解三角形基础篇
解三角形PPT演示课件
04 三角形在实际问 题中的应用
测量问题中的三角形解法
角度测量
通过测量三角形的两个角,利用 三角形内角和为180度的性质,可
以求出第三个角的大小。
距离测量
在无法直接测量两点间距离的情况 下,可以通过构造三角形,利用已 知边长和角度,通过三角函数求解 未知距离。
高程测量
在测量地形高度时,可以通过构造 三角形并测量相关角度和距离,利 用三角函数求解未知高程。
物理学中的三角形解法
01 02
力的合成与分解
在物理学中,力是矢量,可以通过构造三角形来表示力的合成与分解。 例如,已知两个分力的大小和方向,可以构造三角形求解合力的大小和 方向。
运动学问题
在解决匀变速直线运动等问题时,可以通过构造速度、加速度和时间等 物理量的三角形关系,利用三角函数求解未知量。
03
解等腰三角形的方法
通过已知的两边和夹角,利用余弦定 理或正弦定理求解第三边和其余两个 角。
等边三角形的解法
等边三角形的定义和性质
01
三边长度都相等的三角形,三个内角均为60度。
解等边三角形的方法
02
通过已知的一边长度,利用三角函数或特殊角度的三角函数值
求解其余两边和三个角。
典型例题解析
03
展示一道等边三角形的求解问题,并详细解析解题步骤和思路
几何图形中的三角形解法
01
02
03
三角形面积计算
通过已知三角形的底和高 ,或者通过海伦公式等方 法,可以计算三角形的面 积。
三角形边长求解
在已知三角形部分边长和 角度的情况下,可以利用 正弦定理、余弦定理等方 法求解未知边长。
三角形形状判断
通过已知三角形的边长或 角度,可以判断三角形的 形状,如等边、等腰、直 角等。
解三角形知识点归纳总结
第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。
如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。
高考数学解三角形练习和答案
解三角形基础篇基础篇一、正弦定理【练习1】在△ABC 中,已知三个内角为A ,B ,C 满足sinA :sinB :sinC =6:5:4,则sinB =( )A. √74B. 34C. 5√716D. 916【练习2】已知△ABC 中,A :B :C =1:1:4,则a :b :c 等于( )A. 1:1:√3B. 2:2:√3C. 1:1:2D. 1:1:4【练习3】在△ABC 中,若a =1,∠A =π4,则√2bsinC+cosC= ______ .【练习4】 在△ABC 中,∠A =2π3,a =√3c ,则bc =______.【练习5】(2019年新课标二文15)△ABC 内角ABC 的对边分别为a ,b ,c ,已知bsinA+acosB=0,则B=二、余弦定理【练习1】在△ABC 中,若AB =√13,BC =3,∠C =120∘,则AC =( )A. 1B. 2C. 3D. 4【练习2】在△ABC 中,已知a =3,b =4,c =√13,则角C 为( )A. 90∘B. 60∘C. 45∘D. 30∘三、三角形面积公式【练习1】 在ABC ∆中,3=AB ,1=AC ,ο30=∠B ,ABC ∆的面积为23,则=∠C ( ) A .ο30 B .ο45 C .ο60 D .ο75【练习2】在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a −b)2+6,C =π3,则△ABC 的面积是( )A. 3√32B. 9√32C. √3D. 3√3【练习3】已知三角形的三条边成公差为2的等差数列,且它的最大角的正弦值为√32,则这个三角形的面积为______ .【练习4】若△ABC的周长为20,面积为10√3,A=60∘,则a的值为()A. 5B. 6C. 7D. 8【练习5】△ABC的内角A,B,C所对的边分别为a,b,c.向量m⃗⃗⃗ =(a,√3b)与n⃗=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=√7,b=2,求△ABC的面积.【练习6】在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.(1)求角A的值;(2)若b+c=√10 , a=2,求△ABC的面积S.解三角形拔高篇拔高篇一、略新颖的给角的方法【例1.1】二、已知角被拆的解三角形问题【例2.1】三、图形中的解三角形问题【例3.1】四、巧用常数【例4.1】·······2014新课标一理16【例4.2】(汕头二模)五、给一边及高的比值,求另两边比值+比值倒数的最值【例5.1】在△ABC中,角ABC的对应边分别为a、b、c,BC边上的高为a2,则b2c+c2b的最大值是【例5.2】六、解三角形与均值不等式【例6.1】········七、解三角形中正切的性质【例7.1】八、给角分线长度和角,求邻边线性组合的最值【例8.1】(云南统考)九、三角形中sincos比大小总结【例9.1】在△ABC中,给出下列命题1)若A>B,则sinA>sinB 的逆命题、否命题、逆否命题都是真命题2)A>B是cosA>cosB的充要条件3)若△ABC是锐角三角形,则sinA>cosB4)cosA+cosB>0则正确的命题个数为十、类三角恋问题【例10.1】在三角形ABC中,角ABC所对应的边分别是abc,且acosC,bcosB,ccosA成等差数列,若b=√3,则a+c的最大值为十一、线段分角的知二求一【例11.1】解三角形进阶篇进阶篇一、 一条边和所对角已知,求面积的最大值 【练习1.1】已知a,b,c 分别为△ ABC 的三个角A,B,C 的对边,b=2,B=120°,则△ ABC 面积的最大值为_______二、 一边及对角已知,另两条边的线性组合或乘积的最值问题 【练习2.1】 (石家庄一模)【练习2.2】(东北三省三校二模)已知△ABC 三个内角A,B,C 所对的边分别是a,b,c 若(a -c )(sinA +sinC )=b (sinA-sinB ) (1)求角C(2)若△ABC 外接圆半径为2,求△ABC 周长最大值。
高中数学-解三角形知识点汇总情况及典型例题1
实用标准解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:(1)根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=;根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时,00000180()180(4064)76=-+≈-+=C A B ,sin 20sin7630().sin sin40==≈a C c cm A ②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
解三角形讲解
求出的角度可能不在$0^circ$到$180^circ$之间,需要根据实际 情况进行调整。
误区提示
避免将余弦定理与勾股定理混淆,余弦定理适用于任意三角形,而 勾股定理仅适用于直角三角形。
实例分析
01
实例一
已知三角形两边及夹角,求第三边。可以通过代入余弦定理公式直接求
解。
02
实例二
已知三角形三边,求其中一个角。可以通过余弦定理公式变形,求出该
引入参数
当已知条件不足以直接求解时 ,可以引入参数,将问题转化 为方程组求解。例如,在已知 两边和夹角的情况下,可以引 入时间参数,将问题转化为匀 速直线运动问题求解。
多种方法综合运用策略
比较各种方法的优缺点
在解决复杂问题时,需要比较各种方法的优缺点,选择最合适的方法。例如,在求解三角形面积时,可以根 据已知条件选择使用底乘高的一半、两边夹角的正弦值乘以半周长等方法。
三角形分类
按角分可分为锐角三角形、直角 三角形、钝角三角形;按边分可 分为不等边三角形、等腰三角形 (包括等边三角形)。
三角形元素关系
三角形三边关系
任意两边之和大于第三边,任意两边之差小于第三边。
三角形三角关系
三角形三个内角之和等于180°。
三角形重要性质
三角形的稳定性
三角形具有稳定性,即三角形三边长 度确定后,其形状和大小就唯一确定 了。
在解三角形时,可以灵活运用多种方法进行求解 ,以便更快速地得到正确答案。
03
正弦定理在解三角形中应用
正弦定理公式及推导
正弦定理公式
在一个三角形中,各边和它所对角的正弦值的比相等,即 a/sinA = b/sinB = c/sinC。
推导过程
解三角形(知识点)
解三角形(知识点)第一章:解三角形一、正弦定理和余弦定理1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有A B ===CR a b c sin sin sin 2 (R 为∆AB C 的外接圆的半径)2、正弦定理的变形公式:①=A a R 2sin ,=B b R 2sin ,=c R C 2sin ; ②A =R a 2sin ,B =Rb 2sin ,=R Cc 2sin ; ③=A B C a b c ::sin :sin :sin ;3、三角形面积公式:=A ==B ∆AB S bc ab C ac C 222sin sin sin 111. 4、余弦定理:在∆AB C 中,有=+-A a b c bc 2cos 222,推论:=-+222cos 2A a c b bc-+=222cos 2c a b ac B ,推论: -+=222cos 2b a c ab C ,推论:=-+222cos 2C c b a ab二、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于180°;(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;(4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径.=-+222cos 2B b c a ac(5)在余弦定理中:2bc cos A =-+a c b 222.(6)三角形的面积公式有:S =12ah , S =12ab sin C=12bc sin A=12ac sinB , S =--⋅-c P b P a P P ()()()其中,h 是BC 边上高,P 是半周长.2、利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角,常选用正弦定理.(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理.(3)已知三边,求三个角,常选用余弦定理.(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.(5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
高三文科数学复习解三角形知识要点及基础题型归纳整理
解三角形知识刚要一.公式与结论1.角与角关系:A +B +C = π;2.边与边关系:(1)大角对大边,大边对大角(2)两边之和大于第三边,两边只差小于第三边解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解3.正弦定理:正弦定理:R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 变形:①角化边 C R c BR b A R a sin 2sin 2sin 2=== ②边化角 R c C Rb B R a A 2sin 2sin 2sin ===③C B A c b a sin :sin :sin ::=①已知两角和一边;解三角形②已知两边和其中一边的对角.如:△ABC 中,①B b A a cos cos =,则△ABC 是等腰三角形或直角三角形 ②B a A b cos cos =,则△ABC 是等腰三角形。
4.余弦定理:2222cos a b c bc A =+- 222cos 2b c a A bc +-= 2222cos b a c ac B =+- 222cos 2a c b B ac +-= 2222cos c a b ab C =+- 222cos 2a b c C ab +-= 注意整体代入,如:21cos 222=⇒=-+B ac b c a(1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角五.三角形面积5.面积公式 1.B ac A bc C ab S ABC sin 21sin 21sin 21===∆ 2. r c b a S ABC )(21++=∆,其中r 是三角形内切圆半径.注:由面积公式求角时注意解的个数6相关的结论:1.角的变换在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
完整版)解三角形知识点归纳总结
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
解三角形PPT教学课件
采用数值积分方法对定积分进行近 似计算,并讨论积分误差。
04
数值稳定性和精度保持策略
避免大数相除
在计算过程中,尽量避免大数除以小数的情 况,以减少舍入误差。
选择合适的数据类型
根据计算需求选择合适的数据类型,如单精 度浮点数、双精度浮点数等。
逐步细化计算步骤
将复杂计算分解为多个简单步骤,逐步细化 以提高计算精度。
三角形重要性质
三角形的稳定性
01
三角形具有稳定性,是建筑、工程等领域常用的结构形状。
三角形的面积公式
02
包括底乘高的一半、海伦公式等多种计算方法。
三角形的中线、角平分线、高线等性质
03
中线平分对应边、角平分线平分对应角、高线垂直于对应底边
等。
相似与全等三角形
相似三角形定义及性质
对应角相等、对应边成比例的三角形 为相似三角形,具有相似比等性质。
高度测量
解三角形也可以用于测量山峰、建筑物等高度。例如,通过在山脚和山 顶各设置一个观测点,测量两个观测点之间的水平距离和仰角,再利用 三角函数公式求解高度。
角度测量
在地理学中,角度测量也是非常重要的。解三角形可以通过已知三边或 已知两边和夹角等条件,利用三角函数公式求解未知角度。
航海学:航向、航速、航程计算
注意事项
需确保两角为夹边的两角
应用场景
在三角形求解、角度计算等方面有广泛应用
已知三边求角度(SSS)
已知条件
三边a、b、c
求解方法
利用余弦定理cosA=(b²+c²-a²)/2bc求解角度A,同理可求B、C
注意事项
需注意余弦定理中边长的对应关系
应用场景
在几何、测量等领域中广泛应用
《解直角三角形》全章复习与巩固(基础篇)九年级数学下册基础知识专项讲练
专题1.17《解直角三角形》全章复习与巩固(基础篇)(专项练习)一、单选题1.2sin60°的值等于()A .12B .3C .2D 2.如图,在Rt ABC △中,90B ∠=︒,下列结论中正确的是()A .sin BC A AB=B .cos BC A AC=C .tan AB C BC=D .cos AC C BC=3.如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为6米,那么相邻两树在坡面上的距离AB 为()A .6cos αB .6cos αC .6sin αD .6sin α4.如图,为了测量河岸A 、B 两地间的距离,在与AB 垂直的方向上取点C ,测得AC =a ,ABC α∠=,那么A 、B 两地的距离等于()A .tan a αB .tan a α⋅C .sin a α⋅D .cos a α⋅5.点()sin 60,cos30︒︒关于y 轴对称的点的坐标是().A .12⎛- ⎝⎭B .1,2⎛ ⎝⎭C .22⎛⎫- ⎪ ⎪⎝⎭D .⎝⎭6.如图,在平面直角坐标系中,点A 的坐标为(﹣1,2),以点O 为圆心,将线段OA 逆时针旋转,使点A 落在x 轴的负半轴上点B 处,则点B 的横坐标为()AB C D7.已知,斜坡的坡度i =1:2,小明沿斜坡的坡面走了100米,则小明上升的距离是()A .B .20米C .D .1003米8.为扩大网络信号的辐射范围,某通信公司在一座小山上新建了一座大型的网络信号发射塔.如图,在高为12米的建筑物DE 的顶部测得信号发射塔AB 顶端的仰角∠FEA =56°,建筑物DE 的底部D 到山脚底部C 的距离DC =16米,小山坡面BC 的坡度(或坡比)i =1:0.75,坡长BC =40米(建筑物DE 、小山坡BC 和网络信号发射塔AB 的剖面图在同一平面内,信号发射塔AB 与水平线DC 垂直),则信号发射塔AB 的高约为()(参考数据:sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)A .71.4米B .59.2米C .48.2米D .39.2米9.如图,在ABC ∆中,90ACB ∠=︒.边BC 在x 轴上,顶点,A B 的坐标分别为()2,6-和()7,0.将正方形OCDE 沿x 轴向右平移当点E 落在AB 边上时,点D 的坐标为()A .3,22⎛⎫ ⎪⎝⎭B .()2,2C .11,24⎛⎫ ⎪⎝⎭D .()4,210.某车库出口安装的栏杆如图所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC ,EF ∥BC ,∠AEF =143°,AB =1.18米,AE =1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .B .C .D .二、填空题11.在Rt △ABC 中,∠C =90°,AB =2,BC sin2A=_____.12.若关于x 的方程x 2+sin α=0有两个相等的实数根,则锐角α的度数为___.13.如图,P (12,a )在反比例函数60y x=图象上,PH ⊥x 轴于H ,则tan ∠POH 的值为_____.14.如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.15.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=_____.16.如图,在ABC ∆中,1sin 3B =,tan C =3AB =,则AC 的长为_____.17.如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.18.如图,在菱形ABCD 中,∠A =60°,AB =6.折叠该菱形,使点A 落在边BC 上的点M 处,折痕分别与边AB ,AD 交于点E ,F .当点M 与点B 重合时,EF 的长为________;当点M 的位置变化时,DF 长的最大值为________.三、解答题19.计算:(1sin 602︒;(2)26tan 30cos30tan 602sin 45cos 60︒-︒︒-︒+︒ .20.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值;(2)若∠B =∠CAD ,求BD 的长.21.如图,为了测得旗杆AB 的高度,小明在D 处用高为1m 的测角仪CD ,测得旗杆顶点A 的仰角为45°,再向旗杆方向前进10m ,又测得旗杆顶点A 的仰角为60°,求旗杆AB 的高度.22.如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.23.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D 处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)24.如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°.根据有关部门的规定,∠α≤39°时,才能避免滑坡危险.学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,≈1.41)参考答案1.D【分析】根据特殊锐角三角函数值代入计算即可.解:2sin60°=故选:D .【点拨】本题考查特殊角三角函数值,熟知sin60°的值是正确计算的关键.2.C【分析】根据锐角三角函数的定义解答.解:在Rt △ABC 中,∠B =90°,则sin ,cos ,tan ,cos BC AB AB BCA A C C AC AC BC AC====.故选:C .【点拨】本题考查锐角三角函数,熟练掌握锐角三角函数的定义是解题关键.3.B【分析】根据余弦的定义计算,判断即可.解:在Rt △ABC 中,6BC =米,ABC α∠=,∵cos BCABC AB∠=,∴6cos BC AB ABC coa α==∠,故选:B .【点拨】本题考查的是解直角三角形的应用坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.4.A【分析】根据正切的定义计算选择即可.解:∵tanα=ACAB,∴AB =tan tan AC aαα=,故选A .【点拨】本题考查了正切的定义即对边比邻边,熟练掌握正切的定义是解题的关键.5.C【分析】先利用特殊角的三角函数值得出点的坐标,再写出其关于y 轴对称的坐标即可.解:∵sin60°cos30°,)关于y 轴对称的点的坐标是(.故选:C .【点拨】本题考查了特殊角的三角函数值和关于坐标轴对称的点的特征,掌握特殊角的三角函数值是解决本题的关键.6.C【分析】利用勾股定理求出OA ,可得结论.解:∵A (﹣1,2),∴OA由旋转的性质可知,OB =OA∴B 0).故选:C .【点拨】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是利用勾股定理求出OA 即可.7.A【分析】根据坡度意思可知1tan 2A ∠=,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,求出h 即可.解:如图:由题意可知:1tan 2A ∠=,100AB =米,设BC h =米,则2AC h =米,由勾股定理可得:222AB AC BC =+,即2221004h h =+,解得:h =米,h =-.故选:A【点拨】本题考查勾股定理,坡度坡比问题,解题的关键是理解坡度的意思,找出BC ,AC之间的关系.8.D【分析】延长EF交AB于点H,DC⊥AB于点G,可得四边形EDGH是矩形,根据小山坡面BC的坡度i=1:0.75,即43BGCG=,求得BG=32,CG=24,再根据三角函数即可求出信号发射塔AB的高.解:如图,延长EF交AB于点H,DC⊥AB于点G,∵ED⊥DG,∴四边形EDGH是矩形,∴GH=ED=12,∵小山坡面BC的坡度i=1:0.75,即43 BGCG=,设BG=4x,CG=3x,则BC x,∵BC=40,∴5x=40,解得x=8,∴BG=32,CG=24,∴EH=DG=DC+CG=16+24=40,BH=BG﹣GH=32﹣12=20,在Rt△AEH中,∠AEH=56°,∴AH=EH•tan56°≈40×1.48≈59.2,∴AB=AH﹣BH=59.2﹣20=39.2(米).答:信号发射塔AB的高约为39.2米.故选:D.【点拨】本题主要考查解直角三角形,熟练掌握三角函数是解题的关键.9.B【分析】先画出E 落在AB 上的示意图,如图,根据锐角三角函数求解O B '的长度,结合正方形的性质,从而可得答案.解:由题意知:()2,0,C - 四边形COED 为正方形,,CO CD OE ∴==90,DCO ∠=︒()()2,2,0,2,D E ∴-如图,当E 落在AB 上时,()()2,6,7,0,A B - 6,9,AC BC ∴==由tan ,AC EO ABC BC O B'∠=='62,9O B∴='3,O B '∴=734,2,OO OC ''∴=-==()2,2.D ∴故选.B 【点拨】本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.10.A【分析】延长BA 、FE ,交于点D ,根据AB ⊥BC ,EF ∥BC 知∠ADE =90°,由∠AEF =143°知∠AED =37°,根据sin ∠AED AD AE=,AE =1.2米求出AD 的长,继而可得BD 的值,从而得出答案.解:如图,延长BA 、FE ,交于点D .∵AB ⊥BC ,EF ∥BC ,∴BD ⊥DF ,即∠ADE =90°.∵∠AEF =143°,∴∠AED =37°.在Rt △ADE 中,∵sin ∠AED AD AE=,AE =1.2米,∴AD =AE •sin ∠AED =1.2×sin37°≈0.72(米),则BD =AB +AD =1.18+0.72=1.9(米).故选:A .【点拨】本题考查了解直角三角形的应用,解题的关键是结合题意构建直角三角形,并熟练掌握正弦函数的概念.11.12【分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.解:∵sin BC A AB ==∴∠A =60°,∴1sin sin 3022A ︒==.故答案为12.【点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12.30°##30度解:∵关于x 的方程2sin 0x α+=有两个相等的实数根,∴(241sin 0 ,α=-⨯⨯=解得:1sin 2α=∴锐角α的度数为30°.故答案为∶30°13.512解:∵P (12,a )在反比例函数60y x =图象上,∴a=6012=5,∵PH ⊥x 轴于H ,∴PH=5,OH=12,∴tan ∠POH=512,故答案为512.14.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==4AD = 165AE ∴=125DE ∴===DE AC⊥ 90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠==534CD DE ∴=⋅=在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.45°【分析】根据等角的正切值相等得出∠1=∠3,再根据特殊角的三角函数值即可得出答案.解:如图所示:由题意可得:11tan 3,tan 122BC CF AB EF ∠==∠==∴∠1=∠3,tan 1FM FAM AM∠== 122345FAM ∴∠+∠=∠+∠=∠=︒故答案为:45°.【点拨】本题考查了特殊角的三角函数以及等角三角函数关系,由图得出∠1=∠3是解题的关键.16【分析】过A 作AD 垂直于BC ,在直角三角形ABD 中,利用锐角三角函数定义求出AD 的长,在直角三角形ACD 中,利用锐角三角函数定义求出CD 的长,再利用勾股定理求出AC 的长即可.解:过A 作AD BC ⊥,在Rt ABD ∆中,1sin 3B =,3AB =,∴sin 1AD AB B =⋅=,在Rt ACD ∆中,tan 2C =,∴AD CD =CD ,根据勾股定理得:AC =.【点拨】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.17.【分析】根据B C 、的坐标求得BC 的长度,60CBO ∠=︒,利用30度角所对的直角边等于斜边的一半,求得AC 的长度,即点A 的横坐标,易得//AC x 轴,则C 的纵坐标即A 的纵坐标.解:B C 、的坐标分别是(1,0)、2BC ∴=tan OC CBOOB∴∠==60CBO ∴∠=︒90,30ABC A ∠=︒∠=︒60,24ACB AC BC ∴∠=︒==//AC x ∴轴A ∴.故答案为:.【点拨】本题考查了含30°角的直角三角形,用到的知识点有特殊角的三角函数,在直角三角形中,30度角所对的直角边等于斜边的一半,熟记特殊角的三角函数是解题的关键.18.6-【分析】当点M 与点B 重合时,EF 垂直平分AB ,利用三角函数即可求得EF 的长;根据折叠的性质可知,AF =FM ,若DF 取最大值,则FM 取最小值,即为边AD 与BC 的距离DG ,即可求解.解:当点M 与点B 重合时,由折叠的性质知EF 垂直平分AB ,∴AE =EB =12AB =3,在Rt △AEF 中,∠A =60°,AE =3,tan60°=EF AB,∴EF当AF 长取得最小值时,DF 长取得最大值,由折叠的性质知EF 垂直平分AM ,则AF =FM ,∴FM ⊥BC 时,FM 长取得最小值,此时DF 长取得最大值,过点D 作DG ⊥BC 于点C ,则四边形DGMF 为矩形,∴FM =DG ,在Rt △DGC 中,∠C =∠A =60°,DC =AB =6,∴DG =DC∴DF 长的最大值为AD -AF =AD -FM =AD -DG故答案为:【点拨】本题考查了菱形的性质,折叠的性质,解直角三角形,解题的关键是灵活运用所学知识解决问题.19.(1(2)1【分析】(1)根据二次根式与特殊角的三角函数值即可求解;(2)根据特殊角的三角函数值即可求解.解:(1)原式=11232-=16(2)原式21316221222=⨯-⨯=--=-【定睛】此题主要考查实数的运算。
解三角形基础知识
⅛中数学基础知识——解三角形一、解三角形数学思想方法:1.方程(组)思想;2.化归转化思想;3.分类讨论思想;4,换元法; 常见变换:降元变换,降次变换,三角恒等变换,等积转换.二、角形边角关系知识内容: 1、直角三角形中的边、角关系:TΓ在 RtZ^ABC 中,C 二一;2..a . h .sin Λ = — , cosA = — , tan Ac c则 A + 3 = C =工;a 2 -∖-b 2 = c 2 ↑2 a . _ h _ a _ b—;sin β = -, cosB = - , tan B =—. h c c a2、三角形中的角关系:(1) A + B + C = τr, — + — + — = — ;2 2 2 2 (2) sin A = sin(β + C) cos A = -cos(B + C)sin 2A = -sin 2(B + C) ,cos2Λ = cos2(B + C)/八.A + B C A + B . C A + B C (3) sin ------- = cos- cos ------------------ = sm- tan ------------------ = cot-2 2 2 2 2 2 (4) tan A+tan B+tan C = tan A tan B∙ tan C3、三角形中的边关系:a-∖-b> c>∖a-b ∖↑ b -^-c> a>∖b-c ∖↑ c -^-a> b>∖c-a ∖.4、一般三角形中的边角关系:(1)不等关系: β>⅛<=>A>B<=>sinA>sinB. <=> cosA<cosB (2)等量关系:正弦定理:,二=—竺=—J = 2R (R 为4ABC 外接圆的半径)sin A sin B sinC变形:①。
:6:c = sin A:sin 8:sinC ②4 = Zsin A∕ = Zsin 氏c = ZsinC (k ≠ 0) 余弦定理:a 2 =b 2 +c 2 -2bccosA ; b~ =a~ ÷c 2 -20ccosB ; c 2 =a 2 +⅛2 -2abcosC. 变形:①b 2 +c 2 - a 2 =2bccosA ; a 2 +c 2 -b 2 =2accosB↑ a 1 +b 2 -c 1 =2tzfecosC.(3)sin 2 A = sin 2 β + sin 2 C-2sinβsinCcosA sin 2 B = sin 2 A + sin 2 C-2sin AsinCcosB sin 2 C = sin 2 A + sin 2 B- 2sin Asin ficosC第1页共2页三角形面积公式:tan(A + B) = -tanC②cosA = -∖ cosB =2hca 2+c 2-b 22cιc「a 2 +⅛2 -c 2;cos C = --------------2ah①S = — ah a = -bh h = — ch c2 2 2②S = -absin C = —∕2csin A = —easin B2 2 2③S = ^Ξ = 2R2 sin Asin BsinC47?@S = -(a + b + c)(三角形的内切圆半径r,外接圆半径R) (r= 3⅛^).2 Q+〃+C© ^ΔAθC =Λ∣P(P-a XP-b)(p-c),(½⅛2 = -(6f + /7 + C)(海伦公式,海伦-古希腊数学家)2(3)拓展关系:三角形中的射影定理c = acosB-^-bcosA, b = ccosA + αcosC, a = bcosC+ccosB 05、求解SSA型三角形问题类型分述:已知三角形的两边和其中一边的对角,求解三角形问题(SSA型);其解的情况如下表: 在△力回中,已知.力和4三角形解的情况见下表W.解三角形问题类型:问题类型一:已知三角形中三元素(至少有一边,求其它元素),求解三角形;惟一解类型:①ASA AAS ②SAS ③SSS 解不惟一型:④SSA问题类型二:已知三角形中边角关系,求角(边角互化)。
高中数学竞赛讲义(七)解三角形
高中数学竞赛讲义(七)──解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。
1.正弦定理:=2R(R为△ABC外接圆半径)。
推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得证。
2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcos,所以c2=AD2+p2-2AD·pcos①同理b2=AD2+q2-2AD·qcos,②因为ADB+ADC=,所以cos ADB+cos ADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)海伦公式:因为b2c2sin2A=b2c2(1-cos2A)= b2c2[(b+c)-a2][a2-(b-c) 2]=p(p-a)(p-b)(p-c).这里所以S△ABC=二、方法与例题1.面积法。
三角形基础 全等三角形 讲义
三角形基础全等三角形讲义一、三角形的定义与基本元素三角形是由不在同一条直线上的三条线段首尾顺次相接所组成的图形。
这三条线段就是三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形有三条边、三个内角和三个顶点。
边可以用小写字母 a、b、c 表示,角可以用大写字母 A、B、C 表示。
例如,边 a 所对的角就是角 A。
三角形按照边的关系可以分为等边三角形(三条边都相等)、等腰三角形(至少有两条边相等)和不等边三角形(三条边都不相等);按照角的大小可以分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)和钝角三角形(有一个角是钝角)。
二、三角形的内角和三角形的内角和是 180°。
这是三角形的一个重要性质,可以通过多种方法来证明。
比如,我们可以将三角形的三个角剪下来,拼在一起,会发现正好组成一个平角,也就是 180°。
又或者,我们作三角形一条边的平行线,利用平行线的性质,也能证明三角形的内角和是 180°。
这个性质在解决很多与三角形内角有关的问题中非常有用。
三、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的每个顶点处都有两个外角,它们是对顶角,所以三角形共有六个外角。
三角形的一个外角等于与它不相邻的两个内角的和。
例如,在三角形 ABC 中,外角∠ACD 等于∠A +∠B。
三角形的一个外角大于任何一个与它不相邻的内角。
四、三角形的三边关系三角形的任意两边之和大于第三边,任意两边之差小于第三边。
这个关系可以通过实际操作来理解。
比如,我们用三根长度分别为3cm、4cm、5cm 的小棒来摆三角形,能摆成一个三角形;但是如果用1cm、2cm、4cm 的小棒,就无法摆成三角形。
在判断三条线段能否组成三角形时,只需要判断两条较短的线段之和是否大于最长的线段即可。
五、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
解三角形方法与技巧例题和知识点总结
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
高中数学竞赛第七章 解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
高考理科数学一轮复习专题训练:解三角形(含详细答案解析)
第五单元 解三角形(基础篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在中,a 、b 、c 分别为A 、B 、C 的对边,且,,,则( )A .B .C .D .【答案】D 【解析】,,,由正弦定理sin sin a b A B =,可得sin 6sin12036sin sin45a B b A ⋅⨯︒===︒D .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若222a b c ab +-=,则C =( ) A .π6B .π3C .2π3D .5π6【答案】B【解析】角A ,B ,C 的对边分别为a ,b ,c ,故得到2221cos 222b ac ab C ab ab +-===, 故角π3C =,故答案为B .3.在ABC V 中,若7a =,3b =,8c =,则其面积等于( ) A .63 B .212C .28D .12【答案】A【解析】方法一:由余弦定理,得2222227381cos 22737a b c C ab +-+-===-⨯⨯, 所以243sin 1sin C A -,所以1143sin 736322S ab C ==⨯⨯=. 故选A .方法二:海伦-秦九韶公式()()()S p p a p b p c =---92a b cp ++==, 所以9(97)(93)(98)=63S =⨯-⨯-⨯-,故选A .4.在ABC V 中,a ,b ,c 分别是内角A ,B ,C 所对的边,若cos cos sin b C c B a A +=,则ABC V 的形状为( ) A .等腰三角形 B .直角三角形C .钝角三角形D .锐角三角形【答案】B【解析】因为cos cos sin b C c B a A +=,所以2sin cos sin cos sin B C C B A +=,所以()2sin sin B C A +=,即2sin sin A A =,因为()0,πA ∈,故sin 0A >,故sin 1A =,所以π2A =,ABC V 为直角三角形, 故选B .5.已知锐角三角形的三边长分别为1,2,a ,则a 的取值范围是( ) A.B .(3,5) C.)D.)【答案】A【解析】锐角三角形的三边长分别为1,2,a ,则保证2所对应的角和a 所对应的角均为锐角即可,即2222140214040a a aa a ⎧+->⎪⎪⎪+-⎪>⇒<<⎨⎪>⎪⎪⎪⎩A . 6.在ABC V 中,45B =︒,D 是BC边上一点,AD =4AC =,3DC =,则AB 的长为( ) A.2BC.D.【答案】D【解析】由题意,在△ADC 中,由余弦定理可得916131cos 2342C +-==⨯⨯,则sin C ,在ABC V 中,由正弦定理可得sin sin AB ACC B==,据此可得AB =D .7.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,m CD =,并在点C 测得塔顶A 的仰角为30︒,则塔高AB 为( )A .302mB .203mC .60 mD .20 m【答案】D【解析】15BCD ∠=︒Q ,45BDC ∠=︒,120CBD \??, 由正弦定理得302sin 45BC =,302sin 45203BC °\==, 3tan3020320AB BC 状=\=?,故选D .8.在ABC △中,1AB =,3AC =,2BC =,D 为ABC △所在平面内一点,且2BD AB AC =+u u u r u u u r u u u r,则ABC △的面积为( ) A .23 B .3C .3 D .33【答案】D【解析】由题可作如图所示的矩形,则易知π6BCA ∠=,则π3BCD ∠=,则3sin BCD ∠=, 所以113si 3n 23223BCD S BC DC BCD =⨯⨯⨯∠⨯⨯==⨯△,故选D .9.若满足sin cos cos A B Ca b c==,则ABC △为( ) A .等边三角形B .有一个内角为30︒的直角三角形C .等腰直角三角形D .有一个内角为30︒的等腰三角形【答案】C【解析】由正弦定理可知sin cos cos A B Ca b c==,又sin cos cos A B Ca b c==,所以cos sin B B =,cos sin C C =,有tan tan 1B C ==. 所以45B C ==︒.所以180454590A =︒-︒-︒=︒. 所以ABC △为等腰直角三角形.故选C .10.在ABC △中,已知a x =,2b =,60B =︒,如果ABC △有两组解,则x 的取值范围是( ) A .432,3⎛⎫ ⎪ ⎪⎝⎭B .432,3⎡⎤⎢⎥⎣⎦C .432,3⎡⎫⎪⎢⎪⎣⎭ D .432,3⎛⎤⎥ ⎥⎝⎦【答案】A【解析】由已知可得sin a B b a <<,则sin602x x ︒<<,解得4323x <<.故选A . 11.在ABC △中,3AC =,向量AB u u u r在AC u u u r 上的投影的数量为2-,3ABC S =△,则BC =( )A .5B .27C .29D .42【答案】C【解析】∵向量AB u u u r 在AC u u u r 上的投影的数量为2-,∴cos 2AB A =-u u u r.①∵3ABCS =△,∴13||||sin ||sin 322AB AC A AB A ==u u u r u u u r u u ur ,∴||sin 2AB A =u u u r .②由①②得tan 1A =-,∵A 为ABC △的内角,∴3π4A =,∴2223πsin 4AB ==u u u r . 在ABC △中,由余弦定理得 222223π22cos(22)322232942BC AB AC AB AC ⎛⎫=+-⋅⋅⋅=+-⨯⨯⨯-= ⎪ ⎪⎝⎭, ∴29BC =.故选C . 12.锐角中,角,,的对边分别为,,,且满足,函数()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则的取值范围是( )A .1,12⎛⎫⎪⎝⎭B .1,12⎛⎤ ⎥⎝⎦C .3,1⎛⎫ ⎪ ⎪⎝⎭D .13,2⎛⎫⎪ ⎪⎝⎭【答案】A 【解析】,,,,,,三角形为锐角三角形,,,,ππ02230π2202πB B B ⎧<<⎪⎪⎪∴<-<⎨⎪⎪<<⎪⎩,π,32πB ⎛⎫∴∈ ⎪⎝⎭,()ππcos 22sin sin 344πf x x x x ⎛⎫⎛⎫⎛⎫=--+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππππcos 22sin cos cos 2sin 243π342x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--++=--+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭πsin 26x ⎛⎫=- ⎪⎝⎭,所以()sin 2π6f B B ⎛⎫=- ⎪⎝⎭,因为2π2π3B <<,6π5π226πB ∴<-<,所以()112f B <<.故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.ABC △的内角A ,B ,C 的对边分别是a ,b ,c .已知60B =︒,3b =,6c =A =________. 【答案】75︒ 【解析】由正弦定理sin sin b c B C =,得sin 6sin 602sin c B C b ︒=== 又c b <,则C B <,45C ∴=︒,18075A B C ∴=︒--=︒, 本题正确结果75︒.14.已知ABC △的边a ,b ,c 的对角分别为A ,B ,C ,若a b >且sin cos A Ca b=,则角A 的大小为_____. 【答案】π2【解析】由正弦定理得sin cos 1sin sin A C A B ==,即cos sin C B =,cos 0C ∴>,π0,2C ⎛⎫∴∈ ⎪⎝⎭,又a b >,A B ∴>,π0,2B ⎛⎫∴∈ ⎪⎝⎭,由cos sin C B =,得πsin sin 2C B ⎛⎫-= ⎪⎝⎭,π2C B ∴-=,即2πB C +=,()ππ2A B C ∴=-+=,本题正确结果π2.15.如图,一栋建筑物AB 高()30103-m ,在该建筑物的正东方向有一个通信塔CD .在它们之间的地面M 点(B 、M 、D 三点共线)测得对楼顶A 、塔顶C 的仰角分别是15°和60°,在楼顶A 处测得对塔顶C 的仰角为30°,则通信塔CD 的高为______m .【答案】60【解析】由题意可知:45CAM ∠=︒,105AMC ∠=︒,由三角形内角和定理可知30ACM ∠=︒. 在ABM Rt △中,sin sin15AB ABAMB AM AM ∠=⇒=︒. 在ACM △中,由正弦定理可知:sin 45sin 45sin sin sin30sin15sin30AM CM AM AB CM ACM CAM ⋅︒⋅︒=⇒==∠∠︒︒⋅︒,在DCM Rt △中,sin 45sin sin60sin6060sin15sin30CD AB CMD CD CM CM ⋅︒∠=⇒=⋅︒=⋅︒=︒⋅︒. 16.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin (2)tan b C a b B =+,23c = 则ABC △面积的最大值为______. 【答案】3【解析】()()sin 2sin 2tan 2sin sin 2sin sin cos Bb C a b B B C A B B=+⇒=+⋅()2cos sin 2sin sin 2sin sin 2sin cos 2cos sin sin B C A B B C B B C B C B ⇒=+=++=++1cos 22π3C C ⇒==⇒-,由余弦定理可知222222cos 12c a b ab C a b ab =+-=++=, 222a b ab +≥Q ,1223ab ab ab ∴≥+=4ab ⇒≤,当且仅当a b =时取等号,max 113sin 43222S ab C ∴==⨯⨯=,本题正确结果3. 三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,3cos 5A =,π4B =,2b =,(1)求a 的值; (2)求sin C .【答案】(1)85a =;(2)7210.【解析】(1)因为3cos 5A =,π4B =,2b =,所以4sin 5A =,2sin 2B =,由正弦定理可得24sin sin 252a b a A B =⇒=,85a ∴=. (2)[]sin sin π()sin()sin cos cos sin C A B A B A B A B =-+=+=+ 423272525210=⋅+⋅=. 18.(12分)在中,分别是角,,的对边,且.(1)求的值; (2)若,且,求的面积.【答案】(1)52;(2)3257. 【解析】(1)由正弦定理及,有,所以,又因为,,所以,因为,所以2cos 3B =, 又,所以25sin 1cos 3B B =-=,sin 5tan cos 2B B B ==. (2)在中,由余弦定理可得2224323b ac ac =+-=,又,所以有2967c =,所以的面积为21965325sin sin 27S ac B c B ===⨯=. 19.(12分)如图:在平面四边形ABCD 中,已知πB D ∠+∠=,且7AD CD ==,5AB =,3BC =.(1)求D ∠;(2)求四边形ABCD 的面积.【答案】(1)π3D =;(2) 【解析】(1)在ACD △中,由余弦定理得222222cos 77277cos AC AD CD AD CD D D =+-⨯⋅=+-⨯⨯9898cos D =-.在ABC △中,由余弦定理得:222222cos 53253cos AC AB BC AB BC B B =+-⨯⋅=+-⨯⨯=3430cos B -. ∴9898cos 3430cos D B -=-,∵πB D +=,∴cos cos(π)cos B D D =-=-, ∴9898cos 3430cos D D -=+,∴1cos 2D =,∴π3D =. (2)由(1)得2ππ3π3B =-=, ∴11sin sin 22ABCD ACD ABCS S S AD CD D AB BC B =+=⋅+⋅11775322=⨯⨯+⨯⨯=20.(12分)已知向量()sin ,cos x x =a ,),cosx x =b ,()f x =⋅a b .(1)求函数()f x =⋅a b 的最小正周期;(2)在ABC △中,BC sin 3sin B C =,若()1f A =,求ABC △的周长.【答案】(1)π;(2)4+【解析】(1)()211cos cos cos222f x x x x x x =+=++, ()1sin 262πf x x ⎛⎫=++ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==. (2)由题意可得1sin 22π6A ⎛⎫+= ⎪⎝⎭,又0πA <<,所以ππ13π2666A <+<,所以π5π266A +=,故π3A =. 设角A ,B ,C 的对边分别为a ,b ,c ,则2222cos a b c bc A =+-, 所以2227a b c bc =+-=,又sin 3sin B C =,所以3b c =,故222793c c c =+-,解得1c =. 所以3b =,ABC △的周长为47+.21.(12分)如图,在等腰梯形ABCD 中,AB CD ∥,2(62)CD =+,22BC =,BF BC <,梯形ABCD 的高为31+,E 是CD 的中点,分别以C ,D 为圆心,CE ,DE 为半径作两条圆弧,交AB 于F ,G 两点.(1)求∠BFC 的度数;(2)设图中阴影部分为区域Ω,求区域Ω的面积. 【答案】(1)45BFC ∠=︒;(2)2(31)S Ω=. 【解析】(1)设梯形ABCD 的高为h , 因为3162sin 22h BCD BC ++∠===,180BCD CBF ∠+∠=︒, 所以()62sin sin 180sin CBF BCD BCD +∠=︒-∠=∠= 在CBF △中,由正弦定理,得sin sin CF BCCBF BFC =∠∠622262++ 解得2sin BFC ∠=又()0,180BFC ∠∈︒︒,且CF BC >,所以45BFC ∠=︒.(2)由(1)得45ECF BFC ∠=∠=︒.在BCF △中,由余弦定理推论,得222cos 2BF FC BC BFC BF FC +-∠=⨯,即22(31)430BF BF -+,解得2BF =,23BF =(舍去). 因为112sin 2(62)3122CBF DAG S S BF FC BFC ==⨯⨯∠=⨯⨯=△△, 所以2(31)CBF DAG S S S Ω=+=△△.22.(12分)如图,在平面四边形中,14AB =,3cos 5A =,5cos 13ABD ∠=.(1)求对角线BD 的长;(2)若四边形ABCD 是圆的内接四边形,求BCD △面积的最大值. 【答案】(1)13BD =;(2)1698. 【解析】(1)在ABD △中,56sin sin(π())sin()sin cos cos sin 65ADB A ABD A ABD A ABD A ABD ∠=-+∠=+∠=∠+∠=, 由正弦定理得sin sin BD AB A ADB =∠,即sin 13sin AB ABD ADB⋅==∠. (2)由已知得,πC A =-,所以3cos 5C =-,在BCD △中,由余弦定理可得2222cos 169BC DC BC DC C BD +-⋅⋅==,则2261616955BC DC BC DC BC DC =++⋅⋅≥⋅⋅,即516916BC DC ⋅≤⨯,所以1154169sin 169221658BCD S BC CD C ⎛⎫=⋅⋅⋅≤⨯⨯⨯= ⎪⎝⎭△,当且仅当135BC DC ==第五单元 解三角形(提高篇)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在ABC △中,若2BC =,2AC =,45B =︒,则角A 等于( ) A .30︒ B .60︒C .120︒D .150︒【答案】A【解析】由正弦定理可得sin sin BC AC A B ==1sin 2A =, 因BC AC <,所以45AB <=︒,故A 为锐角,所以30A =︒,故选A .2.若△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2,b =3,c =4,则cos C =( ) A .14-B .14 C .23-D .23【答案】A【解析】a =2,b =3,c =4,根据余弦定理得到22294161cos 2124b ac C ab +-+-===-, 故答案为A .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =,4b =,120A =︒, 则△ABC 的面积为( )A .2BC .4D .【答案】D【解析】因为a =,4b =,120A =︒,所以由余弦定理2222cos a b c bc A =+-,可得2c =,所以△ABC 的面积为1sin 2bc A =.故选D .4.△ABC 中,60B =︒,2b ac =,则△ABC 一定是( ) A .锐角三角形 B .钝角三角形C .等腰三角形D .等边三角形【答案】D【解析】△ABC 中,60B =︒,2b ac =,()2222221cos 20022a cb B ac ac a c ac +-==⇒+-=⇒-=,故得到a c =,故得到角A 等于角C ,三角形为等边三角形.故答案为D .5.钝角△ABC 中,若1a =,2b =,则最大边c 的取值范围是( )A .)B .()2,3C .)D .【答案】A【解析】因为钝角△ABC ,所以222cos 02a b c C ab +-=<,2140c \+-<,c >,又因为3c a b <+=,3c <<,故选A .6.如图,在△ABC 中,45B =︒,D 是BC 边上一点,AD =6AC =,4DC =,则AB 的长为( )A.2 B .36 C .33 D .32【答案】B【解析】由余弦定理可得22246(27)1cos 2C +-==,60C \=?,sin sin AB AC C BQ =,得到36sin 236sin 2C AC AB B ××===,故选B . 7.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75︒,30︒,此时气球的高度是60m ,则河流的宽度是( )A .()24031m B .()18021m C .()3031mD .)12031m【答案】D【解析】由题意可知:105ABC ∠=︒,45BAC ∠=︒,),2(m A ,6060120sin sin30AC C ∴===︒,由正弦定理sin sin BC ACBAC ABC =∠∠,得()sin 120sin 4560212031sin sin105AC BAC BC ABC ∠︒===∠︒,即河流的宽度)12031m ,本题正确选项D .8.已知ABC △的面积为3AC ⋅u ur u u u r ,则角A 的大小为( ) A .60︒ B .120︒ C .30︒ D .150︒【答案】D【解析】cos AB AC c b A ⋅=⋅u u u r u u u r Q ,又ABC △的面积为3AC ⋅u ur u u u r ,13sin cos 2S bc A b c A ∴==⋅,则3tan A =,又(0,π)A ∈,150A ∴=︒,故选D .9.我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设ABC △的三个内角,,A B C所对的边分别为,,a b c ,面积为S ,则“三斜求积”公式为S =若2sin 2sin a C A =,22()6a c b +=+,则用“三斜求积”公式求得ABC △的面积为( )A B C .12D .1【答案】A【解析】2sin 2sin a C A =Q ,22a c a ∴=,2ac =,因为22()6a c b +=+,所以22226a c ac b ++=+,22262642a c b ac +-=-=-=,从而ABC △=,故选A .10.已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,AD 为角A 的角平分线,交BC 于D ,π4B =,AD =2BD =,则b =( )A .BC .3D 【答案】A【解析】因为AD =2BD =,π4B =,由正弦定理得sin sin AD BDB BAD=∠,2sin sin 4BAD =∠,解得1sin 2BAD ∠=, 又由π0,2BAD ⎛⎫∠∈ ⎪⎝⎭,所以π6BAD ∠=,则π3BAC ∠=,所以ππ5ππ3412C =--=,又因为5π12ADC B BAD ∠=+∠=,所以ADC △为等腰三角形,所以b AD ==,故选A . 11.已知在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,60A ∠=︒,2a =,则ABC △周长的取值范围是( )A .(0,6)B .(2⎤⎦C .(4,6]D .2⎡⎤⎣⎦【答案】C【解析】根据三角形正弦定理得到sin sin sin a b c A B C ===变形得到sin ,sin ,2sin sin 3333b Bc C l B C ===++,因为2π3B C +=, 2π2sin sin π223sin 2cos 24sin 3633l B B B B B ⎛⎫⎛⎫∴=++-=++=++ ⎪ ⎪⎝⎭⎝⎭, 2ππ5ππ10,π,,sin ,1366662B B B ⎛⎫⎛⎫⎛⎫⎛⎤∈+∈∴+∈ ⎪ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎭⎝⎦,(]4,6l ∴∈,故答案为C .12.在平面四边形ABCD 中,75A B C ∠=∠=∠=︒,2BC =,则AB 的取值范围是( ) A .()2,6B .()22,62++C .()2,62+D .()62,62-+【答案】D 【解析】由题意,平面四边形ABCD 中,延长BA 、CD 交于点E , ∵∠B =∠C =75°,∴△EBC 为等腰三角形,∠E =30°, 若点A 与点E 重合或在点E 右方,则不存在四边形ABCD , 当点A 与点E 重合时,根据正弦定理sin sin AB BCECB BEC=∠∠,算得62AB =,∴62AB <,若点D 与点C 重合或在点C 下方,则不存在四边形ABCD , 当点D 与点C 重合时∠ACB =30°, 根据正弦定理sin sin AB BCACB BAC=∠∠,算得62AB =,∴62AB >,综上所述,AB 6262AB <.故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,角C 等于60︒,若4,2a b ==,则c 的长为_______. 【答案】23【解析】因为角C 等于60︒,4,2a b ==,所以由余弦定理可得22212cos60164242122c a b ab =+-︒=+-⨯⨯⨯=, 所以23c =,故答案为23. 14.在ABC △中,π3A =,1b =,3a =,则ABC △的面积为______. 【答案】3 【解析】π3A =Q ,1b =,3a =, ∴由正弦定理可得31sin 3B =,解得1sin 2B =,b a <Q ,B A ∴<,π6B ∴=,可得ππ2C A B =--=, 11π3sin 31sin 222ABC S ab C ∴==⨯⨯⨯=△,本题正确结果3. 15.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为______.【答案】【解析】由已知,△ACD 中,∠ACD =15°,∠ADC =150°,∴∠DAC =15°, 由正弦定理得(80sin1504062sin1562AC ︒==︒-,△BCD 中,∠BDC =15°,∠BCD =135°,∴∠DBC =30°, 由正弦定理,sin sin CD BCCBD BDC=∠∠, 所以()sin 80sin15160sin1540621sin 2CD BDC BC CBD⋅∠⨯︒===︒=-∠,△ABC 中,由余弦定理,2222cos AB AC BC AC BC ACB +=∠-⋅⋅()()()()1160084316008432160062622=++-+⨯+⨯-⨯16001616004160020=⨯+⨯=⨯,解得805AB =, 则两目标A ,B 间的距离为,故答案为.16.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin cos cos sin sin sin ab Ca Bb A a A b Bc C+=+-,且3a b +=,则c 的取值范围为_______. 【答案】3,32⎡⎫⎪⎢⎣⎭【解析】因为()sin sin sin cos cos sin C A B A B A B =+=+, 所以由正弦定理可得cos cos a B b A c +=, 又因为sin cos cos sin sin sin ab Ca Bb A a A b Bc C +=+-,所以由正弦定理可得222abcc a b c =+-,即222a b c ab +-=,所以2222()3c a b ab a b ab =+-=+-, 因为3a b +=,所以293c ab =-,因为2924a b ab +⎛⎫≤= ⎪⎝⎭, 当且仅当32a b ==时取等号,所以27304ab -≤-<,所以99394ab ≤-<,即2994c ≤<,所以332c ≤<,故c 的取值范围为3,32⎡⎫⎪⎢⎣⎭.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在ABC V 中,45,10B AC ∠=︒=25cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长. 【答案】(1)32;(2)13.【解析】(1)(0,π)C ∈Q ,25sin 1cos C C ∴=-=, 310sin sin(π)sin cos cos sin A B C B C B C =--=⋅+⋅=, 由正弦定理可知中:sin 32sin sin sin BC AC AC ABC A B B⋅=⇒==. (2)由余弦定理可知: 22252cos 10182103225AB AC BC AC BC C =+-⋅⋅=+-⨯⨯⨯=,D 是AB 的中点, 故1BD =,在CBD △中,由余弦定理可知:2222cos 1812321132CD BC BD BC BD B =+-⋅⋅=+-⨯⨯⨯=. 18.(12分)已知ABC V 的内角,,A B C 的对边分别为,,a b c ,若2sin 2sin sin B A C =. (1)若2a b ==,求cos B ;(2)若90B ∠=︒且2a =,求ABC V 的面积. 【答案】(1)14;(2)2. 【解析】2sin 2sin sin B A C =Q ,由正弦定理可得22b ac =,(1)21a b c ==∴=Q ,,由余弦定理222cos 2a c b B ac +-=,可得1cos 4B =.(2)90B ∠=︒Q ,由勾股定理可得22222()02b a c ac a c a c =+=⇒-=⇒==,1122222ABC S ac ∴==⋅⋅=△.19.(12分)如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(1)求sin ABD ∠的值;(2)若2CD =,且CD BC >,求BC 的长. 【答案】(1)6;(2)1BC =. 【解析】(1)在ABD △中,由正弦定理,得sin sin AD BDABD A=∠∠.因为60,3,6A AD BD ∠=︒==,所以36sin sin sin 606AD ABD A BD ∠=⨯∠=⨯︒=. (2)由(1)可知,6sin ABD ∠=, 因为90ABC ∠=︒,所以()6cos cos 90sin CBD ABD ABD ∠=︒-∠=∠=. 在BCD △中,由余弦定理得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==,所以264626BC BC =+-⨯⨯, 即2320BC BC -+=,解得1BC =或2BC =. 又CD BC >,则1BC =.20.(12分)已知a ,b ,c 分别是ABC V 内角A ,B ,C 的对边.角A ,B ,C 成等差数列,sin A ,sin B ,sin C 成等比数列.(1)求sin sin A C 的值;(2)若2a =,求ABC V 的周长. 【答案】(1)3sin sin 4A C?;(2)ABC V 的周长为32. 【解析】(1)角A ,B ,C 成等差数列,2B A C ∴=+,即60B =︒,sin ,sin sin A B C Q ,成等比数列,2233sin sin sin 4A CB 骣琪\?==琪桫. (2)由(1)可知2sin sin sin A C B ?,即2ac b =, 由余弦定理可得2222cos60b a c ac =+-?, 化简得2()0a c -=,即2a c ==,2b ac ==, 32a b c \++=,因此ABC V 的周长为32.21.(12分)某市欲建一个圆形公园,规划设立,,,四个出入口(在圆周上),并以直路顺次连通,其中,,的位置已确定,,(单位:百米),记,且已知圆的内接四边形对角互补,如图所示.请你为规划部门解决以下问题:(1)如果,求四边形的区域面积;(2)如果圆形公园的面积为28π3万平方米,求的值.【答案】(1);(2)12或17. 【解析】(1)∵πcos cos ADC ABC ADC θ∠+∠=∠=-,, 在和中分别使用余弦定理得:,得1cos 7θ=, ∴43sin sin 7ADC θ∠==, ∴四边形的面积()1sin 2ABC ADC S S S BA BC DA DC θ=+=⋅+⋅△△ ()14326448327=⨯+⨯⨯=. (2)∵圆形广场的面积为28π3,∴圆形广场的半径2213R =,在中由正弦定理知:4212sin sin 3AC R θθ==, 在中由余弦定理知:,∴2421sin 4024cos θθ⎛⎫=- ⎪ ⎪⎝⎭,化简得,解得1cos 2θ=或1cos 7θ=. 22.(12分)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,π02B <<,3b ,22ac +-1sin sin tan 12A CB =. (1)求内角B 的大小;(2)求(2)(2)a c b a c b +++-的最大值.【答案】(1)π6B =(2【解析】(1)b =Q 221sin sin tan 12a c A C B +-=,222sin sin tan a c A C B b ∴+-=,即222sin sin tan a c b A C B +-=,由余弦定理得2cos sin sin tan ac B A C B =,2tan sin sin cos ac B A C B∴=,由正弦定理得222tan cos sin b BBB =,即222cos sin tan b B B B =,231cos sin 6B B ∴=,231sin 6sin B B ∴-=,即326sin sin 10B B +-=, 变形得2(2sin 1)(3sin 2sin 1)0B B B -++=,解得1sin 2B =, π02B <<Q ,∴π6B =.(2)b =Q π6B =,∴由余弦定理得22π12cos 612a c ac +-=,化简得22112a c +=,21()(212a c ac ∴+-+=,2()4a c ac +≤Q ,(2ac ∴-≥,2()(2a c ac ∴+-,112≤,2()a c ∴+,22(2)(2)()4a c b a c b a c b ∴+++-=+-≤a c =时等号成立,∴(2)(2)a c b a c b +++-。