初三数学人教版旋转知识点总结
初三数学上册第二十三章旋转知识点总结甄选.
初三数学上册第二十三章旋转知识点总结
10月18日周日
一、第二十三章(旋转)知识点的巩固
概念:
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
1、旋转两(三)要素:旋转中心、旋转角(旋转方向)
2、旋转的性质:
(1) 旋转前后的两个图形是全等形
(2) 两个对应点到旋转中心的距离相等
(3) 两个对应点与旋转中心的连线段的夹角等于旋转角
3、中心对称:
旋转角→180°
旋转中心→对称中心
对应点→对称中心
4、中心对称的性质:
(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.
(2)关于中心对称的两个图形是全等图形.
5、中心对称图形:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与自身重合,那么这个图形叫做中心对称图形,这个点就是它的对
称中心.
6、坐标的对称问题
①关于原点对称的点的坐标(坐标的中心对称)
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y).
②关于x轴对称P(x,y)→P′(x,-y)
③关于y轴对称P(x,y)→P′(-x,y)
最新文件仅供参考已改成word文本。
方便更改
感谢您使用本店文档您的满意是我们永恒的追求!(本句可删)------------------------------------------------------------------------------------------------------------。
最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习
第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。
点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。
2、旋转的性质(1)对应点到旋转中心的距离相等。
(旋转中心就是各对应点所连线段的垂直平分线的交点。
)(2)对应点与旋转中心所连线段的夹角等于旋转角。
(3)旋转前、后的图形全等。
3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。
4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。
5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
九年级上册旋转知识点总结
九年级上册旋转知识点总结旋转是几何学中非常基础且重要的一个概念,它涉及到平面和立体图形的旋转变换以及相关定理。
在九年级上册的学习中,我们学习了有关旋转的知识点,下面就对这些知识点进行总结和归纳。
1. 旋转的定义和基本概念旋转是指以某一点为中心,将图形按照一定的角度绕着这个中心点旋转,得到新的图形。
在旋转中,我们需要明确旋转中心、旋转角度和旋转方向等概念。
旋转中心通常表示为点O,旋转角度用θ表示,旋转方向可以是顺时针或逆时针。
2. 旋转的记法和表示方法为了方便表达和书写,我们引入了旋转的记法和表示方法。
一种常见的表示方式是使用记号Rθ(O)来表示围绕点O逆时针旋转θ度,而顺时针旋转则用R-θ(O)表示。
3. 点的旋转点是最基本的几何要素,它也可以进行旋转。
对于一个给定的点P(x, y),围绕旋转中心O旋转θ度后的新坐标可由以下公式得到:x' = (x - a)·cosθ - (y - b)·sinθ + ay' = (x - a)·sinθ + (y - b)·cosθ + b其中(a, b)是旋转中心的坐标。
4. 图形的旋转除了点的旋转,我们还可以将整个图形进行旋转。
对于平面图形的旋转,我们可以通过以下步骤进行:- 标明旋转中心O和旋转角度θ;- 计算每个顶点的新坐标,利用点的旋转公式得到;- 连接各个新顶点,得到旋转后的图形。
5. 旋转的相关定理在学习旋转的过程中,我们还了解了一些旋转相关的重要定理。
- 旋转保形定理:旋转变换保持图形的形状不变。
- 旋转角度相等定理:对于两个旋转相等的图形,它们之间的对应点的连线的夹角等于旋转的角度。
- 旋转对称定理:旋转对称是指图形以旋转中心为对称中心进行旋转180度后,与原图形重合。
6. 立体图形的旋转除了平面图形的旋转,我们还可以对立体图形进行旋转变换。
立体图形的旋转除了要考虑平面旋转的相关知识外,还需要注意旋转轴的选择和方向的确定。
九年级上册数学旋转知识点总结
九年级上册数学旋转知识点总结
九年级上册数学中的旋转知识点主要包括以下内容:
1. 平面图形的旋转:旋转是指围绕一个中心点将图形旋转一定角度的变换。
主要涉及正方形、矩形、正三角形、等边三角形等图形的旋转。
2. 旋转中心和旋转角度:在平面图形旋转中,旋转中心是一个确定的点,旋转角度是指图形相对于旋转中心旋转的角度。
3. 旋转的性质和特点:旋转是一种保持形状不变的变换,旋转前后的图形是全等的。
旋转也满足交换律和结合律。
4. 旋转图形的坐标变化:根据图形的旋转中心和旋转角度,可以得到旋转后图形的新坐标。
5. 旋转的几何应用:旋转广泛应用于解决几何问题,例如确定图形的对称轴、找出图形的对称点等。
6. 旋转变换的表示方法:旋转变换可以用矩阵表示,通过矩阵运算可以得到旋转后的新坐标。
以上是九年级上册数学中关于旋转的主要知识点总结。
在学习中,需要了解旋转的基本性质和特点,掌握旋转图形的坐标变化方法,并能应用旋转解决几何问题。
九年级旋转知识点梳理
九年级旋转知识点梳理在九年级的学习过程中,我们已经学习了许多不同的知识点。
为了更好地巩固所学的知识,并为即将到来的中考做好准备,我们有必要对这些知识点进行整理和梳理。
接下来,我将为大家梳理一些重要的旋转知识点。
一、坐标系和旋转我们先来回顾一下坐标系和旋转的基本概念。
在平面直角坐标系中,我们可以通过横坐标和纵坐标来表示一个点的位置。
而旋转是指将一个图形按照某个点为中心进行旋转,通常我们称这个点为旋转中心。
旋转可以按照顺时针或逆时针的方向进行,旋转角度可以是任意角度。
二、基本旋转公式在进行旋转的计算中,我们需要掌握一些基本的旋转公式。
其中,顺时针旋转公式和逆时针旋转公式分别为:1. 顺时针旋转公式:旋转后的横坐标 = 旋转中心横坐标 + (原点横坐标 - 旋转中心横坐标) * cosθ - (原点纵坐标 - 旋转中心纵坐标) * sinθ旋转后的纵坐标 = 旋转中心纵坐标 + (原点横坐标 - 旋转中心横坐标) * sinθ + (原点纵坐标 - 旋转中心纵坐标) * cosθ2. 逆时针旋转公式:旋转后的横坐标 = 旋转中心横坐标 + (原点横坐标 - 旋转中心横坐标) * cosθ + (原点纵坐标 - 旋转中心纵坐标) * sinθ旋转后的纵坐标 = 旋转中心纵坐标 - (原点横坐标 - 旋转中心横坐标) * sinθ + (原点纵坐标 - 旋转中心纵坐标) * cosθ这些公式可以帮助我们在旋转图形时计算出旋转后的坐标。
三、旋转的性质旋转具有一些特殊的性质,我们可以通过这些性质来解决与旋转相关的问题。
下面列举几个常见的旋转性质:1. 旋转180°:图形绕旋转中心旋转180°后,各点对应的坐标变为相反数。
2. 旋转90°或270°:图形绕旋转中心旋转90°或270°后,各点的横纵坐标交换,并且横坐标的符号取反。
3. 旋转60°或300°:图形绕旋转中心旋转60°或300°后,各点对应的坐标可以通过一定的规律得到。
九年级数学上册知识点总结旋转
九年级数学上册知识点总结旋转一、内容概览九年级数学上册的知识点总结中,关于旋转的内容是个特别有意思的部分。
在这里我们为大家梳理一下这个章节的主要内容,让大家有个整体的把握。
首先旋转是个啥?简单来说旋转就是物体围绕一个点转动,在数学里这个点叫做旋转中心,转动的角度就是旋转角。
旋转不仅让图形有了动态美,还帮助我们理解很多生活中物体的运动规律。
比如门开关、风车的转动,都是旋转的例子。
那么在九年级数学上册中,我们主要学习哪些旋转相关的知识点呢?首先是旋转的基本性质,就像我们旋转一个物体时,它的每个点都会围绕旋转中心转动,形成一个固定的轨迹。
这个轨迹就是圆,所以旋转的一个重要性质就是点与圆的关系。
了解这一点,可以帮助我们更好地理解和计算旋转问题。
接下来我们会学习如何在平面内将一个图形旋转,这其中涉及到的知识点包括图形的变换和坐标系的应用。
学会了这些,我们就能轻松地画出旋转后的图形了。
还有关于旋转对称的知识也非常重要,一些图形在旋转后能够重合,这就是旋转对称。
了解这些知识,可以帮助我们更好地欣赏图形的美丽和数学中的对称美。
我们还会学习如何利用旋转来解决一些实际问题,比如几何图形的位置关系等。
这些都是需要我们掌握的重点内容,总之掌握了这些知识点不仅能更好地理解数学知识,也能在实际生活中灵活应用哦!那就让我们深入了解下每个具体的知识点吧!1. 旋转知识点在数学学习中的重要性九年级数学上册的知识点中,旋转是一个相当重要的部分。
你可能已经意识到,旋转在我们日常生活中无处不在,它不仅在数学学习中占据一席之地,更与我们生活的世界紧密相连。
想象一下你在玩转魔方的时候,每一个小方块都是在做旋转动作。
学习旋转知识点,就像是在学习如何“读懂”这个世界的一个小窍门。
不仅如此旋转知识点的学习还能帮助你培养空间想象能力,通过学习旋转,你可以更好地理解和想象一个物体在空间中的运动轨迹和位置变化。
这种能力不仅在解决数学问题时会派上用场,更能帮助你理解日常生活中的许多事物。
九年级上册 旋转知识点
九年级上册旋转知识点旋转知识点旋转是几何学中的一个重要概念,它在我们的日常生活和数学学科中都有着广泛的应用。
在九年级上册的数学课程中,我们将学习有关旋转的基本知识和技巧。
本文将围绕旋转知识点展开,探讨旋转的定义、性质以及应用。
一、旋转的定义和性质1.1 旋转的定义旋转是指一个图形以某个固定点为中心,按照一定的角度绕该中心点旋转。
在数学中,我们常用坐标系来描述旋转的过程。
以平面坐标系为例,对于一个点P(x, y),以原点O为中心,按照逆时针方向旋转θ角度后得到点P'(x', y'),那么点P'的坐标可以通过旋转公式计算得出。
1.2 旋转的性质旋转具有以下几个性质:(1)旋转保持距离不变:在旋转过程中,图形上任意两点之间的距离在旋转后保持不变。
(2)旋转保持角度不变:在旋转过程中,图形上任意两条线段之间的夹角在旋转后保持不变。
(3)旋转满足合成律:若将一个图形绕A旋转得到的结果再绕B旋转,与直接将图形绕某个点C旋转得到的结果相同。
(4)旋转是可逆的:对于一个旋转变换,可以通过逆时针旋转相同的角度实现逆变换。
二、旋转的应用举例旋转在许多实际问题中具有广泛的应用。
以下是旋转在几个不同领域中的应用举例。
2.1 几何学中的旋转在几何学中,旋转被广泛应用于图形的变换。
例如,通过旋转可以得到图形的对称图形,从而帮助我们探索图形的性质和关系。
另外,旋转还可以用于构造各种几何体,如球体、圆柱体等。
2.2 物理学中的旋转在物理学中,旋转是描述物体旋转运动的重要概念。
例如,地球的自转和公转运动使得我们有了白天和黑夜、不同季节的变化。
旋转还与转动惯量、角动量等物理量有关。
2.3 生物学中的旋转在生物学中,旋转可以描述生物体的运动方式。
例如,蜜蜂在空中飞行时会以身体某一点为中心旋转飞行,这种旋转飞行方式减小了空气阻力,使得蜜蜂能够更加灵活地飞行。
2.4 工程学中的旋转在工程学中,旋转被广泛应用于机械设计和运动控制系统中。
人教版九年级数学旋转知识点总结与练习
人教版九年级数学旋转知识点总结与练习旋转知识点总结与练知识点1:旋转的定义旋转是指将平面图形绕着平面内某一点O转动一个角度的图形变换,其中点O称为旋转中心,旋转角为旋转的角度。
旋转的三个要素是旋转中心、旋转方向和旋转角度。
1.如图,将正方形图案绕中心O旋转180°后,得到的图案是()。
2.如图2,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()。
知识点1:旋转的性质旋转具有以下性质:1)对应点到旋转中心的距离不变;2)对应点与旋转中心所连的线段的夹角等于旋转角度;3)旋转前后的两个图形全等。
图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转。
3.如图,将△XXX绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()。
4.如图,直线y=-4x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO' B',则点B'的坐标是()。
知识点1:旋转的作图在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形。
5.在下图4×4的正方形网格中,△XXX绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()。
知识点2:中心对称中心对称是指将一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,旋转后能够重合的对应点叫做关于对称中心的对称点。
中心对称的两个图形能够完全重合,即形状大小都相同,位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合。
6.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有()。
中心对称的性质是,中心对称的两个图形,对称点所连线段经过对称中心,并且被对称中心所平分。
人教初三数学第23章旋转旋转基础知识及专项(word版含解析)
三、点绕点旋转90问题
此种问题通过构造两个直角三角形全等,然后利用对应直角边线段长度相等,从而求出对应点坐标。
示例:将点A(3,4)绕点P(1,1)逆时针旋转90,求点A的对应点A1的坐标。分析:旋转不改变图形线段长度及图形线段
的夹角。因此有PAPA1。由于旋转角为90,即APA190,因此我们可以就斜边PAPA1,以平行于坐标轴的线段构造两个直角三角形。专门明显,这两个直角三角形时
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后图形全等。
4、把一个图形绕着某一点旋转180,假如它能够与另一个图形重合,那么就说这两个图形关于
那个点对称或中心对称,那个点叫做对称中心。这两个图形的对称点叫做关于中心的对称点。
5、(1)关于中心对称的两个图形,对称点所连线段都通过对称中心,而且被对称中心平分;
上三角形时,同学能够考虑以下利用旋转来解题。
以下通过一些实例来关心同学们明白得如何利用等腰三角形的腰转动带动等腰三角形腰所在的三角形转动,从而构造全等三角形进而利用旋转知识解决相关问题。
结论3:对应点与旋转中心所构成的三角形均相似。如图,BAB1∽CAC1。
结论4:旋转前、后图形全等。如图,ABCAB1C1。
示例1:已知A(3,2)、O(0,0),将线段OA绕点P旋转得到线段O1 A1,其中O1 (1,1)、A1 (3,4),
O1为点O的对应点,A1为点A的对应点,求点P的坐标。
分析:旋转中心为对应点所连线段垂直平分线的交点,因此只要求出线段AA1和线段OO1的解析式,然后联赶忙可求出点P的坐标。
分析:既然直线l为线段AB的垂直平分线,因此直线l通过线段AB的中点,也即线段AB的
初中数学九年级旋转知识点总结
初中数学九年级旋转知识点总结1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
如下图所示:2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.旋转的性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
4.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
5.中心对称和中心对称图形的区别区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于一点对称,这个点是对称中心,两个图形关于点的对称也叫做中心对称.成中心对称的两个图形中,其中一个上所有点关于对称中心的对称点都在另一个图形上,反之,另一个图形上所有点的对称点,又都在这个图形上;而中心对称图形是指一个图形本身成中心对称.中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。
如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,如果把对称的部分看成是两个图形,那么它们又是关于中心对称。
6.中心对称图形的判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
7.中心对称的性质:关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
第23章 旋转 核心素养整合与提升-2022-2023学年九年级全一册初三数学(人教版)
第23章旋转核心素养整合与提升-2022-2023学年九年级全一册初三数学(人教版)介绍本文档是针对2022-2023学年九年级全一册初三数学(人教版)第23章“旋转”内容的总结和核心素养整合与提升。
本章主要介绍了旋转的概念、特性和相关定理,以及在二维平面上进行旋转的方法和技巧。
一、旋转的概念旋转是指将一个图形绕着某个定点旋转一定角度的过程,通过旋转可以获得图形的对称性质和其他几何性质。
在平面几何中,旋转是一种重要的变换方式,被广泛应用于各种几何问题的解决。
以下是旋转的几个基本概念:1.旋转中心:旋转的定点称为旋转中心,用O表示。
2.旋转角度:图形绕旋转中心旋转的角度称为旋转角度,用θ表示。
3.旋转方向:图形是顺时针旋转还是逆时针旋转称为旋转方向。
二、旋转的特性与定理旋转具有许多重要的特性和定理,下面介绍几个常用的:1.旋转保持长度不变:图形进行旋转后,图形上各点与旋转中心的距离不变,即图形的边长、弧长和曲线长度等都保持不变。
2.旋转保持面积不变:图形进行旋转后,图形的面积保持不变。
3.旋转保持角度不变:图形进行旋转后,图形上的角度大小不变。
4.旋转保持平行关系和垂直关系:图形进行旋转后,平行关系和垂直关系得到保持。
5.旋转与对称性:图形进行旋转后,保持图形的对称性质,例如旋转对称和轴对称等。
三、二维平面上的旋转方法和技巧在二维平面上进行旋转的主要方法有以下几种:1.利用旋转公式:通过旋转公式可以计算出任意点关于旋转中心旋转后的新坐标。
2.利用三角函数:旋转可以通过三角函数的周期性和性质进行计算和描述,例如正弦函数和余弦函数。
3.利用向量:旋转可以使用向量运算进行计算,例如向量的旋转和旋转矩阵的乘法。
4.利用几何性质:旋转可以通过利用图形的对称性质和其他几何性质进行计算和推导。
旋转在几何问题中有着广泛的应用,例如在地图上标注航线、计算物体的旋转惯量等。
熟练掌握旋转的方法和技巧能够帮助我们解决各种几何问题。
九年级数学上册旋转知识点
九年级数学上册旋转知识点在九年级数学上册中,旋转是一个重要的知识点,它涉及到几何图形旋转后的性质和变化。
在本文中,我们将深入探讨旋转的概念、旋转的性质以及如何运用旋转来解决问题。
一、旋转的概念旋转是一种几何运动,它将一个图形围绕一个点或一条线旋转一定角度后得到一个新的图形。
旋转可以分为顺时针旋转和逆时针旋转两种方式。
旋转的中心可以是任意一点,也可以是图形内部的一个点或多边形的中心。
二、旋转的性质1. 相似性:旋转不改变图形的形状和大小,只改变位置和方向。
旋转后的图形仍与原图相似。
2. 旋转角度:旋转角度是旋转的基本概念,它表示图形旋转的角度大小。
顺时针旋转角度为负值,逆时针旋转角度为正值。
3. 旋转中心:旋转中心是旋转的参考点,图形围绕旋转中心旋转。
旋转中心可以是图形内部的一个点,也可以是任意一点。
4. 不变性:旋转不改变图形的面积、周长和内角和。
只要旋转角度相同,图形的这些性质不会发生改变。
三、旋转的应用1. 图形的旋转:可以通过旋转图形来找出图形的对称轴,以及解决一些与对称有关的问题。
例如,我们可以通过旋转一个正方形90度来发现它有4个对称轴,分别是水平轴、垂直轴和两条对角线。
这有助于我们更好地理解图形的对称性质。
2. 图形的判断:通过旋转图形,我们还可以判断一个图形是否与另一个图形相似。
例如,我们可以通过旋转一个三角形180度,使其与另一个三角形重叠。
如果两个三角形完全重合,那么它们就是相似的。
3. 问题的求解:在解决一些几何问题时,旋转可以帮助我们更好地理清思路和寻找解题方法。
例如,当我们需要计算一个图形的面积时,可以将图形旋转一定角度,使其变成一个更简单的图形,然后计算这个简单图形的面积,最后通过旋转角度计算出原图形的面积。
四、旋转的思维拓展1. 与平移和缩放的关系:旋转与平移和缩放是几何变换的三种基本变换,它们之间存在着一定的联系。
例如,通过不同的旋转角度和旋转中心,可以实现平移和缩放的效果。
九年级下册旋转知识点总结
九年级下册旋转知识点总结在九年级下册的学习中,旋转是一个重要的数学概念和技巧。
通过旋转,我们可以改变平面图形的位置和方向,进而解决一些几何问题。
下面是对九年级下册旋转知识点的总结。
一、旋转的基本概念和性质旋转是指围绕一定中心点旋转一个平面图形,使其保持形状不变。
旋转固定点称为旋转中心,旋转的角度叫做旋转角度。
对于旋转,我们需要了解以下基本性质:1. 旋转有顺时针和逆时针两个方向。
顺时针旋转表示为负旋转角度,逆时针旋转表示为正旋转角度。
2. 旋转90度、180度和270度等于逆时针旋转一个直角、两个直角和三个直角。
3. 旋转不改变图形的面积和内角和,但可能改变图形的位置和顺序。
二、图形的旋转变换旋转变换可以应用于不同的图形,包括点、线段、直线、角度和图形等。
以下是对不同图形旋转的方法和特点:1. 点的旋转:点的旋转不改变其位置,旋转前后点的坐标保持不变。
2. 线段和直线的旋转:线段和直线旋转后,仍然保持直线性质。
旋转后的线段或直线与原始线段或直线平行或重合。
3. 角度的旋转:角度的旋转主要通过旋转角度来改变。
旋转前后的角度大小保持不变,但角度的顶点可能会发生变化。
4. 图形的旋转:对于不规则图形的旋转,通常围绕一定的中心点旋转。
旋转可以使图形对称,也可以改变图形的位置和方向。
三、旋转的运用旋转在几何问题和实际生活中都有广泛的应用。
以下是旋转运用的几个常见示例:1. 定位和寻找图形:通过旋转,我们可以将一个图形与另一个图形进行比较,判断它们是否相似或相等。
2. 解决几何问题:旋转可以帮助我们解决与形状和位置有关的几何问题,如求面积、周长等。
3. 设计和绘图:在设计和绘图中,旋转可以帮助我们创建对称美观的图案,以及修饰和调整原始图形。
4. 机器人和航天器控制:旋转被广泛应用于机器人和航天器的控制中,以改变其位置、方向和运动轨迹。
四、习题练习为了加强对旋转知识的理解和应用,以下是几道习题供大家练习:1. 旋转正方形ABCD,使得AB与原始位置的BC重合,请问旋转的角度是多少?2. 旋转直线l,使得其与x轴平行,请问旋转的角度是多少?3. 图形PQRS绕点O顺时针旋转90度,变为图形P'Q'R'S',请问旋转后的坐标是多少?4. 旋转角度为180度的图形与原始图形之间有什么关系?通过以上习题的练习,相信大家对九年级下册的旋转知识有了更深入的理解和掌握。
人教版初三数学上册 旋转 讲义
旋转知识点一、旋转的概念旋转的定义:物体围绕一个点或一条轴做圆周运动叫做旋转。
这个点叫做旋转中心,这条轴叫做旋转轴生活中的旋转现象:例1、下列现象属于旋转的是__________________________①汽车在急刹车时向前滑动②幸运大转盘的转动③飞机起飞后冲上云霄④气球升空⑤传送带的运动⑥钟摆的摆动⑦翻折一张纸⑧“幸福”摩天轮的转动例2、平移、翻折、旋转不会改变物体的________、________,但可能会改变物体的________解题技巧:图形的旋转,即把图形的所有点进行旋转,有时我们可以抓住其中一个顶点来分析,从而得出旋转角对应点与旋转中心所连线段的夹角叫做旋转角旋转后的位置由旋转三要素决定:旋转中心、旋转方向、旋转角例3、正方形绕它的中心至少旋转()才能与原来的图形重合A、45°B、90°C、180°D、270°例4、将正六边形绕其对称中心O旋转一个小于180°的角后与原图形重合,这个旋转的角度是()A、120°B、90°C、60°D、60°或120°旋转对称图形:把一个图形绕着一点旋转小于360°的角后能与原来的图形重合,那么这个图形叫做旋转对称图形例5:中心对称图形:把一个图形绕着一点旋转180°后能与原来的图形重合,那么这个图形叫做中心对称图形例6、下列图形中,既是中心对称图形,又是轴对称图形的是()课堂练习1、下图绕直线l旋转一周后得到的是()2、下图绕虚线旋转得到的几何体是()3、如图所示的立体图形可以看作直角三角形ABC()得到的A、绕AC旋转一周B、绕AB旋转一周C、绕BC旋转一周D、绕CD旋转一周4、在俄罗斯方块中,已经拼好的图案如图所示,现又出现了一小方格体正向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失()A、顺时针旋转90°,向右平移B、逆时针旋转90°,向右平移C、顺时针旋转90°,向下平移D、逆时针旋转90°,向下平移5、下列图形中,是旋转对称图形的是()6、将叶子图案旋转180°后,得到的图形是()7、我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中既是轴对称图形,又是中心对称图形的是()8、我国主要银行的商标设计基本上融入了中国古代钱币的图案,下列我国四大银行商标图案,其中是轴对称图形但不是中心对称图形的是()A、中国银行B、中国农业银行C、中国建设银行D、中国工商银行9、下列图形中,绕中心旋转40°后,可以和原图形重合的是()A、正六边形B、正五边形C、正九边形D、正八边形10、在平面直角坐标系中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到OA’,则点A’在平面直角坐标系中的位置是在()A、第一象限B、第二象限C、第三象限D、第四象限11、小明把如图所示的扑克牌放在一张桌子上,转过头去。
旋转知识点总结和题型总结
旋转知识点总结和题型总结一、旋转知识点总结旋转是几何学中的一个重要概念,它涉及到图形围绕某个中心点进行转动的运动。
在高中数学中,旋转通常是指平面图形绕坐标原点或其他指定点进行旋转。
旋转的性质和相关定理在解决几何问题和证明几何定理中起着重要的作用。
下面我们来总结一下旋转的相关知识点。
1. 旋转的基本概念旋转是指一个平面图形绕着一个固定的中心点旋转。
通常我们用一个角度来表示旋转的大小,这个角度可以是正数也可以是负数,正数表示逆时针旋转,负数表示顺时针旋转。
旋转后的图形与原图形相似,它们的对应部分保持着等长和等角关系。
2. 旋转的公式当平面图形沿着坐标原点以逆时针旋转θ度时,点(x,y)绕原点旋转后得到的新点的坐标为(x',y')可以由以下公式得到:x' = xcosθ - ysinθy' = xsinθ + ycosθ3. 旋转的性质a. 图形绕原点旋转180°后的性质:如果一个平面图形绕坐标原点旋转180°之后得到的图形恰好与原图形重合,那么这个图形就是轴对称的。
b. 图形绕原点旋转360°之后的性质:如果一个平面图形绕坐标原点旋转360°之后得到的图形与原图形完全相同,那么这个图形就是旋转对称的。
c. 图形绕原点旋转90°或270°之后的性质:如果一个平面图形绕坐标原点逆时针旋转90°或顺时针旋转270°得到的图形与原图形重合,那么这个图形就是垂直对称的。
4. 旋转的应用旋转在几何学中有着广泛的应用,例如在解析几何中,我们可以利用旋转的公式来求解相关的几何问题;在立体几何中,旋转可以帮助我们解决求体积、曲面积等问题;在实际生活中,旋转也被广泛应用在工程、建筑、航空航天等领域。
5. 旋转的相关定理a. 复合旋转定理:两次旋转可合成一次旋转。
b. 示例旋转定理:一个图形旋转180°之后,再旋转180°后得到了与原图形相同的图形。
数学知识点初三图形的平移与旋转
数学知识点初三图形的平移与旋转数学知识点九年级一、平移变换:1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,如此的图形运动叫做平移。
2.性质:(1)平移前后图形全等;(2)对应点连线平行或在同一直线上且相等。
3.平移的作图步骤和方法:(1)分清题目要求,确定平移的方向和平移的距离;(2)分析所作的图形,找出构成图形的关健点;(3)沿一定的方向,按一定的距离平移各个关健点;(4)连接所作的各个关键点,并标上相应的字母;(5)写出结论。
二、旋转变换:1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,如此的图形运动叫做旋转。
说明:(1)图形的旋转是由旋转中心和旋转的角度所决定的;(2)旋转过程中旋转中心始终保持不动.(3)旋转过程中旋转的方向是相同的.(4)旋转过程静止时,图形上一个点的旋转角度是一样的.⑤旋转不改变图形的大小和形状.2.性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.3.旋转作图的步骤和方法:(1)确定旋转中心及旋转方向、旋转角;(2)找出图形的关键点;(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;(4)按原图形顺次连接这些对应点,所得到的图形确实是旋转后的图形.“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
事实上《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
初中旋转知识点总结
初中旋转知识点总结一、基本概念1.1 旋转的概念在数学中,旋转是指绕着固定点进行的转动。
在平面几何中,通常以原点为中心进行旋转,记为O。
1.2 旋转的方向根据旋转的方向,我们可以将旋转分为顺时针旋转和逆时针旋转两种,通常用箭头表示,其中顺时针旋转为逆时针旋转为。
1.3 旋转的角度旋转的角度通常用度数表示,符号为°。
一个完整的旋转为360°,一般用角度的正负来表示旋转的方向,正表示逆时针旋转,负表示顺时针旋转。
二、旋转的性质2.1 旋转的性质(1)旋转不改变图形的大小;(2)旋转前后的图形是全等图形;(3)旋转前后的图形是共形的。
2.2 旋转对称对称轴:图形旋转前后完全重合的轴称为旋转对称轴。
例如正方形、正五边形等都是以中心为中心的旋转对称图形。
2.3 旋转的性质利用在日常生活中,我们常常利用旋转的性质进行问题求解,如寻找物体的镜像、对称等。
三、旋转的公式在旋转的过程中,有一些常见的旋转公式需要初中学生掌握,以便能够快速准确地计算出旋转后的图形。
3.1 旋转的坐标公式对于图形(x, y)绕原点O逆时针旋转θ度后的坐标为(x',y'),则有以下公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ3.2 旋转的中心公式对于图形(x, y)绕点(A, B)逆时针旋转θ度后的坐标为(x',y'),其中A的横坐标为a,B的纵坐标为b,则有以下公式:x' = (x-a)*cosθ - (y-b)*sinθ + ay' = (x-a)*sinθ + (y-b)*cosθ + b四、旋转的应用4.1 旋转的应用范围旋转的应用范围非常广泛,包括几何学、物理学、工程学等各个领域,如在几何学中,我们可以利用旋转的性质求解对称图形的问题,在工程学中,我们可以利用旋转的公式进行图形的设计等。
4.2 旋转的几何应用旋转在几何学中应用广泛,如计算旋转图形的坐标、利用旋转的性质寻找对称图形等。
人教版初三数学:《旋转》全章复习与巩固--知识讲解(提高)(1)
《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【高清课堂:高清ID号: 388636关联的位置名称(播放点名称):经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt △ABC 中,AC=BC ,∠ACB=90°,点E 在线段AB 上,CF ⊥CE ,CE=CF ,EF 交AC 于G ,连接AF .(1)填空:线段BE 、AF 的数量关系为 ,位置关系为 ; (2)当=时,求证:=2;(3)若当=n 时,=,请直接写出n 的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.【高清课堂:高清ID号:388636关联的位置名称(播放点名称):经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC , (1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r,侧面展开图中的扇形圆心角为n°,则圆锥的侧面积2360lS rlππ=扇n=,圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB切⊙O于点B,OA=23AB=3,弦BC∥OA,则劣弧BC的弧长为().A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm ,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm .【高清ID 号:359387 高清课程名称: 弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)CBAO【答案与解析】∵弦AB 和半径OC 互相平分,∴OC ⊥AB ,OM=MC=OC=OA .∴∠B=∠A=30°,∴∠AOB=120° ∴S 扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID 号:359387 高清课程名称:弧长 扇形 圆柱 圆锥 关联的位置名称(播放点名称):经典例题1-2】 【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .A EB DC F P类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
2019年 初三数学 旋转知识点归纳
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角. 说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,说明旋转前后的两个图形是全等的.由此得如下性质: ⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同. ⑵任意一对对应点与旋转中心的连线所成的角都是旋转角.⑶对应点到旋转中心的距离相等.⑷对应线段相等,对应角相等.例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )D A.25 B.30 C.35 D.45 知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.'图1图2' 图3 BA知识点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周,则每小时旋转,301236000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.66036000= 例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?典例习题例1如图1,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( )A.72 B.108 C.144 D.216 例2在如图2的方格纸中,每个小方格都是边长为1个单位的正方形,ABC △的三个顶点 都在格点上(每个小方格的顶点叫格点).(1) 画出ABC △向下平移4个单位后的111A B C △;(2)画出ABC △绕点O 顺时针旋转90后的222A B C △,并求点A 旋转到2A 所经过的路线长.例4、在平面直角坐标系中,点A 的坐标为(1,4),将线段OA 绕点O 顺时针旋转90°得到线段OA′,则点A′的坐标是 . 例5、在平面直角坐标系xOy 中,已知点A (2,3),若将OA 绕原点O 逆时针旋转180°得到0A ′,则点A ′在平面直角坐标系中的位置是在( )A 第一象限B 第二象限 c 第三象限 D 第四象限例6、 点A 的坐标为(2,0),把点A 绕着坐标原点顺时针旋转135º到点B ,那么点B 的坐标是 _________ . 例7、如图,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为________图 1 图2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新概念一对一教学部
第二十三章旋转
1、旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转的性质:对应点到旋转中心的距离相等,对应点到旋转中心所连线
段的夹角等于旋转角,旋转前后的两个图形全等。
旋转中心的确定
旋转中心是两对对应点所连线段的垂直平分线的交点
3、旋转的三要素:旋转的中心、旋转角、旋转的方向(顺时针,逆时针)4.中心对称图形与中心对称:(是一种特殊的旋转)
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
5、.中心对称的性质:
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
6、(1)点P(x,y)关于x轴对称点的坐标是(x,-y)
(2)点P(x,y)关于y轴对称点的坐标是(-x,y)
(3)点P(x,y)关于原点对称点的坐标是(-x,-y)
(4)口诀:关于横轴对称“横”不变,关于纵轴对称“纵”不变,关于原点对称“都”要变。
1。