六年级奥数举一反三第34讲 行程问题(二)含答案
举一反三奥数六年级答案
举一反三奥数六年级答案奥数是每个小学生都需要学习的科目,它不仅可以提升孩子的数学能力,而且还可以锻炼孩子的逻辑思维和创造力。
在学习奥数的过程中,举一反三是非常重要的一个技巧。
以下是奥数六年级举一反三的答案及其相关内容:一、题目:如果一只蚂蚁从一个点出发,沿着一条线走到另一个点,那么这条线的长度是多少?答案:这条线的长度就是这只蚂蚁走过的路程。
举一反三:假设一只蚂蚁从一个点出发,沿着一个三角形的边缘走一圈,然后又回到起点,那么这只蚂蚁走过的总路程是多少?答案:这只蚂蚁走过的总路程是三条边的长度之和。
二、题目:小明有8个苹果,他想把这些苹果平分给他和他的两个朋友,每人分到几个苹果?答案:小明和他的两个朋友每人分到2个苹果,还剩2个苹果。
举一反三:小明有n个苹果,他想把这些苹果平分给他和他的k个朋友,每人分到几个苹果?如果有苹果剩余,会剩下几个苹果?答案:小明和他的k个朋友每人分到n/k个苹果,还剩下n%k个苹果。
三、题目:有一张纸片厚度为0.1毫米,折叠100次后它的厚度是多少?答案:折叠100次后,这张纸的厚度约为10亿米,相当于地球和月球的距离。
举一反三:有一张纸片厚度为t毫米,折叠n次后它的厚度是多少?答案:折叠n次后,这张纸的厚度约为2^n×t毫米。
四、题目:有一个四位数,其中万位、千位、百位、个位上的数字分别是1、2、3、4,将这个四位数逆序排列后得到一个新的数是多少?答案:逆序排列后得到的新数是4321。
举一反三:有一个六位数,其中万位、千位、百位、十位、个位上的数字分别是1、2、3、4、5、6,将这个六位数逆序排列后得到一个新的数是多少?答案:逆序排列后得到的新数是654321。
五、题目:9个球,其中8个重量相等,1个重量略重,用天平至少称几次可以找到那个略重的球?答案:用天平两次可以找到那个略重的球。
举一反三:m个球,其中m-1个重量相等,1个重量略重,用天平至少称几次可以找到那个略重的球?答案:用天平log₂(m)次可以找到那个略重的球。
六年级数学奥数举一反三小升初数学行程问题追及问题二29
小学数学六年级奥数举一反三
【例题3】甲、乙两人以每分钟60米的速度同时、 同地、同向步行出发。走15分钟后甲返回原地取 东西,而乙继续前进。甲取东西用去5分钟的时 间,然后改骑自行车以每分钟360米的速度追乙。 甲骑车多少分钟才能追上乙? 【思路导航】 当甲取了东西改骑自行车出发时,乙已行15+ 15+5=35分钟,行了60×35=2100米。甲骑车每 分钟比乙步行多行(360-60)米,用2100米除 以(360-60)米就得到甲骑车追上乙的时间。
小学数学六年级奥数举一反三
【练习2】 (1)小王家离工厂3千米,他每天骑车以每分钟200米的速度上班, 正好准时到工厂。有一天,他出发几分钟后,因遇熟人停车 2分钟, 为了准时到厂,后面的路必须每分钟多行100米。小王是在离工厂 多远处遇到熟人的?
(2)一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到 达。这辆汽车以每小时36千米的速度行驶一段时间后,因排队加 油用去了15分钟。为了能在8小时内到达乙地,加油后每小时必须 多行7.2千米。加油站离乙地多少千米? (3)汽车以每小时30千米的速度从甲地出发,6小时后能到达乙 地。汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。 为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速 度驶向乙地?
(3)甲、乙二人加工同样多的零件,甲每小时加工20个,乙每小 时加工15个。一天,乙比甲早工作2小时,到下午二人同时完成了 加工任务。他俩一共加工了多少个零件?
小学数学六年级奥数举一反三
【例题4】甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环 形公路同方向进行晨练。出发后10分钟,甲便从乙身后追上了乙。已知 二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?
小学六年级奥数第34讲 行程问题(二)(含答案分析)
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
六年级数学奥数举一反三小升初数学复杂行程问题三35
1
3
1
乙
甲 图35——4
小学数学六年级奥数举一反三
【练习4】
小学数学六年级奥数举一反三
【例题5】 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定 时间提前1小时到达;如果按原速行驶120千米后,再将速度提高25%, 则可提前40分钟到达。那么甲、乙两地相距多少千米?
【思路导航】此题是将行程、比例、百分数三种应用题综合在了一起。 解题时,我们可先求出改车按原定速度到达乙地所需的时间,再求出甲、 乙两地的路程。
小学数学六年级奥数举一反三
小学数学六年级奥数举一反三
本周主要讲结合分数、百分数知识相关的较 为复杂抽象的行程问题。要注意:出发的时 间、地点和行驶方向、速度的变化等,常常 需画线段图来帮助理解题意。
小学数学六年级奥数举一反三
【例题1】 客车和货车同时从A、B两地相对开出。客车 每 小时行驶50千米,货车的速度是客车的80%,相遇后客车 继续行3.2小时到达B地。A、B两地相距多少千米?
【思路导航】
A
B
14千米 1 4 份 9
图35——3
小学数学六年级奥数举一反三
【练习3】1、甲、乙两人步行的速度比是13:11,他们分别由A、B两地 同时出发相向而行,0.5小时后相遇。如果他们同向而行,那么甲追上乙 需要几小时? 2、从A地到B地,甲要走2小时,乙要走1小时40分钟。若甲从A地出发8 分钟后,乙从A地出发追甲。乙出发多久能追上甲? 3、甲、乙两车分别从A、B两地出发,相向而行。出发时,甲、乙的速度 比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲 到达B地时,乙离A地还有10千米。那么,A、B两地相距多少千米?
【练习1】
小学数学六年级奥数举一反三
小升初数学冲刺举一反三例题及解析:行程问题通用版2
小升初数学冲刺专题:行程问题(二)专题简析:本周的主要问题是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。
追及问题的基本数量关系是:速度差×追及时间=追及路程解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例1中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?分析原来小轿车落后于中巴车60千米,但由于小轿车的速度比中巴车快,每小时比中巴车多行84-60=24千米,也就是每小时小轿车能追中巴车24千米。
60÷24=2.5小时,所以2.5小时后小轿车能追上中巴车。
练习一(1)一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?(2)兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?(3)甲骑自行车从A地到B地,每小时行16千米。
1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。
A、B两地相距多少千米?例2一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?分析途中修车用了2小时,汽车就少行45×2=90千米;修车后,为了按时到达乙地,每小时必须多行30千米。
90千米里面包含有3个30千米,也就是说,再行3小时就能把修车少行的90千米行完。
因此,修车后再行(45+30)×3=225千米就能到达乙地,汽车是在离甲地360-225=135千米处修车的。
六年级举一反三行程问题资料
小红第一次追上了爷爷, 你知道他们的跑步速度吗 ?
一列长200米的火车,速度是20m/s,完全通过一 座长400米的大桥需要几秒?
解 : 完全通过大桥需要x秒. 由题意,得
20x 200 400 解这个方程,得
x 30 答 : 完全通过大桥需要30秒.
(1)甲在乙前面20米,同时同向出发
(2)甲在乙前面20米,同时反向出发
(3)乙在甲前面20米,同时同向出发
(4)乙在甲前面20米,同时反向出发
1. 谈谈你的收获。 2.你还有什么疑惑吗?
(1)学会借助线段图分析等量关系; (2)在探索解决实际问题时,应从多角度思考问题.
相遇问题:两=静水中船速+水速
逆水速度=静水中船速-水速
一船航行于A、B两个码头之间,顺水航行需要 3小时,逆水航行需要5小时,已知水流速度是 4km/h,求这两个码头之间的距离。
解 : 设这两个码头之间的距离为xkm. 由题意,得
x -4 x 4
35
A码头
解这个方程,得
B码头
x 60
水流方向
答 : 这两个码头之间的距离是60km.
解 : 设飞机最远能飞出x千米就应返回.
由题意,得
x x 4.6 575 25 575 - 25 解这个方程,得
x 1320
答 : 飞机最远能飞出1320千米.
一条环形跑道长400米,甲乙两人练习跑步, 甲平均每秒8米,乙平均每秒6米,甲在乙相 距20米,两人同时出发,经过多长时间两人 首次相遇?
速度、路程、时间之间的关系? 路程= 速度×时间 速度= 路程÷时间 时间= 路程÷速度
甲乙两列火车同时从相距700千米的两地相向而行, 甲列车每小时行85千米,乙列车每小时行驶90千米, 几小时后两列火车相遇?
六年级奥数举一反三第34讲 行程问题(二)含答案
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
(六年级)举一反三1-40讲附答案
第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a -b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a -b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q -(p+q)÷2。
求3△(4△6). 3△(4△6).=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =65 练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
六年级举一反三行程问题
行程问题(一)1.两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地 24千米。
甲车行完全程用了多少小时?2.甲、乙两地之间的距离是420 千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行 28 千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?3.A、B 两地相距 900 千米,甲车由 A 地到 B 地需 15 小时,乙车由 B 地到A 地需 10 小时。
两车同时从两地开出,相遇时甲车距 B 地还有多少千米?4.甲、乙两辆汽车早上 8 点钟分别从 A、B 两城同时相向而行。
到 10点钟时两车相距 112.5 千米。
继续行进到下午 1 时,两车相距还是 112.5 千米。
A、B两地间的距离是多少千米?5.两辆汽车同时从东、西两站相向开出。
第一次在离东站 60 千米的地方相遇。
之后,两车继续以原来的速度前进。
各自到达对方车站后都立即返回,又在距中点西侧 30 千米处相遇。
两站相距多少千米?6.两辆汽车同时从南、北两站相对开出,第一次在离南站 55 千米的地方相遇,之后两车继续以原来的速度前进。
各自到站后都立即返回,又在距中点南侧15 千米处相遇。
两站相距多少千米?7.两列火车同时从甲、乙两站相向而行。
第一次相遇在离甲站 40 千米的地方。
两车仍以原速继续前进。
各自到站后立即返回,又在离乙站 20 千米的地方相遇。
两站相距多少千米?8.甲、乙两辆汽车同时从 A、B 两地相对开出。
第一次相遇时离 A 站有 90千米。
然后各按原速继续行驶,分别到达对方车站后立即沿原路返回。
第二次相遇时在离 A 地的距离占A、B 两站间全程的 65%。
A、B 两站间的路程是多少千米?9.A、B 两地相距 960 米。
甲、乙两人分别从 A、B 两地同时出发。
若相向而行, 6 分钟相遇;若同向行走, 80 分钟甲可以追上乙。
小学六年级奥数-第34讲 行程问题(二)后附答案
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114 +334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
2、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
图34——1BA图34-1图34——2图34-2兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
小学奥数(六年级)举一反三
小学奥数举一反三(六年级)1-20第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
四年级下册奥数第34讲 行程问题(二)
第34周行程问题(二)专题简析:迫及问题是指两个物体同向运动,后一个速度快的物体追前一个速度慢的物体的一种行程问题。
它的基本特点是两个物体在相同时间内所走的路程一个比另一个多。
其中运动时间相同是一个重要特征,一般我们从追及时间、速度差、路程差等入手,它们之间的关系是:路程差÷速度差=追及时间(时间)。
例1:货车和客车同时从东、西两地相向而行,货车每小时行驶48千米,客车每小时行驶42千米,两车在离中点18千米处相遇。
求东、西两地相距多少千米?练习:1、甲、乙两人同时分别从两地骑车相向而行,甲每小时行驶20千米,乙每小时行驶18千米。
两人相遇时距全程中点3千米。
求全程长多少千米?2、甲、乙两辆汽车同时从东、西两城相向开出,甲车每小时行驶60千米,乙车每小时行驶56千米,两地距中点16千米处相遇。
求东、西两城相距多少千米?3、快车和慢车同时从南、北两地相对开出。
已知快车每小时行驶40千米,经过3小时后,快车已驶过中点25千米,这时与慢车还相距7千米。
慢车每小时行驶多少千米?例2:甲、乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行驶13千米,乙步行每小时走5千米,几小时后甲可以追上乙?练习:1、甲、乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行走15千米,乙每小时行走6千米,几小时后甲可追上乙?2、解放军某部从营地出发,以每小时6千米的速度向目的地前进,8小时后部队有急事,派通讯员骑摩托车以每小时54千米的速度前去联络。
多少时间后,通讯员能赶上队伍?3、小华和小亮的家相距380米,两人同时从家中出发,在同一条笔直的路上行走,小华每分钟走65米,小亮每分钟走55米。
3分钟后两人可能相距多少米?例3:甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。
如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?练习:1、一条环形跑道长400米,小强每分钟跑300米,小星每分钟跑250米,两人同时同时同地同向出发,经过多长时间小强第一次追上小星?2、光明小学有一条长200米长的环形跑道,亮亮和晶晶同时从起跑线起跑。
举一反三四年级行程问题完整版
举一反三四年级行程问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第二讲行程问题(一)专题简析:我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。
行程问题主要包括相遇问题、相背问题和追及问题。
这一周我们来学习一些常用的、基本的行程问题。
解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。
例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?分析与解答:这是一道相遇问题。
所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。
根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。
所以,求两人几小时相遇,就是求20千米里面有几个10千米。
因此,两人20÷(6+4)=2小时后相遇。
练习一1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。
两地间的水路长多少千米?2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。
8小时后两车相距多少千米?例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。
如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。
这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?练习二1,甲乙两队学生从相隔18千米的两地同时出发相向而行。
一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。
甲队每小时行5千米,乙队每小时行4千米。
两队相遇时,骑自行车的同学共行多少千米?2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。
小学数学奥数解题方法技巧第33讲 解行程问题的方法
此题的答案不能直接求出,先求出两车5小时共行多远后, 从两地的距离480千米中,减去两车5小时共行的路程,所得就 是两车的距离。
480-(40+42)×5 =480-82×5 =480-410 =70(千米)
5
小升初数学解题技巧 第35讲 解行程问题的方法
【例题】两列火车从甲、乙两地同时出发对面开来,第一列火 车每小时行驶60千米,第二列火车每小时行驶55千米。两车相 遇时,第一列火车比第二列火车多行了20千米。求甲、乙两地 间的距离。
15
小升初数学解题技巧 第35讲 解行程问题的方法
【例题】 甲、乙二人从相距50千米的两地相对而行。甲先出发,每 小时步行5千米。1小时后乙骑自行车出发,骑了2小时,两人相距11 千米。乙每小时行驶多少千米?
【点拔】
从相距的50千米中,去掉甲在1小时内先走的5千米,又去掉 相隔的11千米,便得到:
2
小升初数学解题技巧 第35讲 解行程问题的方法
(一)相遇问题 两个运动物体作相向运动或在环形跑道上作背向运动,随着 时间的发展,必然面对面地相遇,这类问题叫做相遇问题。 它的特点是两个运动物体共同走完整个路程。 小学数学教材中的行程问题,一般是指相遇问题。 相遇问题根据数量关系可分成三种类型:求路程,求相遇时 间,求速度。 它们的基本关系式如下: 总路程=(甲速+乙速)×相遇时间 相遇时间=总路程÷(甲速+乙速) 另一个速度=甲乙速度和-已知的一个速度 1.求路程 (1)求两地间的距离
从出发到相遇所用时间是: 5.2÷(48.65-47.35) =5.2÷1.3 =4(小时) 第一列火车行驶的路程是: 48.65×4=194.6(千米) 第二列火车行驶的路程是: 47.35×4=189.4(千米)
举一反三四年级第34周 行程问题(二)
第三十四周行程问题(二)专题简析:行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系。
因此,它比一般行程问题多了一个水速。
在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。
船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。
行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。
由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。
因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。
所以,两地相距90×6=540千米。
练习一1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米,求全程长多少千米。
2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。
东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。
慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。
A、B两地间的路长多少米?分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。
小学奥数行程综合问题
行程综合问题教学目标1.运用各种方法解决行程内综合问题。
2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
知识精讲行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题【难度】2星【题型】解答【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题【难度】2星【题型】解答【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【考点】环形跑道与猎狗追兔【难度】5星【题型】解答【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。
四年级奥数举一反三第三十四周 行程问题(二)-优质版
第三十四周行程问题(二)专题简析:行船问题是指在流水中的一种特殊的行程问题,它也有路程、速度与时间之间的数量关系。
因此,它比一般行程问题多了一个水速。
在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。
船在水中漂流,不借助其他外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。
行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。
东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。
由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。
因为货车每小时比客车多行48-42=6千米,这样货车多行36千米需要36÷6=6小时,即两车相遇的时间。
所以,两地相距90×6=540千米。
练习一1,甲、乙两人同时分别从两地骑车相向而行,甲每小时行20千米,乙每小时行18千米。
两人相遇时距全程中点3千米,求全程长多少千米。
2,甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行60千米,乙车每小时行56千米,两车在距中点16千米处相遇。
东西两城相距多少千米?3,快车和慢车同时从南北两地相对开出,已知快车每小时行40千米,经过3小时后,快车已驶过中点25千米,这时慢车还相距7千米。
慢车每小时行多少千米?例2:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。
A、B两地间的路长多少米?分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第34讲 行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。
图34——1BA图34-1图34——2图34-22、兄、妹2人在周长为30米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2米。
他们第10次相遇时,劢还要走多少米才能归到出发点?3、如图34-1所示,A 、B 是圆的直径的两端,小张在A 点,小王在B 点,同时出发反向而行,他们在C 点第一次相遇,C 点离A 点80米;在D 点第二次相遇,D 点离B 点60米。
求这个圆的周长。
【例题2】甲、乙两人在同一条椭圆形跑道上做特殊训练。
他们同时从同一地点出发,沿相反方向跑。
每人跑完第一圈到达出发点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的23 ,甲跑第二圈时的速度比第一圈提高了13 ,乙跑第二圈时速度提高了15。
已知甲、乙两人第二次相遇点距第一次相遇点190米。
这条椭圆形跑道长多少米?根据题意画图34-2:甲、乙从A 点出发,沿相反方向跑,他们的速度比是1:23=3:2。
第一次相遇时,他们所行路程比是3:2,把全程平均分成5份,则他们第一次相遇点在B 点。
当甲A 点时,乙又行了2÷3×2=113 。
这时甲反西肮而行,速度提高了13。
甲、乙速度比为[3×(1+13 ):2]=2:1,当乙到达A 点时,甲反向行了(3—113 )×2=313 。
这时乙反向而行,甲、乙的速度比变成了[3×(1+13 )]:[2×(1+15 )]=5:3。
这样,乙又行了(5—313 )×35+3 =58,与甲在C 点相遇。
B 、C 的路程为190米,对应的份数为3—58=238 。
列式为1:23 =3:2 2÷3×2=113[3×(1+13 ):2]=2:1 (3—113 )×2=313 [3×(1+13 )]:[2×(1+15)]=5:3(5—313 )×35+3 =58 190÷(3-58)×5=400(米)答:这条椭圆形跑道长400米。
练习2:1、小明绕一个圆形长廊游玩。
顺时针走,从A 处到C 处要12分钟,从B 处到A 处要15分钟,从C 处到B 处要11分钟。
从A 处到B 处需要多少分钟(如图34-3所示)?图34——3B图34——4B图34-3 图34-42、摩托车与小汽车同时从A 地出发,沿长方形的路两边行驶,结果在B 地相遇。
已知B 地与C 地的距离是4千米。
且小汽车的速度为摩托车速度的23 。
这条长方形路的全长是多少千米(如图34-4所示)?3、甲、乙两人在圆形跑道上,同时从某地出发沿相反方向跑步。
甲速是乙速的3倍,他们第一次与第二次相遇地点之间的路程是100米。
环形跑道有多少米?【例题3】绕湖的一周是24千米,小张和小王从湖边某一地点同时出发反向而行。
小王以每小时4千米速度走1小时后休息5分钟,小张以每小时6千米的速度每走50分钟后休息10分钟。
两人出发多少时间第一次相遇?小张的速度是每小时6千米,50分钟走5千米,我们可以把他们出发后的时间与行程列出下表:12+15=27,比24大,从上表可以看出,他们相遇在出发后2小时10分至3小时15分之间。
出发后2小时10分,小张已走了10+5÷(50÷10)=11(千米),此时两人相距24—(8+11)=5(千米)。
由于从此时到相遇以不会再休息,因此共同走完这5千米所需的时间是5÷(4+6)=0.5(小时),而2小时10分+0.5小时=2小时40分。
小张50分钟走的路程:6÷60×50=5(千米)小张2小时10分后共行的路程:10+5÷(50÷10)=11(千米)两人行2小时10分后相距的路程:24—(8+11)=5(千米)两人共同行5千米所需时间:5÷(4+6)=0.5(小时)相遇时间:2小时10分+0.5小时=2小时40分练习3:1、在400米环行跑道上,A,B两点相距100米。
甲、乙两人分别从A,B两点同时出发,按逆时针方向跑步,甲每秒行5米,乙每秒行4米,每人跑100米都要停留10秒钟。
那么甲追上乙需要多少秒?2、一辆汽车在甲、乙两站之间行驶。
往、返一次共用去4小时。
汽车去时每小时行45千米,返回时每小时行驶30千米,那么甲、乙两站相距多少千米?3、龟、兔进行10000米跑步比赛。
兔每分钟跑400米,龟每分钟跑80米,兔每跑5分钟歇25分钟,谁先到达终点?【例题4】一个游泳池长90米。
甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回。
找这样往、返游,两人游10分钟。
已知甲每秒游3米,乙每秒游2米。
在出发后的两分钟内,二人相遇了几次?设甲的速度为a,乙的速度为b,a:b的最简比为m:n,那么甲、乙在半个周期内共走m+n个全程。
若m>n,且m、n都是奇数,在一个周期内甲、乙相遇了2m次;若m>n,且m 为奇数(或偶数),n为偶数(或奇数),在半个周期末甲、乙同时在乙(或甲)的出发位置,一个周期内,甲、乙共相遇(2m—1)次。
甲速:乙速=3:2,由于3>2,且一奇数一偶数,一个周期内共相遇(2×3—1=)5次,共跑了[(3+2)×2=]10个全程。
10分钟两人合跑周期的个数为:60×10÷[90÷(2+3)×10]=313(个)3个周期相遇(5×3=)15(次);13个周期相遇2次。
一共相遇:15+2=17(次)答:二人相遇了17次。
练习4:1、甲、乙两个运动员同时从游泳池的两端相向下水做往、返游泳训练。
从池的一端到另一端甲要3分钟,乙要3.2分钟。
两人下水后连续游了48分钟,一共相遇了多少次?2、一游泳池道长100米,甲、乙两个运动员从泳道的两端同时下水,做往、返训练15分钟,甲每分钟游81米,乙每分钟游89米。
甲运动员一共从乙运动员身边经过了多少次?3、马路上有一辆身长为15米的公共汽车,由东向西行驶,车速为每小时18千米。
马路一旁人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。
某一时刻,汽车追上了甲,6秒争后汽车离开了甲,半分钟后,汽车遇到迎面跑来的乙,又经过了2秒钟,汽车离开乙,再过几秒钟,甲、乙两人相遇?【例题5】甲、乙两地相距60千米。
张明8点从甲地出发去乙地,前一半时间平均速度为每分钟1千米,后一半时间平均速度为每分钟0.8千米。
张明经过多少时间到达乙地?因为前一半时间与后一半时间相同,所以可假设为两人同时相向而行的情形,这样我们可以求出两人合走60千米所需的时间为[60÷(1+0.8)=]3313分钟。
因此,张明从甲地到乙地的时间列算式为60÷(1+0.8)×2=6623(分钟) 答:张明经过6623分钟到达乙地。
练习5:1、A 、B 两地相距90千米。
一辆汽车从A 地出发去B 地,前一半时间平均每小时行60千米,后一半时间平均每小时行40千米。
这辆汽车经过多少时间可以到达B 地?2、甲、乙两人同时从A点背向出发,沿400米环行跑道行走。
甲每分钟走80米,乙蔑分钟走50米。
两人至少经过多少分钟才能在A点相遇?3、在300米的环行跑道上,甲、乙两人同时并排起跑。
甲平均每秒行5米,乙平均每秒行4.4米。
两人起跑后第一次相遇在起跑线前面多少米?第34周行程问题(二)一、知识要点在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
二、精讲精练【例题1】甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后114 分钟于到丙,再过334分钟第二次遇到乙。
已知乙的速度是甲的23,湖的周长为600米,求丙的速度。
甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为600÷(114+334 )=120米/分。
甲、乙的速度分别是:120÷(1+23)=72(米/分),120—72=48(米/分)。
甲、丙的速度和为600÷(114 +334 +114)=96(米/分),这样,就可以求出丙的速度。
列算式为甲、乙的速度和:600÷(114 +334)=120(米/分) 甲速:120÷(1+23)=72(米/分) 乙速:120—72=48(米/分)甲、丙的速度和:600÷(114 +334 +114)=96(米/分) 丙的速度:96—72=24(千米/分) 答:丙每分钟行24米。
练习1:1、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到乙后114 分钟第一次遇到丙;再过334分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为2000米,求三人的速度。