七年级上册平面图形的认识(一)专题练习(word版

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.

(1)求证:∠EHC+∠GFE=180°.

(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.

(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG

∴FG∥EH,

∴∠GFE+∠HEF=180°,

∵AB∥CD

∴∠BEH=∠CHE

∴∠EHC+∠GFE=180°

(2)解:设∠EHM=x,

∵HG⊥HE,

∴∠GHK=90°-x,

∵MH平分∠CHG,

∴∠EHC=90°-2x,

∵AB∥CD

∴∠HMB=90°-x,

∴∠HMB=∠MHG=90°-x,

∵AB∥CD,

∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,

∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,

∴∠GHD=2∠EHM;

(3)解:延长FG,GK,交CD于R,交HE于S,如图,

∵AB∥CD,∠BFG=50°

∴∠HRG=50°

∵FG⊥HG,

∴∠GHR=40°,

∵HG⊥HE,

∴∠EHG=90°,

∴∠CHE=180°-90°-40°=50°,

∵AB∥CD,

∴∠FEH=∠CHE=50°,

∵EP是∠HEF的平分线,

∴∠SEP= ∠FEH=25°,

∵GH平分∠HGF,

∴∠HGS= ∠HGF=45°,

∴∠HSG=45°,

∵∠SEP+∠SPE=∠HSP=45°,

∴∠EPS=20°,即∠NPK=20°.

【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.

2.如图(1),将两块直角三角板的直角顶点C叠放在一起.

(1)试判断∠ACE与∠BCD的大小关系,并说明理由;

(2)若∠DCE=30°,求∠ACB的度数;

(3)猜想∠ACB与∠DCE的数量关系,并说明理由;

(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)

【答案】(1)解:∠ACE=∠BCD,理由如下:

∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,

∴∠ACE=∠BCD

(2)解:若∠DCE=30°,∠ACD=90°,

∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,

∵∠BCE=90°且∠ACB=∠ACE+∠BCE,

∠ACB=90°+60°=150°

(3)解:猜想∠ACB+∠DCE=180°.理由如下:

∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,

∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°

(4)解:成立

【解析】【分析】(1)根据同角的余角相等即可求证;

(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;

(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;

(4)根据重叠的部分实质是两个角的重叠可得。。

3.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.

(1)若∠O=40°,求∠ECF的度数;

(2)试说明CG平分∠OCD;

(3)当∠O为多少度时,CD平分∠OCF?并说明理由.

【答案】(1)解:∵DE//OB ,∴∠O=∠ACE,(两直线平行,同位角相等)

∵∠O =40°,

∴∠ACE =40°,∵∠ACD+∠ACE= (平角定义)∴∠ACD=

又∵CF平分∠ACD ,

∴ (角平分线定义)

∴∠ECF=

(2)证明:∵CG⊥CF,

∴ .

又∵)

∴ (等角的余角相等)

即CG平分∠OCD

(3)解:结论:当∠O=60°时,CD平分∠OCF .

当∠O=60°时

∵DE//OB,

∴∠DCO=∠O=60°.

∴∠ACD=120°.

又∵CF平分∠ACD

∴∠DCF=60°,

即CD平分∠OCF

【解析】【分析】(1)根据平行线“两直线平行,同位角相等”,求得∠ACE=40°,根据平角的定义以及CF平分∠ACD ,可得到∠ACF=70°,然后求出∠ECF的度数;

相关文档
最新文档