抽屉原理2练习

合集下载

抽屉原理四色球练习题

抽屉原理四色球练习题

抽屉原理四色球练习题规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1;若除数为零,则“答案”为商抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。

抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有个苹果。

一、基础训练。

1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少有______个苹果。

98÷10=9??82、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少有_______只鸽子。

1000÷50=203、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出______个苹果。

17÷8=2??14、从______个抽屉中拿出25个苹果,才能保证一定能找出一个抽屉,从它当中至少拿出7个苹果。

25÷=6??二、拓展训练。

1、六班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。

王老师说的对吗?为什么÷15=3??186,,87,88,89,90,91,92,93,94,95,96,97,98,99,100十五个数2、从1、2、3??,100这100个数中任意挑出51个数来,证明这51个数中,一定有2个数互质任一个奇数都可以和偶数成互质数50个偶数,任意挑出51个数来必会有奇数与偶数有两个数的差是50??50组若取51个每组可取1个共50个,另一个任意取一个,就能组成差是5051÷50=1??13、圆周上有2000个点,在其上任意地标上0、1、2??、1999,求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999.*2000÷2=19990001999000÷2000*3=4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号中至少有四个信号完全相同。

抽屉原理

抽屉原理

抽屉原理(一)例1:五(1)班学雷锋小组有13人。

教数学的张老师说:“你们这个小组至少有2个人在同一个月过生日。

”你知道张老师为什么这样说吗?练习:某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?例2:五(2)班有43名同学,班上的“图书角”至少要准备多少本课外书,才能保证有的同学可以同时借两本书?练习:曹坤同学在做跳绳的练习,他1分钟至少跳多少下,才能保证他在某一秒钟内至少跳了三次?例3:幼儿园大班有25名小朋友,老师给他们分80颗糖,试说明至少有一名小朋友分到了不少于4颗糖。

例4:每个星期四是学校图书馆多五(2)班开放的日子。

这个星期四,五(2)班共有38人去图书馆办理了借书手续。

已知图书馆共有科技书、文艺书和连环画三类,且每名同学每次可以从图书馆借任意的两本书。

问这38名同学中有多少名同学借的书的种类是一样的?例5:光明小学每天共有560人在学校吃中餐。

某天中午,学校食堂共准备了4个荤菜、3个素菜和2种汤,每个同学都打了一个荤菜、一个素菜和一个汤。

问至少有多少个同学吃的菜是一样的?练习1:学校图书馆有四类图书,规定每个同学最多可以借2本书,在借书的85名同学中,可以保证至少有几个人所借书的类型完全一样的?练习2:一个旅游团一行100人,游览甲乙丙三个景点,每人至少去一处,问至少有多少人游览的地方相同?若每人去两处呢?家庭作业1、我们从大街上随便找来多少人,就可以保证他们中至少有两个属相(指牛、虎、兔、龙……)相同?2、闭上眼睛,从一个装有12个黑球、15个白球、18个红球的盒子里至少取出几个球,才能保证至少取出了一只黑球?3、某校五年级有3个班,一天五年级的5个同学在少年宫相遇,问这5个同学至少有几人是在同一班级?4、37本书分给4个小朋友,那么至少有一个小朋友拿到的书不少于几本?5、某校有366名同学是在1995年出生的,那么其中至少有几个学生的生日在同一天?6、春秋旅行社组织游客去游览长城、兵马俑、华山。

小学奥数精讲第十二讲 抽屉原理(二)

小学奥数精讲第十二讲 抽屉原理(二)

第12讲抽屉原理(二)同步练习:1.新年晚会上,老师让每位同学从一个装有许多玻璃球的口袋中摸出两个球,这些球给人的手感相同,只有红、黄、白、蓝、绿五色之分(摸时,看不到颜色),结果发现总有两人取的球相同,由此可知,参加取球的至少有多少人?【答案】16人【解析】两个球的颜色只有15种可能:同色有5种,异色有2510=C 种.由抽屉原理,参加取球的至少有16人.2.一个袋子中有三种不同颜色的球共20个,其中红球7个,黄球5个,绿球8个.现在阿奇闭着眼睛从中取球,要保证有一种颜色的球不少于4个,则至少要取出多少个球才能满足要求?如果还要保证另一种颜色的球不少于3个,则最少要取出多少个球?【答案】10,13【解析】最不利情况下,每种颜色取3个,然后再取1个肯定可以满足要求,所以至少取10个;最不利情况下,把绿球取完,剩下2种颜色每种2个,此时再取1个就满足要求,至少取13个3.口袋中有三种颜色的筷子各10根,那么,(相同颜色的两根筷子为一双)(1)至少取多少根才能保证三种颜色都取到?(2)至少取多少根才能保证有两双颜色不同的筷子?(3)至少取多少根才能保证有两双颜色相同的筷子?【答案】(1)21,(2)13,(3)10【解析】(1)最坏的情况是取完两种颜色,再取1根就满足要求.至少要取102121⨯+=根.(2)最欢的情况是取完一种颜色10根,另两种颜色各1根,再取1根就满足要求.1012113+⨯+=根.(3)两双颜色相同的筷子是4只,最坏的情况是每种颜色取3只,再取一根就满足要求.33110⨯+=根.4.自制的一副玩具牌共计52张(含4种牌:红桃,红方、黑桃、黑梅.每种牌都有1点、2点、…、13点牌各一张).洗好后背面朝上放好.一次至少抽取________张牌,才能保证其中必定有2张牌的点数和颜色都相同.如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取________张牌.【答案】(1)27(2)37【解析】可取红,黑色的1,2,3,4,5,6,7,8,9,10,11,12,13点各2张,共13226⨯=(张),那么再取一张牌,必定和其中某一张牌的点数相同,于是就有2张牌点数和颜色都相同,这是最坏的情况,因此至少要取27张牌,必须保证有2张牌点数,颜色都相同.(2)有以下的搭配:(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13)因而可以取1、3、4、6、7、9、10、12、13这9个数,四种花色的牌都取,9×4=36(张)牌,其中没有3张牌的点数是相邻的.此时取任意1张牌,必然会出现3张牌是相邻的因此,要取37张牌.5.有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【答案】能【解析】根据奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数.先用列表法进行搭配.由于题目只要求判断两堆水果的个数关系,因此可以从水果个数的奇、偶性上来考虑抽屉的设计.对于每堆水果中的苹果、桔子的个数分别都有奇数与偶数两种可能,所以每堆水果中苹果、桔子个数的搭配就有4种情形:(奇,奇),(奇,偶),(偶,奇),(偶,偶),其中括号中的第一个字表示苹果数的奇偶性,第二个字表示桔子数的奇偶性.将这4种情形看成4个抽屉,现有5堆水果,根据抽屉原理可知,这5堆水果里至少有2堆属于上述4种情形的同一种情形.由于奇数加奇数为偶数,偶数加偶数仍为偶数,所以在同一个抽屉中的两堆水果,其苹果的总数与桔子的总数都是偶数.6.将全体自然数按照它们个位数字可分为10类:个位数字是1的为第1类,个位数字是2的为第2类,…,个位数字是9的为第9类,个位数字是0的为第10类.(1)任意取出6个互不同类的自然数,其中一定有2个数的和是10的倍数吗?(2)任意取出7个互不同类的自然数,其中一定有2个数的和是10的倍数吗?如果一定,请简要说明理由;如果不一定,请举出一个反例.【答案】见解析【解析】(1)不一定有.例如1、2、3、4、5、10这6个数中,任意两个数的和都不是10的倍数.(2)一定有.将第1类与第9类合并,第2类与第8类合并,第3类与第7类合并,第4类与第6类合并,制造出4个抽屉;把第5类、第10类分别看作1个抽屉,共6个抽屉.任意7个互不同类的自然数,放到这6个抽屉中,至少有1个抽屉里放2个数.因为7个数互不同类,所以后两个抽屉中每个都不可能放两个数.当两个互不同类的数放到前4个抽屉的任何一个里面时,它们的和一定是10的倍数7.从1,2,3,4,…,1994这些自然数中,最多可以取_______个数,能使这些数中任意两个数的差都不等于9.【答案】999【解析】法1:把1994个数每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,……,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.法2:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990 ,共计222个数{}2,11,20,29,,1991 ,共计222个数{}3,12,21,30,,1992 ,共计222个数{}4,13,22,31,,1993 ,共计222个数{}5,14,23,32,,1994 ,共计222个数{}6,15,24,33,,1986 ,共计221个数{}7,16,25,34,,1987 ,共计221个数{}8,17,26,35,,1988 ,共计221个数{}9,18,27,36,,1989 ,共计221个数每个数列相邻两项的差是9,因此,要使取出的数中,每两个的差不等于9,每个数列中不能取相邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取1119999⨯=个数.8.如图,能否在8行8列的方格表的每一个空格中分别填上1,2,3这三个数,使得各行各列及对角线上8个数的和互不相同?并说明理由.【答案】见解析【解析】从问题入手:因为问的是和,所以就从和的种类入手.由1,2,3组成的和中最小为818⨯=,最大的为8324⨯=,8~24中共有17种结果,而8行8列加上对角线共有18个和,根据抽屉原理,必有两和是相同的,所以此题不能满足要求.9.在100张卡片上不重复地编上1~100,至少要随意抽出几张卡片才能保证所抽出的卡片上的数之乘积可被12整除?【答案】68【解析】21223=⨯,因为3的倍数有100333⎡⎤=⎢⎥⎣⎦个,所以不是3的倍数的数一共有1003367-=(个),抽取这67个数无法保证乘积是3的倍数,但是如果抽取68个数,则必定存在一个数是3的倍数,又因为奇数只有50个,所以抽取的偶数至少有18个,可以保证乘积是4的倍数,从而可以保证乘积是12的倍数.于是最少要抽取68个数(即:68张卡片)才可以保证结果.10.某商店举行抽奖活动,在箱子里放有红色、蓝色、黄色小球各100个,若50个同色小球可以换一个布偶,80个同色小球可以换一个零食包,85个同色小球可以换一个模型.每个小球只能换一次奖.小明去抽奖,每次只能从箱子中不放回地随机抽取一个小球,他最少需要抽取__________次才能保证他可以换到每种奖品各一个.【答案】259【解析】①抽光两种颜色,此时再抽50次即保证可以换到,共需250次;②抽光一种颜色,剩下两种各抽79次,此时再抽一次才可换到,共需259次;③每种各84次,此时再抽一次才可换到,共需253次;综上,需要259次才能保证.深化练习11.现有211名同学和四种不同的巧克力.每种巧克力的数量都超过633颗.规定每名同学最多拿三颗巧克力,也可以不拿.若按照巧克力的种类和数量都是否相同分组,则人数最多的一组至少有________名同学.【答案】7【解析】每一名学生可以拿:括号内为该情况发生有几种情况.1,一个不拿(1种情况);2,拿四种糖果中任意一个(4种情况);3.拿两个,都是同种糖果(4种情况);4.拿两个且不同的糖果,随机的(6种情况);5.拿三个,都相同(4种情况);6.拿三个,两个相同(12种情况);7.拿三个都不同的糖果(4种情况);所以一个同学所取的不同种类共有1+4+4+6+4+12+4=35种情况;因为每一种糖都超过633颗,所以第五种情况能够出现,3×211=633,足够分.所以其他六种情况也能够发生.所以,要让最多的那组人数最少就是:211÷35=6…1(余数1);即最多的一组最少为6+1=7人.12.证明:任意给定一个正整数n ,一定可以将它乘以适当的整数,使得乘积是完全由0和7组成的数.【答案】见解析【解析】考虑如下1+n 个数:7,77,777,……,777 位n ,1777+ 位n ,这1+n 个数除以n 的余数只能为0,1,2,……,1-n 中之一,共n 种情况,根据抽屉原理,其中必有两个数除以n 的余数相同,不妨设为777 位p 和777 位q (>p q ),那么()777777777000--= 位位位位p q p q q 是n 的倍数,所以n 乘以适当的整数,可以得到形式为()777000- 位位p q q 的数,即由0和7组成的数.13.上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;如果不能,请举出实例.【答案】见解析【解析】因为只有男生或女生两种情况,所以第1行的7个位置中至少有4个位置同性别.为了确定起见,不妨设前4个位置同是男生,如果第二行的前4个位置有2名男生,那么4个角同是男生的情况已经存在,所以我们假定第二行的前4个位置中至少有3名女生,不妨假定前3个是女生.又第三行的前3个位置中至少有2个位置是同性别学生,当是2名男生时与第一行构成一个四角同性别的矩形,当有2名女生时与第二行构成四角同性别的矩形.所以,不论如何,总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生同性别.问题得证.14.8位小朋友围着一张圆桌坐下,在每位小朋友面前都放着一张纸条,上面分别写着这8位小朋友的名字.开始时,每位小朋友发现自己面前所对的纸条上写的都不是自己的名字,请证明:经过适当转动圆桌,一定能使至少两位小朋友恰好对准自己的名字.【答案】见解析【解析】沿顺时针方向转动圆桌,每次转动一格,使每位小朋友恰好对准桌面上的字条,经过8次转动后,桌面又回到原来的位置.在这个转动的过程中,每位小朋友恰好对准桌面上写有自己名字的字条一次,我们把每位小朋友与自己名字相对的情况看作“苹果”,共有8只“苹果”.另一方面,由于开始时每个小朋友都不与自己名字相对,所以小朋友与自己名字相对的情况只发生在7次转动中,这样7次转动(即7个“抽屉”)将产生8位小朋友对准自己名字的情况,由抽屉原理可知,至少在某一次转动后,有两个或两个以上的小朋友对准自己的名字.15.任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).【答案】见解析【解析】把这2008个数先排成一行:1a ,2a ,3a ,……,2008a ,第1个数为1a ;前2个数的和为12+a a ;前3个数的和为123++a a a ;……前2008个数的和为122008+++ a a a .如果这2008个和中有一个是2008的倍数,那么问题已经解决;如果这2008个和中没有2008的倍数,那么它们除以2008的余数只能为1,2,……,2007之一,根据抽屉原理,必有两个和除以2008的余数相同,那么它们的差(仍然是1a ,2a ,3a ,……,2008a 中若干个数的和)是2008的倍数.所以结论成立.。

七、抽屉原理

七、抽屉原理

五年级思维训练题(七)姓名________抽屉原理一、第一类抽屉原理应用:第一抽屉原理:(1)把m个物体,任意放入n只抽屉(n<m≤2n),则其中一定有已知抽屉至少有2个物体。

(2)把n+1物体,任意放入n只抽屉中,则其中一定有一只抽屉至少有2个物体。

说明:物体多,抽屉少,以上(2)是(1)的特殊情况。

基本解题方法:(1)搞清谁为抽屉,谁为物体;(2)从最不利或最不巧的情况分析,也可以直接用第一抽屉原理来解。

例1:丽英小学有367个学生,至少有个同学的生日是同一天。

练习(一)1.第一小组有13个同学,其中至少有个同学在同一个月内过生日。

2.61名学生在4月份出生的,其中至少有名学生的生日是同一天。

3.某校五年级(1)班有54个学生,其中至少有个同学在同一周过生日4.某校有学生2000人,在这些学生中任意选出24个人,其中至少有个学生的属相是相同的。

5.有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次摸出小球5个,其中至少有个小球的颜色是相同的。

6. 有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次摸出小球8个,其中至少有个小球的颜色是相同的。

7.在任意给定的5个自然数中,能不能找到2个数,这两个数的差正好是4的倍数。

例2:有红、黄、蓝、白色的小球各10个,混合放在一个布袋里,一次最少摸出个,才能保证有2个小球是同色的。

练习(二)1.有桃子、梨子、杏子三种水果各若干个混放在一起,一次最少取出个才能保证至少有两个是同一种水果。

2.在一只箱子里装有10双黑袜子和10双白袜子,它们都是散乱地放在箱子里的,如果不看颜色而要从箱子里摸出颜色相同的一双袜子,那么至少要摸出只袜子才能符合条件。

3.抽屉里有4支红铅笔和3支蓝铅笔,如果闭着眼睛摸一次必须摸出支铅笔才能保证至少有一支蓝铅笔。

4.有红白黑三种颜色的袜子各5双,散放在一个抽屉里,蒙住你眼睛每次让你从中摸出一只臭袜子,你至少要摸次才能保证得到同样颜色的一双袜子。

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

小学六年级奥数第30讲 抽屉原理(二)(含答案分析)

第30讲抽屉原理(二)一、知识要点在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

二、精讲精练【例题1】幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。

则364=120×3+4,4<120。

根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。

可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。

练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。

这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?【例题2】布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。

根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。

即2×4+1=9(个)球。

列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。

抽屉原理练习

抽屉原理练习

例1 (
三个小朋友同行,其中必有 三个小朋友同行,
2
)个小朋友性别相同。 )个小朋友性别相同。 例2 五年一班共有学生53人,他们的 年龄都相同,请你证明至少有( 年龄都相同,请你证明至少有( 朋友出生在一周。 朋友出生在一周。
2
)个小 )个小
9.筐里有苹果、梨和桔子,每个小 筐里有苹果、梨和桔子, 筐里有苹果 朋友都可以从中任意拿两个水果, 朋友都可以从中任意拿两个水果, 那么至少有多少个小朋友, 那么至少有多少个小朋友,才能 保证有两人拿的水果相同? 保证有两人拿的水果相同? 10.五年级一班有 名同学,他们 五年级一班有50名同学 五年级一班有 名同学, 都订阅甲、 都订阅甲、乙、丙三种摄氏中的 一种、二种或三种。 一种、二种或三种。问:至少有 多少名同学订阅的报纸相同? 多少名同学订阅的报纸相同?
第 1 列 第 2 列 第 3 列 第 4 列 第 5 列
5.在一个 ×4平方米的长方形中, 在一个3 平方米的长方形中, 在一个 平方米的长方形中 任意点5个点 试说明: 个点, 任意点 个点,试说明:至少有两 个点的距离不大于2.5米 个点的距离不大于 米。
7.学校开办航模、电脑、美术三个 学校开办航模、电脑、 学校开办航模 课外兴趣小组, 课外兴趣小组,每个学生最多 可 参加两个(可以不参加)。 )。问 参加两个(可以不参加)。问: 至少有多少名学生, 至少有多少名学生,才能保证有 不少于8名同学参加兴趣小组的情 不少于 名同学参加兴趣小组的情 况完全相同? 况完全相同?
抽屉原理2:将多于m 抽屉原理 :将多于 ×n件的 件的 个抽屉里, 物品任意放到 n个抽屉里,那么 个抽屉里 至少有一个抽屉物品的件数不少 于m+1件。 件
1.五年级有 个同学是1992年出生 五年级有13个同学是 年出生 五年级有 个同学是 的,他们中是否有在同一个月中 过生日的? 过生日的? 2.任意 个自然数,总有2个自然 任意3个自然数,总有 个自然 任意 个自然数 数的和是2的倍数 试加说明。 的倍数。 数的和是 的倍数。试加说明。

小学四年级奥数抽屉原理(二)例题、练习及答案

小学四年级奥数抽屉原理(二)例题、练习及答案

抽屉原理(二)这一讲我们讲抽屉原理的另一种情况。

先看一个例子:如果将13只鸽子放进6只鸽笼里,那么至少有一只笼子要放3只或更多的鸽子.道理很简单。

如果每只鸽笼里只放2只鸽子,6只鸽笼共放12只鸽子。

剩下的一只鸽子无论放入哪只鸽笼里,总有一只鸽笼放了3只鸽子。

这个例子所体现的数学思想,就是下面的抽屉原理2.抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。

说明这一原理是不难的.假定这n个抽屉中,每一个抽屉内的物品都不到(m+1)件,即每个抽屉里的物品都不多于m件,这样,n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

这说明一开始的假定不能成立.所以至少有一个抽屉中物品的件数不少于m+1。

从最不利原则也可以说明抽屉原理2。

为了使抽屉中的物品不少于(m+1)件,最不利的情况就是n个抽屉中每个都放入m件物品,共放入(m×n)件物品,此时再放入1件物品,无论放入哪个抽屉,都至少有一个抽屉不少于(m+1)件物品。

这就说明了抽屉原理2。

不难看出,当m=1时,抽屉原理2就转化为抽屉原理1。

即抽屉原理2是抽屉原理1的推广.例1某幼儿班有40名小朋友,现有各种玩具122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或4件以上的玩具?分析与解:将40名小朋友看成40个抽屉.今有玩具122件,122=3×40+2.应用抽屉原理2,取n=40,m=3,立即知道:至少有一个抽屉中放有4件或4件以上的玩具。

也就是说,至少会有一个小朋友得到4件或4件以上的玩具。

例2一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。

问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。

要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。

小学数学 抽屉问题 (二)PPT+作业+答案

小学数学 抽屉问题 (二)PPT+作业+答案

例3
某班有16名学生,每个月教师把学生分成两个小组.问最少要经 过几个月,才能使该班的任意两个学生总有某个月份是分在不同 的小组里?
经过第一个月,将16个学生分成两组,至少有8个学生分在同一组,下面只考虑这8个学生. 经过第二个月,将这8个学生分成两组,至少有4个学生是分在同一组,下面只考虑这4个学生. 经过第三个月,将这4个学生分成两组,至少有2个学生仍分在同一组,这说明只经过3个月是无法满 足题目要求的.如果经过四个月,将每个月都一直保持同组的学生一分为二,放人两个组,那么第 一个月保持同组的人数为16÷2=8人,第二个月保持同组的人数为8÷2=4人,第三个月保持同组人数 为4÷2=2人,这说明照此分法,不会有2个人一直保持在同一组内,即满足题目要求,故最少要经过 4个月.
把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有
例1 两只或两只以上的小兔?
要想保证至少有一个笼里有两只或两只以上的小兔,把小兔子当作“物品”,把“笼 子”当作“抽屉”,根据抽屉原理,要把10只小兔放进10-1=9个笼里,才能保证至少 有一个笼里有两只或两只以上的小兔.
练习1
把125本书分给五⑵班的学生,如果其中至少有一个人分到 至少4本书,那么,这个班最多有多少人?
名同学来自同一个学校.”如果他的说法是正确的,那么最多 有多少个学校参加了这次入学考试?
本题需要求抽屉的数量,反用抽屉原理和最“坏”情况的结合,最坏的情况是只有 10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10) ÷9=123......6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个 学校则不能保证至少有10名同学来自同一个学校)
课后作业
作业1

抽屉原理的练习

抽屉原理的练习

抽屉原理的练习1、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取同颜色的袜子两双,问至少取多少只才能达到要求?思路导航:把三种不同的颜色看作3个抽屉,把所有的袜子数量看作苹果。

要使其中一个抽屉里至少有4只同样颜色的袜子,那么先保证从每个抽屉各取3只同一颜色的袜子,在任意的添1只,即3×3+1=10变式题2、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取黑色的袜子1双,问至少取多少只才能达到要求?3、有黑、红、白袜子各5只,它们的规格都一样,混杂在一起,黑暗中想取颜色的不同袜子2双,问至少取多少只才能达到要求?二、1.任意5个不相同的自然数,其中最少有两个数的差是4的倍数,这是为什么?思路导航:一个自然数除以4有两种情况:一是整除为0,二是有余数1、2、3.如果有2个自然数除以4的余数相同,那么这两个自然数的差就是4的倍数。

把0、1、2、3这四种情况看作4个抽屉,把5个不同自然数看作5个苹果,必定有一个抽屉里至少有2个数,而这两个数的余数是相同的,它们的差一定是4的倍数。

所以任意5个不相同的自然数,其中至少有两个数的差是4的倍数。

2、一副扑克(去掉大小王),要取出几张才能保证四种花色的扑克都有?要取出几张才能保证拿出的牌有两张大小相等?思路导航:(1)四种花色是四个抽屉,每个抽屉里有13张牌,四种花色都有要考虑其他三种都拿完才会有一张第四种花色的牌出现,也就是3×13+1=40(张)(2)一副牌中每个花色有13张,先拿出同一个花色的13张牌,那么再拿出任意一张就可以与其中的一张大小相同。

3、一只布袋中有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要拿出多少只手套才能保证有3付同色的?思路导航:把四种不同颜色看作4个抽屉,手套看作苹果。

要保证一副手套是同色的,就是有一个抽屉里至少有2只手套,根据抽屉原理最少要拿出5只手套。

这时拿出一副同色的后,4个抽屉中还剩下3只手套,再根据抽屉原理,只要再拿出2只手套,又能保证有一副手套是同色的,以此类推,要保证有3付同色的,一共拿出5+2+2=9(只)注意(这里的3付手套是指3种不同颜色的各两只,黑色两只一付,红色两只一付,黄色两只一付,蓝色两只一付,从中任选3付)4、幼儿园有120个小朋友,各种玩具364件。

初中数学《抽屉原理(二)》讲义及练习

初中数学《抽屉原理(二)》讲义及练习

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。

本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识点拨教学目标第八讲:抽屉原理(二)【例 1】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【解析】 从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【解析】 根有个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件⨯3种6=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件⨯4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.【例 2】 红、蓝两种颜色将一个25⨯方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【例 3】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【解析】 将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【解析】 构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.【巩固】 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【解析】 我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.【例 4】 (北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取 个数,能使这些数中任意两个数的差都不等于9.【解析】 方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数 {}3,12,21,30,,1992,共计222个数 {}4,13,22,31,,1993,共计222个数 {}5,14,23,32,,1994,共计222个数 {}6,15,24,33,,1986,共计221个数 {}7,16,25,34,,1987,共计221个数 {}8,17,26,35,,1988,共计221个数 9,18,27,36,,1989,共计221个数邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取⨯=个数1119999【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【解析】将1~1989排成四个数列:1,5,9,…,1985,19892,6,10,…,19863,7,11,…,19874,8,12,…,1988每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498-÷+=项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出2494996⨯=个数,其中每两个的差不等于4.【例 5】(2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.【解析】把这12个数分成6个组:第1组:1,2,4,8第2组:3,6,12第3组:5,10第4组:7第5组:9第6组:11每组中相邻两数都是2倍关系,不同组中没有2倍关系.选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.【解析】把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.【巩固】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【解析】方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).【巩固】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.【解析】 把这200个数分类如下:(1)1,12⨯,212⨯,312⨯,…,712⨯,(2)3,32⨯,232⨯,332⨯,…,632⨯,(3)5,52⨯,252⨯,352⨯,…,552⨯,…(50)99,992⨯,(51)101,(52)103,…(100)199,以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.【例 6】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【解析】 将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出877123+++=个【例 7】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【解析】 (1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个数在同一抽屉,那么这两个数的差为50.问题得证.(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,6,8,...,98,100),(3,9,15,21,27,...,93,99),(5,7,11,13,17,19,23, (95)97)这三组.第一、二、三组分别有50、17、33个元素.最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于1.【例 8】有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 【解析】将1至49中相乘小于100的两个数,按被乘数分成9组,如下:(1×2)、(1×3)、(1×4)、…、(1×49);(2×3)、(2×4)、(2×5)、…、(2×49);(8×9)、(8×10)、(8 ×11)、(8×12);(9×10)、(9×11).因为每个数只能与左右两个数相乘,也就是每个数作为被乘数或乘数最多两次,所以每一组中最多会有两对数出现在圆圈中,最多可以取出18个数对,共18 ×2=36次,但是每个数都出现两次,故出现了18个数.例如:(10×9)、(9×11)、(1×8)、(8×12)、(12×7)、(7×13)、(13×6)、(6×14)、(14×5)、(5×15)、(15×4)、(4 ×16)、(16 X 3)、(3×17)、(17×2)、(2×18)、(18 ×1)、(1×10).共出现l~18号,共18个孩子.若随意选取出19个孩子,那么共有19个号码,由于每个号码数要与旁边两数分别相乘,则会形成19个相乘的数对.那么在9组中取出19个数时,有19=9×2+1,由抽屉原则知,必有三个数对落入同一组中,这样某个数字会在数对中出现三次(或三次以上),由分析知,这是不允许的.故最多挑出18个孩子.【例 9】要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?【解析】每个盒子不超过5个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5这5种各不相同的个数,共有:1234 5 15÷=,最不利的分法是:装1、2、3、++++=,6115414、5个球的各4个,还剩1个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5个盒子的球数相同.【例 10】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【解析】需先跟学生介绍奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。

抽屉原理练习题

抽屉原理练习题

抽屉原理练习题抽屉原理练习题抽屉原理,又称鸽巢原理,是数学中的一个重要原理。

它的内容是:如果有n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。

这个原理看似简单,但却有着广泛的应用。

在日常生活中,我们可以通过一些练习题来巩固和应用这个原理。

练习题一:班级生日问题假设一个班级有30个学生,每个学生的生日都是不同的。

那么至少有多少个学生的生日在同一个月份?解析:这道题可以通过抽屉原理来解答。

我们可以将每个月份看作一个抽屉,而学生的生日则是物体。

由于有12个月份和30个学生,根据抽屉原理,至少有一个月份的抽屉中会放有两个或更多的学生的生日。

因此,至少有两个学生的生日在同一个月份。

练习题二:扑克牌问题一副扑克牌共有52张,其中有4种花色(红桃、黑桃、方块、梅花),每种花色有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。

如果从这副扑克牌中随机选择5张牌,那么至少有两张牌的花色相同吗?解析:我们可以将每种花色看作一个抽屉,而每张牌则是物体。

根据抽屉原理,至少有一个花色的抽屉中会放有两张或更多的牌。

因此,在随机选择5张牌的情况下,至少有两张牌的花色是相同的。

练习题三:桌上的苹果在一张桌子上放置了10个苹果,其中有5个红苹果和5个绿苹果。

如果我们盲目地选择了6个苹果,那么至少有两个苹果的颜色是相同的吗?解析:我们可以将红苹果和绿苹果分别看作两个抽屉,而每个苹果则是物体。

根据抽屉原理,至少有一个抽屉中会放有两个或更多的苹果。

因此,在选择了6个苹果的情况下,至少有两个苹果的颜色是相同的。

练习题四:数字的平方考虑从1到11的11个整数,我们可以计算它们的平方。

如果我们只能选择其中10个整数的平方,那么至少有两个平方是相同的吗?解析:我们可以将平方数看作抽屉,而整数则是物体。

根据抽屉原理,至少有一个抽屉中会放有两个或更多的整数的平方。

因此,在只选择了10个整数的平方的情况下,至少有两个平方是相同的。

抽屉原理

抽屉原理

抽屉原理抽屉原理1:将n+1件或更多件的物体随意地放到n个抽屉中去,那么,至少有一个抽屉中的物体个数不少于2个。

抽屉原理2:将多于m×n个(m×n+1,m×n+2,……)物体任意放到n个抽屉去,那么至少有一个抽屉的物体个数不少于m+1.例1:五(1)班有40名学生。

班里有1个小书架,同学们可以任意借阅。

问:小书架至上少要有多少本书,才能保证至少有一个同学能借到2本书?练习:五(1)班有49名学生。

老师至少拿几本书随意分给大家,才能保证至少有一个同学能得到两本书?例2:有黑色、白色、黄色的筷子各8根,混杂放在一起。

黑暗中想从这些筷子中取出颜色不同的两双筷子,问:至少要取多少根才能保证达到要求?练习:衣柜里有10件绿色衣服,6件白色衣服,7件红色衣服,2件蓝色衣服。

如果闭着眼睛取衣服,那么至少要取多少件,才能保证取出的衣服中至少有两件颜色相同?例3:一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,问:至少要抽多少张牌,才能保证有4张牌是同一花色的?练习:幼儿园小朋友分水果,有苹果、梨、橘子3种。

如果每个小朋友任意拿两个,那么,至少有多少个小朋友拿过后,才一定会出现两人拿得水果是相同的?例4:学校开设了音乐、美术、体育、科技4个兴趣小组。

每位同学任意参加两个小组,问:至少有几个同学参加活动,就能保证有2个同学参加的小组相同?练习:幼儿园买来许多猪、狗、马的塑料玩具,每个小朋友任意选择两件。

问:至少要有几个小朋友才能保证有两人选的玩具相同?例5:把135块饼干分给16个小朋友。

若每个小朋友至少要分到一块饼干,那么不管怎样分,一定会有两个小朋友得到的饼干数目相同。

为什么?练习:把97件玩具分给幼儿园大班的小朋友,不管怎样分都至少有一位小朋友分得5件或5件以上的玩具。

问:这个班最多有多少个小朋友?例6:五(1)班有40名学生,他们都订阅了《小朋友》《儿童时代》《少年报》三种报刊中的一种、两种或三种。

六年级上册奥数第30讲 抽屉原理(2)

六年级上册奥数第30讲  抽屉原理(2)

第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。

例1、幼儿园里有120个小朋友,各种玩具有364件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。

把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。

这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。

最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。

最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。

当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。

至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。

活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。

问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。

其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。

某班有52名学生。

问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。

六年级奥数-抽屉原理

六年级奥数-抽屉原理

抽屉原理(一)专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那末可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那末可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那末可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有2个或者2个以上的元素。

(2)如果把m×x×k(x>k ≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有m+1个或者更多个元素。

利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。

b、把元素放入(或者取出)抽屉。

C、说明理由,得出结论。

本周我们先来学习第(1)条原理及其应用。

例题1:某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。

把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。

平年一年有365天,闰年一年有366天。

把天数看做抽屉,共366个抽屉。

把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

练习1:1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?例题2:某班学生去买语文书、数学书、外语书。

买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才干保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。

要保证至少有一个抽屉里有2人,那末去的人数应大于抽屉数。

抽屉原理(2)

抽屉原理(2)

抽屉原理(2)抽屉原则(2)如果把m×n+k(k大于等于1小于n)东西放入n个抽屉中,那么必定有一个抽屉里至少有 m+1件东西。

或:如果把n件东西放入到m个抽屉中,则至少有一个抽屉里有m分之n个或 m分之n再加1个东西。

学习例题例1.今年入学的一年级新生中,有181人是1993年出生的,这些新生中,至少有多少人是1993年的同一个月出生的?例2.某区中学生人数是11000人,其中必有多少人是同年同月同日生的?(中学生的年龄为11~20岁)例3.某旅游团一行50人,随意游览甲、乙、丙三地,规定每人至少去一处,最多去三处游览,那么至少有多少人游览的地方完全相同?例4.一副扑克牌(除去大、小王),有四种花色,每种花色都有13张牌。

现在把扑克牌洗匀,那么至少要从中抽出多少张牌,才能保证有4张牌同一花色?例5.六(2)班的同学参加一次数学考试。

满分为100分,全班最低分是75分。

每人得分都是整数,并且班上至少有3人得分相同。

那么,六(2)班至少有多少名同学?例6.袋子里有4种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的的,至少要摸多少次?例7.任意1002个整数中,必有两个整数,它们的和或差是2000的倍数。

例8.有20×20的小方格组成的大正方形。

把数字1~9任意填入各个方格中。

图中有许许多多的“田”字形,把每个“田”字形中的4个数相加,得到一个和数。

在这许许多多的和数中,至少有多少个相同?思考与练习1.参加数学竞赛的210名同学中,至少有多少名同学是同一个月出生的?2.在62个人中,能否找到至少有6个人的属相相同?3.一副扑克牌共有54张,至少从中取出多少张牌,才能保证其中必有3种花色(大王、小王不算花色)?4.六年级(1)班的40名学生中,年龄最大的是13岁,最小的是11岁。

其中必有多少名学生是同年同月出生的?5.(1)有红、黄、蓝、白4色小球各10个,混合放在一个暗盒里。

杂题之抽屉原理练习题目12套

杂题之抽屉原理练习题目12套

杂题之抽屉原理练习题目12套杂题之抽屉原理练习11.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).杂题之抽屉原理练习21.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).杂题之抽屉原理练习31.某小学有369位1996年出生的学生,那么至少有几个同学的生日是在同一天?2.五年级某班有学员13人,请说明在这13名同学中一定有两个同学是同一星座。

抽屉原理例1例2练习

抽屉原理例1例2练习

抽屉原理
什么是抽屉原理:
把m个物体放进n个抽屉里 ( m>n>1),不管怎么放总有 一个抽屉至少放进( +1 )个 物体。 比平均数多1 一定能找到其 中的一个抽屉
a
“抽屉原理”又称“鸽巢原理”

又称“狄利克雷原理”。
抽屉原理的应用是千变万化的
狄利克雷 (1805~1859)
,用它可以解决许多有趣的问题, 并且常常能得到一些令人惊异的结 果。
2
从扑克牌中取出两张王牌,在剩下的52张扑克 牌任意抽牌。 (1)从中抽出18张牌,至少有几张是同花色? 18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。 (2)从中抽出20张牌,至少有几张数字相同? 20÷13=1(张)… …7(张) 1+1=2(张) 答:至少有2张数字相同。
P71做一做:
8只鸽子飞回3个鸽舍,至少有3只鸽子 要飞进同一个鸽舍里。为什么?
8÷3=2……2 2+1=3
370÷365=1……5 1+1=2
49÷12=4……1 4+1=5
5÷4=1……1 1+1=2 41÷5=4间屋子,至少有( 9 )个小朋 友要进同一间屋子。 2、13个同学坐5张椅子,至少有(3 )个同学坐在 同一张椅子上。 3、新兵训练,战士小王6枪命中了43环,战士小王 总有一枪至少打中( 8 )环。 4、咱们班上有58个同学,至少有(5 )人在同一个 月出生。 5、从街上人群中任意找来20个人,可以确定,至少 有( )个人属相相同。

抽屉原理2

抽屉原理2

4、把红黄白三种颜色球各8个 放入一个袋子里任意摸17个球 个,至少( )个是同种颜色
4、把红黄白三种颜色球各8个 放入一个袋子里任意摸17个球 个,至少( 6 )个是同种颜 色
4、把红黄白三种颜色球各8个 放入一个袋子里任意摸17个球 个,至少( 6 )个是同种颜 色
物体:17个球 抽屉:3种颜色
3、把红黄两种球各4个放入一 个袋子里任意摸3个,至少 ( 2 )个是同种颜色
3、把红黄两种球各4个放入一 个袋子里任意摸3个,至少 ( 2 )个是同种颜色
物体:3个球 抽屉:2种颜色
3、把红黄两种球各4个放入一 个袋子里任意摸3个,至少 ( 2 )个是同种颜色
物体:3个球 抽屉:2种颜色 3÷2=1……1 1+1=2
一次摸出3个球,有几种情况? 结果是( 一定 )摸2个同色 球。(选择“可能”或“一定”填 空)
想一想保证摸出两个同色球 摸出球的个数与颜色的种数有什 么关系?
想一想保证摸出两个同色球 摸出球的个数与颜色的种数有什 么关系? 摸出球的个数比颜色的种数多1
比较例3与复习3题有什么相同点和不同点
例3盒子里有同 样大小的红球和 蓝球各4个要想 摸出的球一定有 2个是同种色的。 至少要摸出几个 球?(3个)
(3-1)×2+1=5 )
练习:把红黄白三种颜色球各 8个放入一个袋子里,最少取 多少个球,可以保证取到4个 颜色相同的球?
1)想一想在这道题中,
什么“物体”?什么是“抽屉”?什么是“至少数”
练习:把红黄白三种颜色球各8个放 入一个袋子里,最少取多少个球,可 以保证取到4个颜色相同的球?
物体数:( :( ) 抽屉:3种颜色 至少数:4个球
物体:( 2个球 想:( ),抽屉:2种颜色,至少数:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档