电流信号转电压信号方法大全

合集下载

单运放电流转电压电路

单运放电流转电压电路

单运放电流转电压电路
单运放电流转电压电路是指使用单个运算放大器(Op-Amp)将电流信号转换为电压信号的电路。

这种电路通常用于信号处理和测量系统中,将传感器输出的电流信号转换为适合后续电路或仪表使用的电压信号。

单运放电流转电压电路的基本原理是利用运算放大器的虚短特性,即将输入端的电流信号转换为相应的电压信号。

具体来说,当运算放大器的输入端接收到一个电流信号时,输出端会产生一个相应的电压信号,其大小与输入电流成正比。

通过调整反馈电阻的大小,可以改变输出电压的大小和放大倍数。

单运放电流转电压电路的应用范围很广,可以用于各种不同的传感器信号处理和测量系统中。

例如,电流-电压转换器、光电二极管放大器、磁阻传感器放大器等都可以使用单运放电流转电压电路进行信号转换和放大。

总结来说,单运放电流转电压电路是一种将电流信号转换为电压信号的电路,使用单个运算放大器实现。

它广泛应用于各种传感器信号处理和测量系统中,可以将传感器的输出信号转换为适合后续电路或仪表使用的电压信号。

4~20毫安电流转电压电路实验

4~20毫安电流转电压电路实验

4-20毫安电流转1-5V电压转换电路最简单的4-20mA输入/5V输出的I/V转换电路在与电流输出的传感器接口时,为把传感器(变送器)输出的1-10mA或者4 -20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I /V转换电路,图1就是这种电路最简单的应用示意图。

仅使用一只I/V转换取样电阻,就能够把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机须要的满度A/D信号电压,I是输入的最大信号电流。

这样的电路虽然简单,但却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5 V电压来分析,零点的时候恰好是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

LM324组成的4-20mA输入/5V输出的I/V转换电路解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。

电流电压转换电路原理

电流电压转换电路原理

电流电压转换电路原理
电流电压转换电路是一种用于将电流转换成电压信号或将电压转换成电流信号的电路。

它利用电阻和运算放大器来实现电流和电压之间的转换。

电流到电压的转换电路通常使用电阻。

当电流通过一个电阻时,根据欧姆定律,将会产生一个与电流成正比的电压。

因此,通过选择适当的电阻值,可以将电流转换成相应的电压信号。

电压到电流的转换电路则需要使用运算放大器。

运算放大器是一种具有高增益的电路元件,它可以放大输入信号,并根据输入信号的差异来控制输出电流。

通过将需要转换的电压输入到运算放大器的输入端,然后将输出端连接到负载电阻上,就可以将电压转换成相应的电流信号。

在实际应用中,电流电压转换电路常用于测量和控制系统中。

例如,当我们需要测量电流时,可以将待测电流通过电阻转换成电压信号,然后再使用电压测量仪器进行测量。

另外,它还可以应用于传感器的信号转换、电源控制和模拟信号处理等场景中。

总的来说,电流电压转换电路是一种常用的电路设计,它通过电阻和运算放大器实现电流和电压之间的转换。

它在各种电子设备和系统中都有广泛的应用。

几种特殊模拟信号的预处理方法

几种特殊模拟信号的预处理方法

几种特殊模拟信号的预处理方法张娟【摘要】控制系统逐步由模拟系统向数字系统转变,对控制系统的精确度提出了更高的要求。

提高模/数转换的精确度显得至关重要。

介绍三种特殊模拟信号(电流型信号、交流电压信号、小电压信号)的预处理方法,这些信号经过滤波、分压限幅、信号放大等预处理,消除杂波干扰,增加信号的驱动能力和抗干扰能力,提高信噪比。

这些方法经过工程验证,已成功运用,信号稳定。

%In control systems,analog systems are gradually converted to digital systems,which requires higher accuracy of A/D conversion for the control systems. Three kinds of special analog signal pretreatment methods are introduced in the paper, such as current signal,AC voltage signal and small voltage signal. These signals went through pretreatment such as filtering,dis⁃tributing voltage amplitude limiting and signal amplification. Therefore,noise jamming was eliminated,and the driving and anti⁃interference ability of signals were increased to improve the signal to noise ratio. These methods were verified by engineering practice and were successfully used. These signals are stable.【期刊名称】《现代电子技术》【年(卷),期】2013(000)005【总页数】3页(P85-86,90)【关键词】模拟信号;A/D 转换;预处理;信噪比【作者】张娟【作者单位】中国航空计算技术研究所,陕西西安 710068【正文语种】中文【中图分类】TN911.7-340 引言无论是工业控制还是航空、航天以及军事领域,计算机正逐步成为控制系统的核心部件,尤其那些对精确度要求高的系统,例如瞄准目标、着陆范围、油量计算等等都对控制系统提出了更高的要求。

中泰数据采集卡使用方法

中泰数据采集卡使用方法

中泰数据采集卡使用方法一.多功能板接线方法1.图1♦当测电流信号时,采集卡A/D端接PS-003端子板,根据电流、采集方式(单端和双端),再PS003上的RA(单端)或者RC(双端)上焊接不同的电阻,将电流转换为电压,方便采集。

♦4~20mA电流信号转换为1~5V电压信号时焊接250Ω精密电阻,转换为2~10V电压信号时焊接500Ω精密电阻。

♦0~10mA电流信号转换为0~10V电压信号时焊接1KΩ精密电阻,转换为0~5V电压信号时焊接500Ω精密电阻。

♦开关量端接PS-006端子板(端子定义即配接的采集卡的开关量定义),请察看相关说明书。

♦和PS-003配接适用板卡:PCI-8310 PCI-8360 PCI-8319 PCI-8325 PCI-8333 PCI-8335B PCI-8340 PC-6310 PC-6313 PC-6315 PC-6319 PC-6325 PC-6333PC-6340等♦和PS-006配接适用板卡:PCI-8310 PCI-8360 PCI-8344 PCI-8319 PCI-8322 PCI-8324 PCI-8320 PCI-8325 PCI-8333 PCI-8335B PCI-8340 PC-6311PC-6313 PC-6315 PC-6322 PC-6323 PC-6317等2.图2♦测电压信号时,采集卡A/D端可接PS-006端子板♦开关量端接PS-006端子板二.开关量DI DO接线方法图3♦DI 16路,接PS-006端子板♦DO 16路,接继电器输出PS-002端子板♦适用板卡:PCI-8408 PC-6408♦继电器板卡须外加12V或者24V电源三.开关量DO接线方法图4♦DO 32路,可配两块继电器输出PS-002端子板♦适用板卡:PCI-8407 PC-6407♦继电器板卡须外加12V或者24V电源四.开关量DI接线方法图5♦DI 32路,接PS-006端子板♦适用板卡:PCI-8405 PC-6405五.全隔离模块接线方法图6如果用户现场环境恶劣,或信号是非标准信号,不能直接被所选设备采集时,就需要加入全隔离模块。

信号转换电路

信号转换电路

传感检测技术基础信号转换电路信号转换电路模/数转换器A/D转换可分为直接法和间接法。

直接法是把电压直接转换为数字量,如逐次比较型的A/D转换器。

间接法是把电压先转换成某一中间量,再把中间量转换成数字量。

(1)逐次比较型模/数转换器逐次比较型A/D转换就是将输入模拟信号与不同的参考电压做多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量的对应值.模模//数与数数与数//模转换器模转换器逐次比较型A/D转换器简化框图如图10.20所示它由D/A转换、数码设定、电压比较和控制电路组成图10.20逐次比较型A/D转换框图(2)双积分型模/数转换电路双积分型A/D转换电路如图10.21所示,当t=T2时,U0(t)=0,如图(b)所示.图10.21双积分型A/D转换器原理图转换过程分两步,首先接通S1,对输入电压(-Ui)积分,积分电路输出电压为:(10.21)然后在T1时,开关切换到S2位置,对基准参考电压Ur反向积分,积分电路输出电压为:(10.22)当t=T2时,U0(t)=0,如图10.21(b),此时得:(10.23)设时钟脉冲频率为,当t=T1时,则时间T1为:此时开始对标准参考电压Ur反向积分,时间间隔T=T1-T2,计数值为N,则,所以:数/模转换器数/模(D/A)转换器是通过电阻网络,把数字按其数码权值转换成模拟量的输出.D/A转换器有两种类型:权电阻网络和T形电阻网络(1)权电阻数/模转换器图10.22是4位二进制权电阻D/A转换器原理图由上图可得:(10.24)(10.25)在上述电路中,权电阻分别为R、2R、4R、…、。

若数字量多于四位,可通过增加模拟开关和权电阻来增加其位数。

(2)T形电阻数/模转换器T形电阻D/A转换器原理如图10.23所示,该电路电阻形状成T形,故称T形网络.图10.23T型电阻D/A转换器由图10.23可知,根据叠加原理,运算放大器总输入的等效电压是各支路等效电压之和,即:(10.26)若取RF=3R,运算放大器的输入端电流为:(10.27)运算放大器的输出电压V0为:(10.28)电压/频率转换器(1)转换原理V/F转换器原理如图10.24所示电压电压//频率与频率频率与频率//电压转换器电压转换器图10.24V/F转换电路示意图1)当输入电压Ux>Uc时,放大器A输出为“1”状态,此时将单稳触发器置“1”,触发器驱动开关S 接通恒流源,使I0对电容CL充电;2)Uc上升,在Uc=Ux+△U时,电压比较器A输出为“0”状态,单稳触发器置“0”,使开关S断开,I0停止对电容CL充电;3)电容CL通过电阻RL放电,Uc下降。

电流信号转电压信号方法大全

电流信号转电压信号方法大全
下面介绍几种I/V变换的实现方法。
分压器方法
分压器方法分压器方法
分压器方法
利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电
位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。
利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位
接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生
的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用
集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。P
这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。
积分电路
积分电路积分电路
积分电路方法
方法方法
方法
电压可以看作是电流的积分,利用如图电路有:
为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟
且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。
电流信号转换为电压信号的方法
电流信号转换为电压信号的方法电流信号转换为电压信号的方法
电流信号转换为电压信号的方法由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换
成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流
互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。
运放直接搭接的方法(跨阻放大器)
充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路
电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为
这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号1、电流信号转成电压信号,或电压信号转成电流信号,实质就是信号传输中的阻抗变换问题;2、信号传输阻抗匹配,就是满足信号源输出最大信号能量的条件;3、信号传输阻抗匹配,就是信号传输能流最大、衰减最小、畅通无阻、失真变形最小;4、电流信号转成电压信号,就是低阻抗传输转换为高阻抗传输;5、这种阻抗变换,一定要通过阻抗变换设备、阻抗变换电路来实现;6、常用阻抗变换的设备有阻抗变换变压器,例如音响系统的输入输出变压器;7、常用阻抗变换电路,如射极输出电路,在模拟电子电路中经常用作输出级、输入级、中间转换级等;8、超高频闭路电视系统,信号分流用的三通、四通分配器,就是信号匹配阻抗转换器,通过它实现闭路电视系统的阻抗匹配,否则信号将受阻传不出去,或信号失真变形;9、4-20mA电流信号转成0-5V或0-10V电压信号,用什么样的阻抗变换电路、设备,关键看信号的性质,是高频还是低频,是交流还是直流;10、这种在电流信号回路中串入电阻的方法,是错误的,不可取的,是不懂信号传输匹配意义的做法;并电阻没问题的,我们经常这样转化,加250欧姆电阻转换成1-5V,加500欧姆电阻转换成2-10V,至于0-1V,0-2V这两个范围几乎不用,完全能够达到控制要求简单化:4-20MA的信号输出并联一个315欧姆的电阻,就可以转换为1.3-6.3伏的电压信号.再串联两只二极管(降压1.3),就可以转换为0-5伏的电压信号.推荐4个实用的4-20mA输入/0-5V输出的I/V转换电路一、最简单的4~20mA输入/1~5V输出的I/V转换电路应用示意图二、廉价运放LM324搭的廉价的4~20mA输入/0~5V输出的I/V转换电路三、推荐采用运放OP07搭的4~20mA输入/0~5V输出的I/V转换电路四、推荐采用精密的4~20mA输入/0~5V输出的I/V转换专用集成电路RCV420是一种精密的I/V转换电路,也是目前最佳的4-20mA转换0-5V的电路方案,有商用级(0℃-70℃)和工业级(-25℃-+85℃)供你选购。

4-20mA电流信号转成0-5V或0-10V电压信号精编版

4-20mA电流信号转成0-5V或0-10V电压信号精编版

4-20mA电流信号转成0-5V或0-10V电压信号1、电流信号转成电压信号,或电压信号转成电流信号,实质就是信号传输中的阻抗变换问题;2、信号传输阻抗匹配,就是满足信号源输出最大信号能量的条件;3、信号传输阻抗匹配,就是信号传输能流最大、衰减最小、畅通无阻、失真变形最小;4、电流信号转成电压信号,就是低阻抗传输转换为高阻抗传输;5、这种阻抗变换,一定要通过阻抗变换设备、阻抗变换电路来实现;6、常用阻抗变换的设备有阻抗变换变压器,例如音响系统的输入输出变压器;7、常用阻抗变换电路,如射极输出电路,在模拟电子电路中经常用作输出级、输入级、中间转换级等;8、超高频闭路电视系统,信号分流用的三通、四通分配器,就是信号匹配阻抗转换器,通过它实现闭路电视系统的阻抗匹配,否则信号将受阻传不出去,或信号失真变形;9、4-20mA电流信号转成0-5V或0-10V电压信号,用什么样的阻抗变换电路、设备,关键看信号的性质,是高频还是低频,是交流还是直流;10、这种在电流信号回路中串入电阻的方法,是错误的,不可取的,是不懂信号传输匹配意义的做法;并电阻没问题的,我们经常这样转化,加250欧姆电阻转换成1-5V,加500欧姆电阻转换成2-10V,至于0-1V,0-2V这两个范围几乎不用,完全能够达到控制要求简单化:4-20MA的信号输出并联一个315欧姆的电阻,就可以转换为1.3-6.3伏的电压信号.再串联两只二极管(降压1.3),就可以转换为0-5伏的电压信号.推荐4个实用的4-20mA输入/0-5V输出的I/V转换电路一、最简单的4~20mA输入/1~5V输出的I/V转换电路应用示意图二、廉价运放LM324搭的廉价的4~20mA输入/0~5V输出的I/V转换电路三、推荐采用运放OP07搭的4~20mA输入/0~5V输出的I/V转换电路四、推荐采用精密的4~20mA输入/0~5V输出的I/V转换专用集成电路RCV420是一种精密的I/V转换电路,也是目前最佳的4-20mA转换0-5V的电路方案,有商用级(0℃-70℃)和工业级(-25℃-+85℃)供你选购。

0-100mv转4-20ma对应关系

0-100mv转4-20ma对应关系

0-100mv转4-20ma对应关系0-100mV转4-20mA对应关系是工业中常见的模拟信号转换方式之一。

本文将详细介绍0-100mV转4-20mA的原理、电路设计和计算方法,同时也会讨论这种转换方式的一些优点和应用场景。

一、原理0-100mV转4-20mA是指将0-100mV的电压信号转换成4-20mA的电流信号。

这种转换方式主要基于欧姆定律和线性传感器的特性。

根据欧姆定律,电流与电压之间的关系是I = U/R,其中I是电流,U是电压,R是电阻。

我们可以通过增大电阻值R,将0-100mV的电压信号转换成4-20mA的电流信号。

二、电路设计1.选取合适的电阻为了保证转换的精度和稳定性,我们需要选取合适的电阻值。

我们可以使用以下公式来计算电阻值:R = U / I其中R是电阻值,U是输入电压范围(0-100mV),I是输出电流范围(4-20mA)。

例如:当U = 100mV,I = 4mA时,电阻值为:R = 0.1 / 0.004 = 25 Ω当U = 100mV,I = 20mA时,电阻值为:R = 0.1 / 0.02 = 5 Ω2.使用稳压电流源为了保证输出电流稳定,我们需要使用稳压电流源来驱动电路。

稳压电流源可以确保在电路负载变化的情况下,输出电流能够保持不变。

这样可以提高系统的稳定性和抗干扰能力。

三、计算方法在实际应用中,我们需要根据具体的输入和输出范围,确定电阻和电流源的数值。

以下是具体的计算步骤:1.确定输入电压范围和输出电流范围。

假设输入电压范围为0-100mV,输出电流范围为4-20mA。

2.根据输出电流范围选择合适的电阻值。

根据上述公式可以计算出电阻值为5-25Ω。

3.选择合适的电流源。

我们可以使用可调电流源或者稳压电流源,确保输出电流的稳定性和可调范围。

4.进行电路设计和布线。

5.进行电路调试和测试,验证转换效果和精度。

四、优点和应用场景0-100mV转4-20mA具有以下优点:1.高精度:通过合适的电阻设计和电流源选择,可以实现较高的转换精度。

简析3种常用的电流互感器采样电路

简析3种常用的电流互感器采样电路

我们都知道,采样电流信号最简单的方法就是通过采样电阻将电流信号转换为电压信号,然后再进行放大、采样即可。

直流信号一般都可以这样处理,但是对于电流互感器出来的交流信号,不能直接输入到单极性的AD进行采样。

而如果用双极性输入的AD或运放进行信号调理,那就可能需要增加一个负电源,设计就要复杂很多。

今天,就给大家介绍几种简单常用的电流互感器的信号采集电路。

1、二极管整流直接看电路:通过整流桥将双极性信号转换为单极性信号,再用采样电阻将电流转换为电压。

电压信号可以通过一个大电容将交流转换为直流,再输入AD;也可以直接输入AD,高速采样,通过软件的方式计算信号的有效值。

电流互感器输出的是电流,可以看做一个电流源。

因此,一般情况下,整流桥上二极管的压降不会影响采样电阻上的电压。

但如果采样电阻和整流桥的位置反过来,先将电流转换成电压再整流就会有问题。

电压信号经过整流桥产生压降,这个压降是不可忽视的,使采集的信号失真,导致产生较大误差。

如果对成本敏感且对精度要求不高,也可以直接用一个二极管代替整流桥,做半波整流。

2、运放整流二极管整流会产生压降,对于一些带载能力有限的互感器,这个压降就可能产生信号失真。

这时可以用运放做精密整流电路(也就是绝对值电路)来实现双极性到单极性的转换。

这种方式是对电压信号进行整流,因此需要先经过采样电阻再进行整流。

3、提高偏置电压前面两种电路都是用整流的方式将双极性信号转换为单极性,还有一种方法,就是直接提供一个直流偏置,将双极性信号整体抬高到单极性AD的输入范围。

如下图所示:U1B和电阻R1组成1/V转换电路,R2和C1起到一定滤波作用,1)1、D2起保护作用。

(如果要求不高,这部分可以直接用一个采样电阻代替)U1A提供一个L65V的低阻抗直流偏置,作为电流互感器和U1B的参考。

当电流为0时,ADC 的电压为 1. 65V,当有电流时,ADC的电压是一个以 1. 65V为基准的交流信号。

电压电流变送集成电路AM462原理及应用

电压电流变送集成电路AM462原理及应用

电压电流变送集成电路AM462原理及应用模拟电路接口工业上通常用电压0-5(10)V 或电流0(4)-20mA 作为模拟信号传输的方法,也是被程控机经常采用的一种方法。

那么电压和电流的传输方式有什么不同,什么时候采用什么方法,下面将对此进行简要介绍。

电压信号传输比如0-5(10)V如果一个模拟电压信号从发送点通过长的电缆传输到接收点,那么信号可能很容易失真。

原因是电压信号经过发送电路的输出阻抗,电缆的电阻以及接触电阻形成了电压降损失。

由此造成的传输误差就是接收电路的输入偏置电流乘以上述各个电阻的和。

如果信号接收电路的输入阻抗是高阻的,那么由上述的电阻引起的传输误差就足够小,这些电阻也就可以忽略不计。

要求不增加信号发送方的费用又要所提及的电阻可忽略,就要求信号接收电路有一个高的输入阻抗。

如果用运算放大器OP 来做接收方的输入放大器,就要考虑到此类放大器的输入阻抗通常是小于<1MΩ 。

原则上,高阻抗的电路特别是在放大电路的输入端是很容易受到电磁干扰从而会引起很明显的误差。

所以用电压信号传输就必须在传输误差和电磁干扰的影响之间寻找一个折中的方案。

电压信号传输的结论:如果电磁干扰很小或者传输电缆长度较短,一个合适的接收电路毫无疑问是可以用来传输电压信号0-5(10)V 的。

电流信号传输比如0(4)-20mA在电磁干扰较强的环境和需要传输较远距离的情况下,多年来人们比较喜欢使用标准的电流来传输信号。

如果一个电流源作为发送电路,它提供的电流信号始终是所希望的电流而与电缆的电阻以及接触电阻无关,也就是说,电流信号的传输是不受硬件设备配置的影响的。

同电压信号传输的方法正相反,由于接收电路低的输入阻抗和对地悬浮的电流源(电流源的实际输出阻抗与接收电路的输入阻抗形成并联回路)使得电磁干扰对电流信号的传输不会产生大的影响。

电流信号传输的结论:如果考虑到有电磁干扰比如电焊设备和其他信号发射设备,传输距离又必须很长,那么电流信号传输的方法是适合这种情况的(模拟信号传输)。

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号

4-20mA电流信号转成0-5V或0-10V电压信号解决方法:1.采用专用的电流转电压芯片,或者隔离放大器(要求精度高,抗干扰时)如:MAXIM MAX472深圳顺源公司的ISO系列产品/2.自己搭建电路,节省成本,但不推荐直接串联精密电阻的方式用运放搭建电路就非常好给个地址: /html/zonghejishu/2007/0925/2621.html1、 0-5V/0-10mA的V/I变换电路图1是由运放和阻容等元件组成的V/I变换电路,能将0—5V的直流电压信号线性地转换成0-10mA的电流信号,A1是比较器.A3是电压跟随器,构成负反馈回路,输入电压Vi与反馈电压Vf比较,在比较器A1的输出端得到输出电压VL,V1控制运放A1的输出电压V2,从而改变晶体管T1的输出电流IL而输出电流IL又影响反馈电压Vf,达到跟踪输入电压Vi的目的。

输出电流IL 的大小可通过下式计算:IL=Vf/(Rw+R7),由于负反馈的作用使Vi=Vf,因此IL=Vi/(Rw+R7),当Rw+R7取值为500Ω时,可实现0-5V/0-10mA的V/I转换,如果所选用器件的性能参数比较稳定,运故A1、A2的放大倍数较大,那么这种电路的转换精度,一般能够达到较高的要求。

2、 0-10V/0-10mA的V/I变换电路图2中Vf是输出电流IL流过电阻Rf产生的反馈电压,即V1与V2两点之间的电压差,此信号经电阻R3、R4加到运放A1的两个输入端Vp与Vn,反馈电压Vf=V1-V2,对于运放A1,有VN=Vp;Vp=V1/(R2+R3)×R2,VN=V2+(Vi-V2)×R4/(R1+R4),所以V1/(R2+R3)×R2=V2+(Vi-V2)×R4/(R1+R4),依据Vf=V1-V2及上式可推导出:若式中R1=R2=100kΩ,R1=R4=20kΩ,则有:Vf×R1=Vi×R4,得出:Vf=R4/R1×Vi=1/5Vi,如果忽略流过反馈回路R3、R4的电流,则有:IL=Vf/Rf=Vi/5Rf,由此可以看出.当运放的开环增益足够大时,输出电流IL与输入电压Vi满足线性关系,而且关系式中只与反馈电阻Rf的阻值有关.显然,当Rf=200Ω时,此电路能实现0-10v/0-10mA的V/I变换。

二线制信号传输及供电原理

二线制信号传输及供电原理

二线制变送器信号/供电原理及相关问题解答一、什么是二线制变送器或控制单元:二线制变送器或控制单元是指,采用将物理量转换成4~ 20mA 标准电流信号通过一对(二根)导线输出的同时,电源以4~20mA的电流通过同一对导线为变送器或控制单元供电的信号传输及供电方式的电流输出型变送器或控制单元。

二、二线制的信号传输及供电原理在一个电源和带有一只可变电阻构成的回路中(见图1),改变可变电阻的阻值可以改变回路电流。

当电源电压或者电阻发生变化时,可以通过改变可变电阻的阻值可以使回路电流精选资料,欢迎下载图 1。

保持在相应位置。

同时回路中只要还存在电流,可变电阻两端就有电压存在。

如果这个变阻器具有一定的智能,可以自动根据需要将回路中的电流稳定在某个数值,这个变阻器就等效为可调的恒流器,而二线制变送器正是一种具有这种特性的设备。

在实际应用中变送器可以等效为一只特殊的可变电阻(见图2)。

这只可变电阻的特殊性在于:它是根据变送器的输入或控制单元的要求而对流过的电流在规定的数值之间进行调整从而实现信号的传输。

同时这个电流有一个下限,使回路中始终保持有一定的电流通过从电源线路电阻r1U R1被负载测V I参数变送器负载线路电阻R2r2变送器供电线路二次仪表图 2 二线制变送器供电/信号等效电路图精选资料,欢迎下载。

而在变送器或控制单元的两端始终存在电压从而实现对变送器或控制单元的供电。

三、二线制的信号传输及供电的相关规定二线制,要在一对导线中实现同时传输信号并供电的要求,就必须对信号电流、电源电压、负载电阻、变送器的电源适应能力等,有一个统筹安排。

同时作为一项广泛运用的技术,这种安排需要有一个统一的标准。

我国国家标准 GB/T 3369- 2008 《过程控制用模拟信号》(国际电工委员会标准 IEC 60381 - 1982)中对信号和供电的要求:◆直流电流信号: 4 -20mA 或 0 - 20mA,推荐使用 4 - 20mA ;◆直流电压信号:0 -5V, 1-5V, 1- 10V, -10 -10V :◆一个变送器或控制单元应能连续地驱动0 Ω- 300Ω之间的任何负载;精选资料,欢迎下载。

电子电路中的信号采集和处理方法有哪些

电子电路中的信号采集和处理方法有哪些

电子电路中的信号采集和处理方法有哪些信号采集和处理是电子电路设计中至关重要的一环。

信号采集指的是将原始信号转换为适合处理的电压或电流形式,而信号处理则是对采集到的信号进行放大、滤波、微分、积分等操作,以获取需要的信息。

本文将介绍电子电路中常见的信号采集和处理方法。

A/D转换器(模数转换器)A/D转换器是将模拟信号转换为数字信号的一种设备。

它通过将连续变化的模拟信号转换为离散的数字信号,并用数字表示信号的幅度。

A/D转换器广泛应用于数据采集、通信、自动化控制、音频处理等领域。

常见的A/D转换器包括逐次逼近型、闪存型和Σ-Δ型等。

模数转换器的基本原理是将持续变化的模拟信号离散化,在一段时间内对模拟信号取样,然后将取样结果转换为数字形式。

这种转换可以通过逐次逼近、比较和计数、模数-模数转换以及多步骤逼近等方法实现。

放大器放大器是电子电路中常见的信号处理设备。

它能够增加信号幅度,提高信号的能量,使信号能够更好地被后续电路处理。

放大器可以根据信号的种类和处理需求选择不同的类型,如运算放大器、功率放大器、差分放大器等。

滤波器滤波器是用于滤除或增强信号特定频率成分的电子设备。

滤波器可以根据频率的不同实现对信号的低通、高通、带通或带阻处理。

常见的滤波器包括RC滤波器、LC滤波器、激励式滤波器等。

微分和积分电路微分和积分电路用于对信号进行微分和积分操作,以实现对信号的变化率和累计量的测量。

微分电路能够对信号进行高通滤波,提取信号的快速变化部分。

积分电路则能够对信号进行低通滤波,提取信号的缓慢变化部分。

数字滤波器数字滤波器使用数字信号处理算法对数字信号进行滤波操作。

与模拟滤波器相比,数字滤波器无需进行模拟信号的转换和采样,操作更加灵活、精确。

数字滤波器常用于音频处理、图像处理、通信系统等领域。

采样保持电路采样保持电路用于对模拟信号进行采样和保持,以便后续的A/D转换器能够准确地测量信号的幅度。

采样保持电路通过将信号在采样时刻进行固定,然后传递给转换器进行数字化处理。

4-20毫安电流转1-5V方法资料

4-20毫安电流转1-5V方法资料

4-20毫安电流转1-5V电压转换电路资料在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。

图(1)最简单的4-20mA输入/5V输出的I/V转换电路图(2)用取样电阻仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照VinI=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。

这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。

可是这样一来。

其有用电压就会剩下5-1=4V而不是5V 了。

由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。

为了达到A/D转换的位数,就会导致芯片成本增加。

解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图3图(3)LM324组成的4-20mA输入/5V输出的I/V转换电路增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。

以4~20mA 例,图(3)中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。

因为即使传送距离达到1000米,RA0最多也就几百Ω而已。

光电二极管iv转换电路

光电二极管iv转换电路

光电二极管iv转换电路光电二极管(Photodiode)是一种能够将光信号转换为电信号的电子器件。

它是一种半导体器件,其结构类似于普通的二极管。

光电二极管具有单向导电性,当光照射到其PN结上时,会产生光生载流子,从而形成电流。

因此,光电二极管被广泛应用于光电转换、光通信、光测量等领域。

为了更好地利用光电二极管的性能,我们需要设计一种合适的IV转换电路。

IV转换电路是一种将光电二极管的电流信号转换为电压信号的电路。

它能够将电流信号转换为与电压成正比的输出信号,从而方便我们进行电压信号的处理和分析。

IV转换电路的基本原理是利用一个负反馈放大器将光电二极管的电流信号转换为电压信号。

放大器的输入端连接光电二极管,输出端连接一个负载电阻。

当光照射到光电二极管上时,产生的电流通过放大器被放大,并通过负载电阻形成一个输出电压。

在设计IV转换电路时,我们需要考虑以下几个关键参数:1. 光电二极管的暗电流:光电二极管在没有光照射时会产生暗电流。

这个暗电流会对输出信号产生干扰,因此需要尽量将其降低到最小。

2. 光电二极管的响应时间:光电二极管的响应时间是指它从光照射到产生电流的时间。

响应时间越短,光电二极管对快速变化的光信号的响应能力就越强。

3. 放大器的增益:放大器的增益决定了输出电压的大小。

通常情况下,我们希望输出电压能够尽量与输入光信号的强度成正比。

为了满足以上要求,我们可以采用以下几种方法来设计IV转换电路:1. 选择合适的光电二极管:不同的光电二极管具有不同的特性,如暗电流、响应时间等。

我们可以根据具体的应用需求选择合适的光电二极管。

2. 降低暗电流:可以通过选择低暗电流的光电二极管或者采用温度补偿的方法来降低暗电流的影响。

3. 使用高速放大器:如果需要对快速变化的光信号进行转换,可以选择具有较高带宽的放大器。

4. 负反馈设计:通过在放大器的输入端加入负反馈电阻,可以提高放大器的稳定性和线性度。

除了以上的基本设计考虑因素,我们还可以根据具体的应用需求来进行一些定制化的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流信号转换为电压信号的方法
由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。

对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。

下面介绍几种I/V变换的实现方法。

分压器方法
利用如图1分压电路,将电流通入电阻。

在电阻上采样出电压信号。

其中,可以使用电位器调节输出电压的大小。

这种方法最简单,但需要考虑功率和放大倍数的选择问题。

利用如图1分压电路,将电流通入电阻。

在电阻上采样出电压信号。

其中,可以使用电位器调节输出电压的大小。

这种方法最简单,但需要考虑功率和放大倍数的选择问题。

霍尔传感器方法
使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。

由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。

这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。

积分电路方法
电压可以看作是电流的积分,利用如图电路有:
为保证精度,选取运放时尽量找输入阻抗大的。

该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。

但要注意这种电路输出电压和输入电流的相位是相反的。

运放直接搭接的方法(跨阻放大器)
充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路
电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为
这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。

也避免了电容的漏电流带来的误差。

但未获得稳定的高精度放大,对电阻和运放的精度要求较高。

三极管方法
三极管同样具有放大能力,但应用上多采用运放。

电路如图
下面以实际的例子叙述整个实现过程。

尝试将一个0~5A信号转换为0~5V信号。

最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。

按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。

下面采用运放直接搭接的方法实现转换。

考虑到相位的问题,对电路作了改进。

利用50欧电阻在正端产生
的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。

如图。

另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

相关文档
最新文档