抽屉原理 (2)
六年级奥数 第30讲 抽屉原理(2)
第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例1、幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。
某班有52名学生。
问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。
抽屉原理(2)
重点、难点
教学重点:经历“抽屉原理”的探究过程,会用有余数的除法解决“抽屉原理”的实际问题。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教法学法
运用启发式和问题目标教学法
教具学具
备课专用稿纸
课题
抽屉原理(2)
总第27时
主备教师
崔荷红
备课时间
课型
新授
授课教师
授课时间
授课班级
教学目标
知识与技能:通过猜测、验证、观察、分析等数学活动,发现规律,建立数学模型,渗透“建模”思想。会用“抽屉原理”解决实际问题。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
小黑板
教学过程
学生活动
时间
一、复习引入
1.三个小朋友同行,其中必有两个小朋友性别相同。为什么?
2.你们13个人中至少有几个人属相相同。为什么?
3.我们班共55人,至少几个人的属相相同?为什么?
二、探究新知
学习例2
1.把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?学生动手摆一摆,说一说。
2.汇报思维过程。
(1)枚举法:根据摆放情况:有(5,0),(4,1),(3,2)三种情况。
(2)假设法:如果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
(3)5÷2=2……1(至少放2+1本)不难得出,总有一个抽屉至少放进3本。
3.自主探究,合作交流如果把7本书放进2个抽屉会有什么情况呢?9本呢?
第一讲 抽屉原理(二)
抽屉原理(二)把所有整数按照除以某个自然数m 的余数分为m 类,叫做m 的剩余类或同余类,用[0],表示. 每一个类含有无穷多个数,例如中含有[1]m −[1],[2],[3],...,[1]1,21m m ++3m 1,1+,,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n +1个自然数中,总有两个自然数的差是n 的倍数.1. 证明:任取8个自然数,必有两个数的差是7的倍数.2. 求证: 从47个正整数中,一定可以找到两个正整数的差是46的倍数.3. 求证: 存在正整数使得. i N47|111i "个4. 从任意13个自然数中,总可以找到若干个数,它们的和是13的倍数. 1213,,,a a a "5. 对于任意的五个自然数,证明其中必有3个数的和能被3整除.6. 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.7. 对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.8. 证明:17个整数中,必可找到5个数,这5个数之和为5的倍数.9. 任给12个整数,证明:其中必存在8个数,将它们用适当的运算符号连起来后运算的结果是3 465的倍数.10. 对任给的63个互异的正整数,试证:其中一定存在四个正整数,仅用减号,乘号和括号将它们适当地组合为一个算式,其结果是1984的倍数.1,,a a "6311. 试证明:在17个不同的正整数中,必定存在若干个正整数,仅用减号、乘号和括号可将它们组成一个算式,算式的结果是21879的倍数。
12. 郑老师和肖同学是足球迷,同时又对趣味数学题感兴趣. 一次在看足球比赛时,肖同学说:我知道红方有20名队员,编号恰好是1到20,,今天上场的11名队员中,一定有一名队员的号码是另一名队员号码的偶数倍。
郑老师听后点点头,接着说:我还知道红队上场队员中每四名队员中,必定有两名队员号码之差是3的倍数。
抽屉原理(二)
抽屉原理(二)【专题导引】在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
【典型例题】【例1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?【试一试】1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?【例2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?【试一试】1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样,当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?【例3】某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?【试一试】1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几位同学订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。
某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?【例4】从1至30中,至少要取出几个不同的数,才能保证其中一定有一个数是3的倍数?【试一试】1、在1,2,3,……,49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?【﹡例5】将400张卡片分给若干名同学,每人都能分到,但都不超过11张,试证明:至少有七名同学得到的卡片的张数相同。
抽屉原理2
至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
例3:盒子里有同样大小的红球和 蓝球各4个。要想摸出的球一定有2 个同色的,最少要摸出几个球? 想一想: 1、在这道题中,什么是“物体”? 什么是“抽屉”?什么是“至少 数 ”? 2、从题目可知,问题相当于求抽屉 原理中的( 物体 )?怎样求?
3
1、如果盒子里有蓝、红、黄球各6个,从盒 子里摸出两个同色的球,至少要摸出几个球?
2、有红色、白色、黑色的筷子各10根混放在 一起,让你闭上眼睛去摸,让你闭上眼睛去摸, (1)你至少要摸出几根才敢保证有两根筷子 是同色的? (2)至少拿几根,才能保证有两双同色的筷 子?为什么?
盒子里有红袜子和黑袜子各6只。要 想摸出的袜子一定能配成一双,最 少要摸出几只? 物体:?只袜子 抽屉:2种颜色 至少数:2
(3)要保证取出的彩球中至少有两个是同 色的,则至少应取出多少个球?
物体:57位同学
抽屉:12个月
57÷12=4……9 4+1=5(人)
2、把15个球放进4个箱子里, 至少有( 4 )个球要放进同 一个箱子里。 物体:15个球
抽屉:4个箱子
15÷4=3……3 3+1=4(个)
3、把红、黄两种颜色的球各6 个放到一个袋子里,任意取出5 个,至少有(3)个同色。
物体:5个球 抽屉:2种颜色
抽屉原理(二)
把4枝笔放进3个笔筒里,不管怎么放,总 有一个笔筒里至少放进2枝笔.
2、把27个苹果放在4个筐,不管怎么放, 总有一个筐里至少放进( )个苹果。
计算绝招
至少数 = 商数 + 1
至少数= 物体数÷抽屉数 +1
要把a个物体放进n个抽屉, 如果a÷n =b …… c
抽屉原理(2)
例1 ①求证:任意25个人中,至少有3个人的属相相同.②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?例2 放体育用品的仓库里有许多足球、排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球,至多拿2个球.问:至少有多少名同学所拿的球种类是完全一样的?例3 一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证①至少有5张牌的花色相同;②四种花色的牌都有;③至少有3张牌是红桃。
例4 平面上给定17个点,如果任意三个点中总有两个点之间的距离小于1,证明:在这17个点中必有9个点可以落在同一半径为1的圆内。
例5 把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17。
例6 在边长为3米的正方形内,任意放入28个点,求证:必有4个点,以它们为顶点的四边形的面积不超过1平方米。
分析与解答根据题目的结论,考虑把这个大正方形分割成面积为1平方米的9个小正方形(如右图)。
例1 平面上有A、B、C、D、E、F六个点,其中没有三点共线,每两点之间任意选用红线或蓝线连接,求证:不管怎样连接,至少存在一个三边同色的三角形。
例2 从同一个小学毕业的同学之间的关系可以分为三个等级:关系密切、一般关系、毫无关系.请你证明在这个学校的17名校友中.至少有三个人,他们之间的关系是同一个等级的。
例3 用黑、白两种颜色把一个2×5(即2行5列)的长方形中的每个小方格都随意染一种颜色.证明:必有两列,它们的涂色方式完全相同。
例4 如果有一个3×n的方格阵列,每一列的三个方格都任意用红、黄、蓝、绿四色之三染成三种不同颜色,问n至少是多少时,才能保证至少有3列的染色方式完全相同。
例5 对一块3行7列的长方形阵列中的小方格的每一格任意染成黑色或白色,求证:在这个长方形中,一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
例6 用黑、白两种颜色将一个5×5的长方形中的小方格随意染色.求证:在这个长方形中一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
抽屉原理(二)— 数论中的抽屉原理
数论中的抽屉原理(组合)一、数论中的抽屉原理& 最不利原则——“和差倍”1. 题型(1)两数之和或两数之差是m(2)两数之和或两数之差是m的倍数2. 解题思路题型(1)根据题意构造抽屉题型(2)根据余数的特征进行分组,构造抽屉二、注意事项1. 相邻两数必互质。
题型一:根据题意构造抽屉1.从2、4、6、…、30这15个偶数中,至少选出多少个数,才能保证其中一定有两个数之和是34 .2.从1 ~ 11这11个自然数中,至少选出多少个数,才能保证其中一定有两个数之和是12 .3.从1 ~ 99这99个自然数中,最多选出多少个数,使得其中每两个数之和都不等于100?4.从1,2,3,4,5,6,7,8,9,10,11,12中最多能选出几个数,使得在选出的数中,每一个数都不是另一个数的2倍。
5.从1 ~ 21这21个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?6.从1 ~ 99这99个自然数中,最多可以取出多少个数,使得其中每两个数之差都不等于5?7.如果在1,2,… …,n中任取19个数,都可以保证其中必有两个数的差是6,那么n最大是多少?8.从1 ~ 50这50个自然数中,至少选出多少个数,才能保证其中必有两个数互质?题型二:根据余数构造抽屉1.在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除。
2.至少取几个数,才能保证一定有两个数的差是7的倍数?3. 1 ~ 17中,至少拿出多少个数才能保证:(1)里面一定有5的倍数?(2)一定有两个数的和是5的倍数?4. 1 ~ 35中,至少拿出多少个数才能保证一定有两个数的和是8的倍数?5.从1至17这17个自然数中取出若干个数,使其中任意两个数的和都不能被5整除.请问:最多能取出多少个数?6.任选7个不同的数,请说明:其中必有2个数的和或者差是10的倍数。
巩固练习1.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差等于4?2.从1 ~ 19这19个自然数中,至少取出多少个数,才能保证其中必有两数的差是4的倍数?3.从1 ~ 25这25个自然数中,至少取出多少个数,才能保证其中必有两数的和是6的倍数?4.从1至30这30个自然数中取出若干个数,使其中任意两个数的和都不能被7整除.请问:最多能取出多少个数?5.在任意的五个自然数中,是否其中必有三个数的和是3的倍数?。
抽屉原理(二)小学数学六年级从课本到奥数举一反三第十周数学广角第2节
答案
小学数学六年级第二学期
解析: 解: 237÷12=19·····9,所以,新生中至少有19+1=20人是同一 年同一个月出生的。
小学数学六年级第二学期
2.有红、黄、蓝、白四种颜色的小球各10个,混合后放在一个不透 明的布袋中,那么,一次至少摸出多少个,才能保证有7个小球的颜 色是相同的?
解析:
解:每次摸出的结果可能是两个球的颜色相同,有3种可能,或 颜色不同,也有3种可能,共6种可能。最不利的情况是每种可能 各出现4次,则再摸一次就能保证有5次摸出的结果相同,6 ×4+1=25,所以,至少需要摸球25次。
小学数学六年级第二学期
6、用数字1、2、3、4、5、6填满一个6×6的方格表,如图所示,每 个小方格只能填其×2正方格的“标示数”,问能否给出一种填法,使任意 两个“标示数”均不相同?如果能,请举出一例,如果不能,请说明 理由。
答案
小学数学六年级第二学期
解析: 解: 6×4+1=25个,所以,一次至少摸出25个,才能保证7个小 球的颜色相同。
小学数学六年级第二学期
3.幼儿园大班有35个小朋友,现在将78件玩具分给小朋友,是否有 小朋友会得到3件或者3件以上的玩具?
答案
小学数学六年级第二学期
解析: 解:78 ÷35=2·······8,所以,一定有小朋友会得到3件或者 三件以上的玩具。
答案
小学数学六年级第二学期
解析:
解: 根据抽屉原理原则二,60÷7=8·····4,所以,至少有9人浏览的地 方完全相同。
小学数学六年级第二学期
小学奥数精讲第十二讲 抽屉原理(二)
第12讲抽屉原理(二)同步练习:1.新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两人取的球相同,由此可知,参加取球的至少有多少人?【答案】16人【解析】两个球的颜色只有15种可能:同色有5种,异色有2510=C 种.由抽屉原理,参加取球的至少有16人.2.一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在阿奇闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则最少要取出多少个球?【答案】10,13【解析】最不利情况下,每种颜色取3个,然后再取1个肯定可以满足要求,所以至少取10个;最不利情况下,把绿球取完,剩下2种颜色每种2个,此时再取1个就满足要求,至少取13个3.口袋中有三种颜色的筷子各10根,那么,(相同颜色的两根筷子为一双)(1)至少取多少根才能保证三种颜色都取到?(2)至少取多少根才能保证有两双颜色不同的筷子?(3)至少取多少根才能保证有两双颜色相同的筷子?【答案】(1)21,(2)13,(3)10【解析】(1)最坏的情况是取完两种颜色,再取1根就满足要求.至少要取102121⨯+=根.(2)最欢的情况是取完一种颜色10根,另两种颜色各1根,再取1根就满足要求.1012113+⨯+=根.(3)两双颜色相同的筷子是4只,最坏的情况是每种颜色取3只,再取一根就满足要求.33110⨯+=根.4.自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点、…、13点牌各一张).洗好后背面朝上放好.一次至少抽取________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取________张牌.【答案】(1)27(2)37【解析】可取红,黑色的1,2,3,4,5,6,7,8,9,10,11,12,13点各2张,共13226⨯=(张),那么再取一张牌,必定和其中某一张牌的点数相同,于是就有2张牌点数和颜色都相同,这是最坏的情况,因此至少要取27张牌,必须保证有2张牌点数,颜色都相同.(2)有以下的搭配:(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13)因而可以取1、3、4、6、7、9、10、12、13这9个数,四种花色的牌都取,9×4=36(张)牌,其中没有3张牌的点数是相邻的.此时取任意1张牌,必然会出现3张牌是相邻的因此,要取37张牌.5.有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【答案】能【解析】根据奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.先用列表法进行搭配.由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计.对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性.将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形.由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数.6.将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【答案】见解析【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数7.从1,2,3,4,…,1994这些自然数中,最多可以取_______个数,能使这些数中任意两个数的差都不等于9.【答案】999【解析】法1:把1994个数每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,……,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.法2:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990 ,共计222个数{}2,11,20,29,,1991 ,共计222个数{}3,12,21,30,,1992 ,共计222个数{}4,13,22,31,,1993 ,共计222个数{}5,14,23,32,,1994 ,共计222个数{}6,15,24,33,,1986 ,共计221个数{}7,16,25,34,,1987 ,共计221个数{}8,17,26,35,,1988 ,共计221个数{}9,18,27,36,,1989 ,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.8.如图,能否在8行8列的方格表的每一个空格中分别填上1,2,3这三个数,使得各行各列及对角线上8个数的和互不相同?并说明理由.【答案】见解析【解析】从问题入手:因为问的是和,所以就从和的种类入手.由1,2,3组成的和中最小为818⨯=,最大的为8324⨯=,8~24中共有17种结果,而8行8列加上对角线共有18个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求.9.在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【答案】68【解析】21223=⨯,因为3的倍数有100333⎡⎤=⎢⎥⎣⎦个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数.于是最少要抽取68个数(即:68张卡片)才可以保证结果.10.某商店举行抽奖活动,在箱子里放有红色、蓝色、黄色小球各100个,若50个同色小球可以换一个布偶,80个同色小球可以换一个零食包,85个同色小球可以换一个模型.每个小球只能换一次奖.小明去抽奖,每次只能从箱子中不放回地随机抽取一个小球,他最少需要抽取__________次才能保证他可以换到每种奖品各一个.【答案】259【解析】①抽光两种颜色,此时再抽50次即保证可以换到,共需250次;②抽光一种颜色,剩下两种各抽79次,此时再抽一次才可换到,共需259次;③每种各84次,此时再抽一次才可换到,共需253次;综上,需要259次才能保证.深化练习11.现有211名同学和四种不同的巧克力.每种巧克力的数量都超过633颗.规定每名同学最多拿三颗巧克力,也可以不拿.若按照巧克力的种类和数量都是否相同分组,则人数最多的一组至少有________名同学.【答案】7【解析】每一名学生可以拿:括号内为该情况发生有几种情况.1,一个不拿(1种情况);2,拿四种糖果中任意一个(4种情况);3.拿两个,都是同种糖果(4种情况);4.拿两个且不同的糖果,随机的(6种情况);5.拿三个,都相同(4种情况);6.拿三个,两个相同(12种情况);7.拿三个都不同的糖果(4种情况);所以一个同学所取的不同种类共有1+4+4+6+4+12+4=35种情况;因为每一种糖都超过633颗,所以第五种情况能够出现,3×211=633,足够分.所以其他六种情况也能够发生.所以,要让最多的那组人数最少就是:211÷35=6…1(余数1);即最多的一组最少为6+1=7人.12.证明:任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.【答案】见解析【解析】考虑如下1+n 个数:7,77,777,……,777 位n ,1777+ 位n ,这1+n 个数除以n 的余数只能为0,1,2,……,1-n 中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相同,不妨设为777 位p 和777 位q (>p q ),那么()777777777000--= 位位位位p q p q q 是n 的倍数,所以n 乘以适当的整数,可以得到形式为()777000- 位位p q q 的数,即由0和7组成的数.13.上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【答案】见解析【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.14.8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字.开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字.【答案】见解析【解析】沿顺时针方向转动圆桌,每次转动一格,使每位小朋友恰好对准桌面上的字条,经过8次转动后,桌面又回到原来的位置.在这个转动的过程中,每位小朋友恰好对准桌面上写有自己名字的字条一次,我们把每位小朋友与自己名字相对的情况看作“苹果”,共有8只“苹果”.另一方面,由于开始时每个小朋友都不与自己名字相对,所以小朋友与自己名字相对的情况只发生在7次转动中,这样7次转动(即7个“抽屉”)将产生8位小朋友对准自己名字的情况,由抽屉原理可知,至少在某一次转动后,有两个或两个以上的小朋友对准自己的名字.15.任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【答案】见解析【解析】把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,第1个数为1a ;前2个数的和为12+a a ;前3个数的和为123++a a a ;……前2008个数的和为122008+++ a a a .如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的和)是2008的倍数.所以结论成立.。
小学六年级奥数第30讲 抽屉原理(二)(含答案分析)
第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
小学四年级奥数抽屉原理(二)例题、练习及答案
抽屉原理(二)这一讲我们讲抽屉原理的另一种情况。
先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子.道理很简单。
如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。
剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。
这个例子所体现的数学思想,就是下面的抽屉原理2.抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。
说明这一原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。
这与多于m×n件物品的假设相矛盾。
这说明一开始的假定不能成立.所以至少有一个抽屉中物品的件数不少于m+1。
从最不利原则也可以说明抽屉原理2。
为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。
这就说明了抽屉原理2。
不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。
即抽屉原理2是抽屉原理1的推广.例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。
也就是说,至少会有一个小朋友得到4件或4件以上的玩具。
例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。
初中数学《抽屉原理(二)》讲义及练习
抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识点拨教学目标第八讲:抽屉原理(二)【例 1】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【解析】 从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【解析】 根有个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件⨯3种6=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件⨯4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.【例 2】 红、蓝两种颜色将一个25⨯方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【例 3】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【解析】 将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【解析】 构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.【巩固】 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【解析】 我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.【例 4】 (北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取 个数,能使这些数中任意两个数的差都不等于9.【解析】 方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数 {}3,12,21,30,,1992,共计222个数 {}4,13,22,31,,1993,共计222个数 {}5,14,23,32,,1994,共计222个数 {}6,15,24,33,,1986,共计221个数 {}7,16,25,34,,1987,共计221个数 {}8,17,26,35,,1988,共计221个数 9,18,27,36,,1989,共计221个数邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取⨯=个数1119999【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【解析】将1~1989排成四个数列:1,5,9,…,1985,19892,6,10,…,19863,7,11,…,19874,8,12,…,1988每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498-÷+=项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出2494996⨯=个数,其中每两个的差不等于4.【例 5】(2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.【解析】把这12个数分成6个组:第1组:1,2,4,8第2组:3,6,12第3组:5,10第4组:7第5组:9第6组:11每组中相邻两数都是2倍关系,不同组中没有2倍关系.选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.【解析】把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.【巩固】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【解析】方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).【巩固】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.【解析】 把这200个数分类如下:(1)1,12⨯,212⨯,312⨯,…,712⨯,(2)3,32⨯,232⨯,332⨯,…,632⨯,(3)5,52⨯,252⨯,352⨯,…,552⨯,…(50)99,992⨯,(51)101,(52)103,…(100)199,以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.【例 6】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【解析】 将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出877123+++=个【例 7】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【解析】 (1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个数在同一抽屉,那么这两个数的差为50.问题得证.(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,6,8,...,98,100),(3,9,15,21,27,...,93,99),(5,7,11,13,17,19,23, (95)97)这三组.第一、二、三组分别有50、17、33个元素.最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于1.【例 8】有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 【解析】将1至49中相乘小于100的两个数,按被乘数分成9组,如下:(1×2)、(1×3)、(1×4)、…、(1×49);(2×3)、(2×4)、(2×5)、…、(2×49);(8×9)、(8×10)、(8 ×11)、(8×12);(9×10)、(9×11).因为每个数只能与左右两个数相乘,也就是每个数作为被乘数或乘数最多两次,所以每一组中最多会有两对数出现在圆圈中,最多可以取出18个数对,共18 ×2=36次,但是每个数都出现两次,故出现了18个数.例如:(10×9)、(9×11)、(1×8)、(8×12)、(12×7)、(7×13)、(13×6)、(6×14)、(14×5)、(5×15)、(15×4)、(4 ×16)、(16 X 3)、(3×17)、(17×2)、(2×18)、(18 ×1)、(1×10).共出现l~18号,共18个孩子.若随意选取出19个孩子,那么共有19个号码,由于每个号码数要与旁边两数分别相乘,则会形成19个相乘的数对.那么在9组中取出19个数时,有19=9×2+1,由抽屉原则知,必有三个数对落入同一组中,这样某个数字会在数对中出现三次(或三次以上),由分析知,这是不允许的.故最多挑出18个孩子.【例 9】要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?【解析】每个盒子不超过5个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5这5种各不相同的个数,共有:1234 5 15÷=,最不利的分法是:装1、2、3、++++=,6115414、5个球的各4个,还剩1个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5个盒子的球数相同.【例 10】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【解析】需先跟学生介绍奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。
六年级上册奥数第30讲 抽屉原理(2)
第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例1、幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。
某班有52名学生。
问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。
《抽屉原理》(二)
(二)
最不利原则
运用抽屉原理解题时,要从最不利的 情况出发,分析问题。只有用最不利 条件下能实现的做法,才可以使这个 任务必能完成。因此,解题时要全面 分析题中条件,找出最不利的因素, 再选用万无一失的方法。
【例1】有红、黄、蓝色手套各10只,最少 要取出多少只才能保证其中有2双颜色不相 同的手套?
【例2】一付扑克牌除了大、小王有4种花色,每 种花色有13张,从中任意抽牌,问至少抽多少张 才能保证有4张牌是同一花色的? 【分析】“除了大、小王”,也就是说被抽取的牌 不包括大、小王。
从最不利的情况考虑:从这付扑克牌中先抽出了 每种花色各3张牌,这时从剩下的4种花色牌中任 意抽一张牌,必能和原有的同花色3张牌凑成了同 一花色4张牌。
(2)一次至少要摸出多少只袜子才能 保证一定有颜色不同的两双袜子? (两只袜子颜色相同即为一双) (2)如果没有颜色不同的两双袜子, 那么最不利情况是成双成对的袜子都 是同一种颜色的,这时最多有9 +1+1+1+1 =13(只)袜子。因此至少 摸出14 只才能保证有两双颜色不同 的袜子。
【解析】:至少摸出11+12 + 2 + 2 +1 = 28(个)零 件才能满足要求。
3.将1 只白袜子、2 只黑袜子、3 只红袜 子、8 只黄袜子和9 只绿袜子放入一个布袋 里。请问:
(1)一次至少要摸出多少只袜子才能保证一 定有颜色相同的两双袜子? (2)一次至少要摸出多少只袜子才能保证一 定有颜色不同的两双袜子? (两只袜子颜色相同即为一双)
【分析】保证有2双颜色不相同的手套,即保证有 两种颜色的手套,每种颜色手套各有一双。 从最不利的情况考虑:第一种颜色10只手套全取 出,还缺少一双同色手套,剩下两种颜色又各取 出了1只。这时在剩下两种颜色手套中任意摸出一 只手套,就可以凑成第二双同色手套。
抽屉原理(2)
抽屉原理(2)抽屉原则(2)如果把m×n+k(k大于等于1小于n)东西放入n个抽屉中,那么必定有一个抽屉里至少有 m+1件东西。
或:如果把n件东西放入到m个抽屉中,则至少有一个抽屉里有m分之n个或 m分之n再加1个东西。
学习例题例1.今年入学的一年级新生中,有181人是1993年出生的,这些新生中,至少有多少人是1993年的同一个月出生的?例2.某区中学生人数是11000人,其中必有多少人是同年同月同日生的?(中学生的年龄为11~20岁)例3.某旅游团一行50人,随意游览甲、乙、丙三地,规定每人至少去一处,最多去三处游览,那么至少有多少人游览的地方完全相同?例4.一副扑克牌(除去大、小王),有四种花色,每种花色都有13张牌。
现在把扑克牌洗匀,那么至少要从中抽出多少张牌,才能保证有4张牌同一花色?例5.六(2)班的同学参加一次数学考试。
满分为100分,全班最低分是75分。
每人得分都是整数,并且班上至少有3人得分相同。
那么,六(2)班至少有多少名同学?例6.袋子里有4种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的的,至少要摸多少次?例7.任意1002个整数中,必有两个整数,它们的和或差是2000的倍数。
例8.有20×20的小方格组成的大正方形。
把数字1~9任意填入各个方格中。
图中有许许多多的“田”字形,把每个“田”字形中的4个数相加,得到一个和数。
在这许许多多的和数中,至少有多少个相同?思考与练习1.参加数学竞赛的210名同学中,至少有多少名同学是同一个月出生的?2.在62个人中,能否找到至少有6个人的属相相同?3.一副扑克牌共有54张,至少从中取出多少张牌,才能保证其中必有3种花色(大王、小王不算花色)?4.六年级(1)班的40名学生中,年龄最大的是13岁,最小的是11岁。
其中必有多少名学生是同年同月出生的?5.(1)有红、黄、蓝、白4色小球各10个,混合放在一个暗盒里。
抽屉原理 (2)
为什么要用 1+ 1呢 ?
能力提高
从()(填最大数)个抽屉中
拿出25个苹果,才能保证一定 能找到一个抽屉,从它当中至 少拿了7个苹果
四、布置作业
作业:第71页练习十三, 第2题、第3题。
数 的 分 解
平均分
平均分
把4支铅笔平均放到3个笔筒里,每 个笔筒放1支,剩下的1支不管放到哪个
笔筒里,总有一个笔筒里至少放2支铅
笔。
•把5枝铅笔放进4个笔筒里呢?
•把6枝铅笔放进5个笔筒里呢?
•把10枝铅笔放进9个笔筒里呢? •把100枝铅笔放进99个笔筒里呢? 你发现了什么?
结论1:
只要放的铅笔数比笔筒的 数量多1 ,不管怎么放,总 有一个笔筒里至少放进2枝铅
至少数:商+1
如果物体数除以抽屉数有余数,
用所得的商加1,就会发现“总有 一个抽屉里至少有商加1个物体”。
“ 鸽巢问题”又称“抽屉原理”,最先
是由19世纪的德国数学家狄利克雷提出来的,
所以又称“狄利克雷原理”,这一原理在解
决实际问题中有着广泛的应用。“抽屉原理”
的应用是千变万化的,用它可以解决许多有
教学目标
在了解简单的鸽巢问题的
基础上,学会用鸽巢原理解决 简单的实际问题。
二、探究新知
(一)例1
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔 筒里至少有2支铅笔
“总有”和“至少” 是什么意思? 为什么 呢?
列 举 法
4支铅笔
(4, 0 ,0) ( 3, 1,0) (2,2,0) (2 , 1,1 )
11÷4=2……3
至少:2+1=3
三、知识应用
(一)做一做
3、5个人坐4把椅子,总有一把椅子 上至少坐2人。为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
教学内容:教材第70、71页的例1、例2
教学目标:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、会用“抽屉原理”解决简单的实际问题。
3、通过操作发展学生的类推能力,形成比较抽象的数学思维。
教学重点:认识“抽屉原理”。
教学难点:灵活运用“抽屉原理”解决实际问题。
教学方法:小组合作,自主探究。
教学准备:若干根小棒,4个纸杯。
教学过程:
一、创设情境,导入新知
老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。
师:象这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。
二、自主学习,初步感知
(一)出示例1:4枝铅笔,3个文具盒。
1、观察猜测
猜猜把4枝铅笔放进3个文具盒中会存在什么样的结果?
2、自主探究
(1)提出猜想:“不管怎么放,总有一个文具盒里至少放进2枝铅笔”。
(2)小组合作操作验证:请拿出铅笔和文具盒小组合作摆一摆、放一放。
(3)交流讨论,汇报。
可能如下:
第一种:枚举法。
用实物摆一摆,把所有的摆放结果都罗列出来。
第二种:假设法。
如果每个文具盒中只放1枝铅笔,最多放3枝。
剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进枝同一个文具盒。
第三种:数的分解。
把4分解成三个数,共有四种情况,(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。
(4)、比较优化。
请学生继续思考:如果把5枝铅笔放进4个文具盒,结果是否一样呢?把100
枝铅笔放进99个盒子里呢?怎样解释这一现象?
师:为什么不采用枚举法来验证呢?
数据较小时可以采用枚举法,也可用假设法直接思考,而当数据较大时,用假设法思考比较简单。
3、引导发现
只要放的铅笔数比盒子的数量多1[3] ,不管怎么放,总有一个盒子里至少放进2枝铅笔。
(二)出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少放进几本书?7本书会怎样呢?9本呢?
1、学生尝试自已探究。
2、交流探究的结果,可能如下:
1)枚举法。
共有3种情况。
在任何一种结果中,总有一个抽屉至少放进3本书
2)假设法。
把5本书“平均分成2份”,5÷2=2…1,如果每个抽屉放进2本书,还剩下1本。
把剩下的这1本放进任何一个抽屉,该抽屉里就有3本书了。
由此可见,把5本书放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进3本书。
同样,7÷2=3…1把7本书放进放进2个抽屉中,不管怎么放,总有一个抽屉里至少放进4本书。
9÷2=4…1把9本书放进放进2个抽屉中,有一个抽屉里至少放进5本书。
3、观察发现
学生讨论交流,发现“总有一个抽屉里至少有几本”只要用“商+1”就可以得到。
4、介绍原理。
师:同学们,你们知道吗?你们的这一发现,在数学里被称之为“抽屉原理”,也叫做“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称为“狄利克雷原理”。
这一原理在解决实际问题中有着广泛的应用,可以用它来解决很多有趣的问题呢。
三、应用原理,解决问题
完成教材第72页“做一做”第1题
四、全课总结,回归生活
1、通过今天的学习你有什么收获?
2、回归生活:你还能举出一些能用抽屉原理解释的生活中的例子吗?。