高数A上第六章测验题答案
高等数学第六章答案
第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛- ⎝ (2)54π(3)2cos 2ρθρθ==及162π-+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。
(2)22y x y 8x,x y ==和绕及轴。
(3)()22x y 516,x +-=绕轴。
(4)xy=1和y=4x 、x=2、y=0,绕。
(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。
2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。
(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 343R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。
高数第六章总习题答案
高数第六章总习题答案(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b . 解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B ); (A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z 解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x . 5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b =π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ; 解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kji1,3}5,{--=.(b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i7276737263)(21++-=++-==P P .3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d ,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3.解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P ,又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C '=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kji ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0, 因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==.解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面.(f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ,即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c . 解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪⎨⎪=⎩由①得2xz =④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线2220x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x ⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y x z ⎧+=⎨=⎩.同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程.解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=.解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632xy z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=,其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x . 解法2: 用一般式,即先求出过L 的两个平面,将其方程联立便得L 的方程.直线L 在过点A 且平行于平面1π的平面2π上,平面2π的方程为0)1()0(4)3(3=----+z y x ,即01043=+--z y x ,直线L 又在过点A 及直线1L 的平面3π上,平面3π的法向量可取为1211312AB ⨯=-=-+--i j ks i j k ,故平面3π的方程为0)1()0()3(=---++-z y x ,即 02=++-z y x ,于是所求直线方程为{34100,20.x y z x y z --+=-++=13、求直线1l :⎩⎨⎧=+=-+321z x z y x 与直线2l :1-==z y x 的公垂线的方程解: 2L 的方向向量]1,1,1[2=l 而1L 的方向向量k j i k j i l231021111--=-=于是公垂线l 的方向向量k j i kj i l l l4311123121+--=--=⨯=,过1l 与l 的平面π的法向量k j i kj il l n62184312311---=----=⨯=.也可取法向量]3,1,9[=n,以1=z 代入1L 方程,可得1l 上的点]1,1,1(1M ,于是平面π方程0)1(3)1()1(9=-+-+-z y x ,即01339=-++z y x再求2L 与π的交点P ,2L 的参数方程为t x =,t y =,t z +=1,代入上述平面方程,得: 013)1(39=-+++t t t ,1310=t ,再代回2l 的参数方程得1310=x ,1310=y ,1323=z ,于是P()132313101310,,,兼顾公垂线l 的方向向量]4,3,1[--=l ,于是可产生公垂线l 的方程为431132313101310-=--=--z y x .14、求点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d .解法1:直线l 的方向向量为121[0,2,4]121=-=-i j ks ,在l 上任取一点)2,0,1(-M ,则0(3,1,1)M M −−→=-,0M M −−→⨯s 311(2,12,6)024=-=-i j k,故0⨯=M M s,又=sd 0⨯==M M ss解法2:将直线l 的方程由一般式化为标准式得42201-==+z y x ,故过点0M 与直线l 垂直的平面π的方程为0)1(4)1(2=-++z y , 即 012=-+z y ,直线l 的参数式方程为:1-=x ,t y =,22+=t z ,将上式代入平面π的方程,得:01)22(2=-++t t ,解得:53-=t ,所以直线l 的交点为()5453,,1--N 2,于是点0M 到直线l 的距离为0d M N −−→===.15.求两直线1l :⎩⎨⎧=--+=--+02201z y x z y x 与2l :⎩⎨⎧=+++=--+0422022z y x z y x 之间的最短距离解法1:过1l 作平面20//l π,过1l 的平面方程为0)22(1=---+--+z y x z y x λ,即0)21()1()1()21(=--+--++++λλλλz y x ,要此平面平行于2l ,则此法向量0n 须垂直于2s ,即020⋅=n s ,而2(6,3,0)=-s ,则0)1(3)21(6=+-+λλ,解得:31-=λ,从而平面0π的方程为0122=--+z y x ,容易得到直线2l 上一点)2,0,0(2-M ,点2M 到平面0π的距离为1h ==即为1l 与2l 之间的距离.解法2:容易得到直线1l 上的一点)0,0,1(1M ,直线2l 上的一点)2,0,0(2-M ,于是12(1,0,2)M M −−→=--,可求得直线1l 与直线2l 的方向向量分别为1(0,1,1)=--s ,2(6,3,0)=-s ,两直线公垂线的方向向量为(1,2,2)=-s ,直线1l 与2l 之间的距离为h 1212Pr 1−−→−−→⋅===s M M sj M M s.。
【高考调研】2020届高考数学总复习 第六章 数列配套单元测试(含解析)理 新人教A版
第六章 单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d = ( )A .-2B .-12C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B. 2.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.3.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D 解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D.4.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于 A .0 B .2 C .2 009 D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n=0,a n =2,S 2 009=4 018,故选D.5.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 A .5 B .10 C .15 D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A.6.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.7.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( )A .95B .97C .105D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20=f 19+192,f 19=f 18+182,……f 2=f 1+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.8.若a x -1,a y,a-x +1(a >0,且a ≠1)成等比数列,则点(x ,y )在平面直角坐标系内的轨迹位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 ∵成等比,∴(a y )2=ax -1·a-x +1.即2y =x -1-x +1,x -1>0,∴x >1.x -1<x +1,∴y <0,∴位于第四象限.9.已知等比数列{a n }的公比q <0,其前n 项的和为S n ,则a 9S 8与a 8S 9的大小关系是 A .a 9S 8>a 8S 9 B .a 9S 8<a 8S 9 C .a 9S 8≥a 8S 9 D .a 9S 8≤a 8S 9答案 A解析 a 9S 8-a 8S 9=a 9a 11-q 81-q -a 8a 11-q 91-q =a 8a 1q -q 9-1+q 91-q=-a 1a 8=-a 21q 7,因为a 21>0,q <0,所以-a 21q 7>0,即a 9S 8>a 8S 9,故选A.10.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为 A .1 006 B .-2 012 C .2 012 D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-12d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎪⎨⎪⎧a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎪⎨⎪⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-12d=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011a 1+a 2 0112=2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012a 1+a 2 0122=2 012a 1 006+a 1 0072=2 012×-1+32=2 012.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.若m ,n ,m +n 成等差数列,m ,n ,m ·n 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.答案22解析 由题意知2n =m +m +n ,∴n =2m .又n 2=m ·m ·n ,∴n =m 2,∴m 2=2m . ∴m =2,∴n =4,∴a 2=4,b 2=2,c 2=2. ∴e =c a =22. 12.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________.答案199299解析a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299. 13.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于________. 答案 2 解析 ∵S 3=a 1+a 3×32=6,而a 3=4,∴a 1=0.∴d =a 3-a 12=2.14.某人从2012年1月份开始,每月存入银行100元,月利率是3‰(不计复利),到2012年12月底取出的本利和应是________元.答案 1 223.4解析 应为1 200+0.3×12+0.3×11+…+0.3=1 200+0.3×12×132=1 223.4(元).15.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为________. 答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4. 16.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)数列{a n }中,a 1=1,a n ,a n +1是方程x 2-(2n +1)x +1b n=0的两个根,求数列{b n }的前n 项和S n .答案 S n =nn +1解析 ∵a n ,a n +1是x 2-(2n +1)x +1b n=0的两根,∴a n +a n +1=2n +1,a n ·a n +1=1b n.∴a n +1+a n +2=2n +3. ∴a n +2-a n =2. ∴a 3-a 1=2,a 5-a 3=2,……a 2n -1-a 2n -3=2.∴a 2n -1-a 1=2(n -1).∴a 2n -1=2n -1,∴当n 为奇数时,a n =n . 同理可得当n 为偶数时a n =n . ∴a n =n . ∴b n =1a n ·a n +1=1nn +1=1n -1n +1. ∴S n =b 1+b 2+b 3+…+b n=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1. 18.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.答案 (1)b n =54·2n -1=5·2n -3(2)略解析 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列{b n }的前n 项和S n =541-2n1-2=5·2n -2-54, 即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,公比为2的等比数列.19.(本小题满分12分)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列,求:(1)p ,q 的值;(2)数列{x n }的前n 项的和S n 的公式.解析 (1)由x 1=3,得2p +q =3,又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知,有⎩⎪⎨⎪⎧a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3+1a 1q 4,化简,得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1. 所以a n =2n -1.(2)由(1)知,b n =⎝⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.因此,T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =1-4n1-4+1-14n 1-14+2n =13(4n -41-n)+2n +1.21.(本小题满分12分)某企业2010年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2011年起每年比上一年纯利润减少20万元,2011年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2011年为第一年)的利润为500(1+12n )万元(n 为正整数).(1)设从2011年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n ,B n 的表达式;(2)依上述预测,从2011年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?思路 (1)A n 是一个等差数列的前n 项和,B n 是一个常数数列和一个等比数列的组合的前n 项和,根据数列的求和公式,就可以求出A n ,B n 的表达式.(2)建模B n >A n ,解这个关于n 的不等式.解析 (1)依题意知,A n 是一个以480为首项,-20为公差的等差数列的前n 项和,所以A n =480n +n n -12×(-20)=490n -10n 2,B n =500(1+12)+500(1+122)+…+500(1+12n )-600=500n +500(12+122+…+12n )-600=500n +500×12[1-12n]1-12-600=500n -5002n -100.(2)依题意得,B n >A n ,即500n -5002n -100>490n -10n 2,可化简得502n <n 2+n -10.∴可设f (n )=502n ,g (n )=n 2+n -10.又∵n ∈N *,∴可知f (n )是减函数,g (n )是增函数. 又f (3)=508>g (3)=2,f (4)=5016<g (4)=10.则当n =4时不等式成立,即4年.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n .求满足不等式T n -22n -1>2 010的n的最小值.解析 (1)因为S n +n =2a n ,所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *).两式相减,得a n=2a n -1+1.所以a n +1=2(a n -1+1)(n ≥2,n ∈N *),所以数列{a n +1}为等比数列. 因为S n +n =2a n ,令n =1得a 1=1.a 1+1=2,所以a n +1=2n ,所以a n =2n -1.(2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n. 所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,① 2T n =3×22+5×23+…+(2n -1)·2n+(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+ (2))-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.若T n -22n -1>2 010, 则2+2n -1·2n +12n -1>2 010,即2n +1>2 010.由于210=1 024,211=2 048,所以n +1≥11,即n ≥10.所以满足不等式T n -22n -1>2 010的n 的最小值是10.1.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有 A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 答案 B解析 记等比数列{a n }的公比为q ,由数列{b n }为等差数列可知b 4+b 10=2b 7.又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6(1+q6q3)=b 7(1+q6q3),又1+q6q3=1q3+q 3≥2,当且仅当q =1时,等号成立,∴a 3+a 9≥b 4+b 10.故选B.2.已知a n =32n -11(n ∈N +),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值是A .5B .6C .10D .11答案 D解析 令f (x )=32x -11知f (x )关于(112,0)对称,∴a 1+a 10=a 2+a 9=a 3+a 8=a 5+a 6=0, 且a 6>a 7>a 8>a 9>a 10>…>0. ∴S 10=0,S 11>0,选D.3.数列{a n }中,S n 为其前n 项和,已知S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),则此数列为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列 答案 D解析 S n +1-3S n +2S n -1=0, ∴S n +1-S n =2S n -2S n -1,∴a n +1=2a n . 又a 1=1,a 2=1,∴从第二项起为等比数列.4.已知数列{a n }满足a 1=23,且对任意的正整数m ,n ,都有a m +n =a m +a n ,则a nn 等于A.12 B.23 C.32 D .2答案 B解析 令m =1,得a n +1=a 1+a n ,即a n +1-a n =a 1=23,可知数列{a n }是首项为a 1=23,公差为d =23的等差数列,于是a n =23+(n -1)·23=23n ,即a n n =23.故选B.5.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有A .11个B .12个C .15个D .25个答案 A解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个,故选A.6.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有 ( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51答案 C解析 由题意,得a 1+a 2+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.7.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.答案 64解析 a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1.∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2. ∴a 2n =2n,a 2n -1=2n -1(n ∈N *).∴b 10=a 10+a 11=64.8.已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 构成的集合为________.答案 {5,6}解析 等差数列中由S 10>0,S 11=0,得S 10=10a 1+a 102>0⇒a 1+a 10>0⇒a 5+a 6>0,S 11=11a 1+a 112=0⇒a 1+a 11=2a 6=0,故可知,等差数列{a n }是递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.∴集合为{5,6}.9.(2013·衡水调研)已知各项均为正数的数列{a n }的前n 项和为S n ,函数f (x )=12px2-(p +q )x +q ln x (其中p 、q 均为常数,且p >q >0),当x =a 1时,函数f (x )取得极小值,点(a n,2S n )(n ∈N *)均在函数y =2px 2-q x+f ′(x )+q 的图像上.(其中f ′(x )是函数f (x )的导函数)(1)求a 1的值;(2)求数列{a n }的通项公式; (3)记b n =4S n n +3·q n,求数列{b n }的前n 项和T n . 解析 (1)由题易得f (x )的定义域为(0,+∞).f ′(x )=px -(p +q )+q x =px 2-p +q x +q x =x -1px -qx.令f ′(x )=0,得x =1或x =qp. ∵p >q >0,∴0<q p<1.当x 变化时,f ′(x )、f (x )的变化情况如下表:(0,q p ) q p(q p,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值1(2)依题意,y =2px 2-q x+f ′(x )+q =2px 2+px -p , 2S n =2p ·a 2n +p ·a n -p (n ∈N *).∴2a 1=2p ·a 21+pa 1-p . 由a 1=1,得p =1. ∴2S n =2a 2n +a n -1.①∴当n ≥2时,2S n -1=2a 2n -1+a n -1-1. ②①-②得2a n =2(a 2n -a 2n -1)+a n -a n -1. ∴2(a 2n -a 2n -1)-(a n +a n -1)=0. ∴(a n +a n -1)(a n -a n -1-12)=0.由于a n +a n -1>0,∴a n -a n -1=12(n ≥2).∴{a n }是以a 1=1为首项,12为公差的等差数列.∴a n =1+(n -1)×12=n +12.(3)S n =n +n n -12·12=n 2+3n 4,∴b n =4S n n +3·q n =nq n .∴T n =q +2q 2+3q 3+…+(n -1)qn -1+nq n.③已知p >q >0,而由(2)知p =1,则q ≠1. ∴qT n =q 2+2q 3+3q 4+…+(n -1)q n +nqn +1.④由③-④,得(1-q )T n =q +q 2+q 3+…+q n -1+q n-nq n +1=q 1-q n 1-q-nq n +1.∴T n =q 1-q n 1-q 2-nq n +11-q. 10.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=12.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围. 解析 (1)设数列{b n }的公差为d ,则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且 32<13<42,所以a 10=b 4=8.所以a 13=a 10q 3=8q 3,又a 13=1,解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·(12)n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2. 12S n =120+221+…+n -12n -2+n2n -1. 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.解得S n =8-n +22n -2.②由①知,c n =n2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ).计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为集合M 的元素个数为3,所以λ的取值范围是(4,5]. 11.已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列,并求其通项公式; (2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .解析 (1)a 2=λa 1+λ-2=2λ-2,a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2.∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1. ∴数列{a n }构成首项为a 1=1,d =-1的等差数列. ∴a n =2-n .(2)当λ=3时,a n =3a n -1+1, 即a n +12=3(a n -1+12),即b n =3b n -1.∴数列{b n }构成首项为b 1=32,公比为3的等比数列.∴b n =32×3n -1=3n2.∴S n =321-3n1-3=34(3n-1). 12.已知等差数列{a n }的前n 项和为S n ,且S 4+a 2=2S 3,等比数列{b n }满足b 1=a 2,b 2=a 4.(1)求证:{b n }中的每一项均为{a n }中的项;(2)若a 1=12,数列{c n }满足:b n +1·c n =(-1)n(1+2log 2b n ),求数列{c n }的前n 项和T n .解析 (1)证明:设等差数列{a n }的公差为d ,由S 4+a 2=2S 3得4a 1+6d +a 1+d =6a 1+6d ,∴a 1=d .则a n =a 1+(n -1)d =na 1.∴b 1=2a 1,b 2=4a 1,等比数列{b n }的公比q =b 2b 1=2. 则b n =2a 1·2n -1=2na 1.∵2n∈N *,∴{b n }中的每一项均为{a n }中的项. (2)解析:∵a 1=12,∴b n =2n×12=2n -1.由b n +1·c n =(-1)n(1+2log 2b n ),得2n·c n =(-1)n[1+2(n -1)]=(-1)n(2n -1). ∴c n =-1n2n -12n=(2n -1)(-12)n.T n =(-12)+3(-12)2+5(-12)3+…+(2n -1)(-12)n ,-2T n =1+3(-12)+5(-12)2+…+(2n -1)(-12)n -1.两式相减,得-3T n =1+2(-12)+2(-12)2+…+2(-12)n -1-(2n -1)(-12)n=1-2+2·[1+(-12)+(-12)2+…+(-12)n -1]-(2n -1)(-12)n=-1+2·1--12n1--12-(2n -1)(-12)n=-1+43-43(-12)n -(2n -1)(-12)n=13-6n +13(-12)n ,∴T n =6n +19(-12)n -19. 13.已知数列{a n }中,a 1=2,a n +1-a n -2n -2=0,(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,若对任意的正整数n ,当m ∈[-1,1]时,不等式t 2-2mt +16>b n 恒成立,求实数t 的取值范围.解析 (1)由题意得a n -a n -1=2n (n ≥2), 累差叠加,得a n =n (n +1)(n ≥2). 又a 1=2,所以a n =n (n +1),(n ∈N *). (2)b n =1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-12n +1=nn +12n +1=n2n 2+3n +1,b n =12n +1n+3,b n 的最大值为b 1=16, 所以t 2-2mt +16>16恒成立,m ∈[-1,1].构造g (m )=-2tm +t 2,即g (m )>0恒成立m ∈[-1,1]. 当t =0,不成立; 当t ≠0,g (m )是一次函数,⎩⎪⎨⎪⎧g -1>0,g1>0,解得t ∈(-∞,-2)∪(2,+∞).14.已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .答案 (1)a n =2n +1,S n =n (n +2) (2)T n =n4n +1解析 (1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2).(2)因为a n =2n +1,所以a 2n -1=4n (n +1). 因此b n =14nn +1=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4n +1. 所以数列{b n }的前n 项和T n =n4n +1. 15.设数列{a n }是等差数列,其前n 项和S n ,若S 4≥10,S 5≤15,求a 4的最大值. 解析 方法一 a 5=S 5-S 4≤5,S 5=a 1+a 2+…+a 5=5a 3≤15,a 3≤3,则a 4=a 3+a 52≤4,a 4的最大值为4.方法二 ∵⎩⎪⎨⎪⎧S 4=4a 1+6d ≥10,S 5=5a 1+10d ≤15⇒⎩⎪⎨⎪⎧-2a 1-3d ≤-5,a 1+2d ≤3⇒d ≤1.又∵S 5=a 1+a 2+a 3+a 4+a 5=5a 3≤15,∴a 3≤3. ∴a 4≤4.故a 4的最大值为4.方法三 本题也可利用线性规划知识求解.由题意得⎩⎪⎨⎪⎧4a 1+6d ≥10,5a 1+10d ≤15⇒⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.a 4=a 1+3d .画出可行域⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3,求目标函数a 4=a 1+3d 的最大值,即当直线a 4=a 1+3d 过可行域内(1,1)点时截距最大,此时a 4=4.16.(2012·天津)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明:T n +12=-2a n +10b n (n ∈N *). 解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *. (2)方法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,① 2T n =22a n +23a n -1+…+2n a 2+2n -1a 1.②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.方法二 (1)当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; (2)假设当n =k 时等式成立,即T n +12=-2a k +10b k ,则当n =k +1时,有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1=a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12. 即T k +1+12=-2a k +1+10b k +1. 因此n =k +1时等式也成立.由(1)和(2),可知对任意n ∈N *,T n +12=-2a n +10b n 成立.17.(2012·陕西)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 解析 (1)设数列{a n }的公比为q (q ≠0,q ≠1), 由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4. 即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0,得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)方法一 对任意k ∈N +,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 方法二 对任意k ∈N +,2S k =2a 11-q k1-q,S k +2+S k +1=a 11-q k +21-q +a 11-q k +11-q=a 12-q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 11-q k1-q-a 12-q k +2-q k +11-q=a 11-q[2(1-q k)-(2-qk +2-q k +1)]=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.18.(2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.解析 (1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13.因此4a 1+16=7a 1+13,从而a 1=1.(2)由题设条件知,n ≥2时,2S n -1=a n -2n+1, 2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2, 因此对一切正整数n ,有a n +1=3a n +2n. 所以a n +1+2n +1=3(a n +2n).又∵a 1+21=3,∴{a n +2n}是以3为首项,3为公比的等比数列. 故a n +2n=3n,即a n =3n-2n. (3)∵a n =3n-2n=3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1,∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32. 19.(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解析 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.20.(2012·江西)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .解析 (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kcn -1(n ≥2).由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1).解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kcn -1=2n (n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.21.(2012·安徽)数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.解析 (1)先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列,则由x 2<x 1,可得c <0. (2)(ⅰ)假设{x n }是递增数列. 由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1. 由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c ,①注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ),②由①式和②式可得1-c -x n >0,即x n <1-c . 由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③21 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1.x n <1-c 和c -x n <(1-c )n -1两式相加,知 2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )n 的性质,得2c -1≤0,c ≤14.故0<c ≤14. (ⅱ)若0<c ≤14,要证数列{x n }为递增数列,即 x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立. (1)当n =1时,x 1=0<c ≤12,结论成立. (2)假设当n =k (k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由(ⅰ)(ⅱ)知,使得数列{x n }单调递增的c 的范围是(0,14].。
高数AII第6章答案
(二)曲面与曲线
1.空间曲面方程 a.一般方程: F ( x, y, z ) 0 ;b.显式方程: z f ( x, y ) ;
x x (u , v ) c.参数方程 y y (u , v ) ,其中 (u , v) D , D 为 uv 平面上某一区域. z z (u , v )
3
直线的方向向量. 直线的上述 3 种方程可互相转化. 2.点、直线、平面之间的关系 (1)两条直线之间的关系: x x1 y y1 z z1 x x2 y y 2 z z 2 设直线 l1 : , l2 : ,且其方向向量分别为 m1 n1 p1 m2 n2 p2 s1 (m1 , n1 , p1 ) 和 s2 (m2 , n2 , p2 ) ,两直线的夹角是指两直线的方向向量 s1 、 s2 之间的夹 角(取锐角)记为 .则 |s s | | m1 m2 n1 n2 p1 p2 | π (0≤ ≤ ) . cos 1 2 2 2 2 2 2 2 | s1 | | s2 | 2 m1 n1 p1 m2 n2 p2 由此可知: a.两直线平行(含重合) : l1 // l2
第六章
向量代数与空间解析几何 一、内容提要
(一)向量
1.方向角与方向余弦 若 a = ( x, y, z ) , 则有 cos 2.向量的线性运算及其性质 (1)加减法运算: 向量加法运算遵循平行四边形法则或三角形法则. 设 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) ,则 a b ( x1 x2 , y1 y2 , z1 z2 ) . (2)数乘运算: 向量 a 与实数 的乘积,记为 a .设 a ( x, y, z ) ,则 a ( x, y, z ) ,
高一数学第六章《平面向量及其应用》单元检测题答案
即:cosAsinB﹣2sinBcosC=2sinCcosB﹣COSbsinA
∴sin(A+B)=2sin(B+C),即sinC=2sinA
∴ =2
(2)由(1)可知c=2a…①,
a+b+c=5…②
b2=a2+c2﹣2accosB…③
cosB= …④
解①②③④可得a=1,b=c=2;∴b=2
19.解:设点M的坐标为M(x,y).
∵ 在 方向上的射影数量为| |,∴ ⊥ ,∴ · =0.
又 =(x,y), =(5-x,1-y),
∴x(5-x)+y(1-y)=0.
又点O,M,A三点共线,∴ ∥ .∴ = .
∴ 解得
∴ = - =(5-2,1+2)=(3,3).
20.解:在△ABC中,BC=40× =20,
即静水速度|v1|= = =13(m/s).
9.B解析:如图所示, ,
由题意知,DE:BE=DF:BA=1:3.
∴ ∴ = a+ b+ ( a- b)= a+ b.
10.C解析: = + -2 ,∴ =3,∴B最大,∴ =-
11.A解析:建立平面直角坐标系,如图所示.设AD=t(t>0),则A(0,0),C(1,t),B(2,0),
∴ ,∴
7.C解析:依题意可设a+2b=λa(λ>0),则b= (λ-1)a,
∴a·b= (λ.D解析:设小船的静水速度为v1,河水的流速为v2,静水速度与河水速度的合速度为v,
为了使航向垂直河岸,船头必须斜向上游方向,即静水速度v1斜向上游方向,河水速度v2平行于河岸,静水速度与河水速度的合速度v指向对岸,
所以13=9-3| |+| |2,解得:| |=4
高等代数第6章习题参考答案
第六章 线性空间1.设,N M ⊂证明:,M N M M N N ==I U 。
证 任取,M ∈α由,N M ⊂得,N ∈α所以,N M I ∈α即证M N M ∈I 。
又因,M N M ⊂I 故M N M =I 。
再证第二式,任取M ∈α或,N ∈α但,N M ⊂因此无论哪 一种情形,都有,N ∈α此即。
但,N M N Y ⊂所以M N N =U 。
2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。
证 ),(L N M x Y I ∈∀则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。
反之,若)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ⊂于是)()()(L M N M L N M I Y I Y I =。
若x M N L M N L ∈∈∈UI I (),则x ,x 。
在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )。
,,N L x M N X M L M N M M N M N ∈∈∈∈∈⊂U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:212121121112b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)()k 。
高中数学第六章平面向量及其应用必考考点训练(带答案)
高中数学第六章平面向量及其应用必考考点训练单选题1、在△ABC 中,AB =3,AC =2,∠BAC =60°,点P 是△ABC 内一点(含边界),若AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ ,则|AP ⃗⃗⃗⃗⃗ |的最大值为( ) A .2√73B .83C .2√193D .2√133答案:D分析:以A 为原点,以AB 所在的直线为x 轴,建立坐标系,设点P 为(x,y),根据向量的坐标运算可得y =√3(x −2),当直线y =√3(x −2)与直线BC 相交时|AP⃗⃗⃗⃗⃗ |最大,问题得以解决 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, ∵AB =3,AC =2,∠BAC =60°, ∴A(0,0),B(3,0),C(1,√3),设点P 为(x,y),0⩽x ⩽3,0⩽y ⩽√3, ∵AP⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ +λAC ⃗⃗⃗⃗⃗ , ∴(x ,y)=23(3,0)+λ(1,√3)=(2+λ,√3λ),∴{x =2+λy =√3λ, ∴y =√3(x −2),① 直线BC 的方程为y =−√32(x −3),②,联立①②,解得{x =73y =√33, 此时|AP⃗⃗⃗⃗⃗ |最大, ∴|AP|=√499+13=2√133, 故选:D .小提示:本题考查了向量在几何中的应用,考查了向量的坐标运算,解题的关键是建立直角坐标系将几何运算转化为坐标运算,同时考查了学生的数形结合的能力,属于中档题 2、在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A .14B .C .√24D .√23答案:B分析:利用余弦定理求得cosB . b 2=ac,c =2a ,则b 2=2a 2, 由余弦定理得cosB =a 2+c 2−b 22ac=a 2+4a 2−2a 22a⋅2a=34.故选:B3、在△ABC 中,已知a =2,b =3,B =30°,则此三角形( ) A .有一解B .有两解C .无解D .无法判断有几解 答案:A分析:根据给定条件,结合正弦定理计算判断作答. 在△ABC 中,a =2,b =3,B =30°,由正弦定理得sinA =asinB b=2sin30∘3=13,而a <b ,有A <B =30∘,即A 为锐角,所以此三角形有一解. 故选:A4、已知平面向量a =(1,2),b ⃗ =(-2,m ),且a ∥b ⃗ ,则2a +3b⃗ =( ) 34A.(-4,-8)B.(-8,-16)C.(4,8)D.(8,16)答案:A分析:根据向量平行的坐标表示求出m,再根据向量线性运算得坐标表示即可求解.∵a∥b⃗,∴1×m=2×(-2),∴m=-4,∴b⃗=(-2,-4),∴2a+3b⃗=(2,4)+(-6,-12)=(-4,-8).故选:A.5、a ,b⃗为非零向量,且|a+b⃗|=|a|+|b⃗|,则()A.a //b⃗,且a与b⃗方向相同B.a ,b⃗是共线向量且方向相反C.a=b⃗D.a ,b⃗无论什么关系均可答案:A分析:根据向量加法的性质及三角形边之间的关系即可得出答案.当两个非零向量a ,b⃗不共线时,a+b⃗的方向与a ,b⃗的方向都不相同,且|a+b⃗|<|a|+|b⃗|;当两个非零向量a ,b⃗同向时,a+b⃗的方向与a ,b⃗的方向都相同,且|a+b⃗|=|a|+|b⃗|;当两个非零向量a ,b⃗反向时且|a|<|b⃗|,a+b⃗的方向与b⃗的方向相同,且|a+b⃗|=|b⃗|−|a|,所以对于非零向量a ,b⃗,且|a+b⃗|=|a|+|b⃗|,则a //b⃗,且a与b⃗方向相同.故选:A.6、在△ABC中,角A,B,C的对边分别为a,b,c,且B=π3,b=3,a=√3,则c=().A.√3B.2√3C.3−√3D.3答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC中,由余弦定理得:b2=a2+c2−2accosB=3+c2−√3c=9,即c2−√3c−6=0,解得:c=−√3(舍),∴c=2√3.故选:B.7、在△ABC中,角A,B,C的对边分别是a,b,c,若A=45°,B=60°,b=2√3,则c等于()cA .√6−√24B .√6+√24C .√6−√2D .√6+√2答案:D分析:先求出C ,再由正弦定理求解即可. 解:在△ABC 中,C =180°−45°−60°=75°. 由正弦定理可知csinC=b sinB,所以c sin75°=2√3sin60°, 故c =2√3sin75°sin60°=4sin75°=4sin(30°+45°)=4×√6+√24=√6+√2.故选:D.8、已知向量a =(2,3),b ⃗ =(3,2),则|a –b ⃗ |= A .√2B .2 C .5√2D .50 答案:A分析:本题先计算a −b ⃗ ,再根据模的概念求出|a −b ⃗ |. 由已知,a −b ⃗ =(2,3)−(3,2)=(−1,1), 所以|a −b ⃗ |=√(−1)2+12=√2, 故选A小提示:本题主要考查平面向量模长的计算,容易题,注重了基础知识、基本计算能力的考查.由于对平面向量的坐标运算存在理解错误,从而导致计算有误;也有可能在计算模的过程中出错. 多选题9、G 是△ABC 的重心,AB =2,AC =4,∠CAB =120°,P 是△ABC 所在平面内的一点,则下列结论正确的是( )A .GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0→B .AC⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影向量等于AB ⃗⃗⃗⃗⃗ C .GB ⃗⃗⃗⃗⃗ ⋅AG ⃗⃗⃗⃗⃗ =−43D .AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )的最小值为-1 答案:AC分析:根据向量的线性运算结合重心的性质判断A ,根据投影向量的定义判断B ,根据向量的数量积的运算律判断C ,D.A :当点G 为△ABC 的重心时,如图所示:四边形BDCG 为平行四边形,根据重心性质可得AG⃗⃗⃗⃗⃗ =2GO ⃗⃗⃗⃗⃗ .则GA⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =GA ⃗⃗⃗⃗⃗ +GD ⃗⃗⃗⃗⃗ =GA ⃗⃗⃗⃗⃗ +2GO ⃗⃗⃗⃗⃗ =0→,∴A 正确, B :∵AC ⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影为|AC ⃗⃗⃗⃗⃗ |cos120°=4×(−12)=−2, ∴AC⃗⃗⃗⃗⃗ 在AB ⃗⃗⃗⃗⃗ 方向上的投影向量为−AB ⃗⃗⃗⃗⃗ ,∴B 错误, C :∵G 是△ABC 的重心,∴GB ⃗⃗⃗⃗⃗ =−13(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=−13(BA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(2AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ),AG ⃗⃗⃗⃗⃗ =13(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), ∴GB ⃗⃗⃗⃗⃗ ⋅AG⃗⃗⃗⃗⃗ =19(2AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=19(2AB ⃗⃗⃗⃗⃗ 2+AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2) =19[8+2×4×(−12)−16]=−43,∴C 正确,D :当P 与G 重合时,∵AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=AG⃗⃗⃗⃗⃗ ⋅(BG ⃗⃗⃗⃗⃗ +CG ⃗⃗⃗⃗⃗ ) =−AG ⃗⃗⃗⃗⃗ 2=−19(AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ )=−43,与AP ⃗⃗⃗⃗⃗ ⋅(BP ⃗⃗⃗⃗⃗ +CP⃗⃗⃗⃗⃗ )的最小值为−1矛盾 ∴D 错误, 故选:AC .10、已知向量a ,b ⃗ ,c 满足|a |=2,|b ⃗ |=1,a ⋅b ⃗ =1,|c |2−2b ⃗ ⋅c +34=0,则下列说法正确的是( )A .|c −b ⃗ |=1B .若|c |=√32,则c ⊥(c −b⃗ ) C .∀t ∈R ,有|b ⃗ +ta |≥√32D .若c =λa +(1−λ)b ⃗ ,λ∈R ,则|a −c →|的值唯一 答案:BC分析:结合已知条件,利用平面向量数量积的运算性质逐个检验即可 对于A :∵|b →|=1,|c →|2−2b →⋅c →+34=0∴|c →−b →|2=(c →−b →)2=c →2−2c →⋅b →+b →2=−34+1=14,故A 错误;对于B :∵|c →|2−2b →⋅c →+34=0,∴|c →|2=2b →⋅c →−34, 当|c →|=√32,34=2b →⋅c →−34,得b →⋅c →=34∴c →⋅(c →−b →)=c →2−b →⋅c →=34−34=0, ∴c →⊥(c →−b →),故B 正确;对于C :∵|b →+ta →|2=(b →+ta →)2=b →2+2ta →⋅b →+t 2a →2=1+2t +4t 2 =4(t +14)2+34≥34,∴|b →+ta →|≥√32恒成立,故C 正确;对于D :∵c →=λa →+(1−λ)b →,∴c →2=[λa →+(1−λ)b →]2=λ2a →2+2λ(1−λ)a →⋅b →+(1−λ)2b →2=4λ2+2λ(1−λ)+(1−λ)2=3λ2+1,b →⋅c →=b →⋅[λa →+(1−λ)b →]=λa →⋅b →+(1−λ)b →2=λ+(1−λ)=1, ∵|c →|2−2b →⋅c →+34=0,∴|c →|2−2b →⋅c →+34=3λ2+1−2+34=3λ2−14=0, ∴λ2=112,∴λ=±√36∵a →−c →=a →−(λa →+(1−λ)b →)=(1−λ)a →−(1−λ)b →,∴|a →−c →|2=[(1−λ)a →−(1−λ)b →]2=(1−λ)2a →2−2(1−λ)2a →⋅b →+(1−λ)2b →2=4(1−λ)2−2(1−λ)2+(1−λ)2=3(1−λ)2当λ=√36时,|a→−c→|2=3(1−λ)2=13−4√34=(2√3−1)24,|a→−c→|=2√3−12;当λ=−√36时,|a→−c→|2=3(1−λ)2=13−4√34=(2√3+1)24,|a→−c→|=2√3+12;故D错误;故选:BC11、甲,乙两楼相距20m,从乙楼底仰望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则下列说法正确的有()A.甲楼的高度为20√3m B.甲楼的高度为10√3mC.乙楼的高度为40√33m D.乙楼的高度为10√3m答案:AC分析:根据题意画出示意图,把有关条件正确表示,解三角形求出甲、乙两楼的高度.如图示,在Rt△ABD中,∠ABD=60°,BD=20m,∴AD=BDtan60°=20√3m,在△ABC中,设AC=BC=x,由余弦定理得:AB2=AC2+BC2−2AC BC cos∠ACB,即1600=x2+x2+x2解得:x=40√33则乙楼的高度分别为40√33m.故选:AC小提示:数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)三角函数型应用题根据题意正确画图,把有关条件在图形中反映,利用三角知识是关键. 12、在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cosBcosC =b2a−c , S △ABC =3√34,且b =3,则A .cosB =12B .C .a +c =√3D .a +c =3√2答案:AD分析:利用正弦定理边化角,再结合余弦定理即可求解. ∵cosBcosC =b2a−c =sinB2sinA−sinC .整理可得: sinBcosC =2sinAcosB −sinCcosB可得 sinBcosC +sinCcosB =sin(B +C)=sinA =2sinAcosB ∵A 为三角形内角, cosB =12, 故A 正确,B 错误.B ∈(0,π)∴B =π3S △ABC =3√34,b =3 ∴3√34=12acsinB =12×a ×c ×√32=√34ac 解得 ac =3,由余弦定理得 9=a 2+c 2−ac =(a +c)2−3ac =(a +c)2−9 解得a +c =3√2, 故C 错误,D 正确. 故选: AD.小提示:解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”. 13、某货轮在A 处看灯塔B 在货轮北偏东75°,距离为12√6nmile ;在A 处看灯塔C 在货轮的北偏西30°,距离cos 2B =sin 0A ≠8√3nmile .货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东60°,则下列说法正确的是( ) A .A 处与D 处之间的距离是24nmile ;B .灯塔C 与D 处之间的距离是16nmile ; C .灯塔C 在D 处的西偏南60°;D .D 在灯塔B 的北偏西30°. 答案:AC分析:根据题意作出图形,然后在△ABD 中,结合正弦定理得求出AD ,在△ACD 中,由余弦定理得CD ,然后求出相关角度,进而逐项分析即可.由题意可知∠ADB =60∘,∠BAD =75∘,∠CAD =30∘,所以∠B =180∘−60∘−75∘=45∘,AB =12√6,AC =8√3,在△ABD 中,由正弦定理得ADsin∠B=AB sin∠ADB,所以AD =12√6×√22√32=24(nmile ),故A 正确;在△ACD 中,由余弦定理得CD =√AC 2+AD 2−2AC ⋅ADcos∠CAD , 即CD =(8√3)2+242−2×8√3×24×√32=8√3(nmile ),故B 错误;因为CD =AC ,所以∠CDA =∠CAD =30∘,所以灯塔C 在D 处的西偏南60∘,故C 正确; 由∠ADB =60∘,D 在灯塔B 的北偏西60∘处,故D 错误. 故选:AC 填空题14、△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于A 1,B 1,C 1.则AA 1cos A 2+BB 1cos B 2+CC 1cosC 2sinA+sinB+sinC的值为_____________.答案:4分析:连BA1,由正弦定理得AA1=2Rsin(B+A2),利用三角形内角和性质得AA1=4cos(B−C2),进而利用积化和差公式、诱导公式得AA1cos A2=2(sinC+sinB),同理求BB1cos B2、CC1cos C2,即可求值.连BA1,则AA1=2Rsin(B+A2)=4sin(A+B+C2+B2−C2)=4cos(B−C2),∴AA1cos A2=4cos(B−C2)cos A2=2(cos A+B−C2+cos A+C−B2)=2(sinC+sinB),同理可得:BB1cos B2=2(sinA+sinC),CC1cos C2=2(sinA+sinB).∴AA1cos A2+BB1cos B2+CC1cos C2=4(sinA+sinB+sinC),即AA1cosA2+BB1cos B2+CC1cos C2sinA+sinB+sinC=4.所以答案是:4小提示:关键点点睛:应用正弦定理、三角形内角和性质求得AA1=2Rsin(B+A2)=2Rcos(B−C2),再由积化和差公式、诱导公式求AA1cos A2,同理求出BB1cos B2、CC1cos C2.15、三条直线l1、l2、l3两两平行,l1到l2的距离为1,l2到l3的距离为2,等边三角形三个顶点分别在这三条直线上,则该三角形的面积为_______.答案:73√3或√3分析:分两种情况讨论:(1)l1、l3在l2的异侧;(2)l2、l3在l1的异侧.在两种情况下,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,设等边三角形ABC的边长为a,设AB与直线l2的夹角为θ,根据已知条件建立关于a、θ的等式组,求出a的值,由此可求得等边三角形ABC的面积.分以下两种情况讨论:(1)若l1、l3在l2的异侧,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,如下图所示:过点B作直线l2的垂线分别交直线l1、l3于点E、F,则BE=1,BF=2,设等边三角形ABC的边长为a,设AB与直线l2的夹角为θ,则π3−θ也为锐角,由{0<θ<π20<π3−θ<π2,解得0<θ<π3,由题意可得{BE=asinθ=1BF=asin(π3−θ)=20<θ<π3,解得{sinθ=√2114a=2√213,此时,该三角形的面积为S=12a2sinπ3=√34×283=7√33;(2)若l2、l3在l1的异侧,设等边三角形ABC的顶点A∈l1、B∈l2、C∈l3,如下图所示:过点A 作直线l 1的垂线分别交直线l 2、l 3于点E 、F ,则AE =AF =1, 设等边三角形ABC 的边长为a ,设AB 与直线l 2的夹角为θ,则π3−θ也为锐角,由{0<θ<π20<π3−θ<π2,解得0<θ<π3, 由题意可得{AE =asinθ=1AF =asin (π3−θ)=10<θ<π3,解得{sinθ=12a =2, 此时,该三角形的面积为S =12a 2sin π3=√34×4=√3.综上所述,该等边三角形的面积为7√33或√3. 所以答案是:7√33或√3. 小提示:关键点点睛:本题考查解三角形的实际应用,解题的关键就是选择合适的角θ,将问题中的边与相应的角用θ来边角,根据已知条件产生相等关系,结合三角函数相关知识求解.16、△ABC 的内角A,B,C 的对边分别为a,b,c .若b =6,a =2c,B =π3,则△ABC 的面积为__________. 答案:6√3分析:本题首先应用余弦定理,建立关于c 的方程,应用a,c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.由余弦定理得,所以(2c)2+c 2−2×2c ×c ×12=62,即c 2=12解得c =2√3,c =−2√3(舍去) 所以a =2c =4√3,S ΔABC =12acsinB =12×4√3×2√3×√32=6√3.小提示:本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算. 解答题2222cos b a c ac B =+-17、如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB ,DC 与OA 交点为E ,设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,用a ,b ⃗ 表示向量OC ⃗⃗⃗⃗⃗ ,DC⃗⃗⃗⃗⃗ .答案:OC ⃗⃗⃗⃗⃗ =2a −b ⃗ ,DC ⃗⃗⃗⃗⃗ =2a −53b⃗ . 分析:利用向量的加、减运算即可求解. ∵AC =BA ,∴A 是BC 的中点,∴OA ⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),∴OC ⃗⃗⃗⃗⃗ =2OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =2a −b⃗ . ∴DC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OD ⃗⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −23OB ⃗⃗⃗⃗⃗ =2a −b ⃗ −23b ⃗ =2a −53b ⃗ . 18、记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .答案:(1)√28 (2)12分析:(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得b 2sin 2B =acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32, 即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB =13,则cosB =√1−(13)2=2√23,ac =1cosB=3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:bsinB=a sinA=c sinC,则b 2sin 2B=a sinA⋅c sinC=acsinAsinC=3√24√23=94,则bsinB=32,b =32sinB =12.。
高数答案(全集)第六章参考答案
高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
(精选试题附答案)高中数学第六章平面向量及其应用专项训练题
(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用专项训练题单选题1、若z(1+i 3)=i ,则在复平面内复数z 对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:B分析:先利用复数的除法化简,再利用复数的几何意义判断. 因为z(1−i )=i , 所以z =i1−i =i (1+i )2=−1+i 2,故z 对应的点位于复平面内第二象限. 故选:B .2、“黄金三角形”是几何历史上的瑰宝,它有两种类型,其中一种是顶角为36°的等腰三角形,暂且称为“黄金三角形A ”.如图所示,已知五角星是由5个“黄金三角形A ”与1个正五边形组成,其中sin18°=√5−14,则阴影部分面积与五角形面积的比值为( ).A .√5−14B .√55C .√5+16D .3√520答案:B分析:在三角形ABC 中,由sin18°值,可得BC AC=√5−12,即BD AB=√5−12,设△ABC 的面积为x ,由此可知△BCD 和△CEF 的面积均为√5−12x ,△CDE 的面积为x ,由此即可求出结果.如图所示,依题意,在三角形ABC 中,sin18°=BC 2AC=√5−14,故BC AC=√5−12; 所以BD AB=√5−12, 设△ABC 的面积为x ,则△BCD 面积为√5−12x ,同理△CEF 的面积为√5−12x , △CDE 的面积为x ,则阴影部分面积与五角形面积的比值为2x+2⋅√5−12x 2⋅√5−12x+6x=√55. 故选:B .3、设λ为实数,已知向量m ⃗⃗ =(-1,2),n ⃗ =(1,λ).若m ⃗⃗ ⊥n ⃗ ,则向量m →+2n ⃗ 与m →之间的夹角为( ) A .π4B .π3C .2π3D .3π4 答案:A解析:根据向量垂直的坐标运算解得λ=12,再运用向量夹角的坐标运算公式可得选项. 因为向量m ⃗⃗ =(−1,2),n ⃗ =(1,λ),若m ⃗⃗ ⊥n ⃗ ,则m ⃗⃗ ⋅n ⃗ =−1×1+2λ=0,解得λ=12,所以m ⃗⃗ +2n ⃗ =(1,3),所以(m ⃗⃗ +2n ⃗ )⋅m ⃗⃗ =1×(−1)+3×2=5,|m ⃗⃗ +2n ⃗ |=√12+32=√10,|m ⃗⃗ |=√(−1)2+22=√5,设向量m ⃗⃗ +2n ⃗ 与m ⃗⃗ 之间的夹角θ ,则0≤θ≤π, ∴cosθ=(m ⃗⃗⃗ +2n ⃗ )⋅m ⃗⃗⃗ |m⃗⃗⃗ +2n ⃗ |×|m ⃗⃗⃗ |=√10×√5=√22, 所以向量m ⃗⃗ +2n ⃗ 与m ⃗⃗ 之间的夹角为π4. 故选:A.4、已知向量a ,b ⃗ 满足|a |=2,|b ⃗ |=1,a ⋅(a −2b ⃗ )=2,则a 与b ⃗ 的夹角为( ) A .30°B .60°C .120°D .150° 答案:B分析:由题意,先求出a ⋅b⃗ ,然后根据向量的夹角公式即可求解. 解:因为a ⋅(a −2b ⃗ )=a 2−2a ⋅b ⃗ =|a |2−2a ⋅b ⃗ =4−2a ⋅b ⃗ =2,所以a ⋅b⃗ =1, 设a 与b ⃗ 的夹角为θ,则cosθ=a ⃗ ⋅b ⃗|a ⃗ ||b ⃗ |=12, 因为θ∈[0°,180°], 所以θ=60°, 故选:B.5、在△ABC 中,角A,B,C 的对边分别是a,b,c ,若A =45°,B =60°,b =2√3,则c 等于( ) A .√6−√24B .√6+√24C .√6−√2D .√6+√2答案:D分析:先求出C ,再由正弦定理求解即可. 解:在△ABC 中,C =180°−45°−60°=75°. 由正弦定理可知csinC =bsinB ,所 以c sin75°=2√3sin60°,故c =2√3sin75°sin60°=4sin75°=4sin(30°+45°)=4×√6+√24=√6+√2.故选:D.6、我国南宋著名数学家秦九韶发现了“三斜”求职公式,即△ABC的三个内角A,B,C所对的边分别为a,b,c,则△ABC的面积S=√14[c2a2−(c2+a2−b22)2].已知在△ABC中,accosB=6,b=2√2,则△ABC面积的最大值为()A.√33B.2√33C.2D.4 答案:D分析:由条件accosB=6,b=2√2得a2+c2=20,由基本不等式得ac≤10,再由S=√14[c2a2−(c2+a2−b22)2]可求解.∵accosB=ac·a2+c2−b22ac =a2+c2−b22=6,又∵b=2√2,a2+c2=12+b2=20.∴ac≤a2+c22=10(当且仅当a=c=√10时取等号).∴S△ABC=√14[a2c2−(a2+c2−b22)2]=√14(a2c2−62)≤√14×(102−62)=4,∴△ABC面积的最大值为4.故选:D7、已知向量|a|=2,|b⃗|=4,且a ,b⃗不是方向相反的向量,则|a−b⃗|的取值范围是()A.(2,6)B.[2,6)C.(2,6]D.[2,6]答案:B分析:直接由||a|−|b⃗||≤|a−b⃗|<|a|+|b⃗|求解即可.由已知必有||a|−|b⃗||≤|a−b⃗|<|a|+|b⃗|,则所求的取值范围是[2,6).故选:B.8、已知平面向量a=(1,2),b⃗=(-2,m),且a∥b⃗,则2a+3b⃗=( )A .(-4,-8)B .(-8,-16)C .(4,8)D .(8,16) 答案:A分析:根据向量平行的坐标表示求出m ,再根据向量线性运算得坐标表示即可求解. ∵a ∥b ⃗ ,∴1×m =2×(-2),∴m =-4,∴b ⃗ =(-2,-4), ∴2a +3b ⃗ =(2,4)+(-6,-12)=(-4,-8). 故选:A.9、在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23 答案:A分析:根据已知条件结合余弦定理求得AB ,再根据cosB =AB 2+BC 2−AC 22AB⋅BC,即可求得答案.∵在△ABC 中,cosC =23,AC =4,BC =3根据余弦定理:AB 2=AC 2+BC 2−2AC ⋅BC ⋅cosCAB 2=42+32−2×4×3×23可得AB 2=9 ,即AB =3 由∵ cosB =AB 2+BC 2−AC 22AB⋅BC=9+9−162×3×3=19故cosB =19. 故选:A.小提示:本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 10、已知平面向量a ,b ⃗ ,c 满足:|a |=2,|b ⃗ |=3,a ⊥(a −b ⃗ )且2a −b ⃗ +c =0⃗ ,则|c |为( ) A .1B .3C .√3D .9答案:B分析:根据向量垂直可得a ⋅b ⃗ =4,进而根据向量模长的计算即可求解. 由a ⊥(a −b ⃗ )得a ⋅(a −b ⃗ )=0⇒a ⋅b⃗ =4, 由2a −b ⃗ +c =0⃗ 得c =−2a +b ⃗ ⇒c 2=(−2a +b ⃗ )2=4a 2−4a ⋅b ⃗ +b ⃗ 2=16−4×4+9=9, 故|c |=3, 故选:B 填空题11、如图所示,已知△AOB ,点C 是点B 关于点A 的对称点,OD ⃗⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,DC 和OA 交于点E ,若OE ⃗⃗⃗⃗⃗ =λOA ⃗⃗⃗⃗⃗ ,则实数λ的值为_______.答案:45分析:设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,可得DC ⃗⃗⃗⃗⃗ =2a −53b ⃗ ,EC ⃗⃗⃗⃗⃗ =(2−λ)a −b⃗ ,又因为EC ⃗⃗⃗⃗⃗ //DC ⃗⃗⃗⃗⃗ ,即可求解λ. 如图所示:设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ⃗ ,由于OD ⃗⃗⃗⃗⃗⃗ =2DB ⃗⃗⃗⃗⃗⃗ ,所以OD ⃗⃗⃗⃗⃗⃗ =23b ⃗ , 由于点C 是点B 关于点A 的对称点,则A 为BC 中点, 所以OA ⃗⃗⃗⃗⃗ =12(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ),得OC ⃗⃗⃗⃗⃗ =2a −b⃗所以DC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OD ⃗⃗⃗⃗⃗⃗ =2a −53b⃗ 由于EC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OE ⃗⃗⃗⃗⃗ =(2−λ)a −b ⃗ ,又因为EC⃗⃗⃗⃗⃗ //DC ⃗⃗⃗⃗⃗ 2−λ2=153得λ=45.所以答案是:45小提示:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.12、已知向量a =(m,3),b ⃗ =(1,m +1).若a ⊥b ⃗ ,则m =______________. 答案:−34##−0.75分析:直接由向量垂直的坐标表示求解即可. 由题意知:a ⋅b⃗ =m +3(m +1)=0,解得m =−34. 所以答案是:−34.13、已知|a |=3,|b ⃗ |=5,a ⋅b ⃗ =−12,且e 是与b ⃗ 方向相同的单位向量,则a 在b ⃗ 上的投影向量为______. 答案:−125e分析:利用向量夹角公式以及向量投影公式直接求解. 设a 与b⃗ 的夹角θ,则cosθ=a ⃗ ⋅b ⃗ |a⃗ |⋅|b ⃗ |=−123×5=−45,所以a 在b ⃗ 上的投影向量为|a |cosθ⋅e =3×(−45)⋅e =−125e ,所以答案是:−125e .14、设向量a =(1,−1),b ⃗ =(m +1,2m −4),若a ⊥b ⃗ ,则m =______________. 答案:5分析:根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果.由a⊥b⃗可得a⋅b⃗=0,又因为a=(1,−1),b⃗=(m+1,2m−4),所以a⋅b⃗=1⋅(m+1)+(−1)⋅(2m−4)=0,即m=5,所以答案是:5.小提示:本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目.15、已知向量a+b⃗+c=0⃗ ,|a|=1,|b⃗|=|c|=2,a⋅b⃗+b⃗⋅c+c⋅a=_______.答案:−92分析:由已知可得(a+b⃗+c)2=0,展开化简后可得结果.由已知可得(a+b⃗+c)2=a2+b⃗2+c2+2(a⋅b⃗+b⃗⋅c+c⋅a )=9+2(a⋅b⃗+b⃗⋅c+c⋅a )=0,因此,a⋅b⃗+b⃗⋅c+c⋅a=−92.所以答案是:−92.解答题16、在①a=√3csinA−acosC,②(2a−b)sinA+(2b−a)sinB=2csinC这两个条件中任选一个,补充在下列问题中,并解答.已知△ABC的角A,B,C对边分别为a,b,c,c=√3,而且______.(1)求∠C;(2)求△ABC周长的最大值.答案:(1)C=π3;(2)3√3分析:(1)选①,先利用正弦定理化简可得sinA=√3sinCsinA−sinAcosC,进而得到√3sinC−cosC=1,结合C的范围即可求得C=π3;选②,先利用正弦定理可得(2a−b)a+(2b−a)b=2c2,再利用余弦定理可得cosC=12,结合C的范围即可求得C=π3;(2)由余弦定理可得a2+b2−ab=3,再利用基本不等式可得a+b⩽2√3,进而求得△ABC周长的最大值.(1)选①:因为a=√3csinA−acosC,所以sinA=√3sinCsinA−sinAcosC,因为sinA≠0,所以√3sinC−cosC=1,即sin(C−π6)=12,因为0<C<π,所以−π6<C−π6<5π6,所以C−π6=π6,即C=π3;选②:因为(2a−b)sinA+(2b−a)sinB=2csinC,所以(2a−b)a+(2b−a)b=2c2,即a2+b2−c2=ab,所以cosC=a 2+b2−c22ab=12,因为0<C<π,所以C=π3;(2)由(1)可知:C=π3,在△ABC中,由余弦定理得a2+b2−2abcosC=3,即a2+b2−ab=3,所以(a+b)2−3=3ab≤3(a+b)24,所以a+b≤2√3,当且仅当a=b时等号成立,所以a+b+c≤3√3,即△ABC周长的最大值为3√3.小提示:本题主要考查正、余弦定理在解三角形中的运用,同时还涉及了基本不等式的运用,考查化简计算能力,属于中档题.17、在锐角△ABC中,已知m⃗⃗ =(2sin(A+C),√3),n⃗=(cos2B,2cos2B2−1),且m⃗⃗ //n⃗.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗ //n⃗,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、在△ABC中,角A,B,C的对边分别为a,b,c,且asinC1−cosA=√3c.(1)求角A的大小;(2)若b+c=10,S△ABC=4√3,求a的值.答案:(1)A=π3(2)a=2√13分析:(1)由正弦定理结合辅助角可求出sin(A+π3)=√32,因为0<A<π,即可求出角A的大小;(2)由三角形的面积公式结合余弦定理即可求出a的值.(1)由asinC1−cosA =√3c及正弦定理得sinAsinC1−cosA=√3sinC,∵sinC≠0,∴sinA=√3(1−cosA),∴sinA+√3cosA=2sin(A+π3)=√3,∴sin(A+π3)=√32.又0<A<π,∴π3<A+π3<4π3,∴A+π3=2π3,∴A=π3.(2)∵S△ABC=12bcsinA=√34bc=4√3,∴bc=16.由余弦定理得a2=b2+c2−2bccosπ3=(b+c)2−2bc−bc=(b+c)2−3bc.又b+c=10,∴a2=102−3×16=52,∴a=2√13.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。
高等数学第六章习题及答案
微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
高数A第6章课件:第六章习题课2
习 题 课二、选择题1.设C 是圆周x y ,则∫=Cxds ( )。
x 222=+(A )0;(B )1;(C )π;(D )π2。
2.:,Σ设)0(2222≥=++z a z y x 在第一卦限的部分为ΣΣ1,则有( )(A ); (B );∫∫∫∫ΣΣ=14xdS xdS ∫∫∫∫ΣΣ=14xdS ydS (C ); (D )。
∫∫∫∫ΣΣ=14xdS zdS ∫∫∫∫ΣΣ=14xyzdS xyzdS 3.圆柱面被圆柱面所截部分的面积为().222a z x =+222a y x =+(A ) 8a 2, (B ) 4a 2, (C )2a 2, (D ) a 2.二、填空题1.设∫∫∫−−+=20020222),,(x x y x dz z y x f dy dx I ,则在柱面坐标系下的三次积分为 ;在球面坐标系下的三次积分为 。
2.质量均匀分布的球体Ω:对z 轴的转动惯量为 2222R z y x ≤++。
3.为,则Σ设曲面4222=++z y x ∫∫Σ=+dS y x )(22 。
4.设L 为圆锥螺线t t x cos =,t t y sin =,)10( ≤≤=t t z , =∫Ls z d 则。
三、解答题1.求曲面,221y x z −−=1=++z y x ,0=x ,0=y ,0=z 所围成的立体的体积。
2.计算三重积分∫∫∫Ω++=dV z yz x I )2(2,其中Ω是由曲线绕z 轴旋转一周所生成的曲面所围成的区域。
⎪⎩⎪⎨⎧==+ 0222x z z y 3.计算, 其中Ω为由半椭球面与锥面∫∫∫Ω+V xy z d )2()0(14222>=++z z y x 22y +x z =所围成的区域。
4.Σ是椭球面122222=++z y x 的上半部分,点S z y x M ∈),,(, 为Σ在点M 处的切平面,π的距离到平面为点 )0,0,0( ),,(πρz y x ,求dS z y z x ∫∫Σρ,(),。
高等数学课后答案-第六章-习题详细解答
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
高等数学课后习题答案第六章
习题六1. 指出下列各微分方程的阶数:1一阶 2二阶 3三阶 4一阶2. 指出下列各题中的函数是否为所给微分方程的解:2(1)2,5xy y y x '==;解:由25y x =得10y x '=代入方程得故是方程的解.(2)0,3sin 4cos y y y x x ''+==-;解:3cos 4sin ;3sin 4cos y x x y x x '''=+=-+代入方程得 3sin 4cos 3sin 4cos 0x x x x -++-=.故是方程的解.2(3)20,e x y y y y x '''-+== ;解:2222e e (2)e ,(24)e x x x x y x x x x y x x '''=+=+=++代入方程得 2e 0x ≠.故不是方程的解.解:12122211221122e e ,e e x x x x y C C y C C λλλλλλλλ'''=+=+代入方程得故是方程的解.3. 在下列各题中,验证所给二元方程为所给微分方程的解: 证:方程22x xy y C -+=两端对x 求导: 得22x y y x y -'=-代入微分方程,等式恒成立.故是微分方程的解.证:方程ln()y xy =两端对x 求导: 11y y x y ''=+ 得(1)yy x y '=-. 式两端对x 再求导得将,y y '''代入到微分方程,等式恒成立,故是微分方程的解.4. 从下列各题中的曲线族里,找出满足所给的初始条件的曲线: 解:当0x =时,y =5.故C =-25故所求曲线为:2225y x -= 解: 2212(22)e x y C C C x '=++当x =0时,y =0故有10C =.又当x =0时,1y '=.故有21C =.故所求曲线为:2e x y x =.5. 求下列各微分方程的通解:(1)ln 0xy y y '-=;解:分离变量,得 d 1d ln y xy y x =积分得 11d ln d ln y x y x =⎰⎰得 e cx y =.解:分离变量,得= 积分得=得通解:.c -=-(3)(e e )d (e e )d 0x y x x y y x y ++-++=;解:分离变量,得 e e d d 1e 1e y yy x y x =-+积分得ln(e 1)ln(e 1)ln y x c --=+- 得通解为 (e 1)(e 1)x yc +-=. (4)cos sind sin cos d 0x y x x y y +=;解:分离变量,得 cos cos d d 0sin sin x y x y x y +=积分得 lnsin lnsin ln y x c +=得通解为 sin sin .y x c ⋅=(5)y xy '=;解:分离变量,得 d d y x x y =积分得 211ln 2y x c =+得通解为 2112e (e )x c y c c ==(6)210x y '++=;解: 21y x '=--积分得 (21)d y x x =--⎰得通解为2y x x c =--+. 32(7)4230x x y y '+-=;解:分离变量,得 233d (42)d y y x x x =+积分得 342y x x c =++即为通解.(8)e x y y +'=.解:分离变量,得e d e d y x y x -= 积分得 e d e d y x y x-=⎰⎰ 得通解为: e e y x c --=+.6. 求下列各微分方程满足所给初始条件的特解:20(1)e ,0x y x y y -='== ;解:分离变量,得2e d e d y x y x = 积分得 21e e 2y x c =+.以0,0x y ==代入上式得12c = 故方程特解为 21e (e 1)2y x =+.π2(2)sin ln ,ex y x y y y ='== .解:分离变量,得 d d ln sin y x y y x =积分得 tan 2ex c y ⋅= 将π,e 2x y ==代入上式得1c =故所求特解为 tan 2exy =.7. 求下列齐次方程的通解:(1)0xy y '-=;解:d d y y x x =+令d d d d y y u u u x x x x =⇒=+ 原方程变为d x x = 两端积分得ln(ln ln u x c =+ 即通解为:2y cx += d (2)ln d y y xy x x =; 解:d ln d y y y x xx = 令y u x =, 则d d d d y u u x x x =+原方程变为 d d (ln 1)u x u u x =- 积分得 ln(ln 1)ln ln u x c -=+即方程通解为 1e cx y x +=解: 2221d d y y x y x y x xyx ⎛⎫+ ⎪+⎝⎭== 令y u x =, 则d d d d y u u x x x =+ 原方程变为2d 1d u u u x x u ++= 即 d 1d ,d d u x x u u x ux == 积分得 211ln ln 2u x c =+故方程通解为22221ln()()y x cx c c == 332(4)()d 3d 0x y x xy y +-=;解:333221d d 33y y x y x x xy y x ⎛⎫+ ⎪+⎝⎭==⎛⎫ ⎪⎝⎭ 令y u x =, 则d d d d y u u x x x =+ 原方程变为32d 1d 3u u u x x u ++= 即 233d d 12u x u ux =- 积分得 311ln(21)ln ln 2u x c --=+ 以yx 代替u ,并整理得方程通解为332y x cx -=. d (5)d y x y x x y +=-; 解:1d d 1yy x yx x +=- 令y u x =, 则d d d d y u u x x x =+原方程变为d 1d 1u u u xx u ++=- 分离变量,得 211d d 1u u x ux -=+ 积分得 211arctan ln(1)ln ln 2u u x c -+=+ 以y x 代替u ,并整理得方程通解为到2arctan 22211e .()y x x y c c c +== 解:d d yy x = 即d d x x y y =+令x v y =, 则d d ,d d x v x yv v y y y ==+, 原方程可变为 即d d v yy =分离变量,得d yy =积分得ln(ln ln v y c =-. 即y v c +=以yv x =代入上式,得222c y c x ⎛⎫=+ ⎪⎝⎭ 即方程通解为 222y cx c =+.8. 求下列各齐次方程满足所给初始条件的解:220(1)(3)d 2d 0,1x y x y xy x y =-+== ;解: 22d d 3y y xx y x =-⎛⎫- ⎪⎝⎭令y ux =,则得 2d 2d 3u u u x x u +=-- 分离变量,得 233d d u x u u ux -=- 积分得 3ln ln(1)ln(1)ln u u u cx -+-++=即 231ln ln u c u x -=得方程通解为 223y x cy -=以x =0,y =1代入上式得c =1.故所求特解为 223y x y -=.1(2),2x xyy y y x ='=+= .解:设y ux =, 则d d d d yuu x x x =+原方程可变为 d d x u u x =积分得 21ln ln 2u x c =+.得方程通解为 222(ln ln )y x x c =+以x =1,y =2代入上式得c =e 2.故所求特解为 222(ln 2)y x x =+.9. 利用适当的变换化下列方程为齐次方程,并求出通解:解:设1,1x X y Y =+=+,则原方程化为令 d 25d 24Y u uu u X X X u -=⇒+=+代回并整理得2(43)(23),(y x y x c c --+-==. 解:d 1d 41y x yx y x --=-+-作变量替换,令 1,0x X y Y Y =+=+=原方程化为 1d d 414YY X YX YX X Y X --=-=-++令Y uX =,则得分离变量,得 214d d 14u X u u x +-=+积分得即 22ln ln(14)arctan 2X u u c +++=代回并整理得 222ln[4(1)]arctan .1yy x c x +-+=-(3)()d (334)d 0x y x x y y +++-=;解:作变量替换,v x y =+ 则d d 1d d yvx x =-原方程化为 d 1d 34v v xv -=-- 代回并整理得 32ln(2).x y x y c +++-=d 1(4)1d y x x y =+-.解:令,u x y =-则d d 1d d u y xx =- 原方程可化为 d 1d u xu =- 分离变量,得 d d u u x =-积分得 2112u x c =-+故原方程通解为21()2.(2)x y x c c c -=-+= 10. 求下列线性微分方程的通解:(1)e x y y -'+=;解:由通解公式2(2)32xy y x x '+=++;解:方程可化为123y y x x x '+=++由通解公式得 解: cos d cos d sin sin e e ().e e d x x x x x x y x c x c ---⎰⎡⎤⎰==+⋅+⎢⎥⎣⎦⎰(4)44y xy x '=+;解:22(4)d (4)d 22e e 4e d 4e d x x x x x x y x x c x x c ----⎰⎡⎤⎰⎡⎤==++⎢⎥⎣⎦⎣⎦⎰⎰ ()222222e e e 1x x x c c -=-+=-.3(5)(2)2(2)x y y x '-=+-; 解:方程可化为 2d 12()d 2y y x x x x -=--解:方程可化为2222411x x y y x x '+=++ 11. 求下列线性微分方程满足所给初始条件的特解:πd 11(1)sin ,1d x y y x y x x x =+== ;解: 11d d 11sine sin d [cos ]e d x x x x x y x x c c x x c x x x -⎡⎤⎰⎰⎡⎤==+=-+⎢⎥⎣⎦⎣⎦⎰⎰以π,1x y ==代入上式得π1c =-,故所求特解为 1(π1cos )y x x =--.2311(2)(23)1,0x y x y y x ='+-== . 解:22323d 3ln x x x x c x --=--+⎰ 以x =1,y =0代入上式,得12e c =-. 故所求特解为2311e 22e x y x -⎛⎫=- ⎪⎝⎭. 12. 求下列伯努利方程的通解: 解:令121z y y --==,则有即为原方程通解. 411(2)(12)33y y x y '+=-.解:令3d 21d z z y z x x -=⇒-=-.即为原方程通解.13. 求下列各微分方程的通解:(1)sin y x x ''=+;解:方程两边连续积分两次得(2)e x y x '''=;解:积分得 1e d e e x x x y x x x c ''==-+⎰(3)y y x '''=+;解:令p y '=,则原方程变为故 21121(e 1)d e 2x x y c x x c x x c =--=--+⎰.3(4)()y y y ''''=+;解:设y p '=, 则d d p y py ''= 原方程可化为 3d d p p p py =+即 2d (1)0d p p p y ⎡⎤-+=⎢⎥⎣⎦ 由p =0知y =c ,这是原方程的一个解.当0p ≠时,22d d 1d d 1p p p y y p =+⇒=+解:11d ln y x c x x ''==+⎰(6)y ''=;解:1arcsin y x x c '==+(7)0xy y '''+=; 解:令y p '=,则得1d d 00p x p p x p x '+=⇒+=得1c p x =故 112d ln c y x c c x x ==+⎰.3(8)10y y ''-=. 解:令p y '=,则d d p y py ''=.原方程可化为33d 10,d d d p y p p p y y y --==14.求下列各微分方程满足所给初始条件的特解: 311(1)10,1,0x x y y y y =='''+===;解:令y p '=,则d d p y p y ''=,原方程可化为 33d 11d d d p y p p p y y y ⋅=-⇒=-由1,1,0x y y p '====知,11c =-,从而有由1,1x y ==,得21c =故222x y x += 或y =. 211(2)1,0,1x x x y xy y y ==''''+===;解:令y p '=,则y p '''=.原方程可化为211p p x x '+= 则 11(ln )y x c x '=+以1,1x y '==代入上式得11c = 则1(ln 1)y x x '=+ 当x =1时,y =0代入得20c =故所求特解为 21ln ln 2y x x =+.2001(3),01x x y y y x =='''===+;解:1arctan y x c '=+当0,0x y '==,得10c =以x =0,y =0代入上式得20c =故所求特解为 21arctan ln(1)2y x x x =-+.200(4)1,1,0x x y y y y ==''''=+==;解:令p y '=,则p y '''=.原方程可化为21p p '=+ 以0,0x y '==代入上式得1πc k =.以x =0,y =1代入上式得21c =故所求特解为200(5)e ,0y x x y y y =='''===;解:令y p '=,则d d p y py ''=. 原方程可化为 2d e d yp p y =即 2d e d y p p y =积分得221111e 222y p c =+ 以0,0x y y '===代入上式得11c =-,则p y '==以x =0,y =0代入得2π2c =,故所求特解为 πarcsin e 2y x -=+ 即πe sin cos 2y x x -⎛⎫==± ⎪⎝⎭. 即lnsec y x =.00(6)1,2x x y y y =='''===.解:令d ,d p y p y p y '''== 原方程可化为 12d 3d p p y y =以0,2,1x y p y '====代入得10c = 故 342y p y '==± 由于0y ''=>. 故342y y '=,即 34d 2d yx y =积分得14242y x c =+ 以x =0,y =1代入得24c =故所求特解为4112y x ⎛⎫=+ ⎪⎝⎭. 15. 求下列微分方程的通解:(1)20y y y '''+-=;解:特征方程为 220r r +-=解得 121,2r r ==-故原方程通解为212e e .x x y c c -=+ (2)0y y ''+=;解:特征方程为 210r +=解得 1,2r i =±故原方程通解为 12cos sin y c x c x =+22d d (3)420250d d x x x t t -+=;解:特征方程为 2420250r r -+=解得1252r r == 故原方程通解为 5212()e t x c c t =+.(4)450y y y '''-+=;解:特征方程为 2450r r -+= 解得 1,22r i =±故原方程通解为212e (cos sin )x y c x c x =+. (5)440y y y '''++=;解:特征方程为 2440r r ++=解得 122r r ==-故原方程通解为212e ()x y c c x -=+ (6)320y y y '''-+=.解:特征方程为 2320r r -+=解得 1,2r r ==故原方程通解为 212e e x x y c c =+.16. 求下列微分方程满足所给初始条件的特解:00(1)430,6,10x x y y y y y ==''''-+===;解:特征方程为 2430r r -+=解得 121,3r r ==通解为 312e e x x y c c =+由初始条件得 121122643102c c c c c c +==⎧⎧⇒⎨⎨+==⎩⎩ 故方程所求特解为 34e 2e x xy =+.解:特征方程为 24410r r ++= 解得1212r r ==- 通解为 1212()e x y c c x -=+由初始条件得 11221221102c c c c c =⎧=⎧⎪⇒⎨⎨=-=⎩⎪⎩故方程所求特解为 12(2)e x y x -=+.解:特征方程为 24290r r ++=解得 1,225r i =-±通解为212e (cos5sin 5)x y c x c x -=+ 由初始条件得 112120052153c c c c c ==⎧⎧⇒⎨⎨-==⎩⎩ 故方程所求特解为23e sin 5x y x -=. 00(4)250,2,5x x y y y y =='''+===.解:特征方程为 2250r +=解得 1,25r i =±通解为 12cos5sin 5y c x c x =+由初始条件得 112222551c c c c ==⎧⎧⇒⎨⎨==⎩⎩ 故方程所求特解为 2cos5sin 5y x x =+.17. 求下各微分方程的通解:(1)22e x y y y '''+-=;解: 2210r r +-=得相应齐次方程的通解为令特解为*e x y A =,代入原方程得 2e e e 2e x x x x A A A +-=,解得1A =, 故*e x y =,故原方程通解为 212e e e x x xy c c -=++.2(2)25521y y x x '''+=--;对应齐次方程通解为212e x y c c -=+ 令*2()y x ax bx c =++, 代入原方程得 比较等式两边系数得 则*321373525y x x x =-+ 故方程所求通解为532212137e 3525x y c c x x x -⎛⎫=++-+ ⎪⎝⎭. (3)323e x y y y x -'''++=;解:2320r r ++= 121,2r r =-=-,对应齐次方程通解为 212e e x x y c c --=+令*()e x y x Ax B -=+代入原方程得解得 3,32A B ==-则*23e 32x y x x -⎛⎫=- ⎪⎝⎭ 故所求通解为22123e e e 32x x x y c c x x ---⎛⎫=++- ⎪⎝⎭. (4)25e sin 2x y y y x '''-+=;解:2250r r -+=相应齐次方程的通解为令*e (cos 2sin 2)x y x A x B x =+,代入原方程并整理得 得 1,04A B =-=则 *1e cos 24x y x x =-故所求通解为 121e (cos 2sin 2)e cos 24x x y c x c x x x =+-.(5)2y y y x '''++=;解:2210r r ++=相应齐次方程通解为 12()e x y c c x -=+令*y Ax B =+代入原方程得得 1,2A B ==-则 *2y x =-故所求通解为 12()e 2x y c c x x -=++- 2(6)44e x y y y '''-+=.对应齐次方程通解为 12()e c c x =+令*22e x y Ax =代入原方程得 故原方程通解为222121()e e 2x x y c c x x =++.18. 求下列各微分方程满足已给初始条件的特解: ππ(1)sin 20,1,1x x y y x y y =='''++===; 解:特征方程为 210r +=得 1,2r i =±对应齐次方程通解为 12cos sin y c x c x =+令*cos 2sin 2y A x B x =+代入原方程并整理得得 10,3A B ==故通解为 121cos sin sin 23y c x c x x =++.将初始条件代入上式得11221121133c c c c -==-⎧⎧⎪⎪⇒⎨⎨-+==-⎪⎪⎩⎩ 故所求特解为 11cos sin sin 233y x x x =--+.200633(2)109e ,,77x x x y y y y y ==''''-+===.解: 21090r r -+=对应齐次方程通解为 912e e x x y c c =+令*2e x y A =,代入原方程求得 17A =-则原方程通解为 29121e e e 7x x xy c c =-++由初始条件可求得1211,22c c == 故所求特解为 9211(e e )e 27x x xy =+-.19. 求下列欧拉方程的通解:解:作变换e tx =,即t =ln x ,原方程变为 (1)0D D y Dy y -+-= 即 22d 0d y y t -=特征方程为 210r -=故 12121e e t t y c c c c x x -=+=+.23(2)4x y xy y x '''+-=.解:设e tx =,则原方程化为 232d 4e d ty y t -= ①特征方程为 240r -=故①所对应齐次方程的通解为又设*3e t y A =为①的特解,代入①化简得 15A =, *31e 5t y = 故 223223121211e e e .55t t t y c c c x c x x --=++=++。
高等数学:高等数学第六章自测题答案
《高等数学》单元自测题第六章 常微分方程专业 班级 姓名 学号一、填空题:1、微分方程212y x y -='的通解为 C x y +=2arcsin 。
2、微分方程y y x y ln sin ='满足初始条件e y x ==2π的特解为2tan x e y =。
3、微分方程0222=+-y dx dy dxy d 的通解为x x xe C e C y 21+=。
4、已知x y =1,xy 12=是微分方程0222=-'+''y y x y x 的解,则此方程的通解为 xC x C y 121+=。
二、选择题:1、下列微分方程中,通解为)2sin 2cos (21x C x C e y x +=的微分方程是( B )。
A.032=-'-''y y y ;B.052=+'-''y y y ;C.02=-'+''y y y ;D. 0136=+'+''y y y .2、微分方程x xe y y y 265=+'-''的特解形式(其中a ,b 为常数)为( A )。
A. ()x xe b ax y 2*+=;B. ()x e b ax y 2*+=;C. b e ax y x +=22*;D. b ae y x +=2*. 3、微分方程1+=-''x e y y 的特解形式(其中a ,b 为常数)为( B )A. b e a x +;B.b xe a x +;C. x b e a x+; D.x b xe a x +. 三、求解下列微分方程的通解:1、y dxdy x +=⋅1tan ; 解:根据可分离变量的方法,可解得方程的通解为1sin -=x C y 。
2、x yy y sin 1cos +=';解:根据可分离变量的方法,可解得方程的通解为()C x y +=+2sin 1ln .3、xy e dx dy x y +=; 解:令xy u =,可将原方程化为u e x dx du =,根据可分离变量可得 ()x C u ln ln --=, 从而解得通解为()x C x y ln ln --=。
高中数学第六章平面向量及其应用经典大题例题(带答案)
高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。
(精选试题附答案)高中数学第六章平面向量及其应用基础知识手册
(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用基础知识手册单选题1、已知向量a ⃗=(√3,1),b ⃗⃗=(−√3,1),则a ⃗与b ⃗⃗的夹角为( ) A .30°B .60°C .120°D .150° 答案:C分析:根据数量积的夹角公式进行求解,再结合平面向量夹角范围即可得到答案解:cos⟨a ⃗,b ⃗ ⟩=a ⃗⃗⋅b ⃗ |a⃗⃗||b ⃗ |=−3+12×2=−12,因为0°≤⟨a ⃗,b ⃗ ⟩≤180°,所以⟨a ⃗,b ⃗ ⟩=120°, 故选:C2、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .3、已知在三角形ABC 中,BC =4,|AB |=2|AC |,则AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 的取值范围是( ) A .(−329,32)B .[−329,32]C .(0,32)D .[0,32)答案:A分析:根据三角形三边关系得到|AC |的取值范围,再利用余弦定理表示出cos∠CAB ,最后根据平面向量数量积的定义计算可得;解:因为BC =4,|AB |=2|AC |,所以{|AB |+|AC |>4|AB |−|AC |<4 ,即{2|AC |+|AC |>42|AC |−|AC |<4 ,解得43<|AC |<4,由余弦定理cos∠CAB =AC 2+AB 2−BC 22AC⋅AB ,所以AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cos∠CAB =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |⋅AC 2+AB 2−BC 22AC⋅AB=AC 2+AB 2−BC 22=5|AC |2−162,因为43<|AC |<4,所以169<|AC |2<16,所以−329<5|AC |2−162<32,即AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ∈(−329,32);故选:A4、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B分析:以AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ 故选:B5、过△ABC 的中线AD 的中点E 作直线PQ 分别交AB 、AC 于P 、Q 两点,若AP⃗⃗⃗⃗⃗ =mAB ⃗⃗⃗⃗⃗ ,AQ ⃗⃗⃗⃗⃗ =nAC ⃗⃗⃗⃗⃗ ,则1m +1n=( )A .4B .43C .3D .1 答案:A分析:由D 为BC 的中点得到 AD ⃗⃗⃗⃗⃗⃗=12(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗),设PE ⃗⃗⃗⃗⃗⃗=λPQ ⃗⃗⃗⃗⃗⃗,结合AP ⃗⃗⃗⃗⃗⃗=mAB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=nAC ⃗⃗⃗⃗⃗⃗,得到AE⃗⃗⃗⃗⃗⃗=(1−λ)mAB ⃗⃗⃗⃗⃗⃗+λnAC ⃗⃗⃗⃗⃗⃗,再由AE ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗⃗,得到14(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=AE⃗⃗⃗⃗⃗⃗=(1−λ)mAB ⃗⃗⃗⃗⃗⃗+λnAC ⃗⃗⃗⃗⃗⃗,然后利用AB ⃗⃗⃗⃗⃗⃗与AC ⃗⃗⃗⃗⃗⃗不共线求得m ,n 即可.解:由D 为BC 的中点可知,AD ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+BD ⃗⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+12BC ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+12(AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗), =12(AB⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗), 设PE⃗⃗⃗⃗⃗⃗=λPQ ⃗⃗⃗⃗⃗⃗, 则AE⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗+PE ⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗+λPQ ⃗⃗⃗⃗⃗⃗, =AP⃗⃗⃗⃗⃗⃗+λ(AQ ⃗⃗⃗⃗⃗⃗−AP ⃗⃗⃗⃗⃗⃗)=(1−λ)AP ⃗⃗⃗⃗⃗⃗+λAQ ⃗⃗⃗⃗⃗⃗, ∵ AP⃗⃗⃗⃗⃗⃗=mAB ⃗⃗⃗⃗⃗⃗,AQ ⃗⃗⃗⃗⃗⃗=nAC ⃗⃗⃗⃗⃗⃗, ∴ AE⃗⃗⃗⃗⃗⃗=(1−λ)mAB ⃗⃗⃗⃗⃗⃗+λnAC ⃗⃗⃗⃗⃗⃗ ∵ AE ⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗⃗, ∴ 14(AB ⃗⃗⃗⃗⃗⃗+AC ⃗⃗⃗⃗⃗⃗)=AE⃗⃗⃗⃗⃗⃗=(1−λ)mAB ⃗⃗⃗⃗⃗⃗+λnAC ⃗⃗⃗⃗⃗⃗, ∵ AB⃗⃗⃗⃗⃗⃗与AC ⃗⃗⃗⃗⃗⃗不共线, ∴ {λn =14(1−λ)m =14,解得{n =14λm =14(1−λ), ∴ 1m +1n =4故选:A .6、已知边长为1的正方形ABCD ,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ⃗ ,AC ⃗⃗⃗⃗⃗ =c ,则|a −b ⃗ +c |=( ) A .1B .2C .3D .4 答案:B分析:根据向量加法的平行四边形法则,结合正方形的性质可得答案. 因为ABCD 是边长为1的正方形,AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ⃗ ,AC ⃗⃗⃗⃗⃗ =c , 所以a −b ⃗ +c =AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ +(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=2AB ⃗⃗⃗⃗⃗ 又|AB ⃗⃗⃗⃗⃗ |=1,所以|a −b ⃗ +c |=|2AB ⃗⃗⃗⃗⃗ |=2 故选:B7、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ).A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9, 即c 2−√3c −6=0,解得:c =2√3或c =−√3(舍),∴c =2√3. 故选:B.8、已知在△ABC 中,a =x ,b =2,B =30°,若三角形有两解,则x 的取值范围是( ) A .x >2B .0<x <2C .2<x <3D .2<x <4 答案:D分析:根据三角形有两个解,转化为以C 为圆心,以2为半径的圆与BA 有两个交点,再结合正弦定理求解. 如图所示:因为AC=b=2,若三角形有两个解,则以C为圆心,以2为半径的圆与BA有两个交点,当∠A=90∘时,圆与BA相切,不合题意;当∠A=30∘时,圆与BA交于B点,不合题意;所以30∘<∠A<150∘,且∠A≠90∘,所以12<sinA<1由正弦定理得:sinA=asinBb =14x,则12<14x<1,解得2<x<4,故选:D9、如图,△ABC中,角C的平分线CD交边AB于点D,∠A=2π3,AC=2√3,CD=3√2,则BC=()A.3√3B.4C.4√2D.6答案:D分析:△ACD中由正弦定理求得∠ADC后可得∠ACD,从而得∠ACB,B角,得AB,用余弦定理可得BC.在△ACD中,根据正弦定理得sin∠ADC=AC⋅sinACD =2√3×√323√2=√22,由∠ADC<∠A,所以∠ADC=π4,所以∠ACD=π−2π3−π4=π12,所以∠ACB=π6,则∠B=π6,所以AB=AC=2√3,在△ABC中,由余弦定理得BC2=(2√3)2+(2√3)2−2×2√3×2√3×(−12)=36,所以BC=6.故选:D.小提示:关键点点睛:本题主要考查正弦定理,余弦定理,特殊角的三角函数值等基础知识,解题时对照已知条件选用恰当的公式进行计算.如先在△ACD中选用正弦定理求得两边中另一边的对角,可得三角形的第三角,这样图形听所有角都已知,然后再求选用公式求边.本题也可以不用余弦定理求边BC.10、已知平面向量a⃗,b⃗⃗,c⃗满足:|a⃗|=2,|b⃗⃗|=3,a⃗⊥(a⃗−b⃗⃗)且2a⃗−b⃗⃗+c⃗=0⃗⃗,则|c⃗|为()A.1B.3C.√3D.9答案:B分析:根据向量垂直可得a⃗⋅b⃗⃗=4,进而根据向量模长的计算即可求解.由a⃗⊥(a⃗−b⃗⃗)得a⃗⋅(a⃗−b⃗⃗)=0⇒a⃗⋅b⃗⃗=4,由2a⃗−b⃗⃗+c⃗=0⃗⃗得c⃗=−2a⃗+b⃗⃗⇒c⃗2=(−2a⃗+b⃗⃗)2=4a⃗2−4a⃗⋅b⃗⃗+b⃗⃗2=16−4×4+9=9,故|c⃗|=3,故选:B填空题11、在锐角△ABC的内角A,B,C的对边分别为a,b,c,若b−a=2acosC,则ac的取值范围是______.答案:(√33,√2 2)分析:由正弦定理边角关系、和差角正弦公式可得sinA=sin(C−A),结合△ABC为锐角三角形,可得2A=C及角A的范围,进而应用正弦定理边角关系即可求ac的范围.由题设,sinB−sinA=2sinAcosC,而B=π−(A+C),所以sinA=cosAsinC−sinAcosC=sin(C−A),又0<A,C<π2,所以2A=C,且△ABC为锐角三角形,则{0<2A<π20<π−3A<π2,可得π6<A<π4,而ac =sinAsinC=12cosA∈(√33,√22).所以答案是:(√33,√2 2)小提示:关键点点睛:应用正弦定理边角关系及锐角三角形性质,求角A、C的关系及A的范围,最后由边角关系求范围.12、在△ABC中,若AB=2,∠B=5π12,∠C=π4,则BC=_________.答案:√6解析:由内角和求得A,然后由正弦定理求得BC.A=π−B−C=π−5π12−π4=π3,由正弦定理得ABsinC =BCsinA,所以BC=ABsinAsinC=2sinπ3sinπ4=√6.所以答案是:√6.13、已知i ,j为相互垂直的单位向量,若2a−b⃗=i−3j,a+3b⃗=11i+9j,则向量a、b⃗的夹角为___________.答案:π4分析:求出a ,b⃗后利用公式可求a、b⃗的夹角.因为2a−b⃗=i−3j,a+3b⃗=11i+9j,故a=2i,b⃗=3i+3j.因为i ,j为相互垂直的单位向量,故|i|=|j|=1,i⋅j=0,故a⋅b⃗=2i⋅(3i+3j)=6.而|a |=2,|b |=√(3i+3j )2=√9+9+2×9×0=3√2,故cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a⃗ |⋅|b ⃗ |=√22,而⟨a ,b ⃗ ⟩∈[0,π],故⟨a ,b ⃗ ⟩=π4. 所以答案是:π4.14、在菱形ABCD 中,AB =3,∠BAD =60°,CE ⃗⃗⃗⃗⃗⃗=2EB ⃗⃗⃗⃗⃗⃗,则AE ⃗⃗⃗⃗⃗⃗⋅BD ⃗⃗⃗⃗⃗⃗⃗=___________. 答案:−3分析:利用向量加减法的几何意义可得AE⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗⃗+13AD ⃗⃗⃗⃗⃗⃗、BD ⃗⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗,再应用向量数量积的运算律及已知条件求AE ⃗⃗⃗⃗⃗⃗⋅BD⃗⃗⃗⃗⃗⃗⃗即可. 由题意,AE ⃗⃗⃗⃗⃗⃗⋅BD ⃗⃗⃗⃗⃗⃗⃗=(AB ⃗⃗⃗⃗⃗⃗+13AD ⃗⃗⃗⃗⃗⃗)⋅(AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗)=−AB 2⃗⃗⃗⃗⃗⃗⃗⃗⃗+13AD 2⃗⃗⃗⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗⋅AD ⃗⃗⃗⃗⃗⃗=−9+3+3=−3.所以答案是:−315、已知单位向量a →,b →的夹角为45°,ka →−b →与a →垂直,则k =__________. 答案:√22分析:首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值. 由题意可得:a →⋅b →=1×1×cos45∘=√22, 由向量垂直的充分必要条件可得:(ka →−b →)⋅a →=0,即:k ×a →2−a →⋅b →=k −√22=0,解得:k =√22. 所以答案是:√22.小提示:本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力. 解答题 16、计算:(1)23(a ⃗+b ⃗ )−35(b ⃗ −a ⃗)+13(0⃗⃗−a ⃗); (2)(λ+μ)(2a ⃗−b ⃗ )−(3λ+5μ)(−a ⃗−3b ⃗ ),λ,μ∈R . 答案:(1)1415a ⃗+115b⃗ (2)(5λ+7μ)a ⃗+(8λ+14μ)b⃗ 分析:(1)利用平面向量线性运算的运算律进行计算. (2)利用平面向量线性运算的运算律进行计算.(1)原式=23a ⃗+23b ⃗ −35b ⃗ +35a ⃗+130⃗⃗−13a ⃗=(23a ⃗+35a ⃗−13a ⃗)+(23b ⃗ −35b ⃗ +130⃗⃗)=1415a ⃗+115b⃗ . (2)原式=(λ+μ)(2a ⃗−b ⃗ )−(3λ+5μ)(−a ⃗−3b⃗ ) =2(λ+μ)a ⃗−(λ+μ)b ⃗ +(3λ+5μ)a ⃗+3(3λ+5μ)b ⃗ =(2λ+2μ+3λ+5μ)a ⃗+(9λ+15μ−λ−μ)b⃗ =(5λ+7μ)a ⃗+(8λ+14μ)b⃗ . 17、设向量a =(−1,2),b ⃗ =(1,−1),c =(4,−5). (1)求|a +2b⃗ |; (2)若c =λa +μb⃗ ,λ,μ∈R ,求λ+μ的值; (3)若AB ⃗⃗⃗⃗⃗ =a +b ⃗ ,BC ⃗⃗⃗⃗⃗ =a −2b ⃗ ,CD ⃗⃗⃗⃗⃗ =4a −2b ⃗ ,求证:A ,C ,D 三点共线. 答案:(1)1 (2)2(3)证明见解析分析:(1)先求a +2b ⃗ =(1,0),进而求|a +2b⃗ |;(2)列出方程组,求出{λ=−1μ=3 ,进而求出λ+μ;(3)求出AC ⃗⃗⃗⃗⃗ =2a −b ⃗ ,从而得到CD ⃗⃗⃗⃗⃗ =4a −2b⃗ =2AC ⃗⃗⃗⃗⃗ ,得到结果.(1)a +2b ⃗ =(−1,2)+(2,−2)=(1,0),|a +2b⃗ |=√1+0=1; (2)(4,−5)=λ(−1,2)+μ(1,−1),所以{−λ+μ=42λ−μ=−5,解得:{λ=−1μ=3,所以λ+μ=2;(3)因为AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =a +b ⃗ +a −2b ⃗ =2a −b ⃗ ,所以CD ⃗⃗⃗⃗⃗ =4a −2b ⃗ =2AC ⃗⃗⃗⃗⃗ ,所以A ,C ,D 三点共线. 18、如图,已知ΔABC 中,D 为BC 的中点,AE =12EC ,AD ,BE 交于点F ,设AC ⃗⃗⃗⃗⃗ =a ,AD⃗⃗⃗⃗⃗ =b ⃗ .(1)用a ,b ⃗ 分别表示向量AB ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ ; (2)若AF⃗⃗⃗⃗⃗ =tAD ⃗⃗⃗⃗⃗ ,求实数t 的值. 答案:(1)AB ⃗⃗⃗⃗⃗ =2b ⃗ −a ,EB ⃗⃗⃗⃗⃗ =−43a +2b⃗ ;(2)t =12. 解析:(1)根据向量线性运算,结合线段关系,即可用a ,b ⃗ 分别表示向量AB ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ ; (2)用a ,b ⃗ 分别表示向量FB ⃗⃗⃗⃗⃗ ,EB⃗⃗⃗⃗⃗ ,由平面向量共线基本定理,即可求得t 的值. (1)由题意,D 为BC 的中点,AE =12EC ,可得AE ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b ⃗ . ∵AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , ∴AB ⃗⃗⃗⃗⃗ =2b ⃗ −a , ∴EB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ –AE⃗⃗⃗⃗⃗ =2b ⃗ −a −13a=−43a +2b⃗ (2)∵AF ⃗⃗⃗⃗⃗ =tAD ⃗⃗⃗⃗⃗ =tb ⃗ , ∴FB⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ –AF ⃗⃗⃗⃗⃗=−a +(2−t )b⃗ ∵EB ⃗⃗⃗⃗⃗ =−43a +2b ⃗ ,FB ⃗⃗⃗⃗⃗ ,EB ⃗⃗⃗⃗⃗ 共线, 由平面向量共线基本定理可知满足−1−43=2−t 2,解得t =12.小提示:本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.19、如图,已知OA ⃗⃗⃗⃗⃗ =a ⃗,OB ⃗⃗⃗⃗⃗ =b ⃗⃗,OC ⃗⃗⃗⃗⃗ =c ⃗,OD ⃗⃗⃗⃗⃗⃗ =d ⃗,OF ⃗⃗⃗⃗⃗ =f ⃗,试用a ⃗,b ⃗⃗,c ⃗,d ⃗,f ⃗表示以下向量:(1)AC⃗⃗⃗⃗⃗ ; (2)AD ⃗⃗⃗⃗⃗ ;(3)AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ; (4)AB⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ ; (5)BF⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ . 答案:(1)c →−a →(2)d →−a →(3)d →−b →(4)b →−a →+f →−c →(5)f →−d →分析:由向量减法法则依次计算即可得出各小问的结果.(1)AC⃗⃗⃗⃗⃗ =OC →−OA →=c →−a →. (2)AD ⃗⃗⃗⃗⃗ =OD →−OA →=d →−a →.(3)AD ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ =BD →=OD →−OB →=d →−b →. (4)AB⃗⃗⃗⃗⃗ +CF ⃗⃗⃗⃗⃗ =OB →−OA →+OF →−OC →=b →−a →+f →−c →. (5)BF⃗⃗⃗⃗⃗ −BD ⃗⃗⃗⃗⃗⃗ =DF →=OF →−OD →=f →−d →.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 定积分应用 测验题
1、设平面图形A 由22
2x y x +≤与y x ≥所确定,
求图形A 绕直线x =2旋转一周所得旋转体的体积。
2、一个高为l 的柱形贮油罐,底面是长轴2a 、短轴为2b 的椭圆。
现将贮油罐平放,当油罐中油面高度为32
b 时, 计算油的质量(长度单位为m ,质量单位为kg ,油的密度为为常量ρ,单位为kg/m3)。
3、已知星形线33cos (0)sin x a t a y a t
⎧=⎪>⎨=⎪⎩, 求(1)它所围成的面积;(238
a π) (2)它的弧长;(6a ) (3)它绕x 轴旋转而成的旋转体的体积及表面积。
(332105a π)
4、边长为a 和b 的矩形薄板,与液面成α角斜沉于液体内,长边平行于液面而位于深h 处, 设a >b ,液体的密度为ρ,试求薄板每面所受的压力。
答案:1(2sin )2
gab h b ρα+
5、设有一长度为l 、线密度为μ的均匀细直棒,在棒的一端垂直距离为a 单位处 有一质量为m 的质点M ,试求这细棒对质点M 的引力。
答案:取y 轴通过细直棒,
1(y x F Gm F a μ==
6、以每秒a 的流量往半径为R 的半球形水池内注水。
(1)求在池中水深h (0<h <R )时水面上升的速度; (2)若再将满池水全部抽出,至少需做功多少? ( ; )
2(2)dh a dt Rh h π=-44R π。