运筹学线性规划问题与图解法 ppt课件

合集下载

运筹学线性规划图解法

运筹学线性规划图解法

引理1.线性规划问题的可行解X为基本可行解的充分 必要条件是X的正分量所对应的系数列向量是线性独立的. 证明:
必要性:已知X为线性规划的基本可行解,要证X的 正分量所对应的系数列向量线性独立。
因为X为基本解,由定义,其非零分量所对应的系数 列向量线性独立;又因为X还是可行解,从而其非零分量 全为正。
•有唯一解
例1: max z=2x1+ 3x2 s.t. x1+2x2≤8 4x1≤16 x1,x2≥0
画图步骤: 1、约束区域的确定 2、目标函数等值线 3、平移目标函数等值线求最优值
x2
可行域
(4,2) z=14
目标函数 等值线
x1
•有无穷多解
例2 max z =2x1+4x2 s.t. x1+2x2≤8 4x2 ≤ 12 3x1 ≤12 x1, x2 ≥0
X(0)=Σ α iX(i) α i0,Σ α i=1 记X(1),X(2), …,X(k)中满足max CX(i)的顶点为X(m)。于是,
k
k
CX (0) Ci X (i) Ci X (m) CX (m)
i 1
i 1
由假设CX(0)为最优解,所以CX(0)=CX(m),即最优解可在顶点
充分性:已知可行解X的正分量所对应的系数列向量 线性独立,欲证X是线性规划的基本可行解。
若向量P1, P2,…, Pk线性独立,则必有k≤m;当k=m时, 它们恰构成一个基,从而X=(x1,x2,…,xk,0…0)为相 应的基可行解。K〈m时,则一定可以从其余的系数列向量 中取出m-k个与P1, P2,…, Pk构成最大的线性独立向量组, 其对应的解恰为X,所以根据定义它是基可行解。
§2 线性规划图解法

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

《运筹学图解法》课件

《运筹学图解法》课件

提高建模能力
提高模型解释和应用能力
提高求解效率的策略与技巧
选择合适的图解 法:根据问题类 型选择合适的图 解法,如最短路 径问题、最大流 问题等。
优化算法:对图 解法进行优化, 如使用动态规划、 贪心算法等。
并行计算:利用 多核处理器进行 并行计算,提高 求解速度。
利用软件工具: 使用专业的图解 法软件,如 Matlab、 Python等,提 高求解效率。
缺点:需要一定 的数学基础,不 适合初学者使用
运筹学图解法的基本步骤
确定问题目标
明确问题的性质 和类型
确定问题的目标 和约束条件
分析问题的关键 因素和影响因素
确定问题的求解 方法和步骤
建立模型
确定问题:明确需要解决的问题
建立模型:根据数据建立数学模 型
添加标题
添加标题
添加标题
添加标题
收集数据:收集与问题相关的数 据
模型验证与优化的方法与技巧
模型验证:通过实际数据验证模型的准确性和可靠性
模型优化:根据实际需求对模型进行优化,提高模型的效 率和效果
模型选择:根据实际问题选择合适的模型,提高模型的适 用性和准确性
模型调整:根据实际数据对模型进行调整,提高模型的适 应性和准确性
模型评估:对模型进行评估,了解模型的优缺点和改进方 向
软件工具的使用:熟悉软件工具 的界面和功能,掌握基本的操作 方法
软件工具的优化与调整:根据问 题特点和需求,对软件工具进行 优化和调整,提高求解效率和准 确性
软件工具的常见问题与解决方 案:了解软件工具的常见问题, 掌握相应的解决方案,提高求 解效率和准确性
软件工具的学习与提高:不断学 习和实践,提高软件工具的使用 水平和求解能力

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

第二章 线性规划的图解法(简)

第二章  线性规划的图解法(简)

第二节 图解法
在线性规划中,对一个约束条件中没使用的资源或能力的大小称 之为松弛量。记为Si。
第二节 图解法
像这样把所有的约束条件都写成等式 ,称为线性规划模型的标准化,所得结果 称为线性规划的标准形式。
第二节 图解法
同样对于≥约束条件中,可以增加一些代表
最低限约束的超过量,称之为剩余变量,把≥约
第二章 线性规划的图解法
主要内容:
§1 问题的提出 (什么是线性规划) §2 图解法 §3 图解法的灵敏度分析
重点和难点
重点: (1)线性规划问题的主要概念 (2)线性规划问题的数学模型 (3)线性规划图解法的过程 (4)阴影价格的定义和灵敏度分析 难点: 灵敏度分析
第一节 问题的提出
约束条件对偶价格小于零时,约束条件
右边常数增加一个单位,就使得最优目
标函数值减少一个其对偶价格。
第三节 图解法的灵敏度分析
对目标函数值求最小值的情况下, 当对偶价格大于零时,约束条件右边常数增加 一个单位就使其最优目标函数值减少一个其对 偶价格; 当对偶价格等于零时,约束条件右边常数增加 一个单位,并不影响其最优目标函数值; 当对偶价格小于零时,约束条件右边常数增加 一个单位,就使得其最忧目标函数值增加一个 其对偶价格。
具有上述3个特征的问题为线性规划问题。
第一节 问题的提出
我们的仸务就是要选择一组或多组方案,使目
标函数值最大或最小。从选择方案的角度说,
这是规划问题。从使目标函数值最大或最小的
角度说,就是优化问题。
线性规划数学模型的一般表示方式
max(min) f ( x) c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n s.t. a x a x a x m2 2 mn n m1 1 x1 , x2 , , xn n : 变量个数 ; m : 约束行数 ; n m : 线性规划问题的规模 c j : 价值系数 ; b j : 右端项; aij : 技术系数 (, )b1 (, )b2 (, )bm 0

《运筹学第二版》PPT课件

《运筹学第二版》PPT课件
(4) 要有一个达到目标的要求,它可用决策 变量的线性函数(称为目标函数)来表示。 按问题的不同,要求目标函数实现最大化 或最小化。
精选ppt
16
它们的对应关系可用表格表示:
1

2

m
价值系数
决策变量
x1 x2 xn a11 a12 a1n
a21 a22 a2n
a m 1 a m 2 a mn
经第2工厂后的水质要求:
[0.8(2x1)(1.4x2 )] 2
700
1000
精选ppt
13
数学模型
目标函数 约束条件
min z 1000 x1 800 x2
x1 1
0.8 x1 x2 1.6
x1 2
x2 1.4
x , x 0 1精选ppt 2
14
共同的特征
(1)每一个线性规划问题都用一组决策变量
拥有量
8台时 16 kg 12 kg
6
续例1
该工厂 • 每生产一件产品Ⅰ可获利2元, • 每生产一件产品Ⅱ可获利3元, • 问应如何安排计划使该工厂获利
最多?
精选ppt
7
如何用数学关系式描述这问题, 必须考虑
•设x1,x2分别表示计 I,II产 划品 生的 产数 称它们为决策变量。
•生产 x1,x2的数量多少,有 受量 资的 源 ,限 拥 这是约束条x1 件 2x2。 8即 ;4x116;4x2 12
19
图1-2
max z 2 x 1 3 x 2
x1 2 x2 2
4 x1
16 4 x 2 12
x 1 , x 2 0
精选ppt
20
图1-3 目标值在(4,2)点,达到最大值14 目标函数 mz ax 2x13x2

第一章--线性规划及图解法

第一章--线性规划及图解法

x1 - 1.9 x2 = -3.8
(0,2)
D
x1 - 1.9 x2 = 3.8
(7.6,2) ) 34.2 = 3 x1 +5.7 x2
可行域
max Z (3.8,0) min Z
o
0=3 x1 +5.7 x2
x1 + 1.9 x2= 3.8
x1
第一章
线性规划及单纯形法
可行域为无界 区域一定无最 优解吗? 优解吗?
O A
x1
§2 线性规划问题的图解法
由以上两例分析可得如下重要结论: 由以上两例分析可得如下重要结论:
1、LP 问题从解的角度可分为: 、 问题从解的角度可分为:
a. 有唯一最优解
⑴ 有可行解 b. 有无穷多最优解
C. 无最优解
⑵ 无可行解 2、LP 问题若有最优解,必在可行域的某个顶点上取 、 问题若有最优解,
§1 线性规划问题及其数学模型 特点: 特点:
线性规划问题的标准形式:
1、目标函数为极
max z = c1x1 + c2x2 + … + cnxn s.t. a11x1 + a12x2 + … + a1nxn = b1 a21x1 + a22x2 + … + a2nxn = b2 …… am1x1 + am2x2 + … + amnxn = bm xj ≥ 0 (j = 1,2,…,n) bi ≥ 0 (i = 1,2,…,m)
若有两个顶点上同时取到, 到;若有两个顶点上同时取到,则这两点的连线上 任一点都是最优解。 任一点都是最优解。
§2 线性规划问题的图解法
图解法优点: 图解法优点: 直观、易掌握。有助于了解解的结构。 直观、易掌握。有助于了解解的结构。 图解法缺点: 图解法缺点: 只能解决低维问题,对高维无能为力。 只能解决低维问题,对高维无能为力。

管理运筹学 线性规划的图解法课件

管理运筹学  线性规划的图解法课件

线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。

第二章 线性规划的图解法

第二章  线性规划的图解法

例2.某工厂在计划期内要安排Ⅰ、Ⅱ两种产 品的生产,已知生产单位产品所需的设备台 时及A、B两种原材料的消耗、资源的限制, 如下表:
设备 原料 A 原料 B 单位产品获利 Ⅰ 1 2 0 50 元 Ⅱ 1 1 1 100 元 资源限制 300 台时 400 千克 250 千克
问题:工厂应分别生产多少单位Ⅰ、Ⅱ 产品才能使工厂获利最多?
第二章 线性规划的图解法
问题1具体数据如表所示:
资源 单耗 资源 煤(t) 电(kw.h) 油(t) 单位产品价格 9 4 3 7 4 5 10 12 360 200 300 产品 甲 乙 资源限量
提出和形成问题
建立模型
求解
结果的分析和应用
第二章 线性规划的图解法
在本例中
决策变量: 甲、乙产品的计划产量,记为x1 ,x2; 目标函数: 总收入记为f,则 f=7x1 +12x2 ,为体现对其求极大化, 在f 的前面冠以极大号Max,
第二章 线性规划的图解法 例2:.某公司由于生产需要,共需要A,B两种原料至 少350吨(A,B两种材料有一定替代性),其中A原 料至少购进125吨。但由于A,B两种原料的规格不同, 各自所需的加工时间也是不同的,加工每吨A原料需 要2个小时,加工每吨B原料需要1小时,而公司总共 有600个加工小时。又知道每吨A原料的价格为2万元, 每吨B原料的价格为3万元,试问在满足生产需要的 前提下,在公司加工能力的范围内,如何购买A,B 两种原料,使得购进成本最低?
第二章 线性规划的图解法
★线性规划模型的三个基本要素:
(也是所有规划问题的三个基本要素):
(1)决策变量:甲、乙产品的产量x1 ,x2 决策变量:需要决策的量,即等待求解的未知数。 (2)目标函数:总收入最大,Max f = 7 x 1 +12 x 2 目标函数:想要达到的目标,用决策 变量的表达式表示。 (3)约束条件: 约束条件:由于资源有限,为了实现 目标有哪些资源限制,用决策变量的 等式或不等式表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 线性规划问题可能存在无界解(即无最优解)
❖ 线性规划问题可能存在无可行解(此时无最优解, 可行域为空集)
3 线性规划问题的标准型
❖ 目标函数极大化(或极小化) ❖ 约束条件为等式,且右端常数全为非负 ❖ 决策变量非负
化标准型
maxZ=70X1+120X2 maxZ=70X1+120X2 +0S1 +0s2 +0s3
约束条件仍然取不等号
2线性规划问题的解
❖ 可行解:满足约束条件的解X=(x1,x2,…,xn)F ❖ 可行域:可行解的集合(线性规划问题的可行
域一般为凸集) ❖ 最优解:使目标函数达到最优的可行解 ❖ 若线性规划问题有唯一最优解,则最优解一
定在可行域的顶点处取得
❖ 线性规划问题可能存在无穷多个最优解(若 ) 线性规划问题有两个最优解,则一定有无穷多个最优解
9X1+4X2≤360
9X1+4X2+S1
=360
4X1+5X2 ≤200
4X1+5X2 +s2 =200
3X1+10X2 ≤300
3X1+10X2 +s3 =300
X1≥0 X2≥0
Xj≥0 j=1,2
其中S1, s2 ,s3 ≥ 0为松弛变量
化标准型
minZ=x1+2x2-3x3
maxZ’=x’1-2x2+3(x’3-x”3)
设备约束 4X1+5X2 ≤200 原材料约束3X1+10X2 ≤300
非负性约束X1≥0 X2≥0
Ai
❖ 配料问题:每单位原料i含vitamin如下:
原料 A B C 每单位成本
1
4 10
2
2
6 12
5
3
1 71
6
4
2 53
8
每单位添
加剂中维生 素最低含量
12 14 8
求:最低成本的原料混合方案
❖ 1图解法用于求解两个决策变量的线性规划问 题,图解法简单直观,有助于了解线性规划 问题求解的基本原理。
❖ 如: maxZ=70X1+120X2 人力约束 9X1+4X2≤360 设备约束 4X1+5X2 ≤200 原材料约束3X1+10X2 ≤300 非负性约束X1≥0 X2≥0
x2
.
90 A
x”3 ≥0 s1≥0 s2 ≥0
其中s1 为松弛变量,s2为剩余变量
x3=x’3-x”3
x1+x2+x3 ≤9
+0s1 +0s2
-x’1+x2+x’3- x”3 + s1=9
-x1-2x2+x3 ≥2
x’1-2x2+x’3 -x”3 – s2= 2
3x1+x2-3x3=5
- 3x’1+x2-3(x’3 - x”3 )=5
x1 ≤0 x2 ≥0 x3无约束 x’1 ≥ 0 x2 ≥0 x’3 ≥0
80
9x1+4x2 ≤ 360
60
4x1+5x2 ≤200
40 B
C
20
HI
G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
❖ 图中阴影部分为可行域(满足约束条件的点的集 合)
❖ 可行解:满足约束条件的解
❖ 可行域是可行解的集合 ❖ 当等值线Z=70x1+120x2 ❖ 平行移动到 H点时 Z取得最大值 ❖ 此时,x1=20,x2=24 ❖ Z=70*20+120*24 ❖ 设备和原材料恰好使用完,而人力节余84个单位 ❖ 即:设备约束和原材料约束条件取等号,而人力
劳动力 设备 原材料 利润元/kg
产品A 9 4 3 70
产品B 4 5 10 120
资源限量 360 200 300
问题:如何安排生产计划,使得获利最多?
❖ 步骤:
1、确定决策变量:设生产A产品x1kg,B产品x2kg
2、确定目标函数:maxZ=70X1+120X2 3、确定约束条件: 人力约束 9X1+4X2≤360
解:设每单位添加剂中原料i的用量为 xi (i =1,2,3,4)
minZ= 2x1 + 5x2 +6x3+8x4 4x1 + 6x2 + x3+2x4 12 x1 + x2 +7x3+5x4 14 2x2 + x3+3x4 8 xi 0 (i =1,…,4)
线性规划问题的基本特征
❖ 决策变量:向量(x1… xn)T 代表一个具体的 方案,一般有xi非负
简写式
n
M ax(min)z c j x j j 1
st.
n j 1
aij x j
(, )bi , i=1, 2,..., m
x
j
0,
j
1,
2,..., n
向量式
Max(min)z CX
st .
n j 1
Pj x j
(, )b
x
0
❖ 其中:C=(c1,c2,…,cn)价值向量
❖ X=(x1,x2,…,xn)T 决策向量
运筹学 (OR:operational research(英)
\operations research(美) )
2 线性规划(LP:Linear Programming )问题与图解法
2.1 问题的提出
❖ 生产计划问题 ❖ 某厂生产两种产品,需要三种资源,已知各产品的利
润、各资源的限量和各产品的资源消耗系数如下表
❖ Pj=(a1j.a2j,…,amj)T 系数向量
❖ B=(b1,b2,…,bn) T
资源向量
矩阵式
Max(min)z CX
AX (, )b
st.
x
0
其中系数矩阵
a 11 a 12 ... a 1n
A
a
21
a 22
... a 2 n
......
a
m
1
am2
... a mn
ห้องสมุดไป่ตู้
2.2线性规划问题的图解法
❖ 约束条件:线性等式或不等式 ❖ 目标函数:Z=ƒ(x1 … xn) 线性式,求Z极大
(Max)或极小(Min)
线性规划问题的一般形式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn (=, )b1 a21X1+ a22X2+…+ a2nXn (=, )b2 ……… am1X1+ am2X2+…+ amnXn (=, )bm Xj 0(j=1,…,n)
相关文档
最新文档