【精品】人教版初中数学八年级下册全册同步练习
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、扩大4倍 C 、缩小2倍 D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.题型1:分式、有理式概念的理解应用4.(辨析题)下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( ) A .121x + B .21x x + C .231x x+ D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题 10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④ 12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1拓展创新题16.(学科综合题)已知y=123x x --,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________.3.把下列各组分数化为同分母分数:(1)12,23,14;(2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x yx y-+的各项系数化为整数,分子、分母应乘以(• )A.10 B.9 C.45 D.906.(探究题)下列等式:①()a bc--=-a bc-;②x yx-+-=x yx-;③a bc-+=-a bc+;④m nm--=-m nm-中,成立的是()A.①② B.③④ C.①③ D.②④7.(探究题)不改变分式2323523x xx x-+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A.2332523x xx x+++-B.2332523x xx x-++-C.2332523x xx x+--+D.2332523x xx x---+题型2:分式的约分8.(辨析题)分式434y xa+,2411xx--,22x xy yx y-++,2222a abab b+-中是最简分式的有()A.1个 B.2个 C.3个 D.4个9.(技能题)约分:(1)22699x xx++-;(2)2232m mm m-+-.题型3:分式的通分10.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )3 17.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
人教版数学八年级下册同步训练必刷题(平行四边形)附答案
人教版数学八年级下册同步训练必刷题(平行四边形)一、单选题(每题3分.共30分)1.下列命题是真命题的是()A.对边相等的四边形是平行四边形B.有一个角是90°的平行四边形是矩形C.邻边相等的四边形是菱形D.对角线互相垂直的平行四边形为正方形2.如图.矩形ABCD中.对角线AC、BD交于点O.若∠AOB=60°.BD=8.则DC长为()A.4√3B.4C.3D.53.如果三角形的两边分别为3和5.那么连结这个三角形三边中点所得三角形的周长可能是()A.5.5B.5C.4.5D.44.如图.面积为3的正方形ABCD的顶点A在数轴上.且表示的数为−1.若AD=AE.则数轴上点E所表示的数为()A.√3−1B.√3+1C.−√3+1D.√35.已知菱形的面积为120cm2.一条对角线长为10cm.则它的边长为()A.10cm B.12cm C.13cm D.15cm6.如图.在矩形ABCD中.AC.BD相交于点O.AE平分∠BAD交BC于E.若∠EAO=15∘.则∠BOE的度数为()A.85∘B.80∘C.75∘D.70∘7.如图.点F为正方形ABCD对角线AC的中点.将以点F为直角顶点的直角△FEG绕点F旋转(△FEG 的边EG始终在正方形ABCD外).若正方形ABCD边长为3.则在旋转过程中△FEG与正方形ABCD重叠部分的面积为()A.9B.3C.4.5D.2.258.如图.点E、F、G、H分别是四边形ABCD四条边的中点.要使四边形EFGH为菱形.四边形ABCD 应具备的条件是()A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分9.如图.矩形ABCD中.AC、BD交于点O.M、N分别为BC、OC的中点.若∠ACB=30°.AB=10.则MN的长为()A.5√2B.5C.5√3D.410.如图.菱形ABCD中.∠BAD=60°.AC、BD交于点O.E为CD延长线上的一点.且CD=DE.连接BE分别交AC.AD于点F、G.连接OG、AE.则下列结论:①OG=12AB;②四边形ABDE是菱形;③S四边形ODGF=S∠ABF;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(每题3分.共24分)11.如图.若将四根木条钉成的矩形木框ABCD变形为平行四边形A′BCD′.并使其面积为矩形ABCD 面积的一半.若A′D′与CD交于点E.且AB=2.则∠ECD′的面积是.12.已知a=3.b=4.那么以a、b为边长的直角三角形斜边上的中线长为.13.如图.长方形ABCD中.AB=6,AD=12.E为BC边上的动点.F为CD的中点.连接AE,EF.则AE+ EF的最小值为14.如图.在长方形ABCD中.AB=8.GC=98.AE平分∠BAG交BC于点E.E是BC的中点.则AG的长为.15.如图.矩形ABCD的对角线AC、BD交于点O.AB=6,BC=8.过点O作OE⊥AC.交AD于点E.过点E作EF⊥BD.垂足为F.则OE+EF的值为.16.如图.菱形ABCD的对角线AC.BD相交于点O.过点D作DH⊥AB于点H.连接OH.若OA=4.OH=2.则菱形ABCD的面积为.17.如图.在给定的一张平行四边形ABCD纸片上.用尺规作出四边形ABEF.具体作法如下:分别作∠A,∠B的平分线AE,BF.分别交BC,AD于E,F.连接EF.若AE=6,BF=8.则四边形ABEF的周长是.18.如图.在正方形ABCD中.E为AD的中点.F为AB的中点.DF的延长线与CB的延长线交于点H.CE与DH相交于点G.若AB=10.则BG的长为.三、解答题(共6题.共66分)19.如图.四边形ABCD是平行四边形. BE//DF且分别交对角线AC于点E.F.(1)求证:△ABE≌△CDF;(2)当四边形ABCD分别是矩形和菱形时.请分别说出四边形BEDF的形状.(无需说明理由)20.在▱ABCD中.E、F分别是边BC.AD的中点.AC是对角线.过点D作DP∥AC.交BA的延长线于点P.∠P=90°.求证:四边形AECF是菱形.21.如图.E是正方形ABCD对角线BD上一点.连接AE.CE.并延长CE交AD于点F.(1)求证:∠ABE∠∠CBE;(2)若∠AEC=140°.求∠DFE的度数.22.如.在矩形ABCD中.AB=16 cm.AD=6 cm.动点P.Q分别从点A.C同时出发.点P以每秒3 cm的速度向点B移动.点Q以每秒2 cm的速度向点D移动.当点P到达点B时.两点均停止移动.是否存在某一时刻.使四边形PBCQ为正方形?若存在.求出该时刻;若不存在.请说明理由.23.如图.四边形ABCD是菱形.对角线AC和BD相交于点O、点E是CD的中点.过点C作AC的垂线.与OE的延长线交于点F.连接FD.(1)求证:四边形OCFD是矩形;(2)若四边形ABCD的周长为4√5.△AOB的周长为3+√5.求四边形OCFD的面积;(3)在(2)问的条件下.BD上有一动点Q.CD上有一动点P.求PQ+QE的最小值.24.如图1.在∠ABC中.AB=AC.∠ABC=ɑ.D是BC边上一点.以AD为边作∠ADE.使AE=AD.∠DAE+∠BAC=180°.(1)若α=46°.求∠ADE的度数;(2)以AB、AE为边作平行四边形ABFE.①如图2.若点F恰好落在DE上.求证:BD=CD;②如图3.若点F恰好落在BC上.求证:BD=CF.答案解析部分1.【答案】B2.【答案】B3.【答案】A4.【答案】A5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】B10.【答案】D11.【答案】√3212.【答案】2或2.513.【答案】1514.【答案】73815.【答案】24516.【答案】1617.【答案】2018.【答案】1019.【答案】(1)证明:∵BE//DF∴∠BEC =∠DFA∴∠AEB =∠CFD∵四边形 ABCD 是平行四边形∴AB//CD . AB =CD∴∠BAE =∠DCF在∠ABE 和∠CDF 中 {∠AEB =∠CFD ∠BAE =∠DCF AB =CD∴△ABE ≌△CDF(2)四边形BEDF 是平行四边形与菱形20.【答案】解:∵四边形ABCD 是平行四边形∴CB ∥AD.CB=AD .AB ∥CD∵E 、F 分别是边BC.AD 的中点∴CE=12CB.AF=12AD . ∴CE=AF∴四边形AFCE 是平行四边形∵∠P=90°.AP ∥CD.DP ∥AC∴四边形CDPA 是矩形∴∠ACD=90°在Rt∠ADB 中.∵F 为AB 的中点∴AF=CF=DF∵四边形CFAE 是平行四边形∴四边形CFAE 是菱形21.【答案】(1)证明:∵四边形ABCD 是正方形∴AB =CB.∠ABC =∠ADC =90°.∠ABE=∠CBE=45°在∠ABE 和∠CBE 中{AB =CB ∠ABE =∠CBE BE =BE.∴∠ABE∠∠CBE (SAS );(2)解:∵∠ABE∠∠CBE∴∠AEB =∠CEB又∵∠AEC =140°∴∠CEB =70°∵∠DEC+∠CEB =180°∴∠DEC =180°﹣∠CEB =110°∵∠DFE+∠ADB =∠DEC∴∠DFE =∠DEC ﹣∠ADB =110°﹣45°=65°22.【答案】解:不存在理由:设存在某时刻t.使得四边形PBCQ 是正方形.则BP=CQ.即16-3t=2t.解得t= 165∴CQ=2t= 325≠6.即CQ≠CB∴四边形PBCQ是正方形不成立故不存在某一时刻.使四边形PBCQ为正方形23.【答案】(1)证明:∵四边形ABCD是菱形∴AC⊥BD∴∠COD=90°∵AC⊥CF∴∠OCF=90°∴∠COD+∠OCF=180°∴CF∥BD∴∠ODE=∠FCE∵E是CD中点∴CE=DE在△ODE和△FCE中{∠ODE=∠FCE DE=CE∠DEO=∠CEF.∴△ODE≅△FCE(ASA);∴OD=FC∵CF∥BD∴四边形OCFD是平行四边形∴四边形OCFD是矩形(2)解:∵菱形ABCD的周长为4√5∴AB=BC=CD=DA=√5.∠COD=90∘,AO=CO,BO=DO∵△AOB的周长为3+√5∴AB+AO+BO=3+√5∴AO+BO=3∴CO+DO=3在Rt△COD中.CO2+DO2=(CO+DO)2−2CO⋅DO=CD2∴32−2CO⋅DO=(√5)2.解得:CO⋅DO=2∴四边形OCFD的面积2(3)解:解:如图:作点E关于DO对称点E′.过点E′作E′P⊥CD.交OD于点Q.连接EQ、E′C∴QE′=QE∴PQ+QE=PQ+QE′∴PQ+QE最小值为E′P∵CE=DE∴E′D=AE′∵CO⋅DO=2∴菱形ABCD的面积为4.△CE′D的面积为1∵S△CE′D=12CD⋅PE′=1∴1=12×√5×PE′.解得:PE′=2√5524.【答案】(1)解:∵AB=AC.∠ABC=α=46°.∴∠ABC=∠ACB=α=46°∵∠BAC+∠ABC+∠ACB=180°∴∠BAC+2∠ABC=180°∵∠DAE+∠BAC=180°∴∠DAE=2∠ABC=92°∵AE=AD∴∠ADE=∠AED=180°−∠DAE2=44°(2)证明:①∵四边形ABFE是平行四边形∴AB∠EF∴∠ABC=∠EDC=α∵∠DAE+∠BAC=180°.2∠ABC+∠BAC=180°.2∠ADE+∠DAE=180°∴∠ABC+∠ADE=90°∴∠EDC+∠ADE=90°∴AD∠BC.且AB=AC∴BD=CD;②∵四边形ABFE是平行四边形∴AE∠BF.AE=BF∴∠EAC=∠ACB∵AB=AC∴∠ABC=∠ACB=α∴∠EAC=α∵∠DAE=2∠ABC=2α∴∠DAC=∠ACB=α∴AD=CD.且AD=AE∴BF=AE=AD=CD∴BD=CF11/ 11。
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式de 有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确de 是( ) A .分式de 值为零 B.分式无意义 C. 若31-≠a 时,分式de 值为零 D. 若31≠a 时,分式de 值为零 3. 若分式1-x x 无意义,则xde 值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简de 结果是( ) A .B .C .D . 5.使分式x++1111有意义de 条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x de 值为1. 9.当______时,分式51+-x de 值为正. 10.当______时分式142+-x de 值为负. 11.要使分式221y x x -+de 值为零,x 和yde 取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地de 森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留de 农药.设用x (1≥x )单位量de 水清洗一次后,蔬菜上残留de 农药量与本次清洗前残留de 农药量之比为x+11. 现有a (2≥a )单位量de 水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留de 农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______de 商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.。
人教版初中数学八年级下册同步练习试题及答案_第19章
第十九章四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立.....的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则边AB 长的取值范围是 ______.3.平行四边形周长是40cm ,则每条对角线长不能超过______cm .4.如图,在□ABCD 中,AE 、AF 分别垂直于BC 、CD ,垂足为E 、F ,若∠EAF =30°,AB =6,AD =10,则CD =______;AB 与CD 的距离为______;AD 与BC 的距离为______;∠D =______.5.□ABCD 的周长为60cm ,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm ,则AB =______,BC =______.6.在□ABCD 中,AC 与BD 交于O ,若OA =3x ,AC =4x +12,则OC 的长为______.7.在□ABCD 中,CA ⊥AB ,∠BAD =120°,若BC =10cm ,则AC =______,AB =______.8.在□ABCD 中,AE ⊥BC 于E ,若AB =10cm ,BC =15cm ,BE =6cm ,则□ABCD 的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④ (B)①③④ (C)①②③ (D)①②③④10.平行四边形一边长12cm ,那么它的两条对角线的长度可能是( ).(A)8cm 和16cm (B)10cm 和16cm (C)8cm 和14cm (D)8cm 和12cm11.以不共线的三点A 、B 、C 为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别是AB 和CD 的五等分点,点B 1、B 2、和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n(B)3n(n+1) (C)6n(D)6n(n+1)综合、运用、诊断一、解答题14.已知:如图,在□ABCD中,从顶点D向AB作垂线,垂足为E,且E是AB的中点,已知□ABCD的周长为8.6cm,△ABD的周长为6cm,求AB、BC的长.15.已知:如图,在□ABCD中,CE⊥AB于E,CF⊥AD于F,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O为□ABCD的对角线AC的串点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF 的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”) 2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE 和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA 相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD与EF 交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数xk y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB=a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD 于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF =GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC =7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC =______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A 落在BC上的A1处,则∠EA1B=______°。
(完整版)人教版初中数学八年级下册同步练习试题及答案_第17章
第十七章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4 (B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考 14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1(B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2(B)y 2<0<y 1(C)y 1<y 2<0(D)y 2<y 1<011.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大(B)当x <0时,y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______).3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______.4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线x y 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________.二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限 13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ).(A)-1 (B)0 (C)1 (D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x xy(D))0(6>=x xy15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky =2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy中,Rt△OCD的一边OC在x轴上,∠C=90°,点D在第一象限,OC=3,DC=4,反比例函数的图象经过OD的中点A.(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt△OCD的另一边交于点B,求过A、B两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______. 2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______.3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3 (D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ).(A)①④ (B)② (C)①② (D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).(A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300则可以反映y 与x 之间的关系的式子是( ). (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______.7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数表示这种海产品每天的销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第十七章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)x y 8000=,反比例;(2)xy 1000=,反比例;(3)s =5h ,正比例,ha 36=,反比例;(4)xwy =,反比例.3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A .8.(1)xy 6=; (2)x =-4.9.-2,⋅-=xy 410.反比例. 11.B . 12.D .13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2).14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18x … -4 -3-2 -1 1 2 3 4 … y…134 24-4-2 -34-1 …(1)y =-2;(2)-4<y ≤-1; (3)-4≤x <-1. 19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A .9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320.测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6.4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x 108(x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天第十七章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
人教版八年级下册数学同步检测试题全套(含答案)
人教版八年级下册数学同步测试题全套二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算. 课堂学习检验 一、填空题1.表示二次根式的条件是______. 2.当x ______时,有意义,当x ______时,有意义. 3.若无意义,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)=_______;(2)_______;(3)_______;(4)_______; (5)_______;(6) _______. 二、选择题5.下列计算正确的有( ).① ② ③ ④ A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .B .C .D .7.当x =2时,下列各式中,没有意义的是( ). A .B .C .D .8.已知那么a 的取值范围是( ). A . B .C .D .三、解答题9.当x 为何值时,下列式子有意义?a +112--x 31+x 2+x 492)7(2)7(-2)7(--2)7.0(22])7([-2)2(2=-22=-2)2(2=-2)2(2-=-23-2)3.0(-2-x 2-x x -222-x 22x -,21)12(2a a -=-21>a 21<a 21≥a 21≤a(1) (2)(3)(4)10.计算下列各式: (1) (2) (3)(4)综合、运用、诊断 一、填空题11.表示二次根式的条件是______. 12.使有意义的x 的取值范围是______. 13.已知,则x y 的平方根为______. 14.当x =-2时,=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ). A .B .C .D .16.若,则x -y 的值是( ). A .-7 B .-5 C .3 D .7三、解答题 17.计算下列各式: (1) (2)(3)(4);1x -;2x -;12+x ⋅+-x x21;)23(2;)1(22+a ;)43(22-⨯-.)323(2-x 2-12-x x411+=-+-y x x 2244121x x x x ++-+-2-x 21-x x-21121-x 022|5|=++-y x ;)π14.3(2-;)3(22--;])32[(21-.)5.03(2218.当a =2,b =-1,c =-1时,求代数式的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:的结果是:______________________. 20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足试求△ABC 的c 边的长. 测试2 二次根式的乘除(一) 学习要求会进行二次根式的乘法运算,能对二次根式进行化简. 课堂学习检测 一、填空题1.如果成立,x ,y 必须满足条件______. 2.计算:(1)_________;(2)__________; (3)___________.3.化简:(1)______;(2) ______;(3)______. 二、选择题4.下列计算正确的是( ). A .B .C .D .5.如果,那么( ). A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,的值是( ). A .±3B .3C .-3D .9aacb b 242-±-||)(||22b bc c a a ---++-.09622=+-+-b b a y x xy ⋅=24=⨯12172=--)84)(213(=⨯-03.027.02=⨯3649=⨯25.081.0=-45532=⋅632=⋅48=3)3(2-=-)3(3-=-⋅x x x x 2x三、解答题7.计算:(1) (2) (3)(4) (5) (6)(7) (8) (9)8.已知三角形一边长为,这条边上的高为,求该三角形的面积.综合、运用、诊断 一、填空题9.定义运算“@”的运算法则为:则(2@6)@6=______. 10.已知矩形的长为,宽为,则面积为______cm 2.11.比较大小:(1)_____;(2)______;(3)-_______-.二、选择题12.若成立,则a ,b 满足的条件是( ). A .a <0且b >0 B .a ≤0且b ≥0 C .a <0且b ≥0 D .a ,b 异号13.把根号外的因式移进根号内,结果等于( ). A . B . C . D .三、解答题;26⨯);33(35-⨯-;8223⨯;1252735⨯;131aab ⋅;5252ac c b b a ⋅⋅;49)7(2⨯-;51322-.7272y x cm 2cm 12,4@+=xy y x cm 52cm 1023322534226b a b a -=2432411-1144-11214.计算:(1)_______; (2)_______; (3)_______;(4)_______.15.若(x -y +2)2与互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)________; (2)_________.测试3 二次根式的乘除(二) 学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式. 课堂学习检测 一、填空题1.把下列各式化成最简二次根式:(1)______;(2)______;(3)______;(4)______; (5)______;(6)______;(7)______;(8)______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如: 与(1)与______; (2)与______;(3)与______; (4)与______; (5)与______. 二、选择题=⋅x xy 6335=+222927b a a =⋅⋅21132212=+⋅)123(32-+y x =-+1110)12()12(=-⋅+)13()13(=12=x 18=3548y x =xy=32=214=+243x x =+312123.23232a 323a 33a3.成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1 C .0<x ≤1 D .0<x <14.下列计算不正确的是( ). A . B .C .D .5.把化成最简二次根式为( ). A . B .C .D .三、计算题 6.(1) (2)(3)(4)(5) (6) (7)(8)综合、运用、诊断 一、填空题7.化简二次根式:(1)________(2)_________(3)_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)_______(2)_________(3)__________(4)__________ xxx x -=-11471613=xy x x y 63132=201)51()41(22=-x x x3294=321323232321281241;2516;972;324;1252755÷-;1525;3366÷;211311÷.125.02121÷=⨯62=81=-314=51=x 2=322=yx 59.已知则______;_________.(结果精确到0.001) 二、选择题10.已知,,则a 与b 的关系为( ). A .a =bB .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ). A .B .C .D .三、解答题12.计算:(1) (2) (3)13.当时,求和xy 2+x 2y 的值.拓广、探究、思考 14.观察规律:……并求值.(1)_______;(2)_______;(3)_______.15.试探究与a 之间的关系.测试4 二次根式的加减(一) 学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算. 课堂学习检测,732.13≈≈31≈2713+=a 132-=b yx -1ba 42+xb a 25;3b a ab ab ⨯÷;3212y xy ÷⋅++ba b a 24,24+=-=y x 222y xy x +-,32321,23231,12121-=+-=+-=+=+2271=+10111=++11n n 22)(a 、a一、填空题1.下列二次根式化简后,与的被开方数相同的有______,与的被开方数相同的有______,与的被开方数相同的有______. 2.计算:(1)________; (2)__________.二、选择题3.化简后,与的被开方数相同的二次根式是( ). A .B .C .D .4.下列说法正确的是( ). A .被开方数相同的二次根式可以合并 B .与可以合并 C .只有根指数为2的根式才能合并 D .与不能合并5.下列计算,正确的是( ). A .B .C .D . 三、计算题6. 7.8. 9.10. 11.15,12,18,82,454,125,27,32235=+31312=-x x 4321012216188********=+5225=-a a a 26225=+xy x y 32=+.48512739-+.61224-+⋅++3218121⋅---)5.04313()81412(.1878523x x x +-⋅-+xx x x 1246932综合、运用、诊断 一、填空题12.已知二次根式与是同类二次根式,(a +b )a 的值是______. 13.与无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与是同类二次根式的是( ). A . B . C . D .三、计算题 15. 16.17.18.四、解答题19.化简求值:,其中,.20.当时,求代数式x 2-4x +2的值.拓广、探究、思考 21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.b a b +4b a +33832ab b a b 26a a 223a 3a 4a .)15(2822180-+--).272(43)32(21--+⋅+-+bb a b a a 1241.21233ab bb a aba bab a-+-y y xy xx 3241+-+4=x 91=y 321-=x①( ) ②( ) ③( ) ④( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二) 学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算. 课堂学习检测 一、填空题1.当a =______时,最简二次根式与可以合并. 2.若,,那么a +b =______,ab =______. 3.合并二次根式:(1)________;(2)________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .与B 与C .与D .与5.下列计算正确的是( ). A .B .322322=+833833=+15441544=+24552455=+12-a 73--a 27+=a 27-=b =-+)18(50=+-ax xax 45ab 2ab mn nm 11+22n m +22n m -2398b a 4329b a b a b a b a -=-+2))(2(1239)33(2=+=+C .D .6.等于( ). A .7 B . C .1D .三、计算题(能简算的要简算) 7. 8.9. 10.11. 12.综合、运用、诊断 一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则_______. (2)设,且b 是a 的小数部分,则________. 二、选择题14.与的关系是( ). A .互为倒数B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ). A .B .32)23(6+=+÷641426412)232(2-=+-=-)32)(23(+-223366-+-22336-+⋅-121).2218().4818)(122(+-).32841)(236215(--).3218)(8321(-+.6)1242764810(÷+-.)18212(2-=+7)3*7(5=a =-ba ab a -a b -b a b a +=+2)(ab b a =+C .D . 三、解答题 16. 17.18. 19.四、解答题20.已知求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知,求的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:与,与互为有理化因式. 试写下列各式的有理化因式:(1)与______; (2)与______; (3)与______;(4)与______; (5)与______; (6)与______. 23.已知求.(精确到0.01)答案与提示第十六章 二次根式 测试1b a b a +=+22a aa =⋅1⋅+⋅-221221⋅--+⨯2818)212(2.)21()21(20092008-+.)()(22b a b a --+,23,23-=+=y x 25-=x 4)25()549(2++-+x x a a 63+63-25y x 2-mn 32+223+3223-,732.13,414.12≈≈)23(6-÷1.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2. 10.(1)18;(2)a 2+1;(3) (4)6.11.x ≤0. 12.x ≥0且 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3) (4)36. 18.或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4. 测试21.x ≥0且y ≥0.2.(1) (2)24;(3)-0.18. 3.(1)42;(2)0.45;(3) 4.B . 5.B . 6.B . 7.(1) (2)45; (3)24; (4) (5)(6) (7)49; (8)12; (9) 8. 9. 10..11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1) (2) (3) (4)9. 15.1. 16.(1) (2) 测试31.(1) (2) (3) (4)(5) (6) (7) (8).2. 3.C . 4.C . 5.C .6.;23-⋅=/21x ;2321-;6.53-;32;53;3b;52⋅y xy 263.cm 62.72210;245y x ;332b a +;34;12-.2;32;23x ;342xy y x ;xxy ;36;223;32+x x 630.3)5(;3)4(;3)3(;2)2(;3)1(a a .4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7. 8.9.0.577,5.196. 10.A . 11.C . 12. 13. 14.15.当a ≥0时,;当a <0时,,而无意义. 测试41. 2.(1) 3.C . 4.A . 5.C . 6. 7. 8. 9. 10. 11. 12.1. 13.错误. 14.C . 15. 16.17. 18.0. 19.原式代入得2. 20.1. 21.(1)都画“√”;(2)(n ≥2,且n 为整数);(3)证明: 测试51.6. 2. 3.(1) (2)4.D . 5.D . 6.B . 7. 8. 9.10. 11. 12. 13.(1)3;(2) 14.B . 15.D . 16. 17.2. 18.19.(可以按整式乘法,也可以按因式分解法).⋅-339)3(;42)2(;32)1(⋅y yx x x55)4(;66)3(;2)2(;55)1(.)3(;33)2(;)1(b a x bab+.112;2222222=+=+-y x xy y xy x .1)3(;1011)2(;722)1(n n -+--a a a ==22)(a a -=22)(a .454,125;12,27;18,82,32.)2(;33x .33.632+⋅827.23+.214x .3x .12+⋅-423411.321b a +,32y x+=1122-=-+n n nn n n ⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n .3,72;22.3ax -⋅66.1862--.3314218-⋅417.215.62484-.55--⋅-41.21-ab 420.(1)9; (2)10. 21.4.22.(1); (2); (3); (4); (5); (6)(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试 一、填空题 1.已知有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限.2.的相反数是______,绝对值是______. 3.若,则______.4.已知直角三角形的两条直角边长分别为5和,那么这个三角形的周长为______.5.当时,代数式的值为______. 二、选择题6.当a <2时,式子中,有意义的有( ). A .1个B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A . B . C .D . 8.若(x +2)2=2,则x 等于( ). A .B .C .D .9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .B .C .D .2y x 2-mn 32-223-3223+mnm 1+-322-3:2:=y x =-xy y x 2)(5232-=x 3)32()347(2++++x x 2)2(,2,2,2-+--a a a a 6)9(4)9()4(=-⨯-=-⨯-7434322=+=+9181404122=⨯=-2323=42+42-22-±22±b a +a b -b a -ab10.已知A 点坐标为点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ). A .(0,0) B . C .(1,-1) D . 三、计算题11. 12.13. 14.15. 16.四、解答题17.已知a 是2的算术平方根,求的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A=90°,△BCD 为等边三角形,且AD ,求梯形ABCD 的周长.),0,2(A )22,22(-)22,22(-.1502963546244-+-).32)(23(--.25341122÷⋅).94(323ab ab ab a aba b+-+⋅⋅-⋅bab a ab b a 3)23(35⋅÷+--+xy yx y x xy yx y )(222<-a x 2=附加题19.先观察下列等式,再回答问题. ①② ③(1)请根据上面三个等式提供的信息,猜想的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2. 3. 4. 5. 6.B . 7.C . 8.C . 9.C . 10.B .11. 12. 13. 14. 15.16.0. 17.x <3;正整数解为1,2. 18.周长为 19.(1) (2);2111111112111122=+-+=++;6111212113121122=+-+=++⋅=+-+=++121113131141311222251411++.223,223--.2665-.555+.32+.68-.562-⋅1023.2ab -.293ab b a -.625+;2011141411=+-+.)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线(2)拼成2×3,对角线(cm).勾股定理学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题1.如果直角三角形的两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.二、选择题6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( ).);cm(0.733712721222≈=+3.431312362422≈=+(A)8 (B)4 (C)6 (D)无法计算7.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ).(A)4(B)6(C)8(D)8.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ).(A)150cm 2(B)200cm 2 (C)225cm 2(D)无法计算三、解答题9.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c . (1)若a ∶b =3∶4,c =75cm ,求a 、b ;(2)若a ∶c =15∶17,b =24,求△ABC 的面积;(3)若c -a =4,b =16,求a 、c ;102(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.综合、运用、诊断一、选择题10.若直角三角形的三边长分别为2,4,x,则x的值可能有( ).(A)1个(B)2个(C)3个(D)4个二、填空题11.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是______.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______.三、解答题13.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.拓展、探究、思考14.如图,△ABC中,∠C=90°.(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S1+S2与S3的关系;图①(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S1+S2与S3的关系;图②(3)以直角三角形的三边为直径向形外作半圆(如图③),探究S1+S2与S3的关系.图③测试2 勾股定理(二)学习要求掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.4题图二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).5题图(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).6题图 (A) (B)(C)(D)三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断 一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为____ __米.212310565810.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试3 勾股定理(三) 学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题. 课堂学习检测 一、填空题1.在△A BC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______.2.在△ABC 中,若AB =AC =20,BC =24,则BC 边上的高AD =______,AC 边上的高BE =______.3.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______.4.在△ABC 中,若AB =BC =CA =a ,则△ABC 的面积为______.5.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 二、选择题6.已知直角三角形的周长为,斜边为2,则该三角形的面积是( ).(A)(B)(C)(D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A) (B)或(C) (D)或三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =求AB 的长.62 4143217741242471029.在数轴上画出表示及的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC1013=10cm,求EC的长.13.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC 上,且DE⊥DF.求证:AE2+BF2=EF2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC 的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试4 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号) 4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC中,(b-a)(b+a)=c2,则∠B=____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______. 二、选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10(B) (C)(D)10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ). (A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ). (A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定综合、运用、诊断 一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.3,2,1===c b a 43,1,45===c b a 6,3,2===c ba13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE=,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M 岛,乙船到P 岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC 中,a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由.CB 4117.已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n 的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案第十七章 勾股定理 测试1 勾股定理(一)1.a 2+b 2,勾股定理. 2.(1)13; (2)9; (3)2,; (4)1,. 3.. 4.5,5. 5.132cm . 6.A . 7.B . 8.C . 9.(1)a =45cm .b =60cm ; (2)540; (3)a =30,c =34; (4)6; (5)12.10.B . 11. 12.4. 13. 14.(1)S 1+S 2=S 3;(2)S 1+S 2=S 3;(3)S 1+S 2=S 3. 测试2 勾股定理(二)1.13或 2.5. 3.2. 4.10. 5.C . 6.A . 7.15米. 8.米. 9.10.25. 11. 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O . 测试3 勾股定理(三) 1. 2.16,19.2. 3.5,5. 4. 325223.5.310.11923⋅3310.2232-;343415,342.432a5.6,,. 6.C . 7.D8. 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =9.图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.B E =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则 15.128,2n -1.测试4 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3). 4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17. 9.D . 10.C . 11.C . 12.CD =9. 13.14.提示:连结AE ,设正方形的边长为4a ,计算得出AF ,EF ,AE 的长,由AF 2+EF 2=AE 2得结论. 15.南偏东30°.16.直角三角形.提示:原式变为(a -5)2+(b -12)2+(c -13)2=0. 17.等腰三角形或直角三角形.提示:原式可变形为(a 2-b 2)(a 2+b 2-c 2)=0. 18.352+122=372,[(n +1)2-1]2+[2(n +1)]2=[(n +1)2+1]2.(n ≥1且n 为整数)3633.132.1324422=+k m ,3213,31102222+=+=622=-AB AF .172,34=∴=AC AB .51+第十七章勾股定理全章测试一、填空题1.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.2.若等边三角形的边长为2,则它的面积为______.3.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若涂黑的四个小正方形的面积的和是10cm2,则其中最大的正方形的边长为______cm.3题图4.如图,B,C是河岸边两点,A是对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=60米,则点A到岸边BC的距离是______米.4题图5.已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.5题图6.如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将直角边AB折叠使它落在斜边AC上,折痕为AD,则BD=______.6题图7.△ABC中,AB=AC=13,若AB边上的高CD=5,则BC=______.8.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.8题图二、选择题9.下列三角形中,是直角三角形的是( )(A)三角形的三边满足关系a+b=c(B)三角形的三边比为1∶2∶3 (C)三角形的一边等于另一边的一半(D)三角形的三边为9,40,41 10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( ).10题图(A)450a元(B)225a元(C)150a元(D)300a元11.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( ).(A)2 (B)3 (C)(D)12.如图,Rt△A BC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD=6,则AC +BC 等于( ).(A)5 (B) (C)(D)三、解答题13.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长.14.如图,已知一块四边形草地ABCD ,其中∠A =45°,∠B =∠D =90°,AB =20m ,CD =10m ,求这块草地的面积.223213513135915.△ABC中,AB=AC=4,点P在BC边上运动,猜想AP2+PB·PC的值是否随点P位置的变化而变化,并证明你的猜想.16.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,求BC.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要多长?如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要多长?18.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.图1 图2 图3(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少; (3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.19.有一块直角三角形的绿地,量得两直角边长分别为6m ,8m .现在要将绿地扩充成等腰三角形,且扩充部分是以8m 为直角边的直角三角形,求扩充后等腰三角形绿地的周长.参考答案第十七章 勾股定理全章测试1.8. 2. 3. 4.30. 5.2.6.3.提示:设点B 落在A C 上的E 点处,设BD =x ,则DE =BD =x ,AE =AB =6,CE =4,CD =8-x ,在Rt △CDE 中根据勾股定理列方程. 7.或.3.1026.2658.6.提示:延长AD 到E ,使DE =AD ,连结BE ,可得△ABE 为Rt △. 9.D . 10.C 11.C . 12.B 13.提示:作CE ⊥AB 于E 可得由勾股定理得由三角形面积公式计算AD 长.14.150m 2.提示:延长BC ,AD 交于E . 15.提示:过A 作AH ⊥BC 于HAP 2+PB ·PC =AH 2+PH 2+(BH -PH )(CH +PH ) =AH 2+PH 2+BH 2-PH 2=AH 2+BH 2=AB 2=16. 16.14或4.17.10;18.(1)略; (2)定值, 12;(3)不是定值, 19.在Rt △ABC 中,∠ACB =90°,AC =8,BC =6由勾股定理得:AB =10,扩充部分为Rt △ACD ,扩充成等腰△ABD ,应分以下三种情况.①如图1,当AB =AD =10时,可求CD =CB =6得△ABD 的周长为32m .图1②如图2,当AB =BD =10时,可求CD =4图2由勾股定理得:,得△ABD 的周长为. ③如图3,当AB 为底时,设AD =BD =x ,则CD =x -6,.2172,5,3==BE CE ,72=BC .16922n +.10226,1028,268+++54=AD .m )5420(+图3由勾股定理得:,得△ABD 的周长为平行四行形学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题. 课堂学习检测 一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
(完整版)人教八年级数学下册同步练习题及答案
1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。
3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。
部编人教版初二下册数学全册同步练习(一课一练)
新人教版八年级下册初中数学全册资料汇编课时练(一课一练)16.1 二次根式1. 下列各式是二次根式的是( )A.-5 B .34 C. 4 D .-x 2-1 2. 若(x -2)2=2-x ,那么x 的取值范围是( ) A .x≤2 B.x <2 C .x <2 D .x≥2 3. 下列各式中不是二次根式的是( )A.x 2+2 B .-8 C .- 3 D .(m -n)2 4. 要使二次根式2-3x 有意义,则x 的( )A .最大值是23B .最小值是23C .最大值是32D .最小值是325. 已知x 、y 为实数,且x -1+3(y -2)2=0,则x -y 的值为( ) A .3 B .-3 C .1 D .-16. 已知-1≤a≤1,下列是二次根式的为( ) A.a -12B .1-1aC.1-a 2 D .1-a1+a7.已知实数x 、y 满足|x -4|+y -8=0,则以x 、y 的值为两边长的等腰三角形的周长是( ) A .20或16 B .20 C .16 D .以上答案均不对8. 实数a ,b 在数轴上对应点的位置如图所示.化简式子|a|+(a -b)2的结果是( )A .-2a +bB .2a -bC .-bD .b 9.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152D .无法确定10. 当x=时,函数y=2x+4+5有最小值,最小值为. 11.在实数范围内分解因式:x4-25=12. 若a+3+2-b=0,则a=,b=.13. 要使二次根式x-1有意义,则x的取值范围是.14. 已知一个直角三角形的两直角边长分别为2和5,则斜边长为.15. 写出下列各式有意义的条件.(1)4-x(2)x+2 x-316. 化简:(1)16(2)(-2)217. 计算:(1)42-(-2)2+(35)2-(-7)2;(2)(4-7)2+(17-5)2.18.已知实数a、b满足b=2018+a2-9+9-a2a-3,求a、b的值.19. 直线y=mx+n,如图所示,化简|m+n|+m2-(2m+n)2.20. 甲、乙两位同学做一道相同的题目: 化简求值:1a+1a 2+a 2-2,其中a =15. 甲同学的做法是:原式=1a +(1a -a)2=1a +1a -a =2a -a =10-15=495; 乙同学的做法是:原式=1a+(a -1a )2=1a +a -1a =a =15.请问哪位同学的解法正确?请说明理由.参考答案1---9 CABAD CBAA 10. -2 511. (x 2+5)(x +5)(x -5) 12. -3 2 13. x≥1 14.715. (1) x≤4 (2) x≥-2且x≠3 16. (1) 解:原式=4 (2) 解:原式=217. (1) 解:原式=4-2+45-7=40 (2) 解:原式=(17-4)+(5-17)=118. 解:依题意得⎩⎨⎧a 2-9≥09-a 2≥0a -3≠0,∴a=-3,∴b=2018.19. 解:依题意得:m <0,n >0.,∴m-n <0,2m +n <0,∴|m+n|+m 2-(2m +n)2=-(m -n)+(-m)-[-(2m +n)]=-m +n -m +2m -n =0.20. 解:甲同学的解法是正确的,理由如下: ∵1a2+a 2-2=(a -1a )2=|1a -a|,且a =15,即1a =5,∵1a >a ,∴|1a -a|=1a-a.∴乙同学在去绝对值时忽略了1a与a 的大小关系,导致错误.16.2 二次根式的乘除同步练习一、选择题 1.若,,把代数式中的m 移进根号内结果是A.B.C.D.2.如果,,那么下面各式:,,,其中正确的是A.B.C.D.3.若,,则可以表示为 A.B.C. D. ab4.如果,那么x 的取值范围是A.B.C.D.5.计算:的结果是A.B.C. 40D. 76.若,且,则的值为A.B.C.D.7.化简的结果为A. B. C. D.8.若,,则的值用a、b可以表示为A. B. C. D.9.若,则x的取值范围是A. B. C. D. 不存在10.下列计算正确的是A. B.C. D.二、填空题11.计算:______.12.能使得成立的所有整数a的和是______ .13.计算:______ .14.成立的x的取值范围是______ .15.观察下列各式:;;,请用含的式子写出你猜想的规律:__________.三、计算题16..17.已知求的值.18.先化简,再求值:,其中.【答案】1. C2. B3. C4. D5. D6. D7. C8. C9. A10. B11. 6a12. 513. x14.15.16. 解:原式.17. 解:,.18. 解:原式,当时,原式.16.3 二次根式的加减同步练习一、选择题19.无论x取任何实数,代数式都有意义,则m的取值范围是A. B. C. D.20.若,则x的取值范围是A. B. C. D.21.已知a,b在数轴上的位置如图所示,化简代数式的结果等于A. B. C. D. 222.若,,则代数式的值为A. 3B.C. 5D. 923.下列计算结果正确的是A. B.C. D.24.已知,则的值为A. 5B. 6C. 3D. 425.的值是A. 0B.C.D. 以上都不对26.计算的结果是A. 6B.C.D. 1227.已知,,,则的结果是A. B. C. D.28.若,,则代数式的值为A. B. C. D. 4二、填空题29.若,则______.30.若,化简______ .31.对于任意不相等的两个数a,b,定义一种运算如下:,如,那么______ .32.若,则的值为______ .33.观察分析下列数据:0,,,,,,,,根据数据排列的规律得到第13个数据应是______ .三、计算题34.计算:.35.已知,求的值.36.已知,求的值.【答案】1. C2. C3. A4. A5. C6. A7. A8. D9. B10. B11. 1 12. 4 13. 14. 15. 616. 解:,,,,,17. 解:原式,,,原式.18. 解:,,原式.17.1 勾股定理同步练习一、选择题37.在中,,,BC边上的高,则另一边BC等于A. 10B. 8C. 6或10D. 8或1038.如图,已知中,,CD是高,,,求AB的长A.4B. 6C. 8D. 1039.如图,以为直径分别向外作半圆,若,,则A. 2B. 6C.D.40.直角三角形的斜边为20cm,两直角边之比为3:4,那么这个直角三角形的周长为A. 27cmB. 30cmC. 40cmD. 48cm41.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为A. 3B. 4C. 5D. 642.如图,在矩形ABCD中,,,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为A. B.C. D.43.如图,正方形ABCD的边长为10,,,连接GH,则线段GH的长为A.B.C.D.44.如图是一块长,宽,高分别是6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是A. cmB. cmC. cmD. cm45.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为A. 米B. 米C. 米D. 米46.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到,使梯子的底端到墙根O的距离等于3m,同时梯子的顶端B下降至,那么A. 小于1mB. 大于1mC. 等于1mD. 小于或等于1m二、填空题47.在中,已知两边长为5、12,则第三边的长为______ .48.如图,已知中,,,,,则______ .49.如图,在中,,,D为BC上一点,过点D作,垂足为E,连接AD,若,则AB的长为______ .50.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要______元钱.51.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则的周长的最小值为______.三、计算题52.如图,在中,,垂足为D,,.求的度数.若,求AB的长.53.已知:如图,在中,,D是AC上一点,于E,且.求证:BD平分;若,求的度数.54.如图,一架长为5米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子底端距离墙ON有3米.求梯子顶端与地面的距离OA的长.若梯子顶点A下滑1米到C点,求梯子的底端向右滑到D的距离.【答案】1. C2. C3. A4. D5. C6. C7. B8. C9. C10. A11. 13或12. 1213.14. 61215. 816. 解:.,;.17. 证明:,,,点D在的平分线上,平分.解:,,,平分,.18. 解:米;米,米.17.2勾股定理的逆定理同步练习一、选择题55.适合下列条件的中,直角三角形的个数为,,;,;,,;,.A. 1个B. 2个C. 3个D. 4个56.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( )A. 10B. 12C. 24D. 4857.在中,,,,则A. B. C. D.58.在中,,,,则点C到AB的距离是A. B. C. D.59.三角形两边长分别是8和6,第三边长是一元二次方程一个实数根,则该三角形的面积是A. 24B. 48C. 24或D.60.中,,,的对边分别为a、b、c,下列说法中错误的A. 如果,则是直角三角形,且B. 如果,则是直角三角形,且C. 如果,则是直角三角形,且D. 如果:::2:5,则是直角三角形,且61.如图,已知点,,点C在直线上,则使是直角三角形的点C的个数为A. 1B. 2C. 3D. 462.中,,,BC边上中线,则AB,AC关系为A. B. C. D. 无法确定63.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为A. 1个B. 2个C. 3个D. 4个64.如图,在中,,,,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是A. B.C. 5D.二、填空题65.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为______ .66.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______ .67.如图,已知三条边,,,,则______ cm68.如图所示,在中,AB:BC::4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,的面积为______69.在中,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为______.三、计算题70.已知如图,四边形ABCD中,,,,,,求这个四边形的面积.71.如图,P为等边内一点,PA、PB、PC的长为正整数,且,设,n为大于5的实数,且满足,求的面积.72.在直角三角形ABC中,,CD是AB边上的高,,,求的面积;求CD的长;若的边AC上的中线是BE,求出的面积.【答案】1. C2. B3. A4. A5. C6. B7. C8. B9. B10. B11.12. 213. 1214. 1815. 216. 解:连接AC,如图所示:,为直角三角形,又,,根据勾股定理得:,又,,,,,为直角三角形,,则.17. 解:,分解因式得:,为大于5的实数,,即:,,PA、PB、PC的长为正整数,,,设,等边三角形的边长是a,则,由余弦定理得:,,而,,将代入得:,解得:,,,令,,解得:,,由知,,即,,,不合题意舍去,,即,过A作于D,等边,,由勾股定理得:,.答:的面积是.18. 解:,,,;,;,,的面积为.18.1平行四边形同步练习一、选择题73.如图,平行四边形ABCD的周长为40,的周长比的周长多10,则AB长为A. 20B. 15C. 10D. 574.已知四边形ABCD中有四个条件:,,,,从中任选两个,不能使四边形ABCD成为平行四边形的选法是A. ,B. ,C. ,D. ,75.平行四边形的两条对角线分别为4和6,则其中一条边x的取值范围为A. B. C. D.76.平行四边形ABCD中,有两个内角的比为1:2,则这个平行四边形中较小的内角是A. B. C. D.77.如图,▱ABCD的对角线AC与BD相交于点O,,垂足为E,,,,则AE的长为A. B. C. D.78.在平行四边形ABCD中,:::的可能情况是A. 2:7:2:7B. 2:2:7:7C. 2:7:7:2D. 2:3:4:579.如图,四边形ABCD内接于,若四边形ABCO是平行四边形,则的大小为A.B.C.D.80.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把沿着AD方向平移,得到,若两个三角形重叠部分的面积为,则它移动的距离等于A. B. 1cm C. D. 2cm81.如图,平行四边形的两条对角线将平行四边形的面积分成四部分,分别记作,,,,下列关系式成立的是A. B. C. D.82.如图,在▱ABCD中,,F是AD的中点,作于E,在线段AB上,连接EF、则下列结论:;;;,其中一定正确的是A. B. C. D.二、填空题83.平行四边形ABCD中,的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是______ .84.在▱ABCD中,如果,那么______ 度85.如图,▱ABCD的面积为,P为▱ABCD内部的任意一点,则图中阴影部分的面积之和为______ .86.若在▱ABCD中,,,,则______ .87.如图,平行四边形ABCD的对角线AC,BD交于点O,CE平分交AB丁点E,交BD于点F,且,,连接下列四个结论:;;;::,其中结论正确的序号是______把所有正确结论的序号都选上三、计算题88.已知平行四边形ABCD的周长为60cm,对角线AC,BD相交于点O,的周长比的周长长8cm,求这个平行四边形各边的长.89.如图,已知,,四边形ABCD为平行四边形;求证:;连接OD,若,求证:四边形ABCD为菱形.90.如图,在▱ABCD,对角线AC、BD相交于点O、E、F是对角线AC上的两点.现有三个条件:;;都可确定四边形DEBF为平行四边形.请选择其中的一个等式作为条件,证明四边形DEBF为平行四边形.【答案】1. D2. C3. B4. B5. D6. A7. C8. B9. B10. B11. 14或1612. 11013.14. 2115.16.解:的周长比的周长长8cm,,是平行四边形,,,,平行四边形ABCD的周长60cm,,,,即平行四边形ABCD的边长是11cm,19cm,11cm,19cm.17. 解:,,,,,,四边形ABCD为平行四边形;,,,,,;连接BD,交AC于点H,,,,,,∽,,,,,平行四边形ABCD中,,四边形ABCD为菱形.18. 解:选择,理由为:证明:四边形ABCD是平行四边形,,,,,即,四边形DEBF为平行四边形.18.2 特殊的平行四边形同步练习一、选择题91.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是A. B. 5 C. 6 D.92.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,于H,连接OH,,则的度数是A. B. C. D.93.以下条件不能判别四边形ABCD是矩形的是A. ,,B.C. ,,D. ,,,94.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是A. 17B. 16C.D.95.已知菱形的面积为,一条对角线长为6cm,则这个菱形的边长是厘米.A. 8B. 5C. 10D.96.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF,若,则AF等于A.B.C.D. 897.如图,在周长为12的菱形ABCD中,,,若P为对角线BD上一动点,则的最小值为A. 1B. 2C. 3D. 498.有3个正方形如图所示放置,阴影部分的面积依次记为,,则:等于A. 1:B. 1:2C. 2:3D. 4:999.如图:A,D,E在同一条直线上,,,BD,DF分别为正方形ABCD,正方形DEFG的对角线,则三角形的面积为A.B. 3C. 4D. 2100.我们知道:四边形具有不稳定性如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点的坐标为A. B. C. D.二、填空题101.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为______ .102.如图,正方形ABCD的边长为1,AC,BD是对角线将绕着点D顺时针旋转得到,HG交AB于点E,连接DE交AC于点F,连接则下列结论:四边形AEGF是菱形≌其中正确的结论是______.103.如图:在矩形ABCD中,,,P为AD上任一点,过点P作于点E,于点F,则______ .104.如图,四边形ABCD是菱形,,,于点H,则线段BH的长为______.105.正方形ABCD中,E、F分别在AD、DC上,,G是AD上另一点,且,连接EF、BG、FG、EF、BG交于点H,则下面结论:;是等边三角形;;中,正确的是______请填番号三、计算题106.如图,在中,,D、E、F分别是BC、AC、AB边上的中点.求证:四边形BDEF是菱形;若,求菱形BDEF的周长.107.如图所示,将一个长方形纸片ABCD沿对角线AC折叠点B落在E点,AE交DC于F点,已知,求折叠后重合部分的面积.108.如图1,四边形ABCD是正方形,,点G在BC边上,,于点E,于点F.求BF和DE的长;如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.【答案】1. A2. A3. D4. A5. B6. A7. C8. D9. B10. D11. 12012.13.14.15.16. 证明:、E、F分别是BC、AC、AB的中点,,,四边形BDEF是平行四边形,又,,且,,四边形BDEF是菱形;解:,F为AB中点,,菱形BDEF的周长为.17. 解:四边形ABCD是矩形,,,将一个长方形纸片ABCD沿对角线AC折叠,,,,,在和中,≌,,,设,则,在中,,即,解得:,即,折叠后重合部分的面积.18. 解:如图1,四边形ABCD是正方形,,,,,,在中,,,,,,,,在和中,≌,,理由如下:作于H,如图2,≌,,,与的证明方法一样可得≌,,,,,在和中,≌,,,,,.19.1函数一、选择题(每小题只有一个正确答案) 1.下列各式中,表示y 是x 的函数的有( )①2y +x =3;②y =x +2z ;③y =2;④y =kx +1(k 为常量);⑤y 2=2x . A. 0个 B. 1个 C. 2个 D. 3个 2.函数5y x =-中自变量x 的取值范围是( )A. x≥-5B. x≤-5C. x≥5D. x≤53.下面关于函数的三种表示方法叙述错误的是( )A. 用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B. 用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C. 用公式法表示函数关系,可以方便地计算函数值D. 任何函数关系都可以用上述三种方法来表示 4.如图所示,y 与x 的关系式为( )A. y=-x+120B. y=120+xC. y=60-xD. y=60+x 6.已知两个变量x 和y ,它们之间的三组对应值如下表所示:x -1 2 -3 y-63-2则y 与x 之间的函数表达式可能是( ) A. y =3x B. y =x +5 C. y =x 2+5 D. y =6x7.下列各曲线中能表示y 是x 的函数的是( )A. B. C. D.二、填空题8.某超市,苹果的标价为3元/千克,设购买这种苹果xkg ,付费y 元,在这个过程中常量是________变量是________,请写出y 与x 的函数表达式________ .9.函数y =x 的取值范围是_____. 11.函数的三种表示方法是_________、_________、___________.12.一空水池现需注满水,水池深 4.9m ,现以不变的流量注水,数据如下表所示:(1)上表反映的变量关系中,注水时间 t 是_____,水的深度 h 是_____. (2)注满水池需要的时间是_____h .三、解答题13.求下列函数中自变量的取值范围.()135y x =-+;()324xy x =-; ()3y =; ()4y =; ()5y =14.写出下列问题中的关系式,并指出其中的变量和常量. (1)直角三角形中一个锐角a 与另一个锐角β之间的关系;(2)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t (小时)表示水箱中的剩水量y (吨).15.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车油箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.2 一次函数1. 关于直线l :y =kx +k(k≠0),下列说法不正确的是( ) A .点(0,k)在l 上 B .l 经过定点(-1,0) C .当k >0时,y 随x 的增大而增大 D .l 经过第一、二、三象限2. 若k≠0,b <0,则y =kx +b 的图象可能是( )3. 设点A(a ,b)是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a -3b =0C .3a -2b =0D .3a +2b =04. 如图,若一次函数y =-2x +b 的图象交y 轴于点A(0,3),则不等式-2x +b>0的解集为( )A .x>32B .x>3C .x<32D .x<35. 已知正比例函数y =3x 的图象经过点(1,m),则m 的值为( ) A.13 B .3 C .-13D .-3 6. 直线y =kx +3经过点A(2,1),则不等式kx +3≥0的解集是( ) A .x≤3 B.x≥3 C .x≥-3 D .x≤0 7. 对于一次函数y =-x +3,下列说法正确的有( )①函数值y 随x 的增大而减小;②函数图象不过第一象限;③函数图象与y 轴交点为(3,0);④将y =-x +3向上平移一个单位长度可得y =-x +2的图象. A .1个 B .2个 C .3个 D .4个8. 如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )A.y=2x+3 B.y=x-3C.y=2x-3 D.y=-x+39. 如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2 B.x=0 C.x=-1 D.x=-310. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.11. 将直线y=2x+1向下平移3个单位长度后所得直线的解析式是__y_.12.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解为____.13.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为___.14. 过点(0,-2)的直线l1:y1=kx+b(k≠0)与直线l2:y2=x+1交于点P(2,m).(1)写出使得y1<y2的x的取值范围;(2)求点P的坐标和直线l1的解析式.15. 如图,一次函数y =-x +m 的图象与y 轴交于点B ,与正比例函数y =32x 的图象交于点P(2,n).(1)观察图象,直接写出不等式-x +m<32x 的解集;(2)求出m ,n 的值,并直接写出方程组⎩⎨⎧y =-x +m ,y =32x 的解.参考答案:1---9 DBDCB AADD 10. x >3 11. =2x -2 12. x =3213. -114. 解:(1)当x <2时,y 1<y 2 (2)把P(2,m)代入y 2=x +1得m =2+1=3,则P(2,3),把P(2,3)和(0,-2)分别代入y 1=kx +b 得⎩⎨⎧2k +b =3,b =-2解得⎩⎨⎧k =52,b =-2所以直线l 1的解析式为:y 1=52x -215. 解:(1)根据图象观察可知,-x +m<32x 的解集是x>2(2)∵点P(2,n)在图象上,∴n=32×2=3.把P(2,3)代入y =-x +m ,得3=-2+m ,∴m=5.∵直线y =-x+5与直线y =32x 交于点P(2,3),∴方程组⎩⎨⎧y =-x +5,y =32x的解是⎩⎨⎧x =2,y =320.1 数据的代表一、选择题109.一组数据的平均数是A. 2B. 3C. 4D. 5110.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是A. 255分B. 分C. 分D. 分111.有10位同学参加数学竞赛,成绩如表:分数75808590人数1432则上列数据中的中位数是A. 80B.C. 85D.112.小张参加某节目的海选,共有17位选手参加决逐争取8个晋级名额,已知他们的分数互不相同,小张要判断自己是否能够晋级,只要知道17名选手成绩统计量中的A. 众数B. 方差C. 中位数D. 平均数113.上学期期末考试,某小组五位同学的数学成绩分别是,则这五个数据的中位数是A. 90B. 98C. 100D. 105114.某男装专营店老板专卖某品牌的夹克,店主统计了一周中不同尺码的夹克销售量如表:尺码170175180185190平均每天的销售量件7918106如果店主要购进100件这种夹克,则购进180尺码的夹克数量最合适的是A. 20件B. 18件C. 36件D. 50件115.某班50名学生的一次安全知识竞赛成绩分布如表所示满分10分成绩分012345678910人数人0001013561915这次安全知识竞赛成绩的众数是A. 5分B. 6分C. 9分D. 10分116.为鼓励市民珍稀每一滴水,某居民会表扬了100个节约用水模范户,6月份节约用水的情况如表:每户节水量单位:吨1节水户数523018那么,6月份这100户平均节约用水的吨数为A. B. C. D. 1t117.某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是A. B.C. D.118.某地区某月前两周从周一至周五每天的最低气温是单位:,和,若第一周这五天的平均气温为,则第二周这五天的平均气温为A. B. C. D.二、解答题119.某班为了从甲、乙两位同学中选出班长,进行了一次演讲答辩与民主测评,A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评结果如表所示:表1演讲答辩得分表单位:分A B C D E甲9092949588乙8986879491表2民主测评票数统计表单位:张“好”票数“较好”票数“一般”票数甲4073乙4244规定:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分“好”票数分“较好”票数分“一般”票数分;综合得分演讲答辩得分民主测评得分;当时,甲的综合得分是多少?如果以综合得分来确定班长,试问:甲、乙两位同学哪一位当选为班长?并说明理由.120.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,三人各项得分如表:笔试面试体能甲847890乙858075丙809073根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按的比例计入总分根据规定,请你说明谁将被录用.121.设一组数据的平均数为m,求下列各组数据的平均数:;.122.某市规定学生的学期体育成绩满分是100分,其中大课间活动和下午体段占,期中考试占,期末考试占,张晨的三项成绩百分制分别是95分、90分、86分,求张晨这学期的体育成绩.123.个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工作能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?【答案】1. D2. D3. B4. C5. B6. C7. C8. B9. C10. D11. 解:甲的演讲答辩得分分,甲的民主测评得分分,当时,甲的综合得分分;答:当时,甲的综合得分是89分;乙的演讲答辩得分分,乙的民主测评得分分,乙的综合得分为:,甲的综合得分为:,当时,即有,又,时,甲的综合得分高,甲应当选为班长;当时,即有,又,时,乙的综合得分高,乙应当选为班长.12. 解:甲乙丙三人的平均分分别是.所以三人的平均分从高到低是:甲、丙、乙;因为甲的面试分不合格,所以甲首先被淘汰.乙的加权平均分是:分,丙的加权平均分是:分因为丙的加权平均分最高,因此,丙将被录用.13. 解:设一组数据的平均数是m,即,则.,,的平均数是;,,的平均数是.14. 解:根据题意得:分.即张晨这学期的体育成绩为89分.15. 解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,。
【精品】人教版初中数学八年级下册全册同步练习
《16.1二次根式》同步练习a 0 B . a 0 C . a 0 D . a 为任意实数1、 如果式子有意义,则a 的取值范围为 __________ .Va 52、 一个用电器的电阻为 R ,消耗的电功率为P ,它两端的电压为U ,其关系式为P —,R 则U _____________ .3、 代数式 丄卫有意义,则x 的取值范围是x 31. 已知一个长、宽之比为5:4且面积为140平方米的矩形菜地,求它的长和宽分别是多少米?1、 F 列式子一定是 次根式的是( A.x 2 B. x C.x 2 D. x2、 如果..x 3有意义,则 x 的取值范围是(A. x 3B. x 3C.3 D. x 33、 F 列判断正确的是( A.带根号的式子是二次根式 B.式子■. 9是二次根式C. 式子.x 2 1 不定是二次根式D.式子■. a 2有意义的条件是a 04、 如果式子 a 2 1有意义,则a 的取值范围是A. 5、 F 列式子中,字母 a 的取值范围是a 2的是( )A.C . 5a 10D a 26、如果式子旦^有意义,则a 1 a 的取值范围为(A. a 2B. a 1C.a 2 D.2、 解:依题意得,答案与解析一、 选择题: 1、 C 2、 A 3、 B 4、 D 5、 B 6、 D 二、 填空题 1、 a > 5 2、PR3、 x > 3 三、 解答题1、解:设长为5k,则宽为4k ,依题意得, 5k • 4k=140 ••• k2=7 •/ k > 0, • k= , 73.已知式子 2x 3在实数范围内有意义, 2试确定x 的取值范围•矩形的长为5 7 m宽为4 7 m.2、解:依题意得,1、2x 3 0 x 23解得,x > —且X M 2.2《16.2二次根式的乘除》同步练习♦选择题1、下列计算正确的是(3、计算罷£ (⑻的结果是(4、下列各数中,与 2 3的积为有理数的是(确的个数是( )A. 1 个 B . 2 个 C . 3 个 D ♦填空题1、 计算罷73= _________ .2、 _______________________________________ 化简.24ag 54a 3的结果是3、 ______________________________________ 计算(& 1)0 2+1)2的结果是♦解答题1计算:-2 27「3恥4 -2、已知一个长、宽之比为 5:4且面积为140平方米的矩形菜地,求它的长和宽分别是多少A. 3 . 5 15B. 2 2 2C. 2 .2 4D. 2 . 3 .5A. 4±4C.-D.±2A. 2 ,3B.3C. 1 ,3D.■7A. 23 B. 2、3 C.2 、3 D.5、张明做了以下作业:(1) J6a 44a 2 ;( 2) . 5ag5. 2a ;( 3).a .他做正6、已知m ((2 2l ),则有(2、计算 的结果是(B米?3、观察下列各式及其验证过程:2:=W ;验证:2:?窘=.专略3存雋;验证:3賬届厝足(1 )按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证•(2)针对上述各式反映的规律,写出用n (n为任意自然数,且n 2)表示的等式,并进行验证•答案与解析二、选择题:1、2、3、4、5、6、、填空题2、3、三、解答题1、解:2、解:3、解:«16.3二次根式的加减》同步练习1、下列计算正确的是()A. .18 ,2=2 2B. 3 2=1C. 3 2= . 5D. 5 .5 102、下列各组二次根式中,能够进行合并的一组是()A. 3 和18B. 3 和C. a2b 和ab2D. x_1 和展一13、下列计算正确的是()A. 3 3= 6B. 3 3=0C. ;3g3=9D. (一3)234、计算恵辰器的结果是()A. 2血B 返C. 42 D. 铤2 ' 2 25、实数a,b在数轴上的位置如图所示,则化简 .孑.b2(a b)2的结果是(a0 J*A. 2bB. 2aC. 2(b a)D.06、若a 5 2 6,b 2 6 5,则a,b的关系为()A.互为相反数 B •互为倒数C.互为负倒数 D .绝对值相等1、1、______________________________________ 计算:740 10石0 J10=2、一个长方形的面积是.12cm2,一个三角形的面积是.48cm2,则三角形比长方形的面积大____________ cm2.3、一个三角形的三边长分别为J18cm,屁cm,屈cm,则这个三角形的周长为_____________ .4、如图在矩形内有两个相邻的正方形,面积分别为5和2,则阴影部分的面积为______________♦解答题2、已知a 3 2,b 3 2,求a2 b2的值.答案与解析三、选择题:1、2、3、4、7、8二、填空题1、2、3、三、解答题1、解:4、解:5、解:《仃・1勾股定理》同步练习1 .下列说法正确的是()A. 若a、b、c是厶ABC勺三边,则a2+ b2= c2B. 若a、b、c 是Rt △ ABC的三边,则a2+ b2= c22 2 2C. 若a、b、c 是Rt △ ABC的三边,A 90,则a +b = c2 2 2D. 若a、b、c 是Rt△ ABC勺三边,C 90,则a +b = c2.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A .斜边长为2 5B C.斜边长为5D.三角形周长为25 .三角形面积为 20ABC 中,边长为无理数的边数是( )A . 0B .1C. 2D.34.如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为()A 、、2-10B .- -.2-10C . 2D . -23.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形BC5. 把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍6•小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A. 8cm B . 10cm C . 12cm D . 14cm7.A ABC中, AB= 15, AC= 13,高AD= 12,则△ ABC的周长为()A . 42B . 32C . 42 或32D . 37 或33&如图,直线l上有三个正方形a, b, c,若a, c的面积分别为5和11,则b的面积为(A. 4B. 6C. 16D. 55填空题9.如图,三个正方形中的两个的面积则另一个的面积S3为__________ .10 .若正方形的面积为5cm2,则正方形对角线长为______________ c m .11.如图,消防云梯的长度是则云梯能达到大楼的高度是34米,在一次执行任务时 _________ 米.13.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m 结果他在水中实际游了 520m,则该河流的宽度为_____________________ .14.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm 3dm 2dm, ?A 和B 是这个台阶两个相对的端点, A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台阶面♦解答题17.如图,阴影部分是一个正方形,求此正方形的面积.15cm18.如图,是一块由边长为10cm 的正方形地砖铺设的广场,一只鸽子落在点 A 处,?它想先 后吃到小朋友撒在 B C 处的鸟食,则鸽子至少需要走多远的路程?12•如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了______ 步路(假设2步为1米),却踩伤了花草.爬到B 点的最短路程是 ___________B 200m C.520m19•如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长8m棚的斜面用塑料薄膜遮盖,不计墙的厚度,若塑料薄膜每平方米1. 2元,问小李至少要花多少钱?20. 有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?21. 如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图⑵是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形。
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2018年山西省太原市)化简的结果是( ) A .B .C .D . 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?222m n m mn-+2m n m -m n m -m n m +m n m n-+13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用4.(辨析题)下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1拓展创新题16.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(•)A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b+-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( )A 、扩大3倍B 、不变C 、缩小3倍D 、缩小9倍 2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( )A 、扩大2倍B 、扩大4倍C 、缩小2倍D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
人教版八年级下数学同步练习同步练习试题及答案_第18章 平行四行形(40页)
第十八章平行四边形测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。
2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《16.1二次根式》同步练习1、下列式子一定是二次根式的是()2有意义,则x的取值范围是()A.3x≥ B.3x> C.3x≤ D.3x=3、下列判断正确的是()A.带根号的式子是二次根式B.C. 不一定是二次根式D. 0a>4a的取值范围是()A.0a≥ B.0a≤ C.0a= D.a为任意实数5、下列式子中,字母a的取值范围是2a>的是()A C6有意义,则a的取值范围为()A.2a≤ B.1a≠ C.2a< D.2a≤且1a≠1有意义,则a的取值范围为___ _____.2、一个用电器的电阻为R,消耗的电功率为P,它两端的电压为U,其关系式为2UPR=,则U=.3.x的取值范围是.1.已知一个长、宽之比为5:4且面积为140平方米的矩形菜地,求它的长和宽分别是多少米?3.52x -在实数范围内有意义,试确定x 的取值范围.答案与解析一、选择题: 1、 C 2、 A 3、 B 4、 D 5、 B 6、 D 二、填空题 1、 a >5 2、 PR 3、 x >3 三、解答题1 、解:设长为5k,则宽为4k ,依题意得, 5k ·4k=140 ∴k ²=7 ∵k >0, ∴k=7∴矩形的长为75m ,宽为74m. 2、 解:依题意得,⎩⎨⎧≠-≥+02032x x 解得,x ≥23-且x ≠2.《16.2二次根式的乘除》同步练习1、下列计算正确的是( )15=2=4=2 ) A. 4 B±4 C. -4 D. ±2 30的结果是( ) A.2 B.3 C.14、下列各数中,与 ) A.2 B.2 C.2-5、张明做了以下作业:(124a =;(210a a =;(3)他做正确的个数是( )A .1个B .2个C .3个D .0个 6、已知((m =⨯-,则有( ) A.56m << B.45m << C.54m -<<- D.65m -<<- 12354aa 的结果是 .3、计算2的结果是 .1、计算:11132 2734.2、已知一个长、宽之比为5:4且面积为140平方米的矩形菜地,求它的长和宽分别是多少米?3、观察下列各式及其验证过程:;验证:(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证. (2)针对上述各式反映的规律,写出用n(n为任意自然数,且2n≥)表示的等式,并进行验证.答案与解析二、选择题:1、2、3、4、5、6、二、填空题1、2、 3、 三、解答题 1 、解: 2、解: 3、解:《16.3二次根式的加减》同步练习1、下列计算正确的是( )A.182=22-B.32=1-C.32=5+D.5510+= 2、下列各组二次根式中,能够进行合并的一组是( ) A.3和18 B.3和13C.2a b 和2abD.1x -和1x + 3、下列计算正确的是( )A.33=6+B.33=0-C.33=9D.2(3)3-=- 4、计算98722-+的结果是( ) A.522-B.22C.2D.3225、实数,a b 在数轴上的位置如图所示,则化简222()a b a b --+的结果是( )A.2b -B.2a -C.2()b a -D.0 6、若526,265a b =+=,则,a b 的关系为( ) A .互为相反数 B .互为倒数 C .互为负倒数 D .绝对值相等◆ 填空题◆ 选择题1、计算:140101010-+=____________.2、一个长方形的面积是212cm,一个三角形的面积是248cm,则三角形比长方形的面积大____________2cm.3、一个三角形的三边长分别为18,12,32cm cm cm,则这个三角形的周长为_________. 4、如图在矩形内有两个相邻的正方形,面积分别为5和2,则阴影部分的面积为__________.1、计算:218(410)(80) 355-.2、已知32,32a b=22a b+的值.答案与解析三、选择题:1、2、3、◆解答题AB C4、7、8、二、填空题1、2、3、三、解答题1 、解:4、解:5、解:《17.1勾股定理》同步练习1.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,90=∠A,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,90=∠C,则a2+b2=c22.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25 B.三角形周长为25C.斜边长为5 D.三角形面积为203.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A. 0 B. 1C. 2 D. 34.如图,数轴上的点A所表示的数为x,则x2—10的立方根为()A2-10 B.2-10 C.2 D.-2◆选择题5.把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍B . 4倍C . 6倍D . 8倍6.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m ,当它把绳子的下端拉开5 m 后,发现下端刚好接触地面,则旗杆的高为 ( ) A .8cm B .10cm C .12cm D .14cm7.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 338.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( )A. 4B. 6C. 16D. 559.如图,三个正方形中的两个的面积S 1=5,S 2=则另一个的面积S 3为________.10.若正方形的面积为5cm 2,则正方形对角线长为__________cm .11.如图,消防云梯的长度是34米,在一次执行任务时,它只能停在离大楼16米远的地方,则云梯能达到大楼的高度是 米.3220BA12.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条 “路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.13.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B200m ,结果他在水中实际游了520m ,则该河流的宽度为 .14.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,•A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________ .17.如图,阴影部分是一个正方形,求此正方形的面积.18.如图,是一块由边长为10cm 的正方形地砖铺设的广场,一只鸽子落在点A 处,•它想先后吃到小朋友撒在B 、C 处的鸟食,则鸽子至少需要走多远的路程?A B C200m520m17cm◆ 解答题19.如图,小李准备建一个蔬菜大棚,棚宽4m,高3m,长8m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,若塑料薄膜每平方米1.2元,问小李至少要花多少钱?20.有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?21.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图(2)是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形。
(1)画出拼成的这个图形的示意图,写出它是什么图形.小汽车观察点小汽车C A B(2)用这个图形验证勾股定理.(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能验证勾股定理的图形吗?请画出拼后的示意图(无需验证)22.下面是数学课堂的一个学习片段, 阅读后, 请回答下面的问题:学习勾股定理有关内容后, 张老师请同学们交流讨论这样一个问题: “已知直角三角形ABC 的两边长分别为3和4, 请你求出第三边.”同学们经片刻的思考与交流后, 李明同学举手说: “第三边长是5”; 王华同学说: “第三边长是7.” 还有一些同学也提出了不同的看法…… (1)假如你也在课堂上, 你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)23.《中华人民共和国道路交通安全法》规定:•小汽车在城市街路上行驶速度不得超过70km/h .如图,一辆小汽车在一条城市道路上直道行驶,•某一时刻刚好行驶到路对面车速检测仪的正前方30m 处,•过了2s•后,•测得小汽车与车速检测仪间距离为50m .这辆小汽车超速了吗? 参考答案1.D 2.C 3. C 4.D 5.A 6.C 7.C 8.C 9.109 10.5 11.30 12.8 13.480 14.25dm 15.25cm 16.1017.正方形的边长为8151722=- 从而,正方形的面积为64cm 218.AB=,13012050,5040302222=+==+BC 合计50+130=180cm .19.54322=+,482.185=⨯⨯元. 20.如图,AB=12m ,BC=20m ,AD=4m 作DE ⊥BC 于E ,则CE=16m ,DE=12m , DC=20161222=+ 2054=÷至少要5S 才可能到达大树和伙伴在一起.21.(改编自课本80页的阅读与思考)(1)图形规范、正确 , 写出是直角梯形即可;(2)S 梯形 =21 (a +b)2S 梯形 ==ab +21 c 221 (a +b)2=ab +21 c2 整理,得a 2+b 2=c 2(3)拼出能验证勾股定理的图形.可参照课本学习内容.常见的有以下几种:22.分两种情况:当4为直角边长时,第三边长为5;当4为斜边长时,第三边长为7.(2)略.23.AC=30,AB=50,则BC=40305022=-7210006060240=÷⨯⨯÷km/h>70km/h即超速了.《勾股定理的逆定理》同步练习1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号) 4.在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边, ①若a 2+b 2>c 2,则∠c 为____________; ②若a 2+b 2=c 2,则∠c 为____________; ③若a 2+b 2<c 2,则∠c 为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.◆ 填空题◆ 选择题9.下列线段不能组成直角三角形的是( ). (A)a =6,b =8,c =10 (B)3,2,1===c b a(C)43,1,45===c b a (D)6,3,2===c b a10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).(A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26(D)25∶144∶16911.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形 (D)形状无法确定12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .◆ 解答题15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a<9,∴a=8. 8.13,直角三角形.提示:7<c<17.9.D. 10.C. 11.C.112.CD=9. 13..514.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数) 《平行四边形的性质》同步练习◆填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。