力学综合弹簧类问题
弹簧问题
弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂;其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘;还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法;根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析;一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力;当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态;2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变;3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解;同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值;弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解;二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上不拴接,整个系统处于平衡状态;现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面;在此过程中,m2的重力势能增加了______,m1的重力势能增加了________;例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况;只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单;2.突变类问题例3.如图3所示,一质量为m的小球系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,小球处于平衡状态;现将l2线剪断,求剪断瞬时小球的加速度;若将图3中的细线l1改为长度相同、质量不计的轻弹簧,如图4所示,其他条件不变,求剪断细线l2瞬时小球的加速度;突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”;所以,对于细线、弹簧类问题,当外界情况发生变化时如撤力、变力、剪断,要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键;3.碰撞型弹簧问题此类弹簧问题属于弹簧类问题中相对比较简单的一类,而其主要特点是与碰撞问题类似,但是,它与碰撞类问题的一个明显差别就是它的作用过程相对较长,而碰撞类问题的作用时间极短; 例4.如图6所示,物体B静止在光滑的水平面上,B的左边固定有轻质的弹簧,与B质量相等的物体A以速度v向B运动并与弹簧发生碰撞,A、B始终沿统一直线,则A,B组成的系统动能损失最大的时刻是A.A开始运动时 B.A的速度等于v时C.B的速度等于零时 D.A和B的速度相等时4:机械能守恒型弹簧问题对于弹性势能,高中阶段并不需要定量计算,但是需要定性的了解,即知道弹性势能的大小与弹簧的形变之间存在直接的关系,对于相同的弹簧,形变量一样的时候,弹性势能就是一样的,不管是压缩状态还是拉伸状态;例5.一劲度系数k=800N/m的轻质弹簧两端分别连接着质量均为m=12kg的物体A、B,它们竖直静止在水平面上,如图7所示;现将一竖直向上的变力F作用在A上,使A开始向上做匀加速运动,经物体B刚要离开地面;求:⑴此过程中所加外力F的最大值和最小值;⑵此过程中力F所做的功;设整个过程弹簧都在弹性限度内,取g=10m/s2例6.如图8所示,物体B和物体C用劲度系数为k的弹簧连接并竖直地静置在水平面上;将一个物体A从物体B的正上方距离B的高度为H0处由静止释放,下落后与物体B碰撞,碰撞后A和B粘合在一起并立刻向下运动,在以后的运动中A、B不再分离;已知物体A、B、C的质量均为M,重力加速度为g,忽略物体自身的高度及空气阻力;求:1A与B碰撞后瞬间的速度大小;2A和B一起运动达到最大速度时,物体C对水平地面压力为多大3开始时,物体A从距B多大的高度自由落下时,在以后的运动中才能使物体C恰好离开地面5.简谐运动型弹簧问题弹簧振子是简谐运动的经典模型,有一些弹簧问题,如果从简谐运动的角度思考,利用简谐运动的周期性和对称性来处理,问题的难度将大大下降;例7.如图9所示,一根轻弹簧竖直直立在水平面上,下端固定;在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩;当弹簧被压缩了x0时,物块的速度减小到零;从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图像,可能是下图中的例8.如图10所示,一质量为m的小球从弹簧的正上方H高处自由下落,接触弹簧后将弹簧压缩,在压缩的全过程中忽略空气阻力且在弹性限度内,以下说法正确的是A.小球所受弹力的最大值一定大于2mgB.小球的加速度的最大值一定大于2gC.小球刚接触弹簧上端时动能最大D.小球的加速度为零时重力势能与弹性势能之和最大6.综合类弹簧问题例9.如图12所示,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态;一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩;开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向;现在挂钩上升一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升;若将C换成另一个质量为的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少已知重力加速度为g;综合类弹簧问题总结:综合类弹簧问题一般物理情景复杂,涉及的物理量较多,思维过程较长,题目难度较大;处理这类问题最好的办法是前面所述的“肢解法”,即把一个复杂的问题“肢解”成若干个熟悉的简单的物理情景,逐一攻破;这就要求学生具有扎实的基础知识,平时善于积累常见的物理模型及其处理办法,并具有把一个物理问题还原成物理模型的能力;。
有关弹簧问题的分析与计算
跟踪练习: 1.如图所示,在一粗糙水平面上有两个质量分别为 m1 和 m2 的木块 1 和 2,中间用一原长为 L、劲度系数为 K 的轻弹 簧连结起来,木块与地面间的动摩擦因数为 μ。现用一水平力向右拉木块 2,当两木块一起匀速运动时,两木块之间的距离 是:( )
A.
B.
C.
D.
2.如图所示,质量分别为 mA 和 mB 的 A 和 B 两球用轻弹簧连接,A 球用细绳悬挂起来,两球均处于静止状态,如果 将悬挂 A 球的细线剪断,此时 A 和 B 两球的瞬时加速度各是多少?
C.aA=g, aB=-g D.aA=-g,aB=
图 3-2-5
10.轻质弹簧的上端固定在电梯的天花板上,弹簧下端悬挂一个小球,电梯中有质量为 50kg 的乘客如图 3-2-3 所示,在电 梯运行时乘客发现轻质弹簧的伸长量是电梯静止时的一半,这一现象表明 ( ) A.电梯此时可能正以 1m/s2 的加速度大小加速上升,也可能是以 1m/s2 加速大小减速上升 B. 的加速度大小加速下降 C.电梯此时可能正以 5m/s2 的加速度大小加速上升,也可能是以 5m/s2 大小的加速度大小减速下降 D.不论电梯此时是上升还是下降,加速还是减速,乘客对电梯地板的压力大小一定是 250N
〖例 8〗如图所示,原长分别为 L1=0.1m 和 L2=0.2m、劲度系数分别为 k1=100N/m 和 k2=200N/m 的轻质弹簧竖直悬挂 在天花板上。两弹簧之间有一质量为 m1=0.2kg 的物体,最下端挂着质量为 m2=0.1kg 的另一物体,整个装置处于静止状态。 g=10N/kg。问:若用一个质量为 M 的平板把下面的物体竖直缓慢地向上托起,直到两个弹簧的总长度等于两弹簧的原长之 和,求这时平板施加给下面物体 m2 的支持力多大?
高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题
图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
4力学中弹簧类问题
4、力学中弹簧类问题高一物理精英一、基本概念:力、重力、弹力、摩擦力二、类型:静力学中的弹簧问题。
2 、动力学中的弹簧问题在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全.有关弹簧问题的动力学问题中,同学们应注意以下几个问题:一是因弹簧的弹力是变力,物体在弹簧弹力(通常还要考虑物体的重力)作用下做变加速运动,这类问题的动态情景分析是解答这类问题的关键.二是要注意弹簧是弹性体,形变的发生和恢复都需要一定的时间,即弹簧的弹力不能突变.三是要注意弹簧问题的多解性.在某一作用瞬间弹力会保持不变。
在较长过程中弹力是变力,弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度发生变化。
三、典型例析1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.2、如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2,A、B间水平连接着一轻质弹簧测力计.若用大小为F的水平力向右拉B,稳定后B的加速度大小为a1,弹簧测力计示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧测力计示数为F2.则以下关系式正确的是()A.a= a2,F1> F2B.a1= a2,F1< F2C.a1< a2,F1= F2D.a1> a2,F1> F23、如图所示,a、b、c为三个物块,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状4、如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A.2GB.GC.0D.3G四、绳与弹簧产生力的区别①绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。
高中物理中的弹簧问题归类讲解
常见弹簧类问题归类剖析高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。
力学中弹簧类问题的处理方法
一
v
■
黼
麓
整
1 . 在弹力作 用下物 体处于平 衡态— — f②作 f①考 示意图 虑压缩和 伸长两 种可能 性
l③受力平衡列方程
团 固 豆
( 1 )使木块 A竖直做 匀加速运动 的
t 辩馕 一 一 F
鳃辫 麓纯
过程 中,力 F的最大值 ; 二、典型 例题 分析 ( 1) 静力学中的弹簧问题。①胡克定律: F=k x , △ F=k ・ △ x . ②对弹簧秤 的两端施加 ( 沿 轴线方 向 ) 大 小不 同的拉 力 ,弹簧秤 的示数一 定等 于挂钩上 的拉 力.例 一、如 图所示 ,劲度 系数为 k 1 的轻质弹簧两端分别与质量为 m 。 、m : 的物块 1 、2拴接 ,劲 度系数 为 k 2的轻质 弹簧 上端与物块 2 拴接 , 下端压在桌面上 ( 不拴接 ), 整个 系统处于平衡状 态。现施力将物块 1缓慢 地竖 直上提 ,直到下面那个 弹簧 的下端刚脱离 桌面 。在此过程中,物块 势能增加了 — — 。 2的重力势能增加 了一
( 2 ) 若木块由静止开始做匀加速运动 , 直到 A 、B 分离的过程中 , 弹簧的弹性势能减少 了 0 . 2 4 8 J ,求这一过程 F 对木块做 的功 . 解 :当 F - O( 即不加竖直向上 F 力时 ), 设A 、B叠放在弹簧上处
于平衡时弹簧的压缩量为x , 有k x =( m a + m B ) g :f ±
一 _ - ] _ } ● . ’ h 苦
F +N —m g =m a ②
①
k
对 A施加 F力 ,分析 A、B受力如图所示,对 A
对 B:
,物块 1 ห้องสมุดไป่ตู้重力
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
重点高中物理必修一弹簧问题
精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
材料力学作业解答
材料力学作业解答1.弹簧的力学行为弹簧是一种具有弹性的材料,它可以在受力时发生弹性形变,并且能够恢复到原始形状。
弹簧的力学行为可以通过胡克定律来描述。
根据胡克定律,弹簧的形变与施加在它上面的力成正比,即F=k*x,其中F是施加在弹簧上的力,k是弹簧的弹性系数,x是弹簧的形变量。
2.弹簧的应变能和弹性势能当弹簧被拉伸或压缩时,它会储存一定量的应变能。
弹簧的应变能可以通过下式计算:U=(1/2)*k*x^2,其中U是弹簧储存的应变能,k是弹簧的弹性系数,x是弹簧的形变量。
3.伸长弹簧的应变能假设一个弹簧的弹性系数为k,它被拉伸或压缩x长度。
根据胡克定律,施加在弹簧上的力可以通过F = k * x计算得到。
通过积分力在形变路径上的关系,可以得到弹簧的应变能。
假设初始长度为L,拉伸后的长度为L+x,则弹簧的伸长应变能可以计算如下:U = ∫[0, L+x] F(x)dx = ∫[0, x] k * x dx = (1/2) k * x^24.剪切应力和剪切应变剪切应力是作用于物体上的横截面内的剪切力与该横截面上的面积之比。
剪切应变是物体在受到剪切应力时产生的形变。
剪切应力和剪切应变之间的关系可以通过剪切弹性模量来描述。
剪切弹性模量G可以通过下式计算:G=τ/γ,其中τ是剪切应力,γ是剪切应变。
5.弯曲应力和弯曲应变弯曲应力是作用于物体上的弯曲力与该物体的横截面想对距离之比。
弯曲应变是物体在受到弯曲应力时产生的形变。
弯曲应力和弯曲应变之间的关系可以通过弯曲弹性模量来描述。
弯曲弹性模量E可以通过下式计算:E=σ/ε,其中σ是弯曲应力,ε是弯曲应变。
6.斯特拉因准则斯特拉因准则描述了材料在达到破坏点之前的应力和应变行为。
根据斯特拉因准则,当材料达到其屈服点时,应力和应变之间的关系可以通过单一的线性方程来描述。
这个线性方程表明了在屈服点之前,应力与应变之间的比例关系。
7.杨氏模量和泊松比杨氏模量是一种描述材料刚度的量度,它可以表示应力与应变之间的比例关系。
初中物理弹簧类问题解题技巧
初中物理弹簧类问题解题技巧弹簧是物理学中常见的一个重要元件,其具有弹性系数和弹簧常数等特性。
在初中物理中,经常会遇到涉及弹簧的问题,如弹簧的伸长、压缩、弹簧振动等。
解决这类问题需要掌握一定的技巧,下面将介绍初中物理弹簧类问题的解题技巧。
1. 弹簧弹性势能公式弹簧的弹性势能是解决弹簧类问题的关键。
根据胡克定律,弹簧的弹性势能与其伸长或压缩的长度成正比。
弹簧的弹性势能公式为:[ E = k x^2 ]其中,( E ) 为弹性势能,( k ) 为弹簧的弹簧系数,( x ) 为弹簧伸长或压缩的长度。
2. 弹簧的力学平衡问题在解决弹簧类问题时,常会涉及到弹簧受力平衡的情况。
根据牛顿第二定律和弹簧的特性,可以建立弹簧受力平衡的方程。
例如,在弹簧振动问题中,考虑质点在弹簧上来回振动的情况,可以通过建立弹簧的力学平衡方程解决问题。
3. 弹簧系列联组合问题弹簧的串联和并联组合是物理中常见的问题类型。
在解决这类问题时,需要根据弹簧的特性和串联、并联电阻的特点进行分析。
例如,串联弹簧的总弹簧系数为各个弹簧弹簧系数的倒数之和,而并联弹簧的总弹簧系数等于各个弹簧系数之和。
4. 弹簧振动问题弹簧的振动是物理学中一个重要的研究领域。
在初中物理中,通常涉及到弹簧的简谐振动问题,需要掌握振动频率、角频率、振幅等概念。
解决弹簧振动问题时,可以利用简谐振动公式和能量守恒原理进行分析和计算。
通过掌握以上弹簧类问题的解题技巧,可以更好地解决初中物理中与弹簧相关的问题,提高问题解决的效率和准确性。
希望同学们在学习物理的过程中,能够深入理解弹簧的特性,灵活运用解题方法,从而取得更好的学习成绩。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
高考物理弹簧类题型总结
专题复习——弹簧问题复习1:力学体系1——平衡状态下的弹簧问题(基础)1、(单选)探究弹力和弹簧伸长的关系时,在弹性限度内,悬挂15N 重物时,弹簧长度为0.16m ;悬挂20N 重物时,弹簧长度为0.18m.则弹簧的原长L0和劲度系数k 分别为( ) A . L0=0.02 m k =500 N/m B . L0=0.10 m k =500 N/m C . L0=0.02 m k =250 N/m D . L0=0.10 m k =250 N/m2、(单选)如图所示,A 、B 两个物块的重力分别是G A =3 N ,G B =4 N ,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F =2 N ,则天花板受到的拉力和地板受到的压力,有可能是( ) A .3 N 和4 NB.5 N 和6 N C .1 N 和2 ND .5 N 和2 N3、(单选)一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( ) A .86 cm B .92 cm C .98 cm D .104 cm4、(单选)一个长度为L 的轻弹簧,将其上端固定,下端挂一个质量为m 的小球时,轻弹簧的总长度变为2L .现将两个这样的轻弹簧按如图所示方式连接,A 小球的质量为m ,B 小球的质量为2m ,则两小球平衡时,B 小球距悬点O 的距离为(不考虑小球的大小,且轻弹簧都在弹性限度范围内) ( ) A .4LB .5LC .6LD .7L5、(单选)如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k 1和k 2,它们的C 、D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上.当物体m 静止时,上方的弹簧处于原长;若将物体的质量变为3m ,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了( ) A .mg k 1+k 2k 1k 2B .2mg k 1+k 2k 1k 2C .2mg 1k 1+k 2D .mg 1k 1+k 26、如图所示,质量为2m 的物体A 经过一轻质弹簧与地面上的质量为3m 的物体B 相连,弹簧的进度系数为k ,一条不可伸长的轻绳绕过定滑轮,一端连物体A ,另一端连一质量为m 的物体C ,物体A 、B 、C 都处于静止状态,已知重力加速度为g ,忽略一切摩擦 (1)求物体B 对地面的压力;(2)把物体C 的质量改为5m ,这时C 缓慢下降,经过一段时间系统达到新的平衡状态,这时B 仍没离开地面,且C 只受重力和绳的拉力作用,求此过程中物体A 上升的高度。
初中常见问题分析:弹簧问题分析
三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
例题分析:例1:劲度系数为K 的弹簧悬挂在天花板的O 点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a 由静止开始匀加速下降,求物体匀加速下降的时间。
分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G –KX=ma X=1/2at 2解以上两式得:t=kaa g m )(2例2:一质量为 M 的塑料球形容器,在A 处与水平面接触。
它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。
分析:由题意知弹簧正好在原长时小球恰好速度最大,所以: 对小球 qE=mg (1) 小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时:对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得: 小球的加速度为:a=mMg 由振动的对称性可知: 小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N =Mg+Kx=2Mg例3:已知弹簧劲度系数为K ,物块重G ,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。
现给物块一向下的压力F ,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘, 求:(1)给物块的向下的压力F 。
(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1) 由对称性,在最低点时:kx-mg=ma (2)物块被压到最低点时有:F+mg=Kx (3)由以上三式得:F=mgA(2)在最低点时盘对物块的支持力最大,此时有: F N -mg=ma 所以:F N =2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x 和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。
机械能守恒定律专题10 能量守恒定律(4) 弹簧模型18.5.23
机械能守恒定律专题10 能量守恒定律应用(4)弹簧类问题弹簧类动力学观点和功能观点解题综合问题:弹簧初末态形变量相同,弹性势能相等,或者两个过程弹簧的形变量变化量相等,弹性势能变化两相同或者弹性势能与形变量的平方成正比例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。
若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。
)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。
例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x 1=x 2∴这一过程中弹簧对物体A 的弹力做功为0…………(3分)A 、B 分离时(2分)由动能定理得:…(2分)代入得: (2分)例题3、如图甲,质量为m 的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g .(1)图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P 点时,速度大小为v ,O 、P 两点间距离为s .求木块拉至P 点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.(1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E P ,根据功能关系有Fs=E P +1/2mv 2…①代入数据可解得:E P =Fs-1/2mv 2…(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E p ,设木块的速度为v′,由机械能守恒定律得:Mgs=E P +1/2(m+M)v′2…③联立②③解得v′= √(mv 2+2(Mg-F)s)/(M+m)例题4、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g解析: 开始时,A 、B 静止,设弹簧压缩量为1x ,有11g kx m =挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 312112=m ()()E g x x m g x x ∆+-+C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m m υm υm m g x x m g x x E ++=++-+-∆联立解得υ=例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。
力学中的弹簧类问题课件
控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对B:F(x1+x3)+
1 2
kx
2−
1
1 2
kx 2
3
−mg(x1+x3)
=
0
对C:4mg(x1+x3)sin30∘−F(x1+x3) = 0
又 x1= mg/k
解得mA≤3m
总结反思:
对于多个物体参与运动的力学问题,要注意 分析个物体之间的联系(包括受力关系,也包括 速度、加速度、位移等运动学关系),必要时可 以将几个物体当成一个整体处理,运用牛顿定律、 动能定理建立方程解决问题。
(3)若A不离开地面,则对A物体应满足:kx3≤ mAg
对于B. C及弹簧组成的系统由机械能定律得:
4mg(x1+x3)sin30∘−mg(x1+x3)=
1kx 2−
23
1kx 2
21
又 x1= mg/k
解得mA≤3m
解法二:若A不离开地面,则对A物体应满足:kx3≤ mAg
从开始运动到速度为零到根据动能定理,
迁移: (多选)(2017·江苏高考·9)如图所示,三个小球A、B、C的质量均为
m,A与B、C间通过铰链用轻杆连接,杆长为L.B、C置于水平地面上,
用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻
杆间夹角α由60°变为120°.A、B、C在同一竖直平面内运动,弹簧在弹
性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中( ) A.A的动能达到最大前,B受到地面的支持力小于 3mg
力学综合—弹簧类问题
例题1: (多选) 如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,
落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的 弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述
正确的有( BD )
A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少 B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少 C.小球由B向C运动的过程中,处于超重状态,小球的动能增加 D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少
迁移:(2017年盐城市二模)如图所示,A、B两物体之间用轻弹簧 相连,B、C两物体用不可伸长的轻绳相连,并跨过轻质光滑定滑轮, C物体放置在固定的光滑斜面上。开始时用手固定C使绳处于拉直状
态但无张力,ab绳竖直,cd绳与斜面平行。已知B的质量为m,C的 质量为4m,弹簧的劲度系数为k,固定斜面倾角α=30∘.由静止释放C,
例题2.(单选)两物块A和B用一轻弹簧连接,静止在水平桌面上,如图 甲,现用一竖直向上的力F拉动物块A,使之向上做匀加速直线运动,如 图乙,在物块A开始运动到物块B将要离开桌面的过程中(弹簧始终处于弹
性限度内),下列说法正确的是( C )
A.力F先减小后增大 B.弹簧的弹性势能一直增大 C.物块A的动能和重力势能一直增大 D.两物块A、B和轻弹簧组成的系统机械能先增大后减小
A C的质量mc可能小于m B C的速度最大时,A的加速度为零 C C的速度最大时,弹簧弹性势能为零 D A、B、C系统的机械能先变小后变大
C在沿斜面下滑过程中A始终未离开地面。(已知弹簧的弹性势能的
表达式为EP=1/2kx 2,期中x为弹簧的形变量)重力加速度为g. 求:
(1)刚释放C时,C的加速度大小; (2)C从开始释放到速度最大的过程中,
B上升的高度; (3)若A不离开地面,其质量应满足什么条件。
解:(1)刚释放C时,根据牛顿第二定律得:
2 B.A的动能最大时,B受到地面的支持力等于 3 mg
2 C.弹簧的弹性势能最大时,A的加速度方向竖直向下 D.弹簧的弹性势能最大值为 3 mgL
2
Am
P
α
O
L mLQm ຫໍສະໝຸດ mmC mO'
迁移: (多选)(2017·江苏高考·9)如图所示,三个小球A、B、C的质量均为
m,A与B、C间通过铰链用轻杆连接,杆长为L.B、C置于水平地面上,
C.弹簧的弹性势能最大时,A的加速度方向竖直向下 D.弹簧的弹性势能最大值为 3 mgL
2
总结反思:
1.解决弹簧类多过程问题时,要注意三个分析:物 体的受力分析、运动的过程分析和能量转化的分析, 抓住特殊点,如:平衡点a=0,v最大、速度为零点 等等。
2.对于复杂力学问题的处理,我们可以建立简单 的模型,化繁为简,找出运动规律解决问题。
对C有4mgsin30∘−T = 4m a 对B有T = m a 解得C的加速度大小a = 0.4g
(2) 初始时对B物体有:kx1=mg 弹簧压缩x1=mg/k C速度最大时合力为零,有:F1= 4mgsin30∘ 此时,对B物体有F1=mg+kx2. 弹簧拉伸x2=mg/k 而 B上升的高度h=x1+x2. 解得h=2mg/k
用一轻质弹簧连接,弹簧处于原长.现A由静止释放下降到最低点,两轻
杆间夹角α由60°变为120°.A、B、C在同一竖直平面内运动,弹簧在弹
性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中A(B )
A.A的动能达到最大前,B受到地面的支持力小于 3mg 2
B.A的动能最大时,B受到地面的支持力等于 3 mg 2
拓 展 :如图所示,足够长的光滑斜面固定在水平面上,轻质弹簧与A、B 物块相连,A、C物块由跨过光滑小滑轮的轻绳连接。初始时刻,C在外 力作用下静止,绳中恰好无拉力,B放置在水平面上,A静止。现撤去外 力,物块C沿斜面向下运动,当C运动到最低点时,B刚好离开地面。已
知A、B的质量均为m,弹簧始终处于弹性限度内,则上述过程中( BC)