在最理想情况下的运行时间,通常指输入数据已经有序的情况下的运行时间。

除此之外,尚有许多其他因素需要考虑,例如算法的可扩展性、可移植性、可维护性、可复用性等。

其中的可扩展性指的是算法能够处理的数据规模的大小,通常需要根据不同的数据规模进行不同的优化;可移植性指的是算法能够运行在不同的计算机体系结构之上;可维护性指的是算法在输出结果有问题时,能够容易地找到错误所在并进行修改;可复用性指的是算法能够被其他程序员或其他算法模块所复用。

算法设计与分析知识点

算法设计与分析知识点

第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。

2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。

3、算法的时间复杂度的上界,下界,同阶,低阶的表示。

4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。

5、常用的几种数据结构:线性表、树、图。

第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。

递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。

递归元的递减方式~有两种:1、减法,即n -b,的形式。

2、除法,即n / b,的形式。

2、D(n)为常数c:这时,T(n) = 0(n P)。

D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。

对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

计算机算法设计与分析--第1章 算法概述

计算机算法设计与分析--第1章 算法概述
12
③确认算法。算法确认的目的是使人们确信这一算 法能够正确无误地工作,即该算法具有可计算性。 正确的算法用计算机算法语言描述,构成计算机程 序,计算机程序在计算机上运行,得到算法运算的 结果; ④ 分析算法。算法分析是对一个算法需要多少计算 时间和存储空间作定量的分析。分析算法可以预测 这一算法适合在什么样的环境中有效地运行,对解 决同一问题的不同算法的有效性作出比较; ⑤ 验证算法。用计算机语言描述的算法是否可计算、 有效合理,须对程序进行测试,测试程序的工作由 调试和作时空分布图组成。
16
算法描述
1. 从第一个元素开始,该元素可以认为已 经被排序 2. 取出下一个元素,在已经排序的元 素序列中从后向前扫描 3. 如果该元素(已排序)大于新元素, 将该元素移到下一位置 4. 重复步骤3,直到找到已排序的元素 小于或者等于新元素的位置 5. 将新元素插入到该位置中 6. 重复步骤2
15
1.3 算法示例—插入排序算法
算法的思想:扑克牌游戏
a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1 a0,...,n-1
= = = = = = =
5,2,4,6,1,3 5,2,4,6,1,3 2,5,4,6,1,3 2,4,5,6,1,3 2,4,5,6,1,3 1,2,4,5,6,3 1,2,3,4,5,6
8
算法≠程序
算法描述:自然语言,流程图,程序设计
语言,伪代码 用各种算法描述方法所描述的同一算法, 该算法的功用是一样的,允许在算法的描述 和实现方法上有所不同。
本书中采用类C++伪代码语言描述算法
9
人们的生产活动和日常生活离不开算法, 都在自觉不自觉地使用算法,例如人们到 商店购买物品,会首先确定购买哪些物品, 准备好所需的钱,然后确定到哪些商场选 购、怎样去商场、行走的路线,若物品的 质量好如何处理,对物品不满意又怎样处 理,购买物品后做什么等。以上购物的算 法是用自然语言描述的,也可以用其他描 述方法描述该算法。

算法与算法分析

算法与算法分析
S(n)=O(f(n)) 其中,各参数的意义与上面相同,故不再赘述。
六、类C语言简介
类C语言就是类似C语言的语言,本书中的算法均使用这种语言进行 描述,其目的是让编程人员在设计算法时能够更专注对算法思想的 分析,而不受语言细节的约束。类C语言是标准C语言的扩充,个别 处使用了对标准C语言的一种简化表示。
}
四、算法设计的要求
正确性:“正确”的含义可以分为三个层次: ① 对于几组输入数据能够得出满足要求的结果。 ② 对于精心选择的典型、苛刻且带有刁难性的几组输入数据能够得到 满足要求的结果。 ③ 对于一切合法的输入数据都能产生满足要求的结果。
可读性:算法主要是为了人的阅读与交流,其次才是机器执行。因此, 可读性好有助于人对算法的理解。
Min = a[i];
if (Max &l值,则将当
前数/组元素值赋于当前最大值变量
Max = a[i];
i = i + 1;
//循环变量递增1
}
printf ("the maximum is %d,the minimum is %d", Max, Min);
【例】要求一组数据中的最大数和最小数。
1.自然语言
① 将第1个数和第2个数相比较,记录最大数与最小数。 ② 将最大数和最小数与第3个数比较,记录最大数与最小数。 ③ 重复步骤②,与第4、5等数进行比较,直至结束。
2.流程图
3.伪代码
开始 置i的初值为2 置Min和Max的初值为a1 当i ≤n时,执行如下操作
稳健性:当输入数据非法时,算法也能做出正确反应或进行相应的处理, 而不会产生一些莫名其妙的输出结果。
高效率低存储量:通俗地说,效率指的是算法执行的时间。对于同一个 问题,若有多个算法可以解决,执行时间短的算法效率就高。存储量指 的是算法执行过程中所需要的最大存储空间。

算法设计与分析教案

算法设计与分析教案

《算法设计与分析》教案张静第1章绪论算法理论的两大论题:1. 算法设计2. 算法分析1.1 算法的基本概念1.1.1 为什么要学习算法理由1:算法——程序的灵魂➢问题的求解过程:分析问题→设计算法→编写程序→整理结果➢程序设计研究的四个层次:算法→方法学→语言→工具理由2:提高分析问题的能力算法的形式化→思维的逻辑性、条理性1.1.2 算法及其重要特性算法(Algorithm):对特定问题求解步骤的一种描述,是指令的有限序列。

算法的五大特性:⑴输入:一个算法有零个或多个输入。

⑵输出:一个算法有一个或多个输出。

⑶有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

⑷确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。

⑸可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。

1.1.3 算法的描述方法⑴自然语言优点:容易理解缺点:冗长、二义性使用方法:粗线条描述算法思想注意事项:避免写成自然段欧几里德算法⑶程序设计语言优点:能由计算机执行缺点:抽象性差,对语言要求高使用方法:算法需要验证注意事项:将算法写成子函数欧几里德算法#include <iostream.h>int CommonFactor(int m, int n) {int r=m % n;while (r!=0){m=n;n=r;r=m % n;}return n;}void main( ){cout<<CommonFactor(63, 54)<<endl;}⑷伪代码——算法语言伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。

优点:表达能力强,抽象性强,容易理解使用方法:7 ± 2欧几里德算法1. r = m % n;2. 循环直到 r 等于02.1 m = n;2.2 n = r;2.3 r = m % n;3. 输出 n ;1.1.4 算法设计的一般过程1.理解问题2.预测所有可能的输入3. 在精确解和近似解间做选择4. 确定适当的数据结构5.算法设计技术6.描述算法7.跟踪算法8.分析算法的效率9.根据算法编写代码1.2 算法分析算法分析(Algorithm Analysis):对算法所需要的两种计算机资源——时间和空间进行估算➢时间复杂性(Time Complexity)➢空间复杂性(Space Complexity)算法分析的目的:➢设计算法——设计出复杂性尽可能低的算法➢选择算法——在多种算法中选择其中复杂性最低者时间复杂性分析的关键:➢ 问题规模:输入量的多少;➢ 基本语句:执行次数与整个算法的执行时间成正比的语句for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;问题规模:n基本语句:x++1.2.1 渐进符号1. 大O 符号定义1.1 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≤c ×f (n ),则称T (n )=O (f (n ))2. 大Ω符号定义1.2 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≥c ×g (n ),则称T (n )=Ω(g (n ))问题规模n 执行次3. Θ符号定义1.3 若存在三个正的常数c 1、c 2和n 0,对于任意n ≥n 0都有c 1×f (n )≥T (n )≥c 2×f (n ),则称T (n )=Θ(f (n ))例: T (n )=5n 2+8n +1当n ≥1时,5n 2+8n +1≤5n 2+8n +n=5n 2+9n ≤5n 2+9n 2≤14n 2=O (n 2)当n ≥1时,5n 2+8n +1≥5n 2=Ω(n 2)∴ 当n ≥1时,14n 2≥5n 2+8n +1≥5n 2则:5n 2+8n +1=Θ(n 2)0问题规模n 执行次数问题规模n 执行次数定理 1.1 若T(n)=amnm +am-1nm-1 + … +a1n+a0(am>0),则有T(n)=O(nm)且T(n)=Ω(n m),因此,有T(n)=Θ(n m)。

深度学习算法与传统算法的对比分析

深度学习算法与传统算法的对比分析

深度学习算法与传统算法的对比分析一、前言随着人工智能技术的快速发展,深度学习算法(Deep Learning)也被广泛应用于各个领域。

与传统机器学习算法相比,深度学习算法具有更强的学习能力和表达能力,但计算复杂度较高。

本文就深度学习算法和传统算法进行对比分析。

二、深度学习算法与传统算法的对比1. 基本原理深度学习算法是一种基于神经网络的机器学习算法,通过多层非线性变换实现对复杂数据的高级抽象和特征提取。

而传统机器学习算法则采用统计学习方法,通过设计特征提取器、分类器等来实现模型的构建。

深度学习算法理论上能够拟合任意非线性函数,具有更强的表达能力。

2. 数据处理深度学习算法对数据处理有着更高的要求,需要对数据进行预处理、归一化、降噪等操作,以充分发挥深度学习算法的学习能力。

而传统机器学习算法数据处理相对简单,更侧重于特征选择和特征工程。

3. 计算复杂度由于深度学习算法需要进行多次非线性变换,计算复杂度相对较高。

而传统机器学习算法的计算复杂度较低,适用于大规模数据处理。

4. 数据量需求相比于传统机器学习算法,深度学习算法更适用于大规模数据处理,需要更多的数据进行训练。

传统机器学习算法则不同,可以在较小数据集上完成训练。

5. 模型可解释性传统机器学习算法对于模型的可解释性较好,可以通过特征选择、特征工程等方法进行实现。

而深度学习算法则相对较难解释,黑盒子问题仍然是一个亟待解决的问题。

6. 应用场景由于深度学习算法具有更强的表达能力和学习能力,适用于图像识别、自然语言处理等领域。

而传统机器学习算法则更适用于分类、聚类等问题。

7. 算法实现深度学习算法需要使用GPU等高性能硬件进行训练和测试,在算法实现上相对较复杂。

而传统机器学习算法则可以使用各种编程语言和工具实现。

三、总结深度学习算法和传统机器学习算法都有各自的特点,应根据具体应用场景进行选择。

对于大规模数据处理和复杂模型训练,深度学习算法具有更好的表现;对于模型的可解释性和简单场景的处理,则传统机器学习算法更适合。

算法设计与分析报告

算法设计与分析报告

算法设计与分析报告第一点:算法设计的重要性与挑战算法设计是计算机科学和信息技术领域中至关重要的一个环节。

在现代社会,算法设计不仅广泛应用于数据处理、人工智能、网络搜索、金融分析等领域,而且对于提高生产效率、优化资源配置、提升用户体验等方面也具有重大的意义。

然而,算法设计同样面临着诸多挑战,这些挑战来自于算法效率、可扩展性、安全性、以及与硬件的协同等多个方面。

在算法设计中,我们需要关注算法的复杂度分析,包括时间复杂度和空间复杂度。

复杂度分析能够帮助我们理解算法的性能瓶颈,并在众多的算法选择中做出合理的决策。

高效算法的开发和应用,对于提升系统的处理能力、缩短计算时间、降低资源消耗等方面都有直接的积极影响。

同时,随着大数据时代的到来,算法设计需要面对的数据规模和复杂性也在不断增加。

如何在保证算法正确性的基础上,提高算法的执行效率,是算法设计师们必须考虑的问题。

此外,对于算法的可扩展性设计也是必不可少的,这要求算法能够在不同规模的数据集上都能保持良好的性能。

安全性和隐私保护也是当前算法设计中不可忽视的一环。

特别是在涉及用户敏感信息的处理过程中,如何保证数据的安全性和用户隐私不被泄露,是算法设计必须考虑的重要问题。

在这方面,加密算法、匿名化处理技术以及安全多方计算等技术的应用显得尤为重要。

最后,算法与硬件的协同优化也是当前研究的热点之一。

随着处理器架构的不断进化,比如众核处理器、GPU等,算法设计需要更加注重与这些硬件特性之间的匹配,以实现更高的计算性能。

第二点:算法分析的方法与技术算法分析是评估和比较算法性能的重要手段,它包括理论分析和实验分析两个方面。

理论分析主要通过数学模型和逻辑推理来预测算法的执行效率,而实验分析则通过在实际运行环境中执行算法来验证理论分析的结果,并进一步探究算法的性能。

在理论分析中,常用的方法有渐进分析、上下界分析、以及概率分析等。

渐进分析是通过考察算法执行次数的函数来估计其时间复杂度,这种分析方法在大多数情况下能够提供足够的信息来判断算法的效率。

算法设计与分析的基本方法-论文

算法设计与分析的基本方法-论文

算法设计与分析的基本方法1.递推法递推算法是一种用若干步可重复的简运算(规律)来描述复杂问题的方法.递推是序列计算机中的一种常用算法。

它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定象的值。

其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。

2.递归法程序调用自身的编程技巧称为递归(recursion)。

一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。

递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有边界条件、递归前进段和递归返回段。

当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

注意:(1) 递归就是在过程或函数里调用自身;(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

3.穷举法穷举法,或称为暴力破解法,是一种针对于密码的破译方法,即将密码进行逐个推算直到找出真正的密码为止。

例如一个已知是四位并且全部由数字组成的密码,其可能共有10000种组合,因此最多尝试10000次就能找到正确的密码。

理论上利用这种方法可以破解任何一种密码,问题只在于如何缩短试误时间。

因此有些人运用计算机来增加效率,有些人辅以字典来缩小密码组合的范围。

4.贪心算法贪婪算法是一种对某些求最优解问题的更简单、更迅速的设计技术。

用贪婪法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题, 通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。

计算机算法:算法与算法分析

计算机算法:算法与算法分析

算法与算法分析计算机与算法有着不可分割的关系,可以说,没有算法就没有计算机,计算机无法独立于算法而存在,因此算法被誉为计算机的灵魂。

但是,算法不一定依赖于计算机而存在。

算法可以是抽象的,实现算法的主体可以是计算机,也可以是人。

只是多数时候,很多算法对于人来说过于复杂,计算工作量太大且常常重复,人脑难以胜任,算法就通过计算机来实现。

1.算法的概念日常生活中到处都在使用算法,例如,到商店购物,首先确定要购买的东西,然后进行挑选、比较,最后去付款,这一系列活动就是购物的“算法”。

算法就是解决问题的方法和步骤。

方法不同,对应的步骤自然也不一样。

算法设计时,首先应该考虑采用什么方法,确定后再考虑具体的求解步骤。

所以,通常把解题过程准确而完整的描述称为解该问题的算法。

进一步说,程序就是用计算机语言表达的算法,流程图就是图形化了的算法。

程序的目的是加工数据,而如何加工数据是算法的问题。

程序是算法与数据结构的统一。

算法是对事物本质的数学抽象,看似深奥却体现着点点滴滴的朴素思想。

因此,学习和研究算法能锻炼思维,使思维变得更加清晰、更有逻辑,对日后的学习和生活都会产生深远的影响。

【例1】交换两瓶墨水。

有一瓶红墨水、一瓶蓝墨水,现要求把原来装红墨水的瓶子改装蓝墨水,把原来装蓝墨水的瓶子改装红墨水。

【解】这个问题的解决办法是找一个空瓶子来倒腾一下,算法(也就是解决问题的步骤)如下:第一步:将红墨水倒入空瓶子中;第二步:将蓝墨水倒入原来装红墨水的瓶子中;第三步:将已倒入空瓶子中的红墨水倒入原来装蓝墨水的瓶子中;第四步:结束。

以上算法是用自然语言来写的,容易理解,但比较繁琐。

如果用变量a表示装有红墨水的瓶子,变量b表示装有蓝墨水的瓶子,变量t表示空瓶子,用符号“←”表示把一个变量的值放入另一个变量中(此处指把一个瓶子中的墨水倒入另一个瓶子中),那么上述算法表示如下:t ←aa ←bb ←t这就是常用的两个变量交换的算法,这样的算法简洁、明了。

算法设计与分析——任务分配问题

算法设计与分析——任务分配问题

算法设计与分析——任务分配问题【问题描述】假设有n个任务需要分配给n个⼈执⾏,每个⼈只执⾏⼀个任务,每个任务只由⼀个⼈执⾏。

第i个⼈执⾏第j个任务的成本是Cij(1<=i,j<=n),求解初最⼩成本的分配⽅案。

【基本算法思想】暴⼒法:⽤矩阵表⽰任务分配问题,矩阵元素Cij(1<=i,j<=n)表⽰⼈员i执⾏任务j的成本。

任务分配问题转化为,在矩阵中的每⼀⾏选取⼀个元素,这些元素分别属于不同的列。

⽤⼀个n元组(j1,j2,...,jn)表⽰⼀个可能解,其中ji表⽰第i⾏中选择的列号。

⽤暴⼒法解决此问题则可表⽰成,⽣成⼀个n元组的全排列,遍历输出最⼩的成本代价即可。

复杂度分析: ⼀个n元组的全排列的个数为n!个。

暴⼒法慎⽤【源代码】#include<stdio.h>#include<iostream>#include<stdlib.h>#include<math.h>#include<algorithm>#define MAX 99999using namespace std;int main(){int num,c[10][10],i,j,temp[10],minCost=MAX,cost=0;cout<<"输⼊任务个数:\n";cin>>num;cout<<"输⼊成本矩阵\n";for(i=1;i<=num;i++){ //输⼊成本的矩阵值for(j=1;j<=num;j++)cin>>c[i][j];temp[i]=i; //设置全排列辅助数组,默认升序}do{ //利⽤next_permutation函数依次求出数组的全排列cost=0;for(i=1;i<=num;i++)cost+=c[i][temp[i]];if(cost<minCost)minCost=cost; //记录最⼩代价}while(next_permutation(temp+1,temp+1+num));cout<<"最⼩成本:\n"<<minCost;return0;}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法是,对特定问题求解方法和步骤的一种描述,它是有限指令的有限序列,其中每个指令表示一个或多个操作。

算法与程序的比较
•算法是解决问题的一种方法或一个过程,考虑如何将输入转换成输出,一个问题可以有多种算法。

•程序是用某种程序设计语言对算法的具体实现。

•程序 = 数据结构 + 算法
算法的特性
一个算法必须具备以下五个重要特性:
•有穷性一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

•确定性算法中每一条指令必须有确切的含义,没有二义性,在任何条件下只有唯一的一条执行路径,即对相同的输入只能得到相同的输出。

•可行性算法是可执行的,算法描述的操作可以通过已经实现的基本操作执行有限次来实现。

•输入一个算法有零个或多个输入
•输出一个算法有一个或对个输出
算法设计有正确性(Correctness)、可读性(Readability)、健壮性(Robustness)、高效性(Efficiency)的基本要求。

一个好的算法首先要具备正确性,然后是健壮性,可读性,在几个方面都满足的情况下,主要考虑算法的效率,通过算法的效率高低来评判不同算法的优劣程度。

算法效率分析
算法效率主要从一下两个方面来考虑:
1.时间效率:指的是算法所耗费的时间;
2.空间效率:指的是算法执行过程中所耗费的存储空间。

时间效率和空间效率有时候是矛盾的。

时间效率分析
一个算法在计算机上运行所耗费的时间大致可以等于计算机执行一种简单的操作(如赋值、比较、移动等)所需的时间与算法中进行简单操作次数的乘积。

算法运行时间 = 一个简单操作所需的时间 x 简单操作次数,
也就是算法中每条语句的执行时间之和
每条语句执行一次所需的时间,一般是随机器而异的,取决于机器的指令性能、速度以及编译的代码质量,是由机器本身软硬件环境决定的,它与算法无关。

所以,可以假设执行每条语句所需的时间均为单位时间。

此时对算法的运行时间的讨论就可以转化为讨论改算法中所有语句的执行次数了。

例如:两个n x n矩阵相乘的算法课描述为:
for(i=1;i<=n;i++) //n+1次
for(j=1;j<=n;j++) //n(n+1)次
{
c[i][j]=0; //n*n次
for(k=0;k<n;k++) //n*n*(n+1)次
c[i][j] = c[i][j]+a[i][k]*b[k][j]; //n*n*n次
}
•1
•2
•3
•4
•5
•6
•7
则上述算法的时间消耗T(n) = 2n3 + 3n2 + 2n + 1
注:为了便于比较两个算法的时间效率。

我们仅仅比较他们的数量级。

时间复杂度
若有,有某个辅助函数f(n),使得当n趋近与无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,计作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O
是数量级的符号),简称时间复杂度。

分析算法时间复杂度的基本方法
1.找出语句频度最大的那条语句作为基本语句
2.计算基本语句的频度得到问题规模n的某个函数f(n)
3.取其数量级用符号“O”表示
其中基本语句是指:
•算法中重复执行次数和算法的执行之间成正比的语句;
•对算法运行时间的贡献最大
•执行次数最多
对于复杂的算法,可以将它拆分成几个容易估算的部分,然后用加法法则和乘法法则计算时
间复杂度:
a) 加法法则
T(n) = T1(n) + T2(n) = O(f(n)) + O(g(n)) = O(max(f(n)g(n)))
b)乘法法则
T(n) = T1(n) x T2(n) = O(f(n)) x O(g(n)) = O(f(n) x g(n))
算法时间效率的比较
可见,常数阶<对数阶<线性阶<线性对数阶<平方阶< …<K方阶<指数阶
空间复杂度
算法所需存储空间的度量,记作: S(n) = O(f(n)) n为问题的规模。

算法要占据的空间
•算法本身要占据的空间,输入/输出,指令,常数,变量等•算法要使用的辅助空间。

相关文档
最新文档