卡尔曼滤波程序

合集下载

卡尔曼滤波流程

卡尔曼滤波流程

卡尔曼滤波流程
《卡尔曼滤波流程》
一、定义
卡尔曼滤波(Kalman Filter)是一种统计预测和滤波方法,主要用于处理相关性比较强的信号,如温度、湿度等,以及状态空间和系统误差模型。

它可以通过及时处理采集的各种信息,来实现估算未知变量的值,以及突发变化时,及时调整预测状态。

二、流程
1、确定系统模型:在开始卡尔曼滤波之前,需要了解系统的模型,以及估计参数,并将其应用于卡尔曼滤波模型中,这样可以使滤波效果更加准确。

2、状态估计:在进行滤波时,首先需要进行状态估计,即估计系统的当前状态,并计算出状态估计误差协方差矩阵。

3、状态跟踪:此时,卡尔曼滤波模型将状态估计和观测到的信息进行结合,从而获得更准确的状态跟踪,此时可以计算出滤波误差协方差矩阵。

4、状态更新:当系统状态有改变时,根据新状态更新预测状态,并重新计算状态估计误差协方差矩阵。

三、优点
1、可以有效的提高采样的概率密度函数;
2、具有能够进行自我调整以适应改变环境和数据质量的能力;
3、可以准确预测系统,从而及时处理数据。

四、缺点
1、在系统估计过程中,系统模型变化较快时,容易引起状态漂移,导致估计结果不准确;
2、对滤波器参数要求较高,若参数设置不合理,会影响滤波器的性能;
3、若在观测器或系统模型中存在非线性,则卡尔曼滤波也无法进行优化。

尔曼滤波算法(附C,C++程序)

尔曼滤波算法(附C,C++程序)

主题:卡尔曼滤波算法(附C,C++程序)最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。

从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。

为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。

卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。

它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)Y(k) = H(k)·X(k)+N(k)其中X(k)和Y(k)分别是k时刻的状态矢量和观测矢量F(k,k-1)为状态转移矩阵U(k)为k时刻动态噪声T(k,k-1)为系统控制矩阵H(k)为k时刻观测矩阵N(k)为k时刻观测噪声则卡尔曼滤波的算法流程为:预估计X(k)^= F(k,k-1)·X(k-1)计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'Q(k) = U(k)×U(k)'计算卡尔曼增益矩阵K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)R(k) = N(k)×N(k)'更新估计X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]计算更新后估计协防差矩阵C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'X(k+1) = X(k)~C(k+1) = C(k)~重复以上步骤******************************************************************************* *************************C语言代码:#include "stdlib.h"#include "rinv.c"int lman(n,m,k,f,q,r,h,y,x,p,g)int n,m,k;double f[],q[],r[],h[],y[],x[],p[],g[];{ int i,j,kk,ii,l,jj,js;double *e,*a,*b;e=malloc(m*m*sizeof(double));l=m;if (l<n) l=n;a=malloc(l*l*sizeof(double));b=malloc(l*l*sizeof(double));for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*l+j; a[ii]=0.0;for (kk=0; kk<=n-1; kk++)a[ii]=a[ii]+p[i*n+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ ii=i*n+j; p[ii]=q[ii];for (kk=0; kk<=n-1; kk++)p[ii]=p[ii]+f[i*n+kk]*a[kk*l+j];}for (ii=2; ii<=k; ii++){ for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+p[i*n+kk]*h[j*n+kk];}for (i=0; i<=m-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; e[jj]=r[jj];for (kk=0; kk<=n-1; kk++)e[jj]=e[jj]+h[i*n+kk]*a[kk*l+j];}js=rinv(e,m);if (js==0){ free(e); free(a); free(b); return(js);} for (i=0; i<=n-1; i++)for (j=0; j<=m-1; j++){ jj=i*m+j; g[jj]=0.0;for (kk=0; kk<=m-1; kk++)g[jj]=g[jj]+a[i*l+kk]*e[j*m+kk];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i; x[jj]=0.0;for (j=0; j<=n-1; j++)x[jj]=x[jj]+f[i*n+j]*x[(ii-2)*n+j];}for (i=0; i<=m-1; i++){ jj=i*l; b[jj]=y[(ii-1)*m+i];for (j=0; j<=n-1; j++)b[jj]=b[jj]-h[i*n+j]*x[(ii-1)*n+j];}for (i=0; i<=n-1; i++){ jj=(ii-1)*n+i;for (j=0; j<=m-1; j++)x[jj]=x[jj]+g[i*m+j]*b[j*l];}if (ii<k){ for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=m-1; kk++)a[jj]=a[jj]-g[i*m+kk]*h[kk*n+j];if (i==j) a[jj]=1.0+a[jj];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; b[jj]=0.0;for (kk=0; kk<=n-1; kk++)b[jj]=b[jj]+a[i*l+kk]*p[kk*n+j];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*l+j; a[jj]=0.0;for (kk=0; kk<=n-1; kk++)a[jj]=a[jj]+b[i*l+kk]*f[j*n+kk];}for (i=0; i<=n-1; i++)for (j=0; j<=n-1; j++){ jj=i*n+j; p[jj]=q[jj];for (kk=0; kk<=n-1; kk++)p[jj]=p[jj]+f[i*n+kk]*a[j*l+kk];}}}free(e); free(a); free(b);return(js);}C++代码:#include<windows.h>#include<stdio.h>#include<time.h>#include<stdlib.h>#include<math.h>#define N_gauss 256 //需要产生的高斯白噪声序列的点的个数double *gauss(double ex,double dx,int n_point)//ex:均值;dx:方差;n_point:点数{ time_t t;int i;double *mem1;mem1=malloc(n_point*sizeof(double));srand((unsigned)time(&t));for(i=0;i<n_point;i++)mem1[i]=(sqrt(-2*log((double)rand()/32768))*cos((double)rand()/32768*2*3.1415926))*sqrt(d x)+ex;return(mem1);}LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,PSTR szCmdLine, int iCmdShow){static TCHAR szAppName[] = TEXT ("LineDemo") ;HWND hwnd ;MSG msg ;WNDCLASS wndclass ;wndclass.style = CS_HREDRAW | CS_VREDRAW ;wndclass.lpfnWndProc = WndProc ;wndclass.cbClsExtra = 0 ;wndclass.cbWndExtra = 0 ;wndclass.hInstance = hInstance ;wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;wndclass.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH) ;wndclass.lpszMenuName = NULL ;wndclass.lpszClassName = szAppName ;if (!RegisterClass (&wndclass)){MessageBox (NULL, TEXT ("Program requires Windows NT!"),szAppName, MB_ICONERROR) ;return 0 ;}hwnd = CreateWindow (szAppName, TEXT ("卡尔曼滤波程序。

卡尔曼滤波算法的程序实现和推导过程

卡尔曼滤波算法的程序实现和推导过程

卡尔曼滤波算法的程序实现和推导过程卡尔曼滤波算法的程序实现和推导过程---蒋海林(QQ:280586940)---卡尔曼滤波算法由匈牙利裔美国数学家鲁道夫·卡尔曼(Rudolf Emil Kalman)创立,这个数学家特么牛逼,1930年出生,现在还能走能跳,吃啥啥麻麻香,但他的卡尔曼滤波算法已经广泛应用在航空航天,导弹发射,卫星在轨运行等很多高大上的应用中。

让我们一边膜拜一边上菜吧,下面就是卡尔曼滤波算法的经典程序,说是经典,因为能正常运行的程序都长得差不多,在此向原作者致敬。

看得懂的,帮我纠正文中的错误;不太懂的,也不要急,让我慢慢道来。

最后希望广大朋友转载时,能够保留我的联系方式,一则方便后续讨论共同进步,二则支持奉献支持正能量。

void Kalman_Filter(float Gyro,float Accel)///角速度,加速度{///陀螺仪积分角度(先验估计)Angle_Final = Angle_Final + (Gyro - Q_bias) * dt;///先验估计误差协方差的微分Pdot[0] = Q_angle - PP[0][1] - PP[1][0];Pdot[1] = - PP[1][1];Pdot[2] = - PP[1][1];Pdot[3] = Q_gyro;///先验估计误差协方差的积分PP[0][0] += Pdot[0] * dt;PP[0][1] += Pdot[1] * dt;PP[1][0] += Pdot[2] * dt;PP[1][1] += Pdot[3] * dt;///计算角度偏差Angle_err = Accel - Angle_Final;///卡尔曼增益计算PCt_0 = C_0 * PP[0][0];PCt_1 = C_0 * PP[1][0];E = R_angle + C_0 * PCt_0;K_0 = PCt_0 / E;K_1 = PCt_1 / E;///后验估计误差协方差计算t_0 = PCt_0;t_1 = C_0 * PP[0][1];PP[0][0] -= K_0 * t_0;PP[0][1] -= K_0 * t_1;PP[1][0] -= K_1 * t_0;PP[1][1] -= K_1 * t_1;Angle_Final += K_0 * Angle_err; ///后验估计最优角度值Q_bias += K_1 * Angle_err; ///更新最优估计值的偏差Gyro_Final = Gyro - Q_bias; ///更新最优角速度值}我们先把卡尔曼滤波的5个方程贴上来:X(k|k-1)=A X(k-1|k-1)+B U(k) ……… (1)//先验估计P(k|k-1)=A P(k-1|k-1) A ’+Q ……… (2)//协方差矩阵的预测Kg(k)= P(k|k-1) H ’ / (H P(k|k-1) H ’ + R) ……… (3)//计算卡尔曼增益 X(k|k)= X(k|k-1)+Kg(k) (Z(k) - H X(k|k-1)) ……… (4)通过卡尔曼增益进行修正 P(k|k)=(I-Kg(k) H )P(k|k-1) ……… (5)//更新协方差阵这5个方程比较抽象,下面我们就来把这5个方程和上面的程序对应起来。

卡尔曼滤波器算法

卡尔曼滤波器算法

卡尔曼滤波器算法卡尔曼滤波器算法是一种常见的数据处理算法,它能够通过对数据进行滤波,去除噪声和干扰,提高数据质量,广泛应用于各个领域。

本文将对卡尔曼滤波器算法进行详细介绍,包括其原理、应用场景以及实现方法。

一、卡尔曼滤波器算法的原理卡尔曼滤波器算法的原理是基于贝叶斯概率理论和线性系统理论的。

其核心思想是通过对系统状态的不断测量和预测,根据预测值和实际值之间的误差来调整状态估计值,从而获得更准确的状态估计结果。

具体来说,卡尔曼滤波器算法可以分为两个步骤:预测和更新。

1. 预测步骤在预测步骤中,通过上一时刻的状态估计值和状态转移矩阵对当前时刻的状态进行预测。

状态转移矩阵是描述系统状态变化的数学模型,可以根据实际情况进行定义。

2. 更新步骤在更新步骤中,通过测量值和状态预测值之间的误差,计算出卡尔曼增益,从而根据卡尔曼增益调整状态估计值。

卡尔曼增益是一个比例系数,它的大小取决于预测误差和测量误差的比例。

二、卡尔曼滤波器算法的应用场景卡尔曼滤波器算法具有广泛的应用场景,下面列举几个常见的应用场景:1. 飞机导航系统在飞机导航系统中,卡尔曼滤波器算法可以通过对飞机的位置、速度和姿态等参数进行滤波,提高导航的准确性和精度。

2. 机器人控制系统在机器人控制系统中,卡尔曼滤波器算法可以通过对机器人的位置、速度、姿态和力量等参数进行滤波,提高机器人的控制精度和稳定性。

3. 多传感器融合系统在多传感器融合系统中,卡尔曼滤波器算法可以通过对多个传感器的数据进行滤波和融合,提高数据质量和精度。

三、卡尔曼滤波器算法的实现方法卡尔曼滤波器算法的实现方法具有一定的复杂性,下面介绍一般的实现步骤:1. 定义状态向量和状态转移矩阵根据实际情况,定义状态向量和状态转移矩阵,描述系统状态的变化规律。

2. 定义测量向量和观测矩阵根据实际情况,定义测量向量和观测矩阵,描述传感器测量数据与状态向量之间的联系。

3. 计算预测值和预测误差协方差矩阵根据状态向量、状态转移矩阵和误差协方差矩阵,计算预测值和预测误差协方差矩阵。

c语言卡尔曼滤波算法

c语言卡尔曼滤波算法

c语言卡尔曼滤波算法卡尔曼滤波算法是一种用于估计系统状态的优秀方法。

它广泛应用于各种领域,如导航、控制系统、信号处理等。

本文将为您介绍卡尔曼滤波算法的基本原理和应用。

一、什么是卡尔曼滤波算法?卡尔曼滤波算法由卡尔曼于1960年提出,是一种递归的状态估计算法。

它基于贝叶斯滤波理论,通过将先验信息和测量信息进行融合,得到对系统状态的最优估计。

二、卡尔曼滤波算法的基本原理卡尔曼滤波算法基于线性系统模型,可以分为两个步骤:预测和更新。

1. 预测步骤:利用系统的动力学模型和上一时刻的状态估计,预测当前时刻的系统状态。

2. 更新步骤:利用测量模型和当前时刻的测量值,结合预测步骤的结果,更新当前时刻的状态估计。

通过不断迭代预测和更新步骤,卡尔曼滤波算法可以逐步优化对系统状态的估计。

三、卡尔曼滤波算法的应用卡尔曼滤波算法在导航系统中有广泛应用。

例如,在无人机导航中,通过融合惯性测量单元(IMU)和全球定位系统(GPS)的信息,可以实现对无人机位置和姿态的精确估计。

在自动驾驶领域,卡尔曼滤波算法也被广泛使用。

通过融合激光雷达、摄像头和雷达等传感器的数据,可以实现对车辆位置、速度和周围环境的准确感知。

卡尔曼滤波算法还可以用于图像处理、信号处理等领域。

例如,通过对图像序列进行卡尔曼滤波,可以实现图像去噪和运动目标跟踪等任务。

四、总结卡尔曼滤波算法是一种强大而有效的状态估计方法。

它通过融合先验信息和测量信息,可以得到对系统状态的最优估计。

卡尔曼滤波算法在导航、控制系统和信号处理等领域有着广泛的应用。

它的优势在于对线性系统模型的适用性和高效的计算性能。

希望通过本文的介绍,您对卡尔曼滤波算法有了更深入的了解。

相信在实际应用中,卡尔曼滤波算法将会为您带来更好的效果。

卡尔曼滤波计算soc

卡尔曼滤波计算soc

卡尔曼滤波计算soc卡尔曼滤波是一种常用的状态估计算法,它可以在存在噪声和不确定性的情况下,利用已有的信息对系统状态进行估计。

在计算系统的状态和预测电动汽车(EV)的电池剩余容量(SOC)时,卡尔曼滤波是一种非常有用的工具。

卡尔曼滤波计算SOC的步骤如下:1. 确定系统的状态在电动汽车中,电池的SOC是一个非常重要的指标,它反映了电池的剩余能量。

因此,我们需要将SOC作为系统的状态,以便对其进行估计。

其它可能的状态包括电池的内阻、温度等。

2. 建立系统模型我们需要建立一个数学模型,描述SOC的演化规律。

这个模型可以是基于电化学原理的精细模型,也可以是一个简单的经验模型。

在建立模型时,我们需要考虑电池的特性和使用环境,以便提高估计的准确性。

比如说,电池在高温环境下的容量会下降,这个需要考虑进去。

3. 确定观测值在卡尔曼滤波中,我们需要利用观测值来对系统状态进行估计。

在电动汽车中,SOC可以通过对电池电压、电流、温度等参数的测量来获得。

4. 计算状态预测在下一个时间步骤内,我们需要预测SOC的值。

这个预测值是基于前一步的估计值和系统模型计算出来的。

在计算预测值时,我们需要考虑控制输入和外在因素的影响。

比如说,电池是否在充电或放电状态下、环境温度等。

5. 计算卡尔曼增益卡尔曼增益可以看做是观测值和状态预测值之间的权重,用于计算最终的估计值。

增益的大小取决于测量噪声和模型不确定性的大小。

6. 计算系统状态的估计值利用卡尔曼滤波算法,我们可以计算出最终的SOC估计值。

这个估计值会考虑前面的观测值、状态预测值、卡尔曼增益和模型。

总的来说,卡尔曼滤波可以提高电动汽车对SOC的估计准确度。

通过建立一个合理的系统模型和选取合适的观测值,我们可以在不断修正状态的同时预测电池的剩余容量。

在实际应用中,还需要考虑控制器实现算法分析和仿真验证。

卡尔曼滤波算法流程

卡尔曼滤波算法流程

卡尔曼滤波算法流程
1.初始化:设定系统的初始状态和协方差矩阵,以及系统模型的初始
参数。

2.预测步骤(时间更新):
-通过系统模型和上一时刻的状态估计值,预测当前时刻的状态,并
计算预测的状态协方差。

-根据预测的状态和测量方差,计算预测的测量值。

3.更新步骤(测量更新):
-通过测量值和测量方差,计算测量的残差(测量残差是测量值与预
测值之间的差异)。

-计算测量残差的协方差。

-计算卡尔曼增益(卡尔曼增益是预测误差和测量残差之间的比例关系)。

-通过卡尔曼增益,对预测值进行修正,得到当前时刻的最优状态估
计值。

-更新状态估计值的协方差。

4.循环迭代:将预测和更新步骤循环进行,逐步逼近真实的系统状态。

整个卡尔曼滤波的核心是通过不断的预测和更新来修正状态估计值,
从而逼近真实的系统状态。

其基本思想是根据测量值和预测值的权重建立
一个最优估计,同时考虑了预测的误差和测量的误差。

通过不断地迭代,
可以实现对系统状态的准确估计。

卡尔曼滤波广泛应用于图像处理、机器人导航、信号处理等领域。


优势在于能够对噪声和不确定性进行有效的处理,同时具有较低的计算复
杂度。

但是,卡尔曼滤波的有效性还取决于系统模型和测量噪声的准确性,因此在实际应用中需要进行参数调整和误差分析。

总之,卡尔曼滤波是一种通过预测和更新来估计系统状态的最优算法,通过结合系统模型和测量方差信息,能够有效处理噪声和不确定性,广泛
应用于估计问题中。

卡尔曼滤波算法及C语言代码

卡尔曼滤波算法及C语言代码

卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

卡尔曼滤波算法 pdf

卡尔曼滤波算法 pdf
H H
ß
由此可以求出权矩阵的表达式:
= W1 (k ) R(k )
W1 (k ) = E{x(n + 1)α H (k )}R −1 ( K )............(20)
3、kalman滤波算法
ß
将式(20)代入式(18),状态向量的一步预测的最小均 方估计可表示为
(n + 1) = ∑ E{x(n + 1)α H (k )}R −1 (k )α ( k ) x1
H E{v1 (n)v2 (k )} = 0, ∀n, k ......(5)
2、新息过程
ß
考虑一步预测问题,给定观测值y(1), ...,y(n-1),求观测向量y(n)的 最小二乘估计,记作
y 1(n ) = y(n y(1),...,y(n − 1)) ˆ ˆ
(1)、新息过程的性质 y(n)的新息过程定义为:
将式(27)代入式(24),便得到kalman增益的计算公式如下:
G (n) = F (n + 1, n) K (n, n − 1)C H (n) R −1 (n)............( 28)
式中R(n)是信息过程的相关矩阵,由式(10)定义。
3、kalman滤波算法
ß
(3)、Riccati方程

3、kalman滤波算法
ß
应该与已知值正交,故有
E{e(n + 1, n)α (k )} = E{[ x(n + 1) x1 (n + 1)α (k )}
H H

= 0, k = 1,..., n.........(19)
ß
将式(18)代入(19),并利用新息过程的正交性,得到

卡尔曼滤波算法及C语言代码

卡尔曼滤波算法及C语言代码

卡尔曼滤波简介及其算法实现代码卡尔曼滤波算法实现代码(C,C++分别实现)卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。

所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。

现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。

因为这里不能写复杂的数学公式,所以也只能形象的描述。

希望如果哪位是这方面的专家,欢迎讨论更正。

卡尔曼滤波器– Kalman Filter1.什么是卡尔曼滤波器(What is the Kalman Filter?)在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。

跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。

1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。

1957年于哥伦比亚大学获得博士学位。

我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。

如果对这编论文有兴趣,可以到这里的地址下载:/~welch/media/pdf/Kalman1960.pdf。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍(Introduction to the Kalman Filter)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。

卡尔曼(Kalman)滤波

卡尔曼(Kalman)滤波

第4章 卡尔曼(Kalman )滤波卡尔曼滤波的思想是把动态系统表示成状态空间形式,是一种连续修正系统的线性投影算法。

功能 1) 连续修正系统的线性投影算法。

2)用于计算高斯ARMA 过程的精确有限样本预测和精确的似然函数。

3) 分解矩阵自协方差生成函数或谱密度。

4)估计系数随时间变化的向量自回归。

第一节 动态系统的状态空间表示一.假设条件令t y 表示时期t 观察到变量的一个()1n ×向量。

则t y 的动态可以用不可观测的()1r ×向量t ξ来表示,t ξ为状态向量。

t y 的动态系统可以表示为如下的状态空间模型:11t t t F v ξξ++=+ (1)t t t t y A x H w ξ′′=++ (2)其中′′F,A ,H 分别为()r r ×,()n k ×和()n r ×矩阵,t x 是外生变量或前定变量的()1k ×向量。

方程(1)称为状态方程,方程(2)称为观察方程。

其中()1r ×向量t v 和()1n ×向量t w 为向量白噪声:()()00t t Qt E v v t R t E w w t ττττττ=⎧′=⎨≠⎩=⎧′=⎨≠⎩ (3)其中,Q R 为()(),r r n n ××矩阵。

假定扰动项t v 和t w 在所有阶滞后都不相关:()0t t E v w ′= 对所有的t 和τ (4)t x 为前定或外生变量,意味着对0,1,2,....,s =除包含在121,,...,t t y y y −−之内的信息外,t x 不再能提供关于t s ξ+以及t s w +的任何信息。

即t x 可能包含y 的滞后值或所有与τ、τξ和w τ不相关变量。

状态空间系统描述有限观察值序列{}1,...,T y y ,需要知道状态向量的初始值1ξ,根据状态方程(1),t ξ可写作()123,,,...,t v v v ξ的线性函数: 2211221....t t t t t t v Fv F v F v F ξξ−−−−=+++++ 2,3,...,t T = (5)这里假定1ξ与t v 和t w 的任何实现都不相关:()()1101,2,...,01,2,...,t t E v TE w Tξτξτ′==′== (6)根据(3)和(6),得t v 和ξ的滞后值不相关:()0t E v τξ′= 1,2,...,1t t τ=−− (7) ()0t E w τξ′= 1,2,...,T τ= (8) ()()()0t t E w y E w A x H w ττττξ′′′=++= 1,2,...,1t t τ=−− (9) ()0t E v y τ′= 1,2,...,1t t τ=−− (10)二.状态空间系统的例子例1 ()AR p 过程,()()()112111...t t t p t p t y y y y µφµφµφµε+−−++−=−+−++−+ (11)()2t t E t τστεετ⎧==⎨≠⎩ (12) 可以写作状态空间形式。

卡尔曼滤波原理

卡尔曼滤波原理

卡尔曼滤波原理卡尔曼滤波原理是一种用于估计系统状态的线性动态系统的思想,它通过考虑系统的动态特性和观测数据的误差来不断更新状态的估计值,以提高状态估计的精确度。

卡尔曼滤波广泛应用于导航、信号处理、控制系统等领域,其核心思想是利用系统的模型和观测数据的融合来估计系统的状态。

卡尔曼滤波的基本原理卡尔曼滤波的基本原理可以简单概括为以下几个步骤:1.系统建模:首先对系统进行建模,包括系统的状态方程和观测方程。

状态方程描述系统状态之间的演变规律,观测方程描述系统状态与观测数据之间的关系。

2.预测步骤:利用系统的状态方程和上一时刻的状态估计值进行预测,得到当前时刻的状态的预测值和预测误差协方差矩阵。

3.更新步骤:根据当前时刻的观测数据和预测值,利用贝叶斯准则进行状态的更新,得到当前时刻的状态估计值和状态估计误差协方差矩阵。

4.循环迭代:不断重复预测和更新步骤,直到达到收敛条件为止。

卡尔曼滤波的应用卡尔曼滤波在实际应用中有着广泛的应用,特别是在导航、控制系统等领域中发挥着重要作用。

以下是一些典型的应用场景:•导航系统:卡尔曼滤波可以用于优化GPS信号的定位精度,通过融合惯性导航和GPS数据,提高导航系统的精确度和鲁棒性。

•目标跟踪:在目标跟踪系统中,卡尔曼滤波可以有效地估计目标的运动状态,提高目标跟踪系统的性能。

•飞行控制系统:在飞行控制系统中,卡尔曼滤波可以用于估计飞行器的位置、速度等状态,提高控制系统的稳定性和精度。

卡尔曼滤波的优缺点卡尔曼滤波作为一种经典的状态估计方法,具有以下优点:•高效性:卡尔曼滤波是一种递归算法,计算效率高,适用于实时性要求较高的系统。

•精确性:通过融合系统模型和观测数据,卡尔曼滤波可以提高状态估计的精确性。

然而,卡尔曼滤波也有一些局限性:•线性假设:卡尔曼滤波基于线性动态系统假设,对于非线性系统可能存在较大误差。

•观测误差假设:卡尔曼滤波假设观测数据服从高斯分布,对于非高斯噪声的情况效果可能不佳。

自适应卡尔曼滤波c语言实现

自适应卡尔曼滤波c语言实现

自适应卡尔曼滤波c语言实现
摘要:
1.自适应卡尔曼滤波简介
2.C 语言实现的步骤
3.具体实现过程
4.总结与展望
正文:
【1.自适应卡尔曼滤波简介】
自适应卡尔曼滤波(Adaptive Kalman Filter,简称AKF)是一种在线性时变系统中估计状态变量的算法。

它是卡尔曼滤波(Kalman Filter,简称KF)的一种扩展,用于解决非线性系统的状态估计问题。

AKF 通过在线性时变系统中加入自适应参数,从而实现对非线性系统的状态估计。

AKF 具有实时性、鲁棒性和准确性等优点,广泛应用于导航、定位、机器人控制等领域。

【2.C 语言实现的步骤】
C 语言实现自适应卡尔曼滤波主要分为以下几个步骤:
(1)导入所需库:需要导入数学库,如math.h,以便使用其中的三角函数、指数函数等。

(2)定义系统模型:根据实际问题,定义系统的状态转移方程和观测方程,并确定系统的初始状态。

(3)编写卡尔曼增益计算函数:根据系统模型,编写一个函数用于计算卡尔曼增益。

(4)编写预测函数:根据系统模型和卡尔曼增益,编写一个函数用于预测系统的状态。

(5)编写更新函数:根据观测值和预测值,编写一个函数用于更新系统的状态。

(6)编写主函数:在主函数中,调用以上函数,实现自适应卡尔曼滤波的完整过程。

卡尔曼滤波轻松入门

卡尔曼滤波轻松入门

卡尔曼滤波轻松入门卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全包含噪声的测量中,估计动态系统的状态。

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。

对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。

他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。

近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

为了可以更加容易的理解卡尔曼滤波器,这里应用形象的描述方法讲解,不像参考书那样罗列一大堆的数学公式和数学符号。

但是,他的5条公式是其核心内容。

结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。

根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度。

假设你对你的经验不是100%的相信,可能会有上下偏差几度。

我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分配。

另外,我们在房间里放一个温度计,但是这个温度计也是不准确的,测量值会比实际值有偏差。

我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。

下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的实际温度值。

首先你要根据k-1时刻的温度值,来预测k时刻的温度。

因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假定是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。

python的卡尔曼滤波

python的卡尔曼滤波

python的卡尔曼滤波卡尔曼滤波是一种用于估计系统状态的滤波器,常用于处理带有噪声和不确定度的测量数据。

在Python中,可以使用NumPy库来进行卡尔曼滤波。

首先,需要引入NumPy库:pythonimport numpy as np接下来,需要定义卡尔曼滤波的参数:系统的状态方程、测量方程、过程噪声方差和观测噪声方差。

python# 系统的状态方程A = np.array([[1, 1], [0, 1]])# 测量方程C = np.array([[1, 0]])# 过程噪声方差Q = np.array([[0.0001, 0], [0, 0.0001]])# 观测噪声方差R = np.array([[0.1]])然后,初始化卡尔曼滤波器的状态和协方差矩阵。

状态矩阵包含两个变量:位置和速度。

python# 状态矩阵的初始化x = np.array([[0], [0]])# 协方差矩阵的初始化P = np.eye(2)接下来,可以定义一个函数来实现卡尔曼滤波。

pythondef kalman_filter(z):# 预测步骤x = A @ xP=A@*****+Q# 更新步骤K=*****@np.linalg.inv(C@*****+R) x = x + K @ (z - C @ x)P = (np.eye(2) - K @ C) @ Preturn x在主程序中,可以输入一系列测量数据并进行滤波。

pythonmeasurements = [1, 2, 3, 4, 5, 6] # 测量数据for z in measurements:x = kalman_filter(np.array([[z]]))print(x)上述代码中的输出结果就是滤波后的状态矩阵。

以上就是使用Python实现卡尔曼滤波的简单示例。

实际应用中,可能需要更复杂的系统模型和参数调整。

如果想深入了解卡尔曼滤波的原理和更复杂的应用,可以参考相关文献或者参加相关的课程学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%% Graph 5
figure(5)
plot(t,x_error(2,:)),grid on;
title('Velocity Error on X axis')
xlabel('Time [sec]')
ylabel('Velocity RMSE [m/sec]')
hold off;
p = 5;
P(:,:,1) = p*eye(4);
%==========================================================================
%% Continuous-time state space model
%{
x_dot(t) = Ax(t)+Bu(t)
legend('Practical Position','Tracking Position')
xlabel('Time [sec]')
ylabel('Position [m]')
hold off;
%% Graph 3
figure(3)
plot(t,x_error(1,:)),grid on;
t = [0:ts:100];
T = length(t);
%% Initial state
x = [0 40 0 20]';
x_hat = [0 0 0 0]';
%% Process noise covariance
q = 5
Q = q*eye(2);
%% Measurement noise covariance
e=malloc(m*m*sizeof(double));
l=m;
if (l<n) l=n;
a=malloc(l*l*sizeof(double));
r = 5
R = r*eye(2);
%% Process and measurement noise
w = sqrt(Q)*randn(2,T); % Process noise
v = sqrt(R)*randn(2,T); % Measurement noise
%% Estimate error covariance initialization
title('Position Error on X axis')
xlabel('Time [sec]')
ylabel('Position RMSE [m]')
hold off;
%% Graph 4
figure(4)
plot(t,x(2,:)),grid on;
hold on;
plot(t,x_hat(2,:),'r'),grid on;
xlabel('X axis [m]')
ylabel('Y axis [m]')
hold off;
%% Graph 2
figure(2)
plot(t,x(1,:)),grid on;
hold on;
plot(t,x_hat(1,:),'r'),grid on;
title('Practical and Tracking Position on X axis')
% State estimate update
P(:,:,i+1) = P(:,:,i+1)-K*H*P(:,:,i+1);
% Tracking error covariance update
P_updated(:,:,i+1) = P(:,:,i+1);
#include "stdlib.h"
#include "rinv.c"
int lman(n,m,k,f,q,r,h,y,x,p,g)
int n,m,k;
double f[],q[],r[],h[],y[],x[],p[],g[];
{ int i,j,kk,ii,l,jj,js;
double *e,*a,*b;
P_predicted(:,:,i+1) = P(:,:,i+1);
%% Kalman gain
K = P(:,:,i+1)*H'*inv(H*P(:,:,i+1)*H'+R);
%% Updata step
x_hat(:,i+1) = x_hat(:,i+1)+K*(z(:,i+1)-H*x_hat(:,i+1));
sysd = c2d(sysc, ts, 'zoh');
[F G H I] = ssdata(sysd);
%% Practice state of target
for i = 1:T-1
x(:,i+1) = F*x(:,i);
end
x = x+G*w; % State variable with noise
最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。
卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
***********************************************
c语言实现代码 [转]
-----------------------------------------------------------------------------------------------------------------------------
T(k,k-1)为系统控制矩阵
H(k)为k时刻观测矩阵
N(k)为k时刻观测噪声
则卡尔曼滤波的算法流程为:
预估计X(k)^= F(k,k-1)·X(k-1)
计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
title('Practical and Tracking Velocity on X axis')
legend('Practical Velocity','Tracking Velocity')
xlabel('Time [sec]')
ylabel('Velocity [m/sec]')
hold off;
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'
X(k+1) = X(k)~
C(k+1) = C(k)~
重复以上步骤
**********************************************
Matlab实现代码[此码为本人原创,仅供交流,谢决转载!]
现设线性时变系统的离散状态方程和观测方程为:
X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)
Y(k) = H(k)·X(k)+N(k)
其中
X(k)和Y(k)分别是k时刻的状态矢量和观测矢量
F(k,k-1)为状态转移矩阵
U(k)为k时刻动态噪声
%==========================================================================
*********************************************************************************************************************************
*********************************************************************************************************************************
%%%% Constant Velocity Model Kalman Filter Simulation %%%%
z(t) = Cx(t)+Dn(t)
%}
A = [0 1 0 0;
相关文档
最新文档