流体力学第三章3--2讲

合集下载

流体力学第三章课件

流体力学第三章课件

第三章 流体运动的基本概念和基本方程
的函数。 流体质点的其它物理量也都是 a,b,c,t 的函数。例如流体 质点( 质点(a,b,c)的温度可表为 )的温度可表为T(a,b,c,t) 二、欧拉法(空间点法,流场法) 欧拉法(空间点法,流场法) 欧拉法只着眼于流体经过流场( 欧拉法只着眼于流体经过流场(即充满运动流体质点 的空间)中各空间点时的运动情况, 的空间)中各空间点时的运动情况,而不过问这些运动情 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 况是由哪些质点表现出来的,也不管那些质点的来龙去脉, 然后通过综合流场中所有被研究空间点上各质点的运动要 即表征流体运动状态的物理量如速度、加速度、压强、 素(即表征流体运动状态的物理量如速度、加速度、压强、 密度等)及其变化规律,来获得整个流场的运动特征。 密度等)及其变化规律,来获得整个流场的运动特征。 在固定空间点看到的是不同流体质点的运动变化, 在固定空间点看到的是不同流体质点的运动变化,无 法像拉格朗日方法那样直接记录同一质点的时间历程。 法像拉格朗日方法那样直接记录同一质点的时间历程。
ρ = ρ ( x, y , z , t , )
T = T ( x, y , z , t ) 加速度应该是速度的全导数。注意上速度表达式中x 加速度应该是速度的全导数。注意上速度表达式中 ,y,z 是流体质点在t时刻的运动坐标 时刻的运动坐标, 是流体质点在 时刻的运动坐标,对同一质点来说它们不是独 立变量,而是时间变量t的函数 因此, 的函数。 立变量,而是时间变量 的函数。因此,根据复合函数求导法 则,并考虑到 dx dy dz =u x , =u y , =u z dt dt dt
一个速度场 8
第三章 流体运动的基本概念和基本方程
一个布满了某种物理量的空间称为场。除速度场之外, 一个布满了某种物理量的空间称为场。除速度场之外, 还有压强场。在高速流动时, 还有压强场。在高速流动时,气流的密度和温度也随流动有 变化,那就还有一个密度场和温度场。 变化,那就还有一个密度场和温度场。这都包括在流场的概 念之内。 念之内。 p = p ( x, y, z , t ),

流体力学第三章 3--2 讲

流体力学第三章 3--2 讲
2
将上述两项进行比较可得:
2 U U 2 O V V / O V / 2 Re L L



(3-31)
即物理意义为: Re=特征惯性力/特征粘性力 按Re数的大小,可将流体运动划分为:大Re数流动,
(3-32)
即粘性微弱的流动;Re数接近于1的流动,即一般粘
(3-37)
物理意义为: Fr=特征惯性力/特征重力
如果按Fr数来划分,一般经典流体力学
中独立分出以下两个分支,即:小Fr数流动,
例如地球物理流体力学;大Fr数流动,例如
航空工程中的空气动力学。
三、其他特征无量纲数
1.欧拉数Eu
定义:
Eu p / 0 U
2

p
0L
/
U
2
L
或Eu=特征压力梯度/特征惯性力
w t
u

U L /U
Uu
w t
U w L x
w x
v
w y
Uv
U w L y
w
w x
Uw
1
U w L z
1 0U L
2
1 p
z

p z
0
g g
2 2 2 2w 2w 2w U w w w x 2 x 2 x 2 L2 x 2 y 2 z 2
(特征偏向力)2/(特征粘性力)2 (3-46)
10.Gr数又称格拉晓夫数 某流体块跟周围流体具有温度差,其温度的特征值为, 则该流体块在重力场中将会受到重力浮力ga的作用(如 0,则为沉力),其中a为流体的热膨胀系数。考察具有温

流体力学课件17第三章流体动力学第二节

流体力学课件17第三章流体动力学第二节

§3-2 迹线和流线
标记线:
定常流时, 迹线和流线,以及标记线重合
§3-2 迹线和流线
流线为欧拉法中的概念 u 中的自变量为欧拉变数
§3-2 迹线和流线
流线的重要性质: 流线不能相交,不能转折(滞点除外) 证明:
§3-2 迹线和流线
迹线和流线的区别: 迹线: 一个质点 一段时间 流线: 许多质点 某一瞬时 例: 喷嘴 轨迹线 方向线
定常流时, 迹线和流线重合
§3-2 迹线和流线
用于形象表示流动情况的一些线条 一、迹线 (pathline)
定义:流场中某流体质 示踪法
§3-2 迹线和流线
迹线微分方程
* 拉格朗日法描述流动的概念 自变量为拉格朗日变数 如 ux= uxf(a,b,c,t)
二、流线 (streamline) 定义:流场中某瞬时的一条空间曲线,在该线上各 点的流体质点速度方向均与曲线在该点的切线方向重合。

流体力学第三章

流体力学第三章

第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。

工程流体力学第三章

工程流体力学第三章

物理量
比起流体质点本身, 比起流体质点本身,工程上我们更关心某一 时刻流体质点上所携带的一些特征参量,比如: 时刻流体质点上所携带的一些特征参量,比如: 速度、压强、温度、电流等。 速度、压强、温度、电流等。 我们把这些流体具有的特征参量统称为物理 我们把这些流体具有的特征参量统称为物理 流体具有的特征参量 流动参数。 也成为流动参数 量,也成为流动参数。 流体的流动是由流体具有的物理量来表征的, 流体的流动是由流体具有的物理量来表征的, 因此,描述流体的运动也就是表达流动参数在不 因此,描述流体的运动也就是表达流动参数在不 同空间位置上随时间的变化规律。 同空间位置上随时间的变化规律。
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
L M’ M
V (M , t ) V ( M ' , t + ∆t )
3.1.3随体导数 随体导数
这里用 D 表示这种导数不同于牛顿定律 Dt 对速度的简单导数
L M’ M
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t
速度的变化有两方面的原因:
一方面的原因, 质点由M 点运动至M 点时,
'
时间过去了∆t,由于场的时间非定常性引 起速度的变化
另一方面, 质点由M 点运动至M '点时, 位置 发生了变化,由于场的空间不均匀性引起 速度的变化
3.1.3随体导数 随体导数
按照时间和空间引起速度变化,把极限分为两部分
DV V ( M ', t + ∆t ) − V ( M , t ) = lim Dt ∆t →0 ∆t

水力学 第三章 流体运动学

水力学 第三章  流体运动学
§3-1 描述流体运动的两种方法
4
2、速度(velocity)
x xa , b, c, t ux t t y y a , b, c, t uy t t z z a , b, c, t uz t t
(1)若(a,b,c)为常数,t 为变数,可得某个指定质点在任何 时刻的速度变化情况 。 (2)若 t 为常数,(a,b,c)为变数,可得某一瞬时流体内部各 质点的速度分布。
ux
u y
uy
u y
uz
u y
斯托克斯(Stokes) 表示式
Du u a (u )u Dt t
全加速度, 随体导数, 质点导数, (material derivative) 当地加速度, 时变导数 (Local derivative) 迁移加速度, 位变导数 (Convective derivative)
拉格朗日法的优点:物理意义较易理解 。 拉格朗日法的缺点:函数求解繁难;测量不易做到。
§3-1 描述流体运动的两种方法
6
3-1-2 欧拉法
一、欧拉法(Euler Method)
从分析通过流场中某固定空间点的流体质点的运动着手,设法 描述出每一个空间点上流体质点运动随时间变化的规律。 运动流体占据的空间,称流场(flow field)。通过流场中所有 空间点上流体质点的运动规律研究整个流体运动的状况,又称流场 法。
15
例3-1 已知流体质点的运动,由拉格朗日变数表示为: (t ) (t ) x a cos 2 b sin 2 2 a b a b2 (t ) (t ) y b cos 2 a sin 2 2 a b a b2 式中, (t ) 为时间,的某一函数。试求流体质点的迹线。

流体力学第3章精品文档

流体力学第3章精品文档

2019/10/4
32
2.测压管测量原理图
在压强作用下,液体在玻璃管中上升高度,设被测液体的密
度为ρ,大气压强为ppa,可pa得M点g的h绝对压强为
M点的计示压强为
peppagh
测压管只适用于测量较小的压强,一般不超过9800Pa,相当 于1mH2O。如果被测压强较高,则需加长测压管的长度, 使用就很不方便。此外,测压管中的工作介质就是被测容器 中的流体,所以测压管只能用于测量液体的压强。
处于静止状态下的微元平行六面体的流体微团的平衡
条件是:作用在其上的外力在三个坐标轴上的分力之和都
等与零。对于x轴,则为
p 1 2 p x d x d y d z p 1 2 p x d x d y d z fxd x d y d z 0
工程大气压
1 a tm 1 k g f/c m 2 9 8 k g f/m 2
(3)用液柱高度来表示
h p/
2019/10/4
mm2O H ,mH 2O或 mmHg
31
第四节 液柱式测压计
一、测压管
一根玻璃管,一端连 接在需要测定的器壁孔 口上,另一端和大气相 通。与大气相接触的液 面相对压强为零。这就 可以根据管中水面到所 测点的高度测得压强。
流体平衡的条件:只有在有势的质量力作用下,不可压缩均质 流体才能处于平衡状态。
有势的力:有势函数存在的力。
2019/10/4
14
3.等压面:dp=0 压强差公式可写为:
Xd YxdZ yd 0 z ——广义平衡下的等压面方程 fd l 0 f d l
等压面性质: • 等压面就是等势面 • 等压面与质量力垂直
(3)在静止液体中,位于同一深度(h=常数)的各点的静压强相等,即任一水

水力学第三讲

水力学第三讲
dx(t ) dy(t ) dz(t ) 迹线方程: dt ux uy uz
§3-1 流动描述 • 2 迹线与流线 • 流线:某一时刻各点的切线方向与通过这些点的 流体质点的流速方向重合的空间曲线称为流线。
dx(t 0 ) ds dy(t 0 ) 用欧拉法描述, t 确定,由定义 u y u y ( x, y, z, t 0 ) u ,u 是合成流速 ds dz(t 0 ) u z u z ( x, y, z, t 0 ) u ds u x u x ( x, y , z , t 0 ) u
dz
u y dy ( u y )dxdydt y 2
u x dx ( u x )dydzdt x 2
( u z
u z dz )dxdydt z 2
dxdydzdt t
( u x
u x dx )dydzdt x 2
( u z
u z dz )dxdydt z 2
z (


§3-4流体微团运动分析(简介) • 2无旋流与有旋流:基本概念、无旋流满足的条件
有旋流:流体微团绕自身轴旋转,
x 2 y 2 z 2 0
无旋流:流体微团不绕自身轴旋转,
x y z 0
u z u y y z u x u z 无旋流满足的条件 z x u y u x x y
严格讲流体运动都属于三元流动,质点运动都具有一元流性质。
§3-2 描述流体运动的一些基本概念
• 4 均匀流与非均匀流、渐变流与急变流
• 均匀流:运动要素(沿流线)不随空间位置变化的流动; • 非均匀流:运动要素(沿流线)随空间位置变化的流动; • 渐变流:运动要素(沿流线)随空 • 间位置缓慢变化的流动;

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

第三章 流体运动学讲解

第三章 流体运动学讲解

1 v1
2
3 3
v3
4 v4
v2 1
2
解:由题意 v4 A4 4 v4 4
v1
4
取过水断面1-1到3-3和4-4间 为对象
有: Q1 Q3 Q4 所以:
Q3 Q1 Q4
取过水断面1-1到2-2 为对象

4
有: v1 A1 v2 A2
试检查流动是否满足连续条件。
解:代入连续性方程,看是否满足连续性条件:
(2 x) (2 y ) (1) 22 0 x y
满足连续性条件
(0) (3xy) (2) 0 3x 0 x y
不满足连续性条件,说明该流动不存在。
见“流体力学课内练习”
例:不可压缩二维流动的流速分量为 ux x 4 y, u y y 4x 求 (1)流动是否存在,若存在,写出流函数表达式;(2)流 动是否有势,若有势,写出速度势表达式。 解:(1) (2) u y 4, u x 4 x y u x u y 1 u y u x 1 (1) 0 z ( )0 x y 2 x y
3-2 描述流体运动的基本概念 一、流管、元流和总流 1、流管
在流场中任取一封闭曲线,通过此封闭曲线上的每 一点作某一瞬时的流线,由这些流线所构成的管状曲 面称为流管。(P44图3-5)
2、元流 当封闭曲线所包围的面积无限小时,充满微小流管内 的液流称为元流。 3、总流 当封闭曲线取在运动液体的边界上时,则充满流管内 的整股液流称为总流。
5、掌握流函数、速度势函数与速度的关系。
3-1 1、拉格朗日法
流动描述
一、描述流体运动的两种方法
拉格朗日法又称质点系法,它是跟踪并研究每一个 液体质点的运动情况,把它们综合起来掌握整个液体 运动的规律。 在固体力学中应用较多。 2、欧拉法

流体力学课件第三章

流体力学课件第三章

§3.2 欧拉法的基本概念
【解】(1)加速度
∂u x ∂u x ∂u x + ux + uy ax = ∂t ∂x ∂y = (4 y − 6 x) + (4 y − 6 x)t (−6t ) + (6 y − 9 x)t (4t ) = (4 y − 6 x)(1 − 6t 2 + 6t 2 )
§3.1 流体运动的描述
∂u x =0 当地加速度 ∂t ∂u x 迁移加速度 u x 为正值 ∂x ∂u x 加速度 ax = u x ∂x
∂u x =0 当地加速度 ∂t ∂u x =0 迁移加速度 u x ∂x
加速度
ax = 0
§3.1 流体运动的描述
欧拉法描述流体运动,质点的物理量,不论矢量还是 标量,对时间的变化率称为该物理量的随体导数或质点导 数。如物理量A =A(x,y,z,t)的随体导数
(3-9)
(3 - 10)
§3.1 流体运动的描述
v ∂u 式中 ——当地加速度(时变加速度,不稳定性引起) ∂t
v v (u ⋅ ∇)u ——迁移加速度(位变加速度,不均匀性引起)
∂u x 当地加速度 为负值 ∂t
迁移加速度 u x 加速度
∂u x 为正值 ∂x
∂u x ∂u x ax = + ux ∂t ∂x
同理,y、z方向的净流出质量 ∂ ( ρu y )
∆M y = ∂y
dxdydzdt
∂ ( ρuz ) ∆M z = dxdydzdt ∂z
dt时间控制体的总净流出质量
∂ ( ρu x ) ∂ ( ρu y ) ∂ ( ρuz ) + ∆M x + ∆M y + ∆M z = [ + ]dxdydzdt ∂y ∂z ∂x

《水力学》课件——第三章 流体运动学

《水力学》课件——第三章 流体运动学

是否是接
均匀流 否

渐变流
流线虽不平行,但夹角较小; 流线虽有弯曲,但曲率较小。
急变流
流线间夹角较大; 流线弯曲的曲率较大。
• 渐变流和急变流是工程意义上对流动是否符合均匀流条件的
划分,两者之间没有明显的、确定的界限,需要根据实际情况
来判定
急变流示意图
五. 流动按空间维数的分类
一维流动 二维流动 三维流动
• 根据流线的定
• 在非恒定流情况下,流
义,可以推断:除
线一般会随时间变化。在
非流速为零或无穷
恒定流情况下,流线不随
大处,流线不能相
时间变,流体质点将沿着
交,也不能转折。
流线走,迹线与流线重
合。
• 迹线和流线最基本的差别是:迹线是同一流
体质点在不同时刻的位移曲线,与拉格朗日观
点对应,而流线是同一时刻、不同流体质点速
• 由确定的流体质点组成
的集合称为系统。系统在 运动过程中,其空间位 置、体积、形状都会随时 间变化,但与外界无质量 交换。
• 有流体流过的固定不变
的空间区域称为控制 体,其边界叫控制面。 不同的时间控制体将被 不同的系统所占据。
• 通过流场中某曲面 A 的流速通量
u nd A
A
称为流量,记为 Q ,它的物理意 义是单位时间穿过该曲面的流体 体积,所以也称为体积流量,单 位为 m3/s .
n A
dA
u
• u n d A 称为质量流量,记为Qm,单位为 kg/s . 流量计算
A
公式中,曲面 A 的法线指向应予明确,指向相反,流量将反
s s — 空间曲线坐标
元流是严格的一维流动,空间曲线坐标 s 沿着流线。

流体力学第三章

流体力学第三章

第三章 流体运动学3-1解:质点的运动速度1031014,1024,1011034=-=-==-=w v u 质点的轨迹方程1031,52,103000twt z z t vt y y t ut x x +=+=+=+=+=+= 3-2 解:2/12/12/3222/12/12/3220375.0232501.02501.00375.0232501.02501.00t t t dt d dt y d a t t t dt d dt x d a a y x z =⨯⨯=⎪⎭⎫⎝⎛⨯===⨯⨯=⎪⎭⎫⎝⎛⨯===由501.01t x +=和10=A x ,得19.1501.011001.015252=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=A x t 故206.00146.0146.00,146.0,014619.150375.0222222/1=++=++=====⨯=zyxz x y x a a a a a a a a3-3解:当t=1s 时,点A (1,2)处的流速()()sm s m yt xt v s m s m y xt u /1/1211/5/2211222-=⨯-⨯=-==⨯+⨯=+=流速偏导数112221121,1,/12,1,/1-----=-=∂∂==∂∂==∂∂=∂∂==∂∂==∂∂s t yvs t x v s m t t v s yu s t x u s m x t u点A(1,2)处的加速度分量()[]()()[]222/11151/3/21151s m y v v x v u t v Dt Dv a s m s m yuv x u u t u Dt Du a y x -⨯-+⨯+=∂∂+∂∂+∂∂===⨯-+⨯+=∂∂+∂∂+∂∂==3-4解:(1)迹线微分方程为dt udy dt u dx ==, 将u,t 代入,得()tdtdy dt y dx =-=1利用初始条件y(t=0)=0,积分该式,得221t y =将该式代入到式(a ),得dx=(1-t 2/2)dt.利用初始条件x(t=0)=0,积分得361t t x -=联立(c )和(d )两式消去t,得过(0,0)点的迹线方程023492223=-+-x y y y (2)流线微分方程为=.将u,v 代入,得()tdx dy y tdyy dx =-=-11或 将t 视为参数,积分得C xt y y +=-221 据条件x(t=1)=0和y(t=1)=0,得C=0.故流线方程为xt y y =-221 3-5 答:()(),满足满足002,0001=+-=∂∂+∂∂+∂∂++=∂∂+∂∂+∂∂k k zw y v x u zw y v x u()()()(),满足,满足000040223222222=++=∂∂+∂∂+∂∂=+-++=∂∂+∂∂+∂∂zw y v x u yxxyyxxyzw yv xu()()()()()()处满足,其他处不满足仅在,不满足,满足,满足满足,满足0,41049000018001760000522==∂∂+∂∂=∂∂+∂∂=++=∂∂++∂∂=++-=∂∂++∂∂=++=∂∂+∂∂+∂∂y y yv x u yv x u u r r u r u rk r k u r r u r u zw yv xu r r r rθθθθ3-6 解:max 02042020max 20320max 2020max 2020214222111000u r r r r u dr r r r r u rdrd r r u r udA r V r rA r =⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰⎰πππππ3-7 证:设微元体abcd 中心的速度为u r ,u θ。

流体力学第三章讲义

流体力学第三章讲义

Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。

§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。

系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。

控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。

控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。

物质体元即流体微团。

物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。

物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。

时间线就是物质线。

(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。

t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。

(3-1)此I 也是t 时刻控制体内的总f 。

设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。

(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。

(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2

水力学 第3章 流体力学基本方程PPT课件

水力学 第3章 流体力学基本方程PPT课件

积分得:
p u2 gzppρt精选版 2 cons. t
19
例1:已知:u = x+t,v = -y+t, w = 0。
求t=0时,经过点A(-1,-1)的流线方程。
解:t=0时,u=x, v=-y, w=0;代入流线微分方程, 有:
dx dy x y
ln xln yC 1
xyc
流线过点(-1,-1) ∴ C =1
流线方p程 pt精选为 版 x: y 1
这里:
Vuivjwk
aaxiay jazk
2.欧拉法:
以流场作为研究对象,研究各流场空间点上流体质 点的各运动要素随时间与空间的变化的分布规律。
流场:运动流体所占据的空间。
在欧拉法中,是以速度场来描述流体运动的,流体质点的运
动速度(即速度函数)是定义ppt在精选空版 间点上的,它们是空间点坐
标(x, y, z)的函数:
因为: V // ds
因此,两矢量的分量对应成比例:
ppt精选版
dx dy dz
u vw 15
四.流管、流束、元流、总流:
1.流管:
在流场中任意绘一条非流线的封 闭曲线,在该曲线上的每一点作流 线,这些流线所围成的管状面称为 流管。
由于流管的“管壁”是由流线构成的,因而流体质点的 速度总是与“管壁”相切,不会有流体质点穿过“管壁”流 入或者流出流管。流管内的流体就像是在一个真实的管子里 流动一样:从一端流入,从另一端流出。
二.恒定流与非恒定流:
1.恒定流(定常流动):
流场中各点处的所有流动参数均不随时间而变化的流动。
特征 u : v w 0 , p0 等。
t t t
t
2.非恒定流(非定常流动):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0
w/U u u/U ,v v/U ,w L 2 / 0, p p/ 0U ,t t / U , y y/ L , z z/ L x x/ L
(2-23)
将式(3-23)代入不可压缩性流体的z分量方程(3-7),将会出现
2 4 4 H 2 U / Ta 2 2 U 2 (特征偏向力)2/(特征粘性力)2 (3-46) H
10.Gr数又称格拉晓夫数 某流体块跟周围流体具有温度差,其温度的特征值为, 则该流体块在重力场中将会受到重力浮力ga的作用(如 0,则为沉力),其中a为流体的热膨胀系数。考察具有温
U L
2
,得:
1 w w w w p 12 (3-27) u v w Fr w t x y z z Re
U2 UL , Re 其中: Fr gL
分别为特征值所组成的无量纲数,称作为特征无量纲数。
(3-32)
即粘性微弱的流动;Re数接近于1的流动,即一般粘
性流动;小Re数流动,即粘性较强的流动。
二、弗罗劳德数
U 2 它的定义: Fr gL
(3-35)
不难看出, 的惯性项(或称惯性力)与重力项的量级之比,即 V V
2 U O V V / O g / g Fr L
速气体,则必须考虑压缩性的影响。
3.Kn数
连续性假设时,引入克努森数
Kn=l/L=分子自由程/宏观线尺度
(3-40)
4.Sc数 讨论流体中分子扩散现象时,可有
Sc 运动学粘性系数 /质量扩散系数 D D
(3-41)
或Sc=动量扩散/质量扩散,它称为施密特数,D为质量 扩散系数。
流体力学教案
(第三章相似原理与量纲分析)
第3-3 无量纲方程
上节推导的相似判据,从理论上讲要求在两个流场的所有 对应点进行比较是否相等后,才能断定这两个流场是否相似, 这在实际使用时很不方便,故一般均不采用。本节将引入特 征量的概念,导出无量纲方程以及具有一定实用价值的相似判
据—特征无量纲数。
例如,在粘性流体力学中引入速度U为特征流速,密度 为特征密度,长度L为特征长度后,构建无量纲量:


(3-36)
Fr的含义就是流体运动方程中特征惯性力与特征重力之比,即
(3-37)
物理意义为: Fr=特征惯性力/特征重力
如果按Fr数来划分,一般经典流体力学
中独立分出以下两个分支,即:小Fr数流动,
例如ቤተ መጻሕፍቲ ባይዱ球物理流体力学;大Fr数流动,例如
航空工程中的空气动力学。
三、其他特征无量纲数
1.欧拉数Eu
P r /K 分子粘性/热传导 T
(3-49)
其中KT为热传导扩散系数。
12.Le数又称为路易数
考虑热扩散跟质量扩散的相对重要性,可引入:
热扩散/质量扩散 Le K D T/
(3-50)
13.Ra数又称瑞利数
把格拉晓夫数(Gr)和普朗特数(Pr)综合考虑,则有:
Ra Gr Pr ga L / K T
定义:
p U Eu p / U / 0 L L 0
2 2
或Eu=特征压力梯度/特征惯性力
(3-38)
2.Ma数 利用伯努利方程和流管中连续性方程推求得,其定义为:
U =特征速度/声速 Ma c
(3-39)
它反映了空气流动中压缩性的影响,当Ma1 的所谓亚声 速流动中,空气可近乎不可压流体。而对于Ma1的超声
Pe Pr Re
(3-52’)
15.Nu数又称为努塞尔数 在热对流问题中,常考虑到经过表面进出流体的热量传输,
如Q作为单位面积热传输率的特征值,则有:
Nu QL /K Q /K T T =热传输/热扩散 L
(3-53)
2
对于 V 的粘性项(又称粘性力) 的量纲分析,可得:
2
(3-30)
将上述两项进行比较可得:
2 U U 2 O V V / O V / 2 Re (3-31) LL



即物理意义为: Re=特征惯性力/特征粘性力 按Re数的大小,可将流体运动划分为:大Re数流动,

7.Ro数 在旋转坐标系中考察流体运动时,例如地球上的
大气运动,将会出现一种地转偏向力(科里奥利力),
其特征值为fU,于是从运动方程引入:
U U Ro / fU=特征惯性力/特征偏向力 fL L
2
(3-44)
Ro称为罗斯贝数,它是大气动力学中的一个很重要的特征数。
8.Ek埃克曼数 在旋转坐标系中考察流体运动时,旋转流体经过固体边
gg
2 2 2 2 2 2 U w w w w w w 2 2 2 2 2 2 2 x x x L x y z
将上式再代入(3-7)式,并在方程两边同除以
差热效应的流体运动方程,可引入:
U Gga / 2 特征浮力/特征粘性力 L
再把上式所示G和Re一起考虑,即有:
2 Gr G Re ga L /
(3-47)
(3-48)
Gr是热(自由)对流中的一个特征参数。
11.Pr数又称普朗特数 流体中的粘性和热传导,均属分子传输现象,对此可有:
式(3-27)是由无量纲量
u , v , w , , x , y , z
所构成的 z分量运动方程,由于由物理量特征量所组成的Re 和Fr也是无量纲的,因此该方程称作无量纲z向分量的运动方 程。或z分量运动方程的无量纲形式,简称无量纲方程。另外,
由于无量纲方程跟选用的单位制无关,还可以由此推出两流
场的相似准则。
第3-4 特征无量纲数 一、雷诺数 它的定义:
Re UL
(3-28)

根据定义可分析其物理意义:
对于 V V 的惯性项(或称惯性力)的量纲分析,可得:
2 U V V V V L
(3-29)
U 2 V V L
w U w t L /U t
w U w u U u x L x
w U w v U v y L y
w U w w U w x L z
2 U 1 p 1 1 p 0 L z z 0
3
(3-51)
该特征数主要针对水平流体层热对流问题。
14.Pe数又称贝克来数 在热流量方程中,将温度水平平流和湍流热量垂直输送
进行量顽比较,即得:
UL T T Pe U /K T 2 =温度平流/湍流垂直热输送 K L L T
(3-52)
然后再考虑到普朗特数(Pr)和贝克来数(Pe)的表达式, (3-52)式还可改写为:
界时,在固壁附近将会出现需要考虑粘性的流体薄层称埃 克曼层。该层的厚薄
DE
反映了旋转流体中应该考虑
粘性的范围大小,对此引入埃克曼数:
2 2 2 Ek K /fH ~ D / H E =埃克曼厚度/流体特征厚度
(3-45)
H 2 sin
9.Ta泰劳数又称旋转雷诺数
在旋转流体中,还可引入一个Ta数,即
5.We数 考虑流体表面张力的作用,则引入We(韦伯)数,即:
U 2 L We =流体动能/反抗表面张力做功
(3-42)
6.Ri数
在湍流和大气动力学问题中,常引入Ri数,即
g T u Ri / T z z
2
(3-43)
它可用以反映湍流的消长,称作理查尔数,式中 为绝热直减热。
相关文档
最新文档