六年级数学上册知识点归纳
六年级上册数学知识点
六年级上册数学知识点第一单元圆1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
圆心一般用字母O表示。
它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫做半径。
半径一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。
直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr =1/2d用文字表示为:半径=直径÷2直径=半径×29.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。
我们把圆的周长和直径的比值叫做圆周率,用字母表示。
圆周率是一个无限不循环小数。
在计算时,取π≈3.14。
世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=πd 或C=2πr圆周长=π×直径圆周长=π×半径×212、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(πr)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积= πr×r。
圆的面积公式:S=πr²。
14.圆的面积公式:S=πr²或者S=π(d/2)²或者S=π(C÷(2π))²≈15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=πR²-πr²或S=π(R²-r²)。
小学数学六年级上册复习重点知识点归纳
小学数学六年级上册复习重点知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
六年级上册数学全部知识点
六年级上册数学全部知识点一、分数1、理解分数概念:分数是由分子和分母组成,分子是分开的,分母是分子所在的总数,表示两个整数之间的比重;特征:分子与分母之间的比值;作用:用分数可以表示出一个数介于两个整数之间的任何数;2、运算(1)相同分母分数的加减法相同分数的加减法:将分子加减即可。
(2)不同分母分数的加减不同分数的加减法:先将分母统一,然后将分子加减即可。
(3)分数的乘除运算将两个分数相乘:将分子和分母分别相乘即可;将两个分数相除:将分子和分母交换再相乘即可。
三、根式1、根式的定义根式又称亚分式、立方根式,是表示平方根(或立方根)的一种式子。
是包含开方符号的一种数学运算表达式,它是一种特殊的正分式或正亚分式。
2、根式的展开展开根式:乘方法;联立根式:开根号法;3、根式的乘除运算二次方根式的乘法:将乘方的同类项相乘;三次方根式的乘法:将系数相乘,连分数乘积的分子、分母乘积;二次方根式的除法:把被除式减去除数,得出商;三次方根式的除法:把被除式分为分子和分母,把除数分为分子和分母,再分别将这两个分子和两个分母相乘,得到商;四、几何成比例1、定义几何成比例是指在一个相同的几何图形内,测量出的条形(或弧形)长或圆的半径之间,呈现出等比例。
2、求出成比例比求出比例比:将所测量出的两个数分别除以其中最小的一个数,得出两个数之间的比例比;3、判断几何图形是否成比例判断几何图形是否成比例:将该图形内测量出的长度和半径分别除以其中最小的一个,若所得到的两个数之间的比例比相同,即可判断该图形成比例;五、统计与概率1、统计统计是指收集与分析文字、表格或图表中的数字信息,以便准确地反映其情况。
它包括:(1)收集与分析数据;(2)求出变量的均值、方差、离差等;(3)使用中心弦图、直方图、折线图等工具绘制出数据的分布情况;(4)根据数据判断变量的特征;(5)利用函数描述数据的变化规律。
2、概率概率:指在多次实验中,当发生某一事件时的可能性大小。
六年级上册数学知识点归纳总结
六年级上册数学知识点归纳总结
一、数据处理:
1、统计概念:定义、实例、事物及描述数据的属性;
2、数据表格:使用列标及行标表示数据,并用表格表示统计数据;
3、频率分布:分析、填写、求出频率分布直方图、条形图及饼图;
4、计算指标:计算众数、中位数、四分位数、平均数及方差;
二、概率论:
1、概念和性质:定义、例题及性质;
2、条件概率的计算:计算独立概率及伴随概率;
3、随机变量:定义、基本概念及性质;
4、期望概念:定义、计算及性质;
三、代数:
1、一元一次方程:求解、实例、求根及性质;
2、二元一次方程:解法、图象、判定及解型;
3、二元二次方程:解法、图象、判定及解型;
4、平面直角坐标系:理解、应用及求解;
5、多项式:定义、种类及求系数;
6、函数:概念、关系、求值;
四、几何:
1、基本概念:定义、实例、定理及性质;
2、平面图形:特征、组成、计算及关系;
3、直线:定义、特征及点位关系;
4、三视图:概念、实例及绘制;
5、投影原理:正、透视及绘图;
6、立体图形:概念、特征、表示法及计算;
7、几何运算:子式、距离、角度及锐角定理;。
六年级数学上册知识点归纳
六年级数学上册知识点归纳一、空间与图形——圆、位置与方向(一)圆1.圆中心的一点叫圆心,用O表示.连接圆心和圆上任意一点的线段叫半径,用r表示.通过圆心并且两端都在圆上的线段叫直径,用d表示.画圆时,圆规两脚尖距离是半径。
2.圆有无数条半径,有无数条直径.同圆或等圆中,直径的长度是半径的2倍,半径长度是直径一半,可以表示为:d=2r 或r=d/2. 圆内最长的线段是直径3.圆心决定圆的位置,半径(直径)决定圆的大小.4.把圆对折,再对折就能找到圆心.两条折线(直径所在直线)的交点就是圆心。
5.圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
(注:不能说直径是圆的对称轴,因为直径是线段,对称轴是直线)6.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母π表示,计算时通常取 3.14(π>3.14)π是固定值,不会随任何因素的变化而变化,跟其他因素无关。
7.圆周长公式C=πd或C=2πr. 圆的周长是直径的π倍,是半径的2π倍选择:圆的周长是直径的 3.14倍(×)注:是π倍,可以说大约是 3.14倍已知周长求直径公式:d=C/π(π分之C) r=C/2π8.半圆周长公式(圆周长一半加直径):C=πr+d=πr+2r9.需熟记的数:1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.76π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.410.圆的面积公式推导必须掌握:将圆等分成若干份(偶数份),拼成一个近似长方形,分数越多,拼成的图形越接近长方形,近似长方形的长是圆周长的一半(2分之C),宽是圆的半径,根据长方形面积=长×宽可知,圆面积公式S=πr ×r=πr²10.圆环面积公式:S=π(R²-r²)=πR²-πr²(外圆面积-内圆面积)11.圆的周长和面积不能比较大小,单位不同,概念不同。
六年级数学上册知识点整理归纳完整版
六年级数学上册知识点整理归纳HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】六年级上册数学知识点第一单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a ×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a ×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级数学上册知识点归纳
一、分数乘法:1、分数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。
分数乘分数的意义:求一个数的几分之几是多少。
(513×14表示513的14是多少。
) 2、求(或是)一个数的几分之几(百分之几)是多少 用乘法计算。
(如:求513千克的14是多少? 列式:513×14)3、倒数:乘积是1的两个数互为倒数。
1的倒数是1, 0没有倒数。
×进率 ÷进率4、单位换算:从大单位 小单位 从小单位 大单位(如:5.1千克=( )克 5.1千克×1000=5100克 450厘米=( )米 450厘米÷100= 4.5米 )二、分数除法:1、分数除法的意义和整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、一个数÷分数,等于一个数×除数的倒数。
(23÷45=23×54) 0不能做除数。
(除号后面不能为0) 3、求一个数是(占)另一个数的几分之几(百分之几)用除法计算。
三、比:1、两个数相除又叫作两个数的比。
比号前面的数叫作前项,比号后面的数叫作后项。
比的前项除以后项所得的商叫作比值。
求比值:前项÷后项 (例题:2.1:3=2.1÷3=0.7)2、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
化简比四、圆:1、圆心决定圆的位置,半径决定圆的大小、圆有无数条半径和直径。
同一个圆内半径等于直径的12(r=d 2),直径等于半径的2倍(d=2r )。
圆是轴对称图形,有无数条对称轴,每个直径所在的直线都是它的对称轴。
(直径是线段) 扇形:顶点在圆的角叫作圆心角。
2、圆的周长和它的直径的比值是一个固定的数(无限不循环小数),这个比值叫圆周率,用字母π表示。
π≈3.143、圆和拼成的长方形的关系: 长方形的长=圆周长的12 长方形的宽=圆的半径 3、周长:周长=直径×π=2×π×半径 公式:C=πd 或C=2πr 求直径:d=C ÷π 求半径:r=C ÷2÷π面积:面积=半径×半径×π 公式:S =πr ² 圆环的面积=外圆的面积-内圆的面积 公式:S =πR ²-πr ²4、长方形: 面积=长×宽 周长=(长+宽)×2 正方形: 面积=边长×边长 周长=边长×4 长方体: 表面积=(长×宽+长×高+宽×高)×2 正方体: 表面积=边长×边长×6五、四则运算顺序:1、分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。
小学六年级上册数学知识点归纳
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
六年级上册数学知识点大全
六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。
二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。
三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。
四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。
五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。
六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。
七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。
八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。
九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。
十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。
十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。
以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。
六年级上册数学知识归纳
1. 百分数的意义<br>2. 百分数和分数的区别与联系<br>3. 百分数的计算与应用<br>4. 百分数在生活中的实际而异)
1. 圆形、长方形、正方形的周长与面积计算<br>2. 环形、扇形面积的计算方法<br>3. 对称图形的概念及识别<br>4. 圆的周长与直径的关系,圆周率的定义
第五单元(假设为其他数学概念,具体单元名可能因教材而异)
1. 负数、正数的概念及运算<br>2. 代数式的概念及基本运算<br>3. 方程的概念及解法<br>4. 数据的收集、整理与分析方法(如平均数、中位数等)
六年级上册数学知识归纳
单元
知识点
第一单元:分数乘法
1. 分数乘整数的意义与运算法则<br>2. 一个数乘分数的意义<br>3. 分数乘分数的运算法则<br>4. 分数乘法混合运算顺序与定律<br>5. 倒数的意义及求法<br>6. 分数乘法应用题
第二单元(假设为分数除法,具体单元名可能因教材而异)
1. 分数除法的意义<br>2. 分数除法计算法则<br>3. 分数除法混合运算<br>4. 比的概念、性质及化简<br>5. 求比值的方法<br>6. 比和除法、分数的区别与联系
六年级上册数学的知识点归纳
六年级上册数学的知识点归纳第一单元:分数乘法。
分数乘法就像是给分数“变胖”或者“变瘦”。
比如说,一个分数乘以一个整数,就相当于把这个分数复制了整数那么多次。
要是一个分数乘以另一个分数,那就是分别看分子和分母,分子乘分子,分母乘分母。
记住哦,能约分的先约分,这样计算更简单!第二单元:位置与方向(二)这单元就像是玩寻宝游戏,要搞清楚东西南北还有角度和距离。
比如说,告诉你在某个点的什么方向多少度,距离多远,你就能找到目标啦。
反过来,要是你在一个地方,也能说出其他地方在你的什么方位。
第三单元:分数除法。
分数除法是分数乘法的“逆运算”。
如果一个数除以一个分数,就等于乘以这个分数的倒数。
啥是倒数?就是把分子分母颠倒一下位置。
比如说,2/3 的倒数就是3/2 。
第四单元:比。
比就像是两个东西在比赛,看谁多谁少。
比如说,甲和乙的比是 3:2 ,那就表示甲有 3 份,乙有 2 份。
比还可以转化成分数来计算,可方便啦。
第五单元:圆。
圆可是个神奇的图形!要知道圆的半径、直径、周长和面积的计算方法。
周长就是绕圆一圈的长度,用公式 C=2πr 或者 C=πd 来算。
面积就是圆占的地方大小,公式是 S=πr²。
第六单元:百分数(一)百分数就是表示一个数是另一个数的百分之几。
比如说,及格率、出勤率都是百分数。
计算百分数的题目,要注意把百分数化成小数或者分数来计算。
第七单元:扇形统计图。
扇形统计图就像是一个切开的披萨,能清楚地看出各部分占总体的比例。
通过看扇形的大小,就能知道哪个部分最多,哪个部分最少。
第八单元:数学广角—数与形。
这单元让我们发现数和形之间的奇妙联系。
有时候通过画图能更轻松地解决数学问题,让复杂的数字变得一目了然。
怎么样,这些知识点是不是好懂多啦?。
六年级数学上册知识点归纳总结
六年级数学上册知识点归纳总结
一、数与式
1.实数:正数、负数、零
2.有理数:分数、整数
3.数的分类:自然数、整数、分数、分数的分母为零的无意义数、真分数
4.式子:真式、假式
5.有理数的加减法:用整除法和扩展分数法
6.有理数的乘除法:用倒数的乘除法
7.同位数相减:将被减数拆分成和减数位数相同的多个加数,然后分别减
8.数轴:正负半轴、两个单位
新增
九、位置关系
1.平行:两条线段长度相等,夹角为0°,模式固定且一致。
2.垂直:两条线段长度相等,夹角为90°,模式固定且一致。
3.对称轴:两个物体镜面对称模式固定且一致。
4.连续:有向和无向两种,通过一系列点组成的形状,模式不定。
5.平行四边形:比较运算的固定位置变换,模式固定且一致。
小学六年级数学上册40个重要知识点归纳
小学六年级数学上册40个重要知识点复习归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同;就是求几个相同加数和的简便运算.2.分数乘法的计算法则:分数乘整数;用分数的分子和整数相乘的积作分子;分母不变;分数乘分数;用分子相乘的积作分子;分母相乘的积作分母.但分子分母不能为零.3.分数乘法意义分数乘整数的意义与整数乘法的意义相同;就是求几个相同加数的和的简便运算.一个数与分数相乘;可以看作是求这个数的几分之几是多少.4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数.6.分数的倒数找一个分数的倒数;例如3/4 把3/4这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子.则是4/3.3/4是4/3的倒数;也可以说4/3是3/4的倒数.7.整数的倒数找一个整数的倒数;例如12;把12化成分数;即12/1 ;再把12/1这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子. 则是1/12;12是1/12的倒数.8.小数的倒数:普通算法:找一个小数的倒数;例如0.25 ;把0.25化成分数;即1/4 ;再把1/4这个分数的分子和分母交换位置;把原来的分子做分母;原来的分母做分子.则是4/1.9.用1计算法:也可以用1去除以这个数;例如0.25 ;1/0.25等于4;所以0.25的倒数4;因为乘积是1的两个数互为倒数.分数、整数也都使用这种规律.10.分数除法:分数除法是分数乘法的逆运算.11.分数除法计算法则:甲数除以乙数(0除外);等于甲数乘乙数的倒数.12.分数除法的意义:与整数除法的意义相同;都是已知两个因数的积与其中一个因数求另一个因数.13.分数除法应用题:先找单位1.单位1已知;求部分量或对应分率用乘法;求单位1用除法.14.比和比例:比和比例一直是学数学容易弄混的几大问题之一;其实它们之间的问题完全可以用一句话概括:比;等同于算式中等号左边的式子;是式子的一种(如:a:b);比例;由至少两个称为比的式子由等号连接而成;且这两个比的比值是相同(如:a:b=c:d).所以;比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的.表示两个比相等的式子叫做比例,是比的意义.比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数.比值不变.比的性质用于化简比.比表示两个数相除;只有两个项:比的前项和后项.比例是一个等式;表示两个比相等;有四个项:两个外项和两个内项.16.比例的性质:在比例里;两个外项的乘积等于两个内项的乘积.比例的性质用于解比例.17.比和比例的区别(1)意义、项数、各部分名称不同.比表示两个数相除;只有两个项:比的前项和后项.如:a:b 这是比比例是一个等式;表示两个比相等;有四个项:两个外项和两个内项. a:b=3:4 这是比例.(2)比的基本性质和比例的基本性质意义不同、应用不同.比的性质:比的前项和后项都乘或除以一个不为零的数.比值不变.比例的性质:在比例里;两个外项的乘积等于两个内项的乘积相等.比例的性质用于解比例.联系:比例是由两个相等的比组成.18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例.比是表示两个数相除;有两项;比例是一个等式;表示两个比相等;有四项.因此;比和比例的意义也有所不同.而且;比号没有括号的含义而另一种形式;分数有括号的含义!19.比和比例的联系:比和比例有着密切联系.比是研究两个量之间的关系;所以它有两项;比例是研究相关联的两种量中两组相对应数的关系;所以比例是由四项组成.比例是由比组成的;如果没有两种量的比;比例就不会存在.比例是比的发展;如果把比例式中右边的比看成一个数;比和比例此时又可以统一起来.如果两个比相等;那么这两个比就可以组成比例.成比例的两个比的比值一定相等.20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.21.圆心:圆任意两条对称轴的交点为圆心.注:圆心一般符号O表示22.直径:通过圆心;并且两端都在圆上的线段叫做圆的直径.直径一般用字母d表示.23.半径:连接圆心和圆上任意一点的线段;叫做圆的半径.半径一般用字母r表示.圆的直径和半径都有无数条.圆是轴对称图形;每条直径所在的直线是圆的对称轴.在同圆或等圆中:直径是半径的2倍;半径是直径的二分之一.d=2r或r=d/2.圆的半径或直径决定圆的大小;圆心决定圆的位置.24.圆的周长:围成圆的曲线的长度叫做圆的周长;用字母C表示.25.圆周率:圆的周长与直径的比值叫做圆周率.圆的周长除以直径的商是一个固定的数;把它叫做圆周率;它是一个无限不循环小数(无理数);用字母π表示.计算时;通常取它的近似值;π≈3.14.直径所对的圆周角是直角.90°的圆周角所对的弦是直径.26.圆的面积公式:圆所占平面的大小叫做圆的面积.πr^2;用字母S表示.一条弧所对的圆周角是圆心角的二分之一.在同圆或等圆中;相等的圆心角所对的弧相等;所对的弦相等;所对的弦心距也相等.在同圆或等圆中;如果两条弧相等;那么他们所对的圆心角相等;所对的弦相等;所对的弦心距也相等.27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]229.百分数与分数的区别(1)意义不同.百分数是“表示一个数是另一个数的百分之几的数.”它只能表示两数之间的倍数关系;不能表示某一具体数量.因此;百分数后面不能带单位名称.分数是“把单位‘1’平均分成若干份;表示这样一份或几份的数”.分数还可以表示两数之间的倍数关系.(2)应用范围不同.百分数在生产、工作和生活中;常用于调查、统计、分析与比较.而分数常常是在测量、计算中;得不到整数结果时使用.(3)书写形式不同.百分数通常不写成分数形式;而采用百分号“%”来表示.因此;不论百分数的分子、分母之间有多少个公约数;都不约分;百分数的分子可以是自然数;也可以是小数.而分数的分子只能是自然数;它的表示形式有:真分数、假分数、带分数;计算结果不是最简分数的一般要通过约分化成最简分数;是假分数的要化成带分数.任何一个百分数都可以写成分母是100的分数;而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称.30.百分数应用百分数一般有三种情况:①100%以上;如:增长率、增产率等.②100%以下;如:发芽率、成长率等.③刚好100%;如:正确率;合格率等.31.百分数的意义百分数只可以表示分率;而不能表示具体量,所以不能带单位.百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入.32.日常应用每天在电视里的天气预报节目中;都会报出当天晚上和明天白天的天气状况、降水概率等;提示大家提前做好准备;就像今天的夜晚的降水概率是20%;明天白天有五~六级大风;降水概率是10%;早晚应增加衣服.20%、10%让人一目了然;既清楚又简练.知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点称为圆心;定长称为半径.轨迹说:平面上一动点以一定点为中心;一定长为距离运动一周的轨迹称为圆周;简称圆.集合说:到定点的距离等于定长的点的集合叫做圆.2.圆弧和弦:圆上任意两点间的部分叫做圆弧;简称弧.大于半圆的弧称为优弧;小于半圆的弧称为劣弧;半圆既不是优弧;也不是劣弧.连接圆上任意两点的线段叫做弦.圆中最长的弦为直径.3.圆心角和圆周角:顶点在圆心上的角叫做圆心角.顶点在圆周上;且它的两边分别与圆有另一个交点的角叫做圆周角.4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆;其圆心称为内心.过三角形的三个顶点的圆叫做三角形的外接圆;其圆心叫做三角形的外心.5.扇形:在圆上;由两条半径和一段弧围成的图形叫做扇形.圆锥侧面展开图是一个扇形.这个扇形的半径称为圆锥的母线.6.圆的种类:(1)整体圆形;(2)弧形圆;(3)扁圆;(4)椭形圆;(5)缠丝圆;(6)螺旋圆;(7)圆中圆、圆外圆;(8)重圆;(9)横圆;(10)竖圆;(11)斜圆.7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点;则PO是点到圆心的距离);P在⊙O外;PO>r;P在⊙O上;PO=r;P在⊙O内;0≤PO8.百分数的由来200多年前;瑞士数学家欧拉;在《通用算术》一书中说;要想把7米长的一根绳子分成三等份是不可能的;因为找不到一个合适的数来表示它.如果我们把它分成三等份;每份是7/3米;就是一种新的数;我们把它叫做分数.而后;人们在分数的基础上又以100做基数;发明了百分数.。
小学六年级数学上册知识点归纳
小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。
2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。
3. 分数:表示部分的数,如1/2、3/4、5/6等。
4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。
5. 百分数:表示百分之几的数,如20%、50%、80%等。
6. 四则运算:加法、减法、乘法、除法。
7. 混合运算:将四则运算按照一定的顺序进行计算。
二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。
2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。
3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。
三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。
2. 重量:表示物体的重量,单位有克、千克、吨等。
3. 容量:表示物体的容积,单位有毫升、升、立方米等。
4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。
5. 货币:表示货币的价值,单位有元、角、分等。
四、几何图形1. 点:没有大小和形状的物体。
2. 线:没有宽度和厚度的物体,可以无限延伸。
3. 面:由线段围成的封闭图形。
4. 三角形:由三条边组成的图形,有三个角和三个顶点。
5. 四边形:由四条边组成的图形,有四个角和四个顶点。
6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。
7. 正方形:四边相等且四个角都是直角的四边形。
8. 长方形:对边相等且四个角都是直角的四边形。
9. 平行四边形:对边相等且相邻两边平行的四边形。
10. 梯形:有一对边平行的四边形。
11. 菱形:四条边相等且对角线互相垂直的四边形。
12. 矩形:四个角都是直角的平行四边形。
13. 圆环:由两个同心圆组成的图形。
14. 扇形:由圆心和圆上两点组成的图形。
15. 椭圆:由两个焦点和两条准线组成的图形。
数学六年级上册知识点归纳总结
数学六年级上册知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义是求几个相同加数的和的简便运算,分数乘法的意义与整数乘法的意义相同。
2. 分数乘法的计算法则:分子乘分子作为分子,分母乘分母作为分母。
3. 分数乘法的运算定律:乘法交换律、乘法结合律、乘法分配律。
4. 整数乘法的运算定律在分数乘法中的应用。
二、分数除法1. 分数除法的意义:把一个数平均分成几份,求其中的一份是多少,这是分数除法的意义。
2. 分数除法的计算法则:除以一个数等于乘以这个数的倒数。
3. 分数除法的运算定律:除法交换律、除法结合律、除法分配律。
4. 商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
三、比和比例1. 比的意义:两个数的比表示两个数相除的关系。
2. 比例的意义:表示两个比相等的式子叫做比例。
3. 比的基本性质:比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变。
4. 比例的基本性质:在比例里,两个内项的积是最小的合数,两个外项的积是最大的合数。
5. 解比例的方法:根据比例的基本性质,用已知的比例去除以未知的比,从而求出未知的数值。
四、百分数1. 百分数的意义:百分数是表示一个数是另一个数的百分之几的数,也叫做百分率或百分比。
2. 百分数的计算方法:把百分数化成分数,再按照分数的计算方法进行计算。
如45%可化为45/100,再根据分数乘法的计算法则进行计算。
3. 折扣的意义:折扣是实际售价占原价的百分之几,折扣的计算公式是:现价=原价×折扣率。
4. 成数的意义:农业收成,通常用成数、百分数来表示,如“七成”表示十分之七。
5. 税率和利率的意义:税率是国家对征税对象征收的比例;利率是利息与本金的比值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一单元 分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数, 积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1, 积等于这个数。
(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c常见乘法计算(敏感数字) :25×4=100 125×8=1000加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子0.875+23 +18 23 +14 +0.8 0.4×33×52 23×0.375×163=78 +23 +18 =23 +14 +45 =25 ×33×52 =23×38 ×163=78 +18 +23 =23 +(14 +45 ) =25 ×25 ×33 =23 ×(38 ×163) =1+23 =23+1 =1×3 =23×2 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式0.875+23 +18 +13 0.375×297 ×163 ×729 35×536 101×910=78 +23 +18 +13 =38 ×297 ×163 ×729 = (36-1) ×536= (100+1) ×910=78 +18 + 23 +13 =38 ×163 ×297 ×729 =36×536 -1×536 =100×910+1×910= (78 +18 )+ (23 +13 ) = (38 ×163 )×(297 ×729 ) =5-536 =1+910=1+1 =2×1乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)101×0.9-910 ×1 95.5÷1.6-15.5÷1.6 101×0.9-910 52×58 +29×58-0.625=101×910 -910 ×1 =(95.5-15.5)÷1.6 =101×910 -910 =52×58 +29×58 -58=101×910 -1×910 =80÷1.6 =101×910 -1×910 =52×58 +29×58-1×58=(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58=100×910 =100×910 =80×58减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(716+0.4) 0.56×125 =18-58 -38 =134 -716 -34 =1225 -(716 +25) =0.7×0.8×125 =18-(58 +38 ) =134 -34 -716 =1225 -25 -716=0.7×(0.8×125) =18-1 =1-716 =12-716=0.7×100 除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 数字换乘法式3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) 33333×33333=3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =11111×3×33333=3200÷1 =1000÷2.5 =1000÷2.5 =11111×99999同级运算中,第一个数不能动,后面的数可以带着符号搬家 =11111×(100000-1)123 +716 -23 250÷0.8×0.4 123 -716 +1329×0.25÷0.29 =123 -23 +716 =250×0.4÷0.8 =123 +13 -716=29÷0.29×0.25 =1+716 =100÷0.8 =2-716=100×0.25 二、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面2、求一个数的几倍: 一个数×几倍;求一个数的几分之几是多少: 一个数×几分之几 。
3、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1 + - 分率)=分率对应量第二单元 位置与方向1位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
以谁为参照物,就以谁为观测点。
2东偏北30。
也可说成北偏东60。
,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
3确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。
4根据方向和距离确定物体位置的方法:(1)确定好方向并用量角器测量出被测物体所在的方向(角度);(2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离;(3)根据方向(角度)和距离准确判断或描述被测物体的位置。
5要标出物体的位置必须先确定方向,再确定在这一方向上的距离。
6绘制平面图时,要根据实际距离确定好单位长度,即代表多长距离。
7在平面图上标出物体位置的方法:先确定方向,再以选定的单位长度为基准来确定距离,最后找出物体的具体位置,标上名称。
8描述物体的位置与观测点有关,观测点不同,物体位置的描述就不同。
两地的位置具有相对性,方向相反(其夹角度数不变),距离相同。
9两地的位置关系具有相对性,以这;两个不同地点为观测点描述对方所在的方向时,方向正好相反(甲在乙东偏南30°100米,则乙在甲西偏北30°100米)10描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,再描述到下一个目标所行走的方向和路程。
11在平面图上确定物体的位置与方向关键要做到三点:(1)确定好观测点及单位长度;(2)找准方向;(3)线段上每一段的长度要与单位长度统一。
12以谁为观测点就以谁为中心画出方向标,然后判断出另一点所在的方向和距离13绘制路线图的步骤①画出↑北,确定方向标和单位长度比例尺()②确定起点的位置。
③根据描述,从起点出发,找好方向和距离,一段一段地画。
画每一段都要以每一段新的起点为观测点④以谁为观测点,就以谁为中心画出“十字”方向标,然后判断下一点的方向和距离。
⑤标出数据、名称、角度。
(绘制的路线图只有一条线,所作的线是首尾相连的)第三单元分数除法1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,(分母不能为0)4、对于任意数a(a ≠0),它的倒数为1a 。
非零整数a 的倒数为1a 。
分数b a 的倒数是a b5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。
3、 规律(分数除法比较大小时):当除数大于 1, 商小于被除数;当除数小于1(不等于 0),商大于被除数;当除数等于 1, 商等于被除数。
4、 “[ ] ”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(已知单位“1”的几分之几是多少,单位“1”的量是要求的问题。
就用除法)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1”的量×(1 +-分率)=分率对应量2、解法:(建议:最好用方程解答) (1)方程: 根据数量关系式设未知量为,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就 一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数 – 1 ② 求少几分之几: 1 - 小数÷大数或①求多几分之几(大数-小数)÷比后面的数 ② 求少几分之几(大数-小数)÷比后面的数求的不是单位“1” 单位“1”的量×对应分率 单位“1”的量×对应分率200 × 14 200 × 25%200 ×( 1+ 14 ) 200 ×( 1+ 25%)200 ×( 1- 14 ) 200 ×( 1-25%)求的是单位“1” 分率对应量 ÷ 对应分率 分率对应量 ÷ 对应分率200 ÷ 14 200 ÷ 25%200 ÷( 1+ 14) 200 ÷( 1+ 25%) 200 ÷( 1- 14 ) 200 ÷( 1-25%)第四单元 比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。