2020年六年级数学培优试题
2020年六年级下册数学思维培优训练及答案
8.甲、乙、丙三队要完成 , 两项工程, 工程的工作量是 工程工作量再增加 ,如 果让甲、乙、丙三队单独做,完成 工程所需要的时间分别是 天, 天, 天.现在
让甲队做 工程,乙队做 工程,为了同时完成这两项工程,丙队先与乙队合做 工程若 干天,然后再与甲队合做 工程若干天.问丙队与乙队合做了多少天? 【答案】 解: 三队合作完成两项工程所用的天数为:
9.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程要 12 天,二队完成 乙工程要 15 天;在雨天,一队的工作效率要下降 ,二队的工作效率要下降 .结果 两队同时完成工作,问工作时间内下了多少天雨?
【答案】 解:原来一队比二队的工作效率高:
,
提高后的工作效率二队比一队高:
=
= , 则 3 个晴天 5 个雨天,两队的工作进度相同,共完成: ,
(4)由(3)中的计算可得:
;
,,
。
4.已知 x、y 为有理数,现规定一种新运算“※ ”,满足 x※ y=xy+1. (1)求 3※ 4 的值; (2)求(2※ 4)※ (﹣3)的值; (3)探索 a※ (b﹣c)与(a※ c)的关系,并用等式表示它们. 【答案】(1)解:3※ 4=3×4+1=13 (2)解:(2※ 4)※ (﹣3)=(2×4+1)※ (﹣3)=9※ (﹣3)=9×(﹣3)+1=﹣26 (3)解:∵ a※ (b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1, a※ c=ac+1. ∴ a※ (b﹣c)=a※ b﹣a※ c+1 【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.
y 千克酒精,溶液浓度变为 50%,即 解得再加入酒精的质量。
数学小学六年级小升初质量培优试题测试题(答案)
数学小学六年级小升初质量培优试题测试题(答案)一、选择题1.某校园长240米、宽180米,把平面图画在一张只有3分米长、2分米宽的长方形纸上,那么选择( )作比例尺比较合适.A.1:100 B.1:1000 C.1:2000 D.1:50002.已知三角形ABC是直角三角形,点A用数对表示是(4,5),点B用数对表示是(7,5),那么点C用数对表示不可能是()。
A.(9,5)B.(4,6)C.(4,2)3.甜甜在计算一道除法算式时,把除以8算成了乘8,结果得49,正确的结果是()。
A.64 B.118C.1144D.494.一个三角形,三个内角度数的比是1∶2∶3,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.为了保证交通安全,南通市政府规定:自2020年9月1日起,驾乘电瓶车必须佩戴安全头盔。
此规定引发了头盔“抢购潮”,某商场8月份卖出头盔800个,比7月份增长了60%,7月份卖出头盔多少个?如果设7月份卖出头盔x个,下列方程正确的是()。
A.x-60%x=800 B.60%x=800 C.x÷60%=800 D.x+60%x=800 6.涛涛用棱长是1厘米的正方体摆成一个物体,下图分别是他从前面、右面和上面看到的图形。
涛涛摆成的这个物体的体积是()。
A.4立方厘米B.5立方厘米C.6立方厘米7.x、y是两个变化的量,如果x3(0)=≠yy,在下面的表达中错误的是()。
A.x与y成正比例关系B.其图像是条直线C.y=3x D.若x×5,则y×58.下面各题中的两种相关联的量,成反比例关系的是()。
A.圆柱的体积一定,圆柱的底面半径和高B.汽车行驶的速度一定,时间和路程C.平行四边形的面积一定,它的底和高9.朱小刚给杂志社审稿,获得稿费4800元。
按照规定,超过800元的部分应繳纳5%的个人所得税,他实际可拿到()元。
A .240B .4600C .3800D .456010.一个长方体刚好切成3个相同的正方体,表面积增加了36dm 2,原来长方体的体积是( )dm 3。
2020年六年级数学培优试题
2020年六年级数学培优试题一、培优题易错题1.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2-121日上午10时,悉尼时间是________.(2)上海、纽约与悉尼的时差分别为________(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数).(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【答案】(1)12(2)-2,-14(3)解:10时45分+14时55分+12时=37时40分.故飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40【解析】【解答】(1)10+(+2)=12时,即当上海是10月1日上午10时,悉尼时间是12时.( 2 )12-10=2;-12-2=-14;故上海、纽约与悉尼的时差分别为-2,-14.【分析】(1)根据表格得到悉尼时间是10+(+2);(2 )由表格得到上海与悉尼的时差是2,纽约与悉尼的时差-12-2;(3)根据题意得到10时45分+14时55分+12时,得到飞机降落上海浦东国际机场的时间.2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
2020北师大版小学数学六年级上册培优试题附答案(全册)
(),周长扩大到原来的(),面积扩大到原来的
()。
二、我会选。(每题2分,共14分)
1.一个圆的半径是2m,那么它的周长和面积相比,()。
A.面积大B.周长大
C.同样大D.无法比较
2.把一张圆形纸片沿半径平均分成若干份,拼成一个近似的长方
形,其周长与圆的周长相比,()。
式用字母表示是()。
2.画圆时,圆规两脚之间叉开得越大,画出的圆越();如果
圆规两脚间的距离为3cm,所画圆的面积为() cm2,周
长为()cm。
3.将2个大小不同的圆拼成组合图形,这个图形至少有()条
对称轴,最多有()条对称轴。
4.用一根长6.28m的绳子围成一个圆,这个圆的半径是()m,
面积是()m2。
A.等于圆的周长
B.大于圆的周长
7/76
C.小于圆的周长
D.无法比较
2的图形是()。3.面积是12.56 cm
4.在圆形花坛周围铺1m宽的小路,就是大圆的()比小圆的
()大1m。
A.直径直径B.半径半径
C.周长周长D.直径半径
5.把一张周长是25.12 dm的圆形纸片沿直径剪成两个半圆形,每
个半圆形的周长是() dm。
2.画一画。
(1)画一个半径是2 cm的圆,并用字母标出圆心、半径和直径。
3/76
(2)生活中许多美丽的图案都是轴对称图形,下面的轴对称图形各
有几条对称轴?写一写,并画出来。
①②
()条()条
③④
()条()条
(3)下面的图形都是由圆组成的,分别画出它们的对称轴。
3.按要求做一做。
4/76
(1)如图,作其关于虚线a的轴对称图形。
2020年六年级上册数学培优材料
2020年六年级上册数学培优材料一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。
2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额. 4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.6.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.7.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4-6-1-2.5+4.5+2(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.8.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成?【答案】解:===(天)答:要用天才能完成。
六年级数学培优试题含详细答案
六年级数学培优试题含详细答案一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额.4.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.5.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。
2020年六年级下册数学思维培优训练及答案(1)
2020年六年级下册数学思维培优训练及答案(1)一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x代表的数字是________,此时按游戏规则填写空格,所有可能出现的结果共有________种.【答案】2;6【解析】【解答】根据题意知,x<4且x≠3,则x=2或x=1,∵x前面的数要比x小,∴x=2,∵每一行从左到右、每一列从上到下分别依次增大,∴9只能填在右下角,5只能填右上角或左下角,5之后与之相邻的空格可填6、7、8任意一个,余下的两个数字按从小到大只有一种方法,∴共有2×3=6种结果,故答案为:2,6【分析】根据题意得到x=2或x=1,由每一行从左到右、每一列从上到下分别依次增大,得到x只能=2,9只能填在右下角,5只能填右上角或左下角,得到结果.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.用“⊕”定义一种新运算:对于有理数a和b,规定a⊕b=2a+b,如1⊕3=2×1+3=5 (1)求2⊕(﹣2)的值;(2)若[()⊕(﹣3)]⊕ =a+4,求a的值.【答案】(1)解:原式=2×2+(﹣2)=2(2)解:根据题意可知:2[(a+1)+(﹣3)]+ =a+4,2(a﹣2)+ =a+4,4(a﹣2)+1=2(a+4),4a﹣8+1=2a+8,2a=15,a= .【解析】【分析】(1)根据定义的新运算,进行计算。
2020年六年级数学培优试题
2020年六年级数学培优试题一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.3.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.4.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?【答案】解:甲中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克);1千克乙中酒精:1×50%=0.5(千克),盐:1×10%=0.1(千克);0.5÷2=0.25(千克),0.1÷2=0.05(千克),0.1+0.25=0.35(千克),0.3+0.05=0.35(千克)答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额. 2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
小学数学六年级小升初复习培优试卷(含答案解析)
小学数学六年级小升初复习培优试卷(含答案解析)一、选择题1.某校园长240米、宽180米,把平面图画在一张只有3分米长、2分米宽的长方形纸上,那么选择( )作比例尺比较合适.A.1:100 B.1:1000 C.1:2000 D.1:50002.一个正方体木块,各个面上分别写上A、B、C、D、E、F这六个字母,A的对面是F,B 的对面是E,C的对面是D。
这个木块如图放置后按剪头所示方向滚动,滚动到最后一格时,木块上方是()。
A.字母A B.字母B C.字母C D.字母F3.某人从甲地到乙地需要13小时,他走了15小时,还有100米没有走,他已经走了多少米?正确的算式是().A.100÷(13-15)B.100÷(1-13)×15C.100÷(13-15)×15D.100×(13-15)4.一个三角形任意一条边上的高都是它的对称轴,这个三角形是()三角形。
A.等边B.等腰C.直角D.钝角5.为了保证交通安全,南通市政府规定:自2020年9月1日起,驾乘电瓶车必须佩戴安全头盔。
此规定引发了头盔“抢购潮”,某商场8月份卖出头盔800个,比7月份增长了60%,7月份卖出头盔多少个?如果设7月份卖出头盔x个,下列方程正确的是()。
A.x-60%x=800 B.60%x=800 C.x÷60%=800 D.x+60%x=800 6.一个立体图形从上面看是,右面看是,前面看是,这个立体图形是由()个小正方体搭成的.A.6 B.7 C.8 D.97.统计学校人数发现,女生人数比男生人数少10%,已知男生共680人。
下列算式中计算全校人数错误的是()。
A.2×680-(680×10%)B.680×(1+1-10%)C.680×(1-10%)+680 D.680×(1+10%)+6808.如果正方体、圆柱、圆锥的底面积相等,高也相等。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。
【解析】【分析】溶液的浓度=溶质的质量÷溶液的质量,溶质的质量=溶液质量×浓度。
根据计算方法分别表示出两个容器中溶质的质量和混合后的浓度,得到等式后用十字交叉法证明这个等式即可。
3.甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的倍.将克甲瓶盐水与克乙瓶盐水混合后得到浓度为的新盐水,那么甲瓶盐水的浓度是多少?【答案】解:设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
100×3x+300x=(100+300)×15%600x=60x=0.10.1×3=0.3=30%答:甲瓶盐水的浓度是30%。
【解析】【分析】设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。
等量关系:甲瓶水盐的质量+乙瓶水盐的质量=混合后盐的质量。
2020年六年级数学培优试题
2020年六年级数学培优试题一、培优题易错题1.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表示).【答案】55;(n+1)2+n【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;第3个图形共有小正方形的个数为4×4+3;…;则第n个图形共有小正方形的个数为(n+1)2+n,所以第6个图形共有小正方形的个数为:7×7+6=55.故答案为:55;(n+1)2+n【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【答案】(1)-4π(2)解:①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π(3)解:设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.4.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.5.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=________.(2)若x△7=2003,则x=________.【答案】(1)11(2)2000【解析】【解答】(1)10△3=10-11+12=11;(2)∵x△7=2003,∴x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003,解得x=2000.【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由10△3列出算式,再根据有理数加减法法则,即可算出答案;(2)根据定义新运算的计算方法,由x△7=2003,列出方程,求解即可。
2.对于实数a、b,定义运算:a▲b= ;如:2▲3=2﹣3= ,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]=________.【答案】1【解析】【解答】解:根据题意得:2▲(﹣4)=2﹣4= ,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]= ×16=1,故答案为:1【分析】先利用定义计算括号中的值,再进行计算即可.在利用新运算的时候需要先判断两个数的大小关系,根据其选择算式.3.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
2020年六年级上册数学培优试题
2020年六年级上册数学培优试题一、培优题易错题1.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。
(1)2★5;(2)(-2)★(-5).【答案】(1)解:2★5=2×5-2-52+1=-16(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
2020年六年级数学上册培优试卷
2020年六年级数学上册培优试卷一、培优题易错题1.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22-12=3,则3就是智慧数;22-02=4,则4就是智慧数.从0开始第7个智慧数是________ ;不大于200的智慧数共有________ .【答案】8;151【解析】【解答】解:(1)首先应该先找到智慧数的分布规律.①∵02-02=0,∴0是智慧,②因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,③因为(n+2)2-n2=4(n+1),所以所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数.由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,从5起,依次是5,7,8; 9,11,12; 13,15,16; 17,19,20…即按2个奇数,一个4的倍数,三个一组地依次排列下去.∴从0开始第7个智慧数是:8;故答案为:8;( 2 )∵200÷4=50,∴不大于200的智慧数共有:50×3+1=151.故答案为:151.【分析】根据题意先找到智慧数的分布规律,由平方差公式(a+b)(a-b)=a2-b2,因为2n+1=(n+1)2-n2,所以所有的奇数都是智慧数,所有4的倍数也都是智慧数,而被4除余2的偶数,都不是智慧数;由此可知,最小的智慧数是0,第2个智慧数是1,其次为3,4,得到从0开始第7个智慧数是8.2.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(________,________),B→C(________,________),C→________(+1,﹣2);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?【答案】(1)+3;+4;+2;0;D(2)解:P点位置如图1所示;(3)解:如图2,根据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为:1+4+2+1+2=10(4)解:由M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),所以,5﹣a﹣(3﹣a)=2,b﹣2﹣(b﹣4)=2,所以,点A向右走2个格点,向上走2个格点到点N,所以,N→A应记为(﹣2,﹣2)【解析】【解答】解:(1)图中A→C(+3,+4),B→C(+2,0),C→D(+1,﹣2);故答案为:(+3,+4),(+2,0),D;【分析】(1)根据向上向右走均为正,向下向左走均为负确定数据即可;(2)根据所给的路线确定点的位置即可;(3)根据表示的路线确定长度相加可得结果;(4)观察点的变化情况,根据(1)即可确定点走了格数,从而确定结论.3.股民老黄上星期五买进某股票1000股,每股35元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)星期一二三四五每股涨跌+2.4﹣0.8﹣2.9+0.5+2.1(2)本周内最高价是每股多少元?最低价每股多少元?(3)根据交易规则,老黄买进股票时需付0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果老黄在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:(2)解:本周内最高价是每股37.4元,最低价每股33.7元(3)解:买入总金额=1000×35=35000元;买入手续费=35000×0.15%=52.5元;卖出总金额=1000×36.3=36300元;卖出手续费=36300×0.15%=54.45元;卖出交易税=36300×0.1%=36.3元;收益=36300﹣(35000+52.5+54.45+36.3)=1156.75元【解析】【分析】(1)根据表中的数据,列式计算,就可求出星期四收盘时每股的价格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的
过程中能否相遇。 若能,求出发多长时间才能相遇;若不能,说明理由.
【答案】(1)解:设男生有 x 人,女生有(x+70)人,
由题意得:x+x+70=490,
解得:x=210,
则女生 x+70=210+70=280(人).
【答案】 解:每人每天割草:
,
(名)。
答:共有 20 名学生。 【解析】【分析】 有 12 人全天都在甲地割草,设有人上午在甲地,下午在乙地割草.由
于这人在下午能割完乙地的草(甲地草的 ),所以这些人在上午也能割甲地 的草,所以
12 人一天割了甲地 的草,这样就可以求出每人每天割草量,用全部草量除以每人每天的 割草量即可求出学生总数。
=
=
=1(天) 6-1=5(天) 答:当甲队撤出后,乙、丙两队又共同合修了பைடு நூலகம்5 天。
【解析】【分析】甲队撤出,乙和丙一直修了 6 天,用两队的工作效率乘 6 求出乙、丙合
修的工作量,用 1 减去乙、丙合修的工作量求出甲完成的工作量,用甲完成的工作量除以 甲的工作效率即可求出甲的工作时间,用 6 减去甲的工作时间即可求出甲撤出后乙丙合修 的时间。
数,进而求出甲独做需要的天数。用总工作量除以工作效率和即可求出合做完成的时间。
8.有一条公路,甲队独修需 10 天,乙队独修需 12 天,丙队独修需 15 天.现在让 3 个队 合修,但中途甲队撤出去到另外工地,结果用了 6 天才把这条公路修完.当甲队撤出后, 乙、丙两队又共同合修了多少天才完成?
【答案】 解:
9.甲、乙两项工程分别由一、二队来完成.在晴天,一队完成甲工程要 12 天,二队完成 乙工程要 15 天;在雨天,一队的工作效率要下降 ,二队的工作效率要下降 .结果 两队同时完成工作,问工作时间内下了多少天雨?
【答案】 解:原来一队比二队的工作效率高:
,
提高后的工作效率二队比一队高:
=
= , 则 3 个晴天 5 个雨天,两队的工作进度相同,共完成:
【解析】【分析】由于交换前后两容器中溶液的重量均没有改变,而交换一定量的硫酸溶 液其目的是将原来两容器中溶液的浓度由不同变为相同,而且交换前后两容器内溶液的重 量之和也没有改变,根据这个条件可以先计算出两容器中的溶液浓度达到相等时的数值, 从而再计算出应交换的溶液的量。
5.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为 的盐水 毫升;乙容器中 有清水 毫升;丙容器中有浓度为 的盐水 毫升.先把甲、丙两容器中的盐水各 一半倒入乙容器搅匀后,再把乙容器中的盐水 毫升倒入甲容器, 毫升倒入丙容 器.这时甲、乙、丙容器中盐水的浓度各是多少? 【答案】 解:列表如下:
2020 年六年级数学培优试题
一、培优题易错题
1 . “△ ” 表 示 一 种 新 的 运 算 符 号 , 已 知 : 2△ 3=2 ﹣ 3+4 , 7△ 2=7 ﹣ 8 , 3△ 5=3 ﹣ 4+5 ﹣ 6+7,…;按此规则,计算:
(1)10△ 3=________. (2)若 x△ 7=2003,则 x=________. 【答案】(1)11 (2)2000 【解析】【解答】(1)10△ 3=10-11+12=11;(2)∵ x△ 7=2003, ∴ x-(x+1)+(x+2)-(x+3)+(x+4)-(x+5)+(x+6)=2003, 解得 x=2000. 【分析】(1)首先弄清楚定义新运算的计算法则,从题目中给出的例子来看,第一个数表 示从整数几开始,后面的数表示几个连续整数相加减,根据发现的运算规则,即可由 10△ 3 列出算式,再根据有理数加减法法则,即可算出答案; (2)根据定义新运算的计算方法,由 x△ 7=2003,列出方程,求解即可。
【解析】【分析】 根据“甲按规定时间可提前 2 天完成,乙则要超过规定时间 3 天才能完
成.如果甲、乙合做 2 天,剩下的由乙独做,那么刚好在规定时间内完成”,可知甲做 2 天
的工作量等于乙做 3 天的工作量,所以完成这项工作甲、乙所用的时间比是 . 另外,
由于甲、乙单独做,乙用的时间比甲多
天,这样就可以先求出乙独做需要的天
6.一项工程,甲独做 天完成,甲 天的工作量,乙要 天完成.两队合做 天后由乙队 独做,还要几天才能完成?
【答案】 解:乙的工作效率:
,
=
= (天)
答:还要 天才能完成。 【解析】【分析】用甲的工作效率乘 3 再除以 4 即可求出乙的工作效率,用总工作量减去 两队合作 2 天的工作量即可求出还剩的工作量,还剩的工作量由乙来做,用剩下的工作量 除以乙的工作效率即可求出还需要的时间。
4.甲、乙两只装满硫酸溶液的容器,甲容器中装有浓度为 的硫酸溶液 600 千克,乙容 器中装有浓度为 的硫酸溶液 400 千克.各取多少千克分别放入对方容器中,才能使这 两个容器中的硫酸溶液的浓度一样? 【答案】 解:甲容器硫酸:600×8%=48(千克), 乙容器硫酸:400×40%=160(千克), 混合后浓度:(48+160)÷(600+400)=20.8%, 应交换溶液的量: 600×(20.8%-8%)÷(40%-85) =600×0.128÷0.32 =240(千克) 答:各取 240 千克放入对方容器中, 才能使这两个容器中的硫酸溶液的浓度一样。
7.打印一份书稿,甲按规定时间可提前 2 天完成,乙则要超过规定时间 3 天才能完成.如 果甲、乙合做 2 天,剩下的由乙独做,那么刚好在规定时间内完成.甲、乙两人合做需要 几天完成?
【答案】 解:乙独做需要的天数:
( 天 ) , 甲 独 做 需 要 : 15-5=10
(天), 合做需要:
(天)。
答:甲、乙两人合做需要 6 天完成。
故女生得满分人数:
(人)
(2)解:不能; 假设经过 x 分钟后,1 号与 10 号在 1000 米跑中能首次相遇,根据题意得:
解得
又∵ ∴ 考生 1 号与 10 号不能相遇。 【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根 据题意表达出 1 号跟 10 号的速度,两位若相遇,相减的路程为 400 米,得出的时间为 4.8, 但是 4.8 分钟大于 3 分钟,所以两位在测试过程中不会相遇。
,
5÷ =10(天) 答:工作时间内下了 10 天雨。
【解析】【分析】先表示出原来两队的工作效率,然后计算出工作效率下降后两人的工作 效率,写出前后工作效率差的比,化简后确定 3 个晴天和 5 个雨天的工作进度是相同的, 然后计算出 3 个雨天与 5 个晴天完成的工作量,再求出下雨的天数即可。
10.几个同学去割两块草地的草,甲地面积是乙地面积的 4 倍,开始他们一起在甲地割了 半天,后来留下 12 人割甲地的草,其余人去割乙地的草,这样又割了半天,甲、乙两地的 草同时割完了,问:共有多少名学生?
3.下列图表是 2017 年某校从参加中考体育测试的九年级学生中随机调查的 10 名男生跑 1000 米和 10 名女生跑 800 米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,
男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分?
2.某工厂一周计划每天生产电动车 80 辆,由于工人实行轮休,每天上班人数不同,实际 每天生产量与计划量相比情况如表(增加的为正数,减少的为负数):
日期 一 二 三 四 五 六 日 增减数/辆 +4 -1 +2 -2 +6 -3 -5 (1)生产量最多的一天比生产量最少的一天多生产多少辆电动车? (2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆? 【答案】(1)解:生产量最多的一天比生产量最少的一天多生产 6-(-5)=6+5=11 辆; (2)解:总产量 4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561 辆, 比原计划增加了,增加了 561-560=1 辆. 【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最 少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产 6-(-5) 辆;(2)根据题意总产量是 80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再 由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了 的值.
甲
乙
浓度
溶液 浓度
溶液
开始
第一次
第二次
开始 第一次
丙 浓度
溶液
第二次
答:这时甲容器盐水浓度是 27.5%,乙容器中浓度为 15%,丙容器中浓度为 17.5%。 【解析】【分析】在做有关浓度的应用题时,为了弄清楚溶质质量、溶液质量的变化,尤 其是变化多次的,常用列表的方法,使它们之间的关系一目了然。浓度=盐的质量÷盐水质 量×100%,盐的质量=盐水质量×浓度。