八年级上册数学三角形经典题型与常考易错题讲解及答案解析,初二数学三角形巩固练习题及答案

合集下载

人教版八年级上册数学 三角形解答题易错题(Word版 含答案)

人教版八年级上册数学 三角形解答题易错题(Word版 含答案)

人教版八年级上册数学 三角形解答题易错题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.(问题探究)将三角形ABC 纸片沿DE 折叠,使点A 落在点A '处.(1)如图,当点A 落在四边形BCDE 的边CD 上时,直接写出A ∠与1∠之间的数量关系;(2)如图,当点A 落在四边形BCDE 的内部时,求证:122A ∠+∠=∠;(3)如图,当点A 落在四边形BCDE 的外部时,探索1∠,2∠,A ∠之间的数量关系,并加以证明;(拓展延伸)(4)如图,若把四边形ABCD 纸片沿EF 折叠,使点A 、D 落在四边形BCFE 的内部点A '、D 的位置,请你探索此时1∠,2∠,A ∠,D ∠之间的数量关系,写出你发现的结论,并说明理由.【答案】【问题探究】(1)∠1=2∠A ;(2)证明见详解;(3)∠1=2∠A+∠2;【拓展延伸】(4)()212360A D ∠+∠=∠+∠+︒.【解析】【分析】(1)运用折叠原理及三角形的外角性质即可解决问题,(2)运用折叠原理及四边形的内角和定理即可解决问题,(3)运用三角形的外角性质即可解决问题,(4)先根据翻折的性质求出∠AEF、∠EFD,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,∠1=2∠A .理由如下:由折叠知识可得:∠EA′D=∠A ;∵∠1=∠A+∠EA′D ,∴∠1=2∠A .(2)∵∠1+∠A′EA+∠2+∠A′DA=360°,由四边形的内角和定理可知:∠A+∠A′+∠A′EA+∠A′DA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得∠A=∠A′,∴2∠A=∠1+∠2.(3)如图,∠1=2∠A+∠2理由如下:∵∠1=∠EFA+∠A ,∠EFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,(4)如图,根据翻折的性质,()3181201∠=-∠,()4181202∠=-∠, ∵34360A D ∠+∠+∠+∠=︒, ∴()()180118023601122A D ∠+∠+-∠+-∠=︒, 整理得,()212360A D ∠+∠=∠+∠+︒.【点睛】本题考查了折叠的性质,三角形外角性质,三角形内角和定理及四边形内角和的应用,主要考查学生运用定理进行推理和计算的能力.2.(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②∠1=180°−2x,∠2=180°−2y;③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解【解析】【分析】(1)①根据翻折方法可得△ADE≌△A′DE;②根据翻折方法可得∠AEA′=2x,∠ADA′=2y,再根据平角定义可得∠1=180°-2x,∠2=180°-2y;③首先由∠1=180°-2x,2=180°-2y,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y,再利用等量代换可得∠A=12(∠1+∠2);(2)根据折叠的性质和三角形内角和定理解答即可.【详解】(1)①根据翻折的性质知△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②)∵∠AED=x,∠ADE=y,∴∠AEA′=2x,∠ADA′=2y,∴∠1=180°-2x,∠2=180°-2y;③∠A=12(∠1+∠2);∵∠1=180°-2x ,∠2=180°-2y ,∴x=90-12∠1,y=90-12∠2, ∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12(∠1+∠2). (2))∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°,整理得,2∠A=∠2-∠1. ∴∠A=12(∠2-∠1). 【点睛】 此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【答案】(1)50°;(2)①见解析;②见解析;(3)360°.【解析】【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A 'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.4.如图,在△ABC 中,已知AD BC ⊥于点D ,AE 平分()BAC C B ∠∠>∠(1)试探究EAD ∠与C B ∠∠、的关系;(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,FD BD ⊥,如图2所示,此时EFD C B ∠∠∠与、的关系如何?(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,FD BC ⊥,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.【答案】(1)∠EAD=12(∠C-∠B ),理由见解析; (2)∠EFD=12(∠C-∠B ),理由见解析; (3)∠AFD=12(∠C-∠B )成立,理由见解析. 【解析】【分析】 (1)由图不难发现∠EAD=∠EAC-∠DAC ,再根据三角形的内角和定理结合角平分线的定义分别用结论中出现的角替换∠EAC 和∠DAC ;(2)作AG BC ⊥于G 转化为(1)中的情况,利用(1)的结论即可解决;(3)作AH BC ⊥于H 转化为(1)中的情况,利用(1)的结论即可解决.【详解】解:(1)∠EAD=12(∠C-∠B ).理由如下:∵AE 平分∠BAC ,∴∠BAE=∠CAE=12∠BAC∵∠BAC=180°-(∠B+∠C )∴∠EAC=12[180°-(∠B+∠C )] ∵AD ⊥BC ,∴∠ADC=90°, ∴∠DAC=180°-∠ADC-∠C=90°-∠C ,∵∠EAD=∠EAC-∠DAC∴∠EAD=12 [180°-(∠B+∠C )]-(90°-∠C )=12(∠C-∠B ). (2)∠EFD=12(∠C-∠B ).理由如下:作AG BC ⊥于G由(1)可知∠EAG=12(∠C-∠B ) ∵FD BD ⊥,AG BC ⊥∴FD ∥AG∴∠EAG=∠EFD ∴∠EFD=12(∠C-∠B ) (3)∠AFD=12(∠C-∠B ).理由如下:作AH BC ⊥于H由(1)可知∠EAH=12(∠C-∠B ) ∵FD BD ⊥,AH BC ⊥∴FD ∥AH∴∠EAH=∠AFD∴∠AFD=12(∠C-∠B)【点睛】本题主要考查了三角形的内角和定理,综合利用角平分线的定义和三角形内角和定理是解答此题的关键.5.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【解析】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C =∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP 与BE 的交点为M ,∵∠2+∠α=∠DME ,∠DME +∠C =∠1,∴∠1=∠C +∠2+∠α=90°+∠2+∠α.(4)如图④,设PE 与AC 的交点为F ,∵∠PFD =∠EFC ,∴180°-∠PFD =180°-∠EFC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.6.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒.(1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果. (2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论;(3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒,AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒, 在ACD Rt 中,9020CAD C ∠=︒-∠=︒,15EAD EAC CAD ∴∠=∠-∠=︒.(2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--,AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(), 在Rt △AC D 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠. (3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线,所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°, 所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+. 即∠DAE 的度数为902αβ-︒+. 【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.7.数学活动课上,老师提出了一个问题:我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系.解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.【答案】(1)∠DBC+∠BCE-∠A=180º(2)12∠A+∠F=90º【解析】【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和,三角形内角和定理计算即可.(2)根据角平分线可知∠FBC+∠FCB=12(∠DBC+∠BCE,)再根据三角形内角和定理,结合(1)即可解答.【详解】⑴∠DBC+∠BCE-∠A=180º.∠DBC+∠BCE=∠ABC+∠A+∠ACB+∠A=180°+∠A即∠DBC+∠BCE-∠A=180º.(2)12∠A+∠F=90°∵BF和CF分别平分∠CBD和∠BCE,∴∠CBF=12∠CBD,∠BCF=12∠BCE.∴∠CBF+∠BCF=12(∠CBD+∠BCE).∵∠CBF+∠BCF=180º-∠F,∠DBC+∠BCE=180º+∠A.∴180º-∠F =12(∠CBD+∠BCE)=12(180º+∠A)∴12∠A+∠F=90º.【点睛】本题考查了三角形外角性质及三角形内角和定理,熟练掌握三角形外角性质是解题的关键.8.根据题意解答:(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.解:∵AP、CP分别平分∠BAD、∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P= 12(∠B+∠D)=26°.①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.【答案】(1)证明见解析;(2)①∠P=26゜;②∠P=180°﹣12(∠B+∠D);③∠P=90°+ 12(∠B+∠D).【解析】试题分析:(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;②根据四边形的内角和等于360°,可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.试题解析:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)①∠P=26゜.∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D①,∠PAB+∠P=∠PCB+∠B②,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠2+∠P=∠3+∠B③,①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,∴∠P=12(∠B+∠D)=26°.②如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣12(∠B+∠D);③如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 12(∠B+∠D).点睛:本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.9.学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.【答案】(1)∠BOC=∠BAC+∠B+∠C.理由见解析;(2)∠BOC=90°+12∠A.理由见解析;(3)∠BOC=60°+23∠A.理由见解析.【解析】【分析】(1)如图1,连接AO,延长AO到H.由三角形的外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为:∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.10.如图,在△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=72°,∠C=30°,①求∠BAE的度数;②求∠DAE的度数;(2)探究:如果只知道∠B=∠C+42°,也能求出∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.【答案】(1)①39°;②21°;(2)21°.【解析】【分析】()1①先根据三角形内角和定理计算出BAC78∠=,然后根据角平分线定义得到1BAE BAC 392∠∠==;②根据垂直定义得到ADB 90∠=,则利用互余可计算出BAD 90B 18∠∠=-=,然后利用DAE BAE BAD ∠∠∠=-进行计算即可; ()2由B C BAC 180∠∠∠++=,B C 42∠∠=+可消去C ∠得到BAC 2222B ∠∠=-,则根据角平分线定义得到BAE 111B ∠∠=-,接着在ABD 中利用互余得BAD 90B ∠∠=-,然后利用DAE BAE BAD ∠∠∠=-进行计算即可得到DAE 21∠=.【详解】解:()1B C BAC 180∠∠∠++=①,BAC 180723078∠∴=--=, AE 平分BAC ∠,1BAE BAC 392∠∠∴==; AD BC ⊥②,ADB 90∠∴=,BAD 90B 18∠∠∴=-=,DAE BAE BAD 391821∠∠∠∴=-=-=;()2能.B C BAC 180∠∠∠++=,B C 42∠∠=+,C B 42∠∠∴=-,2B BAC 222∠∠∴+=,BAC 2222B ∠∠∴=-, AE 平分BAC ∠,BAE 111B ∠∠∴=-,在ABD 中,BAD 90B ∠∠=-,()()DAE BAE BAD 111B 90B 21∠∠∠∠∠∴=-=---=.【点睛】本题考查三角形内角和定理:三角形内角和是180.掌握角平分线和高的定义,熟练进行角度的运算.。

2022年人教版初中数学8年级上册《三角形》全章复习与巩固—巩固练习(基础)及答案

2022年人教版初中数学8年级上册《三角形》全章复习与巩固—巩固练习(基础)及答案

2022年人教版初中数学8年级上册《三角形》全章复习与巩固(基础)巩固练习【巩固练习】一、选择题1.一位同学用三根木棒拼成如图所示的图形,其中符合三角形概念的是()2.如图所示的图形中,三角形的个数共有()A.1个B.2个C.3个D.4个3.一个多边形的对角线共有27条,则这个多边形的边数是()A.8B.9C.10D.114.已知三角形两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm5.下列不能够镶嵌的正多边形组合是()A.正三角形与正六边形B.正方形与正六边形C.正三角形与正方形D.正五边形与正十边形6.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部7.(四川绵阳)王师傅用4根木条钉成一个四边形木架.如图所示,要使这个木架不变形,他至少要再订上几根木条?()A.0根B.1根C.2根D.3根8.(2020•郑州模拟)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°二、填空题9.三角形的外角和等于它的内角和的倍;2013边形的外角和是.10.如果三角形的两边长分别是3cm和6cm,第三边长是奇数,那么这个三角形的第三边长为________cm.11.已知多边形的内角和为540°,则该多边形的边数为;这个多边形一共有条对角线.12.一个多边形的每个外角都是18°,则这个多边形的内角和为.13.如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.一个多边形的内角和与一个外角的和为1500°,则这是个边形.15.(2020春•南京校级月考)如图:已知△ABC的∠B和∠C的外角平分线交于D,∠A=40°,那么∠D=度.16.在△ABC中,∠B=60°,∠C=40°,AD、AE分别是△ABC的高线和角平分线,则∠DAE 的度数为_________.三、解答题17.判断下列所给的三条线段是否能围成三角形?(1)5cm,5cm,a cm(0<a<10);(2)a+1,a+2,a+3;(3)三条线段之比为2:3:5.18.(2020春•丹江口市期末)如图,试求∠A+∠B+∠C+∠D+∠E的度数.19.多边形内角和与某一个外角的度数总和是1350°,求多边形的边数.20.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1.【答案】D;2.【答案】C;【解析】三个三角形:△ABC,△ACD,△ABD.3.【答案】B;【解析】根据多边形的对角线的条数公式列式,把所给数值代入进行计算即可求解.4.【答案】B;【解析】根据三角形的三边关系进行判定.5.【答案】B;【解析】A、正六边形的内角是120°,正三角形内角是60°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意;B、正六边形的内角是120°,正方形内角是90°,不能组成360°,所以不能镶嵌成一个平面,故本选项符合题意;C、正三角形的内角为60°,正方形的内角为90°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意;D、正五边形的内角为108°,正十边形的内角为144°,能组成360°,所以能镶嵌成一个平面,故本选项不合题意.故选B.6.【答案】C;【解析】三角形的三条高线的交点与三条角平分线的交点一定都在三角形内部,但三角形的三条高线的交点不确定:当三角形为锐角三角形时,则交点一定在三角形的内部;当三角形为钝角三角形时,交点一定在三角形的外部.7.【答案】B;8.【答案】B;【解析】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选B.二、填空题9.【答案】2,360°;【解析】三角形内角和为180°,任意多边形外角和等于360°.10.【答案】5cm或7cm;11.【答案】5,5;【解析】根据n边形的内角和定理得到关于n的方程∴(n﹣2)•180°=540°,解方程求得n,然后利用n边形的对角线条数为计算即可.12.【答案】3240°;【解析】由一个多边形的每个外角都等于18°,根据n边形的外角和为360°计算出多边形的边数n,然后根据n边形的内角和定理计算即可.13.【答案】15cm2,30cm2;【解析】△ABC的面积是△ABE面积的2倍.14.【答案】十;【解析】设这个多边形的边数为n,一个外角为0°至180°之间,则依题意可得(n﹣2)×180°+一个外角=1500°,解得只有n=10时符合要求.15.【答案】70°.【解析】解:∵∠A=40°,∴△ABC的∠B和∠C的外角和为:180°﹣∠1+180°﹣∠2=360°﹣(∠1+∠2)=360°﹣(180°﹣40°)=360°﹣140°=220°.由于CD、BD的平分线交于点D,则∠4+∠5=×220°=110°,根据三角形内角和定理,∠D=180°﹣110°=70°.16.【答案】10°.三、解答题17.【解析】解:(1)5+5=10>a(0<a<10),且5+a>5,所以能围成三角形;(2)当-1<a<0时,因为a+1+a+2=2a+3<a+3,所以此时不能围成三角形,当a=0时,因为a+1+a+2=2a+3=3,而a+3=3,所以a+1+a+2=a+3,所以此时不能围成三角形.当a >0时,因为a+1+a+2=2a+3>a+3.所以此时能围成三角形.(3)因为三条线段之比为2:3:5,则可设三条线段的长分别是2k,3k,5k,则2k+3k=5k 不满足三角形三边关系.所以不能围成三角形.18.【解析】解:连结BC,∵∠E+∠D+∠EFD=∠1+∠2+∠BFC=180°,又∵∠EFD=∠BFC,∴∠E+∠D=∠1+∠2,∴∠A+∠B+∠C+∠D+∠E=∠A+∠ABD+∠ACE+∠1+∠2=∠ABC+∠A+∠ACB=180゜.19.【解析】解:设这个外角度数为x,根据题意,得(n﹣2)×180°+x=1350°,解得:x=1350°﹣180°n+360°=1710°﹣180°n,由于0<x<180°,即0<1710°﹣180°n<180°,解得8.5<n<9.5,所以n=9.故多边形的边数是9.20.【解析】解:如图《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1.多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数).要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n-2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(四川南充)三根木条的长度如图所示,能组成三角形的是()【思路点拨】三角形三边关系的性质,即三角形的任意两边之和大于第三边,任意两边之差小于第三边.注意这里有“两边”指的是任意的两边,对于“两边之差”它可能是正数,也可能是负数,一般取“差”的绝对值.【答案】D【解析】要构成一个三角形.必须满足任意两边之和大于第三边.在运用时习惯于检查较短的两边之和是否大于第三边.A、B、C 三个选项中,较短两边之和小于或等于第三边.故不能组成三角形.D 选项中,2cm+3cm>4cm.故能够组成三角形.【总结升华】判断以三条线段为边能否构成三角形的简易方法是:①判断出较长的一边;②看较短的两边之和是否大于较长的一边,大于则能够成三角形,不大于则不能够成三角形.举一反三【变式】判断下列三条线段能否构成三角形.(1)3,4,5;(2)3,5,9;(3)5,5,8.【答案】(1)能;(2)不能;(3)能. 2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______.【答案】59c <<【解析】三角形的两边长分别是2和7,则第三边长c 的取值范围是│2-7│<c<2+7,即5<c<9.【总结升华】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3.(江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是().【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵CD 为△ABC 的AB 边上的中线,∴AD=BD,即BC-AC=3.又∵BC=8,∴AC=5.答:AC 的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三【变式】如图所示,在△ABC 中,D、E 分别为BC、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2020春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°,(1)求∠BAE 的度数;(2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数.【答案与解析】解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°.(2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中,BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6.如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用.只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6B.7C.8D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是()A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.《三角形》全章复习与巩固(提高)巩固练习【巩固练习】一、选择题1.如果三条线段的比是:①1:3:4;②1:2:3;③1:4:6;④3:3:6;⑤6:6:10;⑥3:4:5,其中可构成三角形的有()A.1个B.2个C.3个D.4个2.下列正多边形能够进行镶嵌的是()A.正三角形与正五边形B.正方形与正六边形C.正方形与正八边形D.正六边形与正八边形3.一个三角形的周长是偶数,其中的两条边分别为5和9,则满足上述条件的三角形个数为()A.2个B.4个C.6个D.8个4.如图,如果把△ABC沿AD折叠,使点C落在边AB上的点E处,那么折痕(线段AD)是△ABC 的()A.中线B.角平分线C.高D.既是中线,又是角平分线5.如图,AC⊥BC,CD⊥AB,DE⊥BC,则下列说法中错误的是()A.在△ABC中,AC是BC边上的高B.在△BCD中,DE是BC边上的高C.在△ABE中,DE是BE边上的高D.在△ACD中,AD是CD边上的高6.每个外角都相等的多边形,如果它的一个内角等于一个外角的9倍,则这个多边形的边数()A.19B.20C.21D.227.给出下列图形:其中具有稳定性的是()A.①B.③C.②③D.②③④8.(2020春•历城区期中)下面有关三角形的内角的说法正确的是()A.一个三角形中可以有两个直角B.一个三角形的三个内角能都大于70°C.一个三角形的三个内角能都小于50°D.三角形中最大的内角不能小于60°二、填空题10.若a、b、c表示△ABC的三边长,则|a-b-c|+|b-c-a|+|c-a-b|=________.11.三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为________.12.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为.13.如图,在△ABC中,D是BC边上的任意一点,AH⊥BC于H,图中以AH为高的三角形的个数为______个.14.用正三角形和正方形镶嵌平面,每一个顶点处有个正三角形和个正方形.15.(2020•金平区一模)已知a、b、c是△ABC的三边,且满足+(b﹣4)2=0,则第三边c的取值范围是.16.如图,是用四根木棒搭成的平行四边形框架,AB=8cm,AD=6cm,使AB固定,转动AD,当∠DAB=_____时,ABCD的面积最大,最大值是________.三、解答题17.(2020春•福泉市校级期中)如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF 与∠EFD的平分线相交于点P,求证:EP⊥FP.18.一个多边形截去一个角后,形成新多边形的内角和为2520°,求原多边形边数.19.已知AD是△ABC的高,∠BAD=70°,∠CAD=20°,(1)求∠BAC的度数.(2)△ABC是什么三角形.20.(2020春•苏州期末)观察并探求下列各问题,写出你所观察得到的结论,并说明理由.(1)如图,△ABC中,P为边BC上一点,试观察比较BP+PC与AB+AC的大小,并说明理由.(2)将(1)中点P移至△ABC内,得图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由.(3)将(2)中点P变为两个点P1、P2得下图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(4)将(3)中的点P1、P2移至△ABC外,并使点P1、P2与点A在边BC的异侧,且∠P1BC<∠ABC,∠P2CB<∠ACB,得图,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.(5)若将(3)中的四边形BP1P2C的顶点B、C移至△ABC内,得四边形B1P1P2C1,如图⑤,试观察比较四边形B1P1P2C1的周长与△ABC的周长的大小,并说明理由.【答案与解析】一、选择题1.【答案】B;【解析】根据两边之和大于第三边:⑤⑥满足.2.【答案】C;【解析】解:A、正三角形的每个内角是60°,正五边形每个内角是180°﹣360°÷5=108°,60m+108n=360°,m=6﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;B、正方形的每个内角是90°,正六边形的每个内角是120°,90m+120n=360°,m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能够进行镶嵌,不符合题意;C、正方形的每个内角是90°,正八边形的每个内角为:180°﹣360°÷8=135°,∵90°+2×135°=360°,∴能够组成镶嵌,符合题意;D、正八边形的每个内角为:180°﹣360°÷8=135°,正六边形的每个内角是120°,135m+120n=360°,n=3﹣m,显然m取任何正整数时,n不能得正整数,故不能够进行镶嵌,不符合题意.3.【答案】B;【解析】5+9=14,所以第三边长应为偶数,大于4而小于14的偶数有4个,所以4.【答案】B;【解析】折叠前后的图形完全相同.5.【答案】C;【解析】三角形高的定义.6.【答案】B;【解析】设外角为x则内角为9x,因为每一个内角与它的外角互为邻补角∴x+9x=180°;x=18°∵多边形的外角和为360°∴360°÷18°=20∴此多边形为20边形7.【答案】C;【解析】均是由三角形构成的图形,具有稳定性.8.【答案】D;【解析】解:∵三角形内角和=180°,90°+90°=180°,∴一个三角形中不可以由两个直角,∴A不正确;∵三角形内角和=180°,70°+70°+70°=210°,∴一个三角形的三个内角不能都大于70°,∴B不正确;∵三角形内角和=180°,50°+50°+50°=150°,∴一个三角形的三个内角不能多小于50°,∴C不正确;∵三角形内角和=180°,∴三角形中最大的内角不能小于60°,∴D正确;故选:D.二、填空题++;10.【答案】a b c【解析】根据三角形的三边关系可以去掉绝对值,再对原式进行化简.11.【答案】29cm;12.【答案】7;13.【答案】6;14.【答案】3;2;【解析】正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴用正三角形和正方形镶嵌平面,每一个顶点处有3个正三角形和2个正方形.15.【答案】5<c<13.【解析】解:根据题意得:,解得:,则9﹣4<c<9+4,即5<c<13.16.【答案】90°,48cm2;三、解答题17.【解析】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.18.【解析】解:设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为15,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为17,所以多边形的边数可以为15,16或17.故答案为:15,16或17.19.【解析】解:(1)当高AD在△ABC的内部时(如图(1)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD+∠CAD=70°+20°=90°.当高AD在△ABC的外部时(如图(2)).因为∠BAD=70°,∠CAD=20°,所以∠BAC=∠BAD-∠CAD=70°-20°=50°.综上可知∠BAC的度数为90°或50°.(2)如图(1),当AD在△ABC的内部时,因为∠BAC=∠BAD+∠CAD=70°+20°=90°,所以△ABC是直角三角形.如图(2),当AD在△ABC的外部时,因为∠BAC=∠BAD-∠CAD=70°-20°=50°,∠ABC=90°-∠BAD=90°-70°=20°,所以∠ACB=180°-∠ABC-∠BAC=180°-50°-20°=110°.所以△ABC为钝角三角形.综上可知,△ABC是直角三角形或钝角三角形.20.【解析】解:(1)BP+PC<AB+AC,理由:三角形两边之和大于第三边,或两点之间线段最短.(2)△BPC的周长<△ABC的周长.理由如下:如图,延长BP交AC于M,在△ABM中,BP+PM<AB+AM,在△PMC中,PC<PM+MC,两式相加得BP+PC<AB+AC,于是得:△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由如下:如图,分别延长BP1、CP2交于M,由(2)知,BM+CM<AB+AC,又P1P2<P1M+P2M,可得,BP1+P1P2+P2C<BM+CM<AB+AC,可得结论.或:作直线P1P2分别交AB、AC于M、N(如图),△BMP1中,BP1<BM+MP1,△AMN中,MP1+P1P2+P2M<AM+AN,△P2NC中,P2C<P2N+NC,三式相加得:BP1+P1P2+P2C<AB+AC,可得结论.(4)四边形BP1P2C的周长<△ABC的周长.理由如下:将四边形BP1P2C沿直线BC翻折,使点P1、P2落在△ABC内,转化为(3)情形,即可.(5)比较四边形B1P1P2C1的周长<△ABC的周长.理由如下:如图,分别作如图所示的延长线交△ABC的边于M、N、K、H,在△BNM中,NB1+B1P1+P1M<BM+BN,又显然有,B1C1+C1K<NB1+NC+CK,及C1P2+P2H<C1K+AK+AH,及P1P2<P2H+MH+P1M,将以上各式相加,得B1P1+P1P2+P2C+B1C1<AB+BC+AC,于是得结论.《三角形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:。

八年级数学上册三角形解答题易错题(Word版 含答案)

八年级数学上册三角形解答题易错题(Word版 含答案)

八年级数学上册三角形解答题易错题(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【答案】(1)详见解析;(2)①50°;②85°;③63°.【解析】【分析】(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得110(133-x)+x=70,求出x的值即可.【详解】(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴12ADC ADB∠=∠,12AEC AEB∠=∠,∴∠DCE=∠ADC+∠AEC+∠DAE,=12(∠ADB+∠AEB)+∠DAE,=45°+40°, =85°;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°-x°∴110(133-x)+x=70,∴13.3-110x+x=70,解得x=63,即∠A的度数为63°.【点睛】此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.2.如图,在△ABC 中,记∠A=x 度,回答下列问题:(1)图中共有三角形个.(2)若 BD,CE 为△ABC 的角平分线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.(3)若 BD,CE 为△ABC 的高线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.【答案】(1)图中共有三角形 8 个;(2)(90+12x ) ;(3)(180-x).【解析】【分析】本题考查的是三角形内角和定理,分析题意观察图形,根据三角形内角和为180°可知∠ABC=180-2x,根据角平分线的性质可以求出∠BHC,根据高线的性质可知∠CDB=∠BEC=90º,再次利用三角形内角和定理可以求答案【详解】解:(1)图中共有三角形 8 个;(2)∠BHC=(90+ 12x )度.∵BD,CE 分别是∠ABC,∠ACB 的平分线,∴∠BHC=180º-∠HBC-∠HCB=180º-12(∠ABC+∠ACB)= (90+12x )度.(3)∠BHC=(180-x)度,∵BD,CE 为△ABC 的高线,∴BD⊥AC,CE⊥AB,∴∠CDB=∠BEC=90º,∵∠BEC+∠ABC+∠BCH=180°∠CDB+∠ACB+∠CBH=180°∴∠BEC+∠ABC+∠BCH+∠CDB+∠ACB+∠CBH=360°∠ABC+∠BCH+∠ACB+∠CBH=180°∵∠ABC+∠ACB=180°-∠A∠BCH+∠CBH=180°-∠BHC∴180°-∠A+180°-∠BHC=180°∴∠BHC=(180-x)度【点睛】本题的关键是掌握三角形内角和定理3.如图, A为x轴负半轴上一点, B为x轴正半轴上一点, C(0,-2),D(-3,-2).(1)求△BCD的面积;(2)若AC⊥BC,作∠CBA的平分线交CO于P,交CA于Q,判断∠CPQ与∠CQP的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ=∠CQP,理由见解析;【解析】【分析】(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ,然后根据等角的余角相等解答;【详解】解:(1)∵点C(0,-2),D(-3,-2),∴CD=3,且CD//x轴∴△BCD面积=12×3×2=3;(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.4.如图①,在平面直角坐标系中,点A 的坐标为()0,4,4OC OB =.① ②(1)若ABC ∆的面积为20,求点B ,C 的坐标.(2)如图①,向x 轴正方向移动点B ,使90ABC ACB ∠-∠=︒,作BAC ∠的平分线AD 交x 轴于点D ,求ADO ∠的度数.(3)如图②,在(2)的条件下,线段AD 上有一动点Q ,作AQM DQP ∠=∠,它们的边分别交x 轴、y 轴于点M ,P ,作FMG DMQ ∠=∠,试判断FM 与PQ 的位置关系,并说明理由.【答案】(1)10,03B ⎛⎫⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭;(2)45°;(3)FM PQ ⊥ 【解析】【分析】(1)设OB=a ,根据三角形的面积公式列式求出a ,即可得到点B 、C 的坐标;(2)设ACB α∠=,根据题意得到∠ABC=90°+α,根据三角形内角和定理得到∠BAC=90°-2α,再根据角平分线的定义、三角形外角的性质即可得到答案;(3)延长FM 交QP 于H ,设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,根据三角形外角的性质、三角形内角和定理求出∠2+∠DMH=90°即可得到答案.【详解】(1)设OB=a ,则OC=4a ,∴BC=3a ,由题意得,134202a ⨯⨯=, 解得:a=103, ∴OB=103,OC=403,∴10,03B ⎛⎫ ⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭; (2)设ACB α∠=,∵90ABC ACB ∠-∠=︒,∴90ABC α∠=︒+,∴180BAC ABC ACB ∠=︒-∠-∠()18090αα=︒-︒+-902α=︒-,∵AD 平分BAC ∠,∴1452DAC BAC α∠=∠=︒-, ∴4545ADO DAC ACB αα∠=∠+∠=︒-+=︒;(3)FM ⊥PQ ,理由如下:延长FM 交PQ 于点H ,.设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,则∠DMH=∠FMG=β,∠AQM=∠QMD+∠QDM ,即α=β+45°,∴∠1=180°-∠DQP-∠ADO=90°-β,∴∠2=∠1=90°-β,∴∠2+∠DMH=β+90°-β=90°,∴∠MHQ=90°,即FM ⊥PQ.【点睛】本题考查了角平分线的定义,三角形外角的性质,三角形内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5.已知:点D 是△ABC 所在平面内一点,连接AD 、CD .(1)如图1,若∠A =28°,∠B =72°,∠C =11°,求∠ADC ;(2)如图2,若存在一点P ,使得PB 平分∠ABC ,同时PD 平分∠ADC ,探究∠A ,∠P ,∠C 的关系并证明;(3)如图3,在 (2)的条件下,将点D 移至∠ABC 的外部,其它条件不变,探究∠A ,∠P ,∠C 的关系并证明.【答案】(1) 111º ;(2) ∠A-∠C=2∠P,理由见解析;(3) ∠A+∠C=2∠P,理由见解析.【解析】【分析】(1)延长AD交BC于E,利用三角形外角的性质即可求解;(2)∠A-∠C=2∠P,由三角形外角等于不相邻的两个内角的和以及(1)结论即可求解;(3)∠A+∠C=2∠P,由(2)结论以及角平分线的性质即可得到.【详解】(1)如图1,延长AD交BC于E,在△ABE中,∠AEC=∠A+∠B=28º+72º=100º,在△DEC中,∠ADC=∠AEC+∠C=100º+11º=111º ;(2)∠A-∠C=2∠P,理由如下:如图2,∠5=∠A+∠1,∠5=∠P+∠3∴∠A+∠1=∠P+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠A+∠2=∠P+∠4由(1)知∠4=∠2+∠P+∠C∴∠A+∠2=∠P+∠2+∠P+∠C∴∠A-∠C=2∠P(3)∠A+∠C=2∠P,理由如下:如图3,同(2)理知∠A+∠1=∠P+∠3,∠C+∠4=∠P+∠2∴∠A+∠C+∠1+∠4=2∠P+∠2+∠3∵PB平分∠ABC,PD平分∠ADC∴∠1=∠2,∠3=∠4∴∠1+∠4=∠2+∠3∴∠A+∠C=2∠P【点睛】本题考查了三角形外角的性质,角平分线的定义,整体思想的利用是解题的关键.6.(1)如图1,有一块直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过B,C两点,且直角顶点X在△ABC内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA+∠XCA=90°,证明见解析;(2)∠A+(∠XBA-∠XCA)=90°【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC+∠ACB=180°﹣∠A=140°,∠XBC+∠XCB=180°﹣∠XBC=90°,进而可求出∠ABX+∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX+∠ACX)+∠A=180°,则可得出结论.(2)由②的解题思路可得:∠A+(∠XBA-∠XCA)=90°.(1)①若∠A=40°,∠ABC+∠ACB= 140 °;∠XBC+∠XCB= 90 °;②∠A+∠XBA+∠XCA=90°(或等式的变形也可以)证明:∵∠X=90°∴∠XBC+∠XCB=180°-∠X=90°∵∠A+∠ABC+∠ACB=180°,∴∠A+(∠XBA+∠XCA)+(∠XBC+∠XCB)=180°,∴∠A+(∠XBA+∠XCA)=180°-90°=90°,∴∠A=90°-(∠XBA+∠XCA)(2)∠A+(∠XBA-∠XCA) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.7.(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请用你学过的知识予以证明;(2)如图②,设x=∠A+∠B+∠C+∠D+∠E,运用(1)中的结论填空.x=____________°;x=____________°;x=____________°;(3)如图③,一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=________°.【答案】(1)证明见解析. (2)180;180;180;(3)140【解析】【分析】(1)首先延长BO交AC于点D,可得BOC=∠BDC+∠C,然后根据∠BDC=∠A+∠B,判断出∠BOC=∠B+∠C+∠A即可.(2)a、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.b、首先根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D,然后根据∠1+∠2+∠E=180°,可得x=∠A+∠B+∠C+∠D+∠E=180,据此解答即可.c、首先延长EA交CD于点F,EA和BC交于点G,然后根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B,再根据∠GFC+∠FGC+∠C=180°,可得x=∠A+∠B+∠C+∠D+∠E=180°,据此解答即可.(3)根据∠BOD=70°,可得∠A+∠C+∠E=70°,∠B+∠D+∠F=70°,据此求出∠A+∠B+∠C+∠D+∠E+∠F的度数是多少即可.【详解】(1)证明:如图,延长BO交AC于点D,则∠BOC=∠BDC+∠C,又∵∠BDC=∠A+∠B,∴∠BOC=∠B+∠C+∠A.(2)180;180;180(3)140【点睛】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.(2)此题还考查了三角形的外角的性质和应用,要熟练掌握,解答此题的关键是要明确:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.8.如图,将一块三角板ABC的直角顶点C放在直尺的一边PQ上,直尺的另一边MN与三角板的两边AC、BC分别交于两点E、D,且AD为∠BAC的平分线,∠B=300,∠ADE=150.(1)求∠BDN的度数;(2)求证:CD=CE.【答案】(1)∠BDN=∠CDE=450(2)CD=CE【解析】试题分析:(1)根据直角三角形的性质,求出∠BAC=60°,然后根据角平分线的性质求出∠CAD=30°,进而根据三角形的内角和求出∠CDA=60°,最后根据角的和差求解即可;(2)结合(1)的关系,由“等角对等边”得出结论.试题解析:(1)在直角三角形ABC中,∠ACB=900,∠B=300,∴∠BAC=600,又AD平分∠BAC,∴∠CAD=300,又∠ACD=900,∴∠CDA=600又∠ADE=150,∴∠CDE=∠CDA-∠ADE=600-150=450∴∠BDN=∠CDE=450(2)在△CED中,∠ECD=900,∠CDE=450∴∠CED=450∴ CD=CE点睛:此题主要考查了直角三角形、角平分线的性质,三角形的内角和定理,解题关键是利用三角形的外角和内角求解角之间的和差关系即可.9.根据题意解答:(1)如图1的图形我们把它称为“8字形”,请说明∠A+∠B=∠C+∠D.(2)阅读下面的内容,并解决后面的问题:如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度数.解:∵AP、CP分别平分∠BAD、∠BCD∴∠1=∠2,∠3=∠4由(1)的结论得:∠P+∠3=∠1+∠B①,∠P+∠2=∠4+∠D②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D∴∠P= 12(∠B+∠D)=26°.①如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,请猜想∠P的度数,并说明理由.②在图4中,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.③在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论,无需说明理由.【答案】(1)证明见解析;(2)①∠P=26゜;②∠P=180°﹣12(∠B+∠D);③∠P=90°+ 12(∠B+∠D).【解析】试题分析:(1)根据三角形的内角和等于180°列式整理即可得证;(2)根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据(1)的结论列出整理即可得解;①表示出∠PAD和∠PCD,再根据(1)的结论列出等式并整理即可得解;②根据四边形的内角和等于360°,可得(180°﹣∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°﹣∠3)+∠D=360°,然后整理即可得解;③根据(1)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.试题解析:(1)∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180゜,∴∠A+∠B+∠AOB=∠C+∠D+∠COD.∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)①∠P=26゜.∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4.由(1)的结论得:∠PAD+∠P=∠PCD+∠D①,∠PAB+∠P=∠PCB+∠B②,∵∠PAB=∠1,∠1=∠2,∴∠PAB=∠2,∴∠2+∠P=∠3+∠B③,①+③得∠2+∠P+∠PAD+∠P=∠3+∠B+∠PCD+∠D,即2∠P+180°=∠B+∠D+180°,∴∠P=12(∠B+∠D)=26°.②如图4,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴(180°﹣2∠1)+∠B=(180°﹣2∠4)+∠D,在四边形APCB中,(180°﹣∠1)+∠P+∠4+∠B=360°,在四边形APCD中,∠2+∠P+(180°﹣∠3)+∠D=360°,∴2∠P+∠B+∠D=360°,∴∠P=180°﹣12(∠B+∠D);③如图5,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+ 12(∠B+∠D).点睛:本题考查了三角形的内角和定理,角平分线的定义,准确识图并运用好“8字形”的结论,然后列出两个等式是解题的关键,用阿拉伯数字加弧线表示角更形象直观.10.等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转。

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

八年级数学上学期《三角形》全章复习与巩固—知识讲解(提高)——含课后作业与答案

《三角形》全章复习与巩固(提高)知识讲解1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n-条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.(2016•长沙模拟)一个三角形的三边长分别是3,2a-1,6,则整数a的值可能是( ).A.2,3 B.3,4 C.2,3,4 D.3,4,5【思路点拨】直接利用三角形三边关系,得出a的取值范围.【答案】B【解析】解:∵一个三角形的三条边长分别为3,2a-1,6,∴21 219 aa-⎧⎨-⎩>3<解得:2<a<5,则整数a的值可能是3,4,故选B.【总结升华】主要考察了三角形三边关系,正确得出a的取值范围是解题关键. 举一反三:【变式】(2014秋•孝感月考)已知a、b、c是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.【答案】解:∵a、b、c是三角形三边长,∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,=b+c-a-b+c+a-c+a+b-a+b-c=2b.2.如图,O是△ABC内一点,连接OB和OC.(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=2BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.(2015春•石家庄期末)已知△ABC中,AE平分∠BAC(1)如图1,若AD⊥BC于点D,∠B=72°,∠C=36°,求∠DAE的度数;(2)如图2,P为AE上一个动点(P不与A、E重合,PF⊥BC于点F,若∠B>∠C,则∠EP F=是否成立,并说明理由.【思路点拨】(1)利用三角形内角和定理和已知条件直接计算即可;(2)成立,首先求出∠1的度数,进而得到∠3的度数,再根据∠EPF=180°﹣∠2﹣∠3计算即可.【答案与解析】证明:(1)如图1,∵∠B=72°,∠C=36°,∴∠A=180°﹣∠B﹣∠C=72°;又∵AE平分∠BAC,∴∠1==36°,∴∠3=∠1+∠C=72°,又∵AD⊥BC于D,∴∠2=90°,∴∠DAE=180°﹣∠2﹣∠3=18°.(2)成立.如图2,∵AE平分∠BAC,∴∠1===90°﹣,∴∠3=∠1+∠C=90°﹣+,又∵PF⊥BC于F,∴∠2=90°,∴∠EPF=180°﹣∠2﹣∠3=.【总结升华】本题考查了三角形的内角以及角平分线的性质,准确识别图形是解题的关键.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图,AC⊥BC,CD⊥AB,图中有对互余的角?有对相等的锐角?【答案】3,2.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

人教版八年级数学上册 三角形解答题易错题(Word版 含答案)

人教版八年级数学上册 三角形解答题易错题(Word版 含答案)

人教版八年级数学上册三角形解答题易错题(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.2.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE 分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°,∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线, ∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°. 在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°.【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX等于多少度;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【答案】(1)详见解析;(2)①50°;②85°;③63°.【解析】【分析】(1)连接AD并延长至点F,根据外角的性质即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;(2)①根据(1)得出∠ABX+∠ACX+∠A=∠BXC,再根据∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度数;②先根据(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度数;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,设∠A为x°,即可列得110(133-x)+x=70,求出x的值即可.【详解】(1)如图(1),连接AD并延长至点F,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°-40°=50°;②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,∴12(∠ADB+∠AEB)=90°÷2=45°,∵DC平分∠ADB,EC平分∠AEB,∴12ADC ADB∠=∠,12AEC AEB∠=∠,∴∠DCE=∠ADC+∠AEC+∠DAE,=12(∠ADB+∠AEB)+∠DAE,=45°+40°, =85°;③由②得∠BG1C=110(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°-x°∴110(133-x)+x=70,∴13.3-110x+x=70,解得x=63,即∠A的度数为63°.【点睛】此题考查三角形外角的性质定理,三角形的外角等于与它不相邻的内角的和,,根据此定理得到角度的规律,由此解决问题,此题中得到平分角的变化规律是解题的难点.4.如图,在△ABC 中,记∠A=x 度,回答下列问题:(1)图中共有三角形个.(2)若 BD,CE 为△ABC 的角平分线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.(3)若 BD,CE 为△ABC 的高线,则∠BHC= 度(结果用含 x 的代数式表示),并证明你的结论.【答案】(1)图中共有三角形 8 个;(2)(90+12x ) ;(3)(180-x).【解析】【分析】本题考查的是三角形内角和定理,分析题意观察图形,根据三角形内角和为180°可知∠ABC=180-2x,根据角平分线的性质可以求出∠BHC,根据高线的性质可知∠CDB=∠BEC=90º,再次利用三角形内角和定理可以求答案【详解】解:(1)图中共有三角形 8 个;(2)∠BHC=(90+ 12x )度.∵BD,CE 分别是∠ABC,∠ACB 的平分线,∴∠BHC=180º-∠HBC-∠HCB=180º-12(∠ABC+∠ACB)= (90+12x )度.(3)∠BHC=(180-x)度,∵BD,CE 为△ABC 的高线,∴BD⊥AC,CE⊥AB,∴∠CDB=∠BEC=90º,∵∠BEC+∠ABC+∠BCH=180°∠CDB+∠ACB+∠CBH=180°∴∠BEC+∠ABC+∠BCH+∠CDB+∠ACB+∠CBH=360°∠ABC+∠BCH+∠ACB+∠CBH=180°∵∠ABC+∠ACB=180°-∠A∠BCH+∠CBH=180°-∠BHC∴180°-∠A+180°-∠BHC=180°∴∠BHC=(180-x)度【点睛】本题的关键是掌握三角形内角和定理5.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE+β﹣∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【点睛】此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.6.如图①,在平面直角坐标系中,点A 的坐标为()0,4,4OC OB =.① ②(1)若ABC ∆的面积为20,求点B ,C 的坐标.(2)如图①,向x 轴正方向移动点B ,使90ABC ACB ∠-∠=︒,作BAC ∠的平分线AD 交x 轴于点D ,求ADO ∠的度数.(3)如图②,在(2)的条件下,线段AD 上有一动点Q ,作AQM DQP ∠=∠,它们的边分别交x 轴、y 轴于点M ,P ,作FMG DMQ ∠=∠,试判断FM 与PQ 的位置关系,并说明理由.【答案】(1)10,03B ⎛⎫ ⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭;(2)45°;(3)FM PQ ⊥ 【解析】【分析】(1)设OB=a ,根据三角形的面积公式列式求出a ,即可得到点B 、C 的坐标;(2)设ACB α∠=,根据题意得到∠ABC=90°+α,根据三角形内角和定理得到∠BAC=90°-2α,再根据角平分线的定义、三角形外角的性质即可得到答案;(3)延长FM 交QP 于H ,设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,根据三角形外角的性质、三角形内角和定理求出∠2+∠DMH=90°即可得到答案.【详解】(1)设OB=a ,则OC=4a ,∴BC=3a ,由题意得,134202a ⨯⨯=, 解得:a=103, ∴OB=103,OC=403, ∴10,03B ⎛⎫ ⎪⎝⎭,40,03C ⎛⎫ ⎪⎝⎭; (2)设ACB α∠=,∵90ABC ACB ∠-∠=︒,∴90ABC α∠=︒+,∴180BAC ABC ACB ∠=︒-∠-∠()18090αα=︒-︒+- 902α=︒-,∵AD 平分BAC ∠,∴1452DAC BAC α∠=∠=︒-, ∴4545ADO DAC ACB αα∠=∠+∠=︒-+=︒;(3)FM ⊥PQ ,理由如下:延长FM 交PQ 于点H ,.设∠DQP=∠AQM=α,∠FMG=∠DMQ=β,则∠DMH=∠FMG=β,∠AQM=∠QMD+∠QDM ,即α=β+45°,∴∠1=180°-∠DQP-∠ADO=90°-β,∴∠2=∠1=90°-β,∴∠2+∠DMH=β+90°-β=90°,∴∠MHQ=90°,即FM ⊥PQ.【点睛】本题考查了角平分线的定义,三角形外角的性质,三角形内角和定理,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.7.如图,已知,在△ABC 中,∠B<∠C,AD 平分∠BAC,E 的线段AD(除去端点A 、D)上一动点,EF⊥BC 于点F.(1)若∠B=40°,∠DEF=10°,求∠C 的度数.(2)当E 在AD 上移动时,∠B、∠C、∠DEF 之间存在怎样的等量关系?请写出这个等量关系,并说明理由.【答案】(1)∠C=60°.(2)∠C-∠B=2∠DEF.理由见解析【解析】试题分析:(1)已知:EF⊥BC,∠DEF=10°可以求得∠EDF 的度数,∠EDF 又是∆ABD 的外角,已知∠B 的度数,可求得∠BAD 的值,AD 平分∠BAC,所以∠BAC 的值也可求出,从而求出∠C。

【精选】人教版八年级数学上册 三角形解答题易错题(Word版 含答案)

【精选】人教版八年级数学上册 三角形解答题易错题(Word版 含答案)

【精选】人教版八年级数学上册三角形解答题易错题(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.小明在学习三角形的知识时, 发现如下三个有趣的结论:(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E, 则BE、DE的位置关系是;(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是;(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE 的位置关系是 . 请你完成命题 (3)证明.【答案】(1)BE⊥DE;(2)BE//DF;(3)BE⊥DE.证明见解析.【解析】【分析】(1)由∠A=∠C=90°可以得到∠HDC=∠AB H,设∠HDC=∠AB H=x,可得∠HDG=∠CDG=∠FB H=∠AB F=12x,则有∠CDG+∠CGD=90°,由∠CGD=∠BGE,可得∠BGE+∠FBE=90°,即BE⊥DE;(2) 由∠A=∠C=90°可以得到∠HDC=∠AB H,设∠HDC=∠AB H=x,可得∠EB H=∠AB E=1 2 x,则∠DGE=90°+12x,∠CDM=180°-x,由DF平分∠CDM,则∠CDF=12(180°-x),所以∠CDF+∠HDC=12(180°-x),然后运用同位角相等,即可证明;(3)设∠BFA=∠CFD=x,由∠A=∠C=90°可以得到∠EBC=∠FDN=90°+x,由根据题意可得:∠EDF=∠EBF=12(90°+x);且∠BFD=180°+x,最后用四边形内角和,求出∠BED=90°,完成证明.【详解】解:(1)BE⊥DE,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H设∠HDC=∠AB H=x∵∠ABC的平分线与∠ADC的平分线交于点E∴∠HDG=∠CDG=∠FB H=∠AB F=1 2 x又∵∠CDG+∠CGD=90°,∠CGD=∠BGE ∴∠BGE+∠FBE=90°,即BE⊥DE;(2)DF∥AB,理由如下:∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H∵∠A=∠C=90°,∠DHC=∠BHA∴∠HDC=∠AB H∵BE平分∠ABH,∴∠EB H=∠AB E=1 2 x∴∠DGE=90°+1 2 x∵∠CDM=180°-x,DF平分∠CDM∴∠CDF=12(180°-x)=90°-12x∴∠HDF=∠CDF+∠CDH=90°-12x+x=90°+12x∴∠DGE=∠HDF∴DF∥AB(3)BE⊥DE,证明如下:设∠BFA=∠CFD=x,∵∠A=∠C=90°∴∠EBC=∠FDN=90°+x,∵∠ABC的外角平分线与∠ADC的外角平分线交于点E∴∠EDF=∠EBF=12(90°+x)又∵∠BFD=180°-∠AFB=180°-x∴∠BFD=360°-12(90°+x)-12(90°+x)-(180°-x)=90°即BE⊥DE【点睛】本题主要考查了直角三角形和多边形内角和的知识,考查知识点简单,但过程复杂,难度较大,运用方程思想是一个不错的方法.2.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.3.(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②∠1=180°−2x,∠2=180°−2y;③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解【解析】【分析】(1)①根据翻折方法可得△ADE≌△A′DE;②根据翻折方法可得∠AEA′=2x,∠ADA′=2y,再根据平角定义可得∠1=180°-2x,∠2=180°-2y;③首先由∠1=180°-2x,2=180°-2y,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y,再利用等量代换可得∠A=12(∠1+∠2);(2)根据折叠的性质和三角形内角和定理解答即可.【详解】(1)①根据翻折的性质知△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②)∵∠AED=x,∠ADE=y,∴∠AEA′=2x,∠ADA′=2y,∴∠1=180°-2x,∠2=180°-2y;③∠A=12(∠1+∠2);∵∠1=180°-2x,∠2=180°-2y,∴x=90-12∠1,y=90-12∠2,∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12(∠1+∠2).(2))∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°,整理得,2∠A=∠2-∠1.∴∠A=12(∠2-∠1).【点睛】此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.4.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+12∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.【答案】(1)见解析;(2)12∠A=∠P,理由见解析;(3)∠P=90°﹣12∠A,理由见解析【解析】【分析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可:(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果,(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.【详解】证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,∴∠PBC+∠PCB=12(180°﹣∠A),根据三角形内角和定理可知∠BPC=180°﹣12(180°﹣∠A)=90°+12∠A;(2)12∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=12∠ABC,∠PCE=12∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴12∠ACP=12∠ABC+12∠A,∴12∠ABC+12∠A=∠PBC+∠P,∴12∠A=∠P.(3)∠P=90°﹣12∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°﹣(∠PBC+∠PCB)=180°﹣12(∠FBC+∠ECB)=180°﹣12(∠A+∠ACB+∠A+∠ABC)=180°﹣12(∠A+180°)=90°﹣12∠A.【点睛】本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.5.(1)如图1,有一块直角三角板XYZ(其中∠X=90°)放置在△ABC上,恰好三角板XYZ 的两条直角边XY,XZ分别经过B,C两点,且直角顶点X在△ABC内部.①若∠A=40°,∠ABC+∠ACB= °;∠XBC+∠XCB= °;②试判断∠A与∠XBA+∠XCA之间存在怎样数量关系?并写出证明过程.(2)如图2,如果直角顶点X在△ABC外部,试判断∠A、∠XBA、∠XCA之间又存在怎样的数量关系?(只写出答案,无需证明).【答案】(1)①140,90;②∠A+∠XBA +∠XCA=90°,证明见解析;(2)∠A+(∠XBA -∠XCA )=90° 【解析】试题分析:(1)①根据三角形内角和定理可得∠ABC +∠ACB =180°﹣∠A =140°,∠XBC +∠XCB =180°﹣∠XBC =90°,进而可求出∠ABX +∠ACX 的度数;②根据三角形内角和定义有90°+(∠ABX +∠ACX )+∠A =180°,则可得出结论. (2)由②的解题思路可得:∠A+(∠XBA -∠XCA )=90°. (1)①若∠A =40°,∠ABC +∠ACB = 140 °; ∠XBC +∠XCB = 90 °;②∠A+∠XBA +∠XCA=90°(或等式的变形也可以) 证明:∵∠X=90°∴∠XBC +∠XCB=180°-∠X=90° ∵∠A +∠ABC +∠ACB =180°,∴∠A +(∠XBA +∠XCA )+(∠XBC +∠XCB )=180°, ∴∠A +(∠XBA +∠XCA )=180°-90°=90°, ∴∠A=90°-(∠XBA +∠XCA ) (2) ∠A+(∠XBA -∠XCA ) =90°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是熟练掌握三角形的内角和为180°以及沟通外角和内角的关系.6.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒. (1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】 【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果.(2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论;(3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】 解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒,AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒,在ACD Rt 中,9020CAD C ∠=︒-∠=︒, 15EAD EAC CAD ∴∠=∠-∠=︒. (2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--,AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(),在Rt △ACD 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠.(3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线, 所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°, 所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+.即∠DAE 的度数为902αβ-︒+.【点睛】 本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.7.数学活动课上,老师提出了一个问题: 我们知道,三角形的一个外角等于和它不相邻的两个内角的和,那么三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系?(1)独立思考,请你完成老师提出的问题:如图所示,已知∠DBC 和∠BCE 分别为△ABC 的两个外角,试探究∠A 和∠DBC ,∠BCE 之间的数量关系.解:⑵合作交流,“创新小组”受此问题的启发:分别作外角∠CBD 和∠BCE 的平分线BF 和CF ,交于点F (如图所示),那么∠A 与∠F 之间有何数量关系?请写出解答过程.【答案】(1)∠DBC+∠BCE -∠A=180º(2)12∠A+∠F=90º 【解析】【分析】 (1)根据三角形的一个外角等于和它不相邻的两个内角的和,三角形内角和定理计算即可. (2)根据角平分线可知∠FBC+∠FCB=12(∠DBC+∠BCE ,)再根据三角形内角和定理,结合(1)即可解答.⑴∠DBC+∠BCE -∠A=180º.∠DBC+∠BCE=∠ABC+∠A+∠ACB+∠A=180°+∠A即∠DBC+∠BCE -∠A=180º.(2)12∠A+∠F=90° ∵BF 和CF 分别平分∠CBD 和∠BCE ,∴∠CBF=12 ∠CBD ,∠BCF=12∠BCE. ∴∠CBF+∠BCF=12 (∠CBD+∠BCE). ∵∠CBF+∠BCF=180º-∠F ,∠DBC+∠BCE=180º+∠A. ∴180º-∠F =12 (∠CBD+∠BCE )=12 (180º+∠A) ∴12∠A+∠F=90º. 【点睛】本题考查了三角形外角性质及三角形内角和定理,熟练掌握三角形外角性质是解题的关键.8.ABC 中,AD 是BAC ∠的平分线,AE BC ⊥,垂足为E ,作CF//AD ,交直线AE 于点F.设B α∠=,ACB β∠=.()1若B 30∠=,ACB 70∠=,依题意补全图1,并直接写出AFC ∠的度数; ()2如图2,若ACB ∠是钝角,求AFC ∠的度数(用含α,β的式子表示);()3如图3,若B ACB ∠∠>,直接写出AFC ∠的度数(用含α,β的式子表示).【答案】(1)补图见解析,AFC 20∠=;(2) ()1AFC 180βα2∠=--;(3) ()1AFC αβ2∠=-.【分析】(1)先根据三角形内角和定理求出∠BAC 和∠CAE ,根据角平分线定义求出∠CAD ,即可求出答案;(2)先根据三角形内角和定理求出∠BAC ,根据角平分线定义求出∠BAD ,根据三角形外角性质求出∠ADC ,根据三角形内角和定理求出∠DAE ,根据平行线的性质求出即可;(3)求出∠DAE 度数,根据平行线的性质求出即可.【详解】解:()1如图1,B 30∠=,ACB 70∠=,BAC 180B ACB 80∠∠∠∴=--=,AD 是BAC ∠的平分线,1CAD CAB 402∠∠∴==, AE BC ⊥,AEC 90∠∴=,ACB 70∠=,EAC 180907020∠∴=--=,DAE CAD CAE 402020∠∠∠∴=-=-=,CF//AD ,AFC DAE 20∠∠∴==;()2如图2,ABC 中,BAC B ACB 180∠∠∠++=,()BAC 180B ACB ∠∠∠∴=-+.()180αβ=-+,AD 是BAC ∠的平分线, ()11BAD BAC 90αβ22∠∠∴==-+, ()()11ADE B BAD α90αβ90βα22∠∠∠∴=+=+-+=--, AE BC ⊥,DAE ADE 90∠∠∴+=,()1DAE 90ADE βα2∠∠∴=-=-, CF//AD ,DAE AFC 180∠∠∴+=,()1AFC 180βα2∠∴=--; ()3如图3,ABC 中,BAC B ACB 180∠∠∠++=,()BAC 180B ACB ∠∠∠∴=-+,()180αβ=-+,AD 是BAC ∠的平分线,()11CAD BAC 90αβ22∠∠∴==-+, AE BC ⊥,AEC 90∠∴=,ACB β∠=,EAC 18090β90β∠∴=--=-,()()()11DAE CAE CAD 90β90αβαβ22∠∠∠⎡⎤∴=-=----=-⎢⎥⎣⎦.【点睛】本题考查了三角形内角和定理、三角形角平分线定义、三角形的高、平行线的性质等,熟练掌握相关的性质与定理是解题的关键.9.如图,已知,在△ABC中,∠B<∠C,AD平分∠BAC,E的线段AD(除去端点A、D)上一动点,EF⊥BC于点F.(1)若∠B=40°,∠DEF=10°,求∠C的度数.(2)当E在AD上移动时,∠B、∠C、∠DEF之间存在怎样的等量关系?请写出这个等量关系,并说明理由.【答案】(1)∠C=60°.(2)∠C-∠B=2∠DEF.理由见解析【解析】试题分析:(1)已知:EF⊥BC,∠DEF=10°可以求得∠EDF的度数,∠EDF又是∆ABD的外角,已知∠B的度数,可求得∠BAD的值,AD平分∠BAC,所以∠BAC的值也可求出,从而求出∠C。

八年级数学上册 全等三角形易错题(Word版 含答案)

八年级数学上册 全等三角形易错题(Word版 含答案)

八年级数学上册全等三角形易错题(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作2.如图,已知等边ABC等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC==,在Rt△CMG中,2222543MG CM CG=-=-,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.3.如图,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出下列四个结论:①AE=CF;②△EPF是等腰直角三角形;③EF=AB;④12ABCAEPFS S∆=四边形,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).【答案】①②④【解析】试题分析:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中点,∴AP=CP,∴∠PAE=∠PCF,在△APE与△CPF中,{?PAE PCFAP CPEPA FPC∠=∠=∠=∠,∴△APE≌△CPF(ASA),同理可证△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=12S△ABC,①②④正确;而AP=12BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,∴故③不成立.故始终正确的是①②④.故选D.考点:1.全等三角形的判定与性质;2.等腰直角三角形.4.如图,在四边形ABCD中,AB AD=,BC DC=,60A∠=︒,点E为AD边上一点,连接BD.CE,CE与BD交于点F,且CE AB∥,若8AB=,6CE=,则BC的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD == ∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223=-=OC CF OF∴2227=+=BC BO OC【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.5.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于F,若∠F =30°,DE=1,则EF的长是_____.【答案】2【解析】【分析】连接BE,根据垂直平分线的性质、直角三角形的性质,说明∠CBE=∠F,进一步说明BE =EF,,然后再根据直角三角形中,30°所对的直角边等于斜边的一半即可.【详解】解:如图:连接BE∵AB的垂直平分线DE交BC的延长线于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE =∠F ,∴BE =EF ,在Rt △BED 中,BE =2DE =2×1=2,∴EF =2.故答案为:2.【点睛】本题考查了垂直平分线的性质、直角三角形的性质,其中灵活利用垂直平分线的性质和直角三角形30°角所对的边等于斜边的一半是解答本题的关键.6.如图,在第一个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】 【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758,∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.7.如图,已知AB AC =,AD 平分BAC ∠,60DEB EBC ∠=∠=︒,若3BE =,3DE =,则BC =____________.【答案】33+【解析】【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F.由已知条件推出△BEM 是等边三角形,△FDE 是等边三角形,在△DNM 中求出NM 的长度,即可求出BC 的长度.【详解】如图,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC 于点F ,∵AB AC =,AD 平分BAC ∠,∴AN ⊥BC ,BN=CN ,∵60DEB EBC ∠=∠=︒,∴△BEM 是等边三角形,∴△FDE 是等边三角形,∵3BE =,3DE =33DM =-∵△BEM 是等边三角形,∴∠EMB=60°,∵AN ⊥BC ,∴∠DNM=90°,∴∠NDM=30°,∴1332NM DM -==, ∴3333322BN BM NM -+=-=-=, ∴233BC BN ==+.【点睛】本题考查了等边三角形的性质,解题的关键是作出辅助线构造等边三角形.8.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1), 若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A 、B 为圆心,AB 为半径画圆,及作AB 的垂直平分线,数出在x 轴上的点C 的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键9.如图,△ABC中,AB=AC=12厘米,BC=9厘米,点D为AB的中点,如果点P在线段BC 上以v厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动。

八年级上册三角形解答题易错题(Word版 含答案)

八年级上册三角形解答题易错题(Word版 含答案)
(2)∵∠1+∠A′EA+∠2+∠A′DA=360°,
由四边形的内角和定理可知:∠A+∠A′+∠A′EA+∠A′DA=360°,
∴∠A′+∠A=∠1+∠2,
由折叠知识可得∠A=∠A′,
∴2∠A=∠1+∠2.
(3)如图,∠1=2∠A+∠2
理由如下:∵∠1=∠EFA+∠A,∠EFA=∠A′+∠2,
∴∠1=∠A+∠A′+∠2=2∠A+∠2,
(拓展延伸)
(4)如图,若把四边形 纸片沿 折叠,使点A、D落在四边形 的内部点 、 的位置,请你探索此时 , , , 之间的数量关系,写出你发现的结论,并说明理由.
【答案】【问题探究】(1)∠1=2∠A;(2)证明见详解;(3)∠1=2∠A+∠2;【拓展延伸】(4) .
【解析】
【分析】
(1)运用折叠原理及三角形的外角性质即可解决问题,
(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.
【详解】
证明:(1)∵△ABC中,∠ABC+∠ACB=180°﹣∠A.
又∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC= ∠ABC,
∠PCB= ∠ACB,
∴∠PBC+∠PCB= (180°﹣∠A),
根据三角形内角和定理可知∠BPC=180°﹣ (180°﹣∠A)=90°+ ∠A;
(2) ∠A=∠P,理由如下:
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠PBC= ∠ABC,∠PCE= ∠ACE.
∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,

人教版八年级上册数学 三角形解答题易错题(Word版 含答案)

人教版八年级上册数学 三角形解答题易错题(Word版 含答案)

人教版八年级上册数学 三角形解答题易错题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由.(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH .(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,求HPQ ∠的度数.【答案】(1)AB//CD ,理由见解析;(2)证明见解析;(3)45HPQ ∠=.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,即可证明; (2)利用(1)中平行线的性质、角平分线的性质、三角形内角和定理可得∠EPF=90°,即EG ⊥PF ,再结合GH ⊥EG ,即可证明;(3)利用三角形外角定理、三角形内角和定理求得∠A=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=-12∠EPK=45°+∠2,最后根据角与角间的和差关系即可求解.【详解】(1)//AB CD ,理由如下:如图1, 图1∵1∠与2∠互补,∴12180∠+∠=︒,又∵1AEF ∠=∠,2CFE ∠=∠,∴180AEF CFE ∠+∠=︒,∴//AB CD ;(2)如图2,由(1)知,//AB CD ,图2∴180BEF EFD ∠+∠=︒.又∵BEF ∠与EFD ∠的角平分线交于点P ,∴1(2)90FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥.∵GH EG ⊥,∴//PF GH ;(3)如图3,∵PHK HPK ∠=∠,2PKG HPK ∴∠=∠.又∵GH EG ⊥,∴90902KPG PKG HPK ∠=-∠=-∠.∴180902EPK KPG HPK ∠=-∠=+∠.∵PQ 平分EPK ∠,∴1452QPK EPK HPK ∠=∠=+∠. ∴45HPQ QPK HPK ∠=∠-∠=.【点睛】本题主要考查了平行线的判定与性质、角平分线的性质、三角形内角和定理等知识.解题过程关注中“数形结合”思想是解答本题的关键.2.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】【分析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP=∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3, 4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.3.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°< ∠OAC < 90°).(1)∠ABO的度数为°,△AOB(填“是”或“不是”灵动三角形);(2)若∠BAC=60°,求证:△AOC为“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.【答案】(1)30°;(2)详见解析;(3)∠OAC=80°或52.5°或30°.【解析】【分析】(1)根据垂直的定义、三角形内角和定理求出∠ABO的度数,根据“智慧三角形”的概念判断;(2)根据“智慧三角形”的概念证明即可;(3)分点C在线段OB和线段OB的延长线上两种情况,根据“智慧三角形”的定义计算.【详解】(1)答案为:30°;是;(2)∵AB⊥OM∴∠B AO=90°∵∠BAC=60°∴∠OAC=∠B AO-∠BAC=30°∵∠MON=60°∴∠ACO=180°-∠OAC-∠MON=90°∴∠ACO=3∠OAC,∴△AOC为“灵动三角形”;(3)设∠OAC= x°则∠BAC=90-x, ∠ACB=60+x ,∠ABC=30°∵△ABC为“智慧三角形”,Ⅰ、当∠ABC=3∠BAC时,°,∴30=3(90-x),∴x=80Ⅱ、当∠ABC=3∠ACB时,∴30=3(60+x)∴x= -50 (舍去)∴此种情况不存在,Ⅲ、当∠BCA=3∠BAC时,∴60+x=3(90-x),∴x=52.5°,Ⅳ、当∠BCA=3∠ABC时,∴60+x=90°,∴x=30°,Ⅴ、当∠BAC=3∠ABC时,∴90-x=90°,∴x=0°(舍去)Ⅵ、当∠BAC =3∠ACB 时,∴90-x =3(60+x ),∴x= -22.5(舍去),∴此种情况不存在,∴综上所述:∠OAC=80°或52.5°或30°。

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案

人教版八年级数学上册第11章《三角形》全章复习与巩固—知识讲解(提高)含习题答案
要点三、三角形的内角和与外角和
1.三角形内角和定理:三角形的内角和为 180°. 推论:1.直角三角形的两个锐角互余 2.有两个角互余的三角形是直角三角形
2.三角形外角性质: (1)三角形的一个外角等于与它不相邻的两个内角的和. (2)三角形的一个外角大于任意一个与它不相邻的内角.
3.三角形的外角和: 三角形的外角和等于 360°.
举一反三:
【变式】已知 a、b、c 是三角形三边长,试化简:|b+c-a|+|b-c-a|+|c-a-b|﹣|a-b+c|.
【答案】解:∵a、b、c 是三角形三边长,
∴b+c-a>0,b-c-a<0,c-a-b<0,a-b+c>0,
∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|,
=b+c-a-b+c+a-c+a+b-a+b-c =2b. 2.如图,O 是△ABC 内一点,连接 OB 和 OC.
类型三、与三角形有关的角
4.已知△ABC 中,AE 平分∠BAC (1)如图 1,若 AD⊥BC 于点 D,∠B=72°,∠C=36°,求∠DAE 的度数; (2)如图 2,P 为 AE 上一个动点(P 不与 A、E 重合,PF⊥BC 于点 F,若∠B>∠C,则
∠EPF=
是否成立,并说明理由.
【思路点拨】 (1)利用三角形内角和定理和已知条件直接计算即可; (2)成立,首先求出∠1 的度数,进而得到∠3 的度数,再根据∠EPF=180°﹣∠2﹣∠3 计 算即可. 【答案与解析】 证明:(1)如图 1,∵∠B=72°,∠C=36°,
解:如图(1),设 AB=x,AD=CD= 1 x . 2

三角形(压轴必刷30题5种题型专项训练)—2023-2024学年八年级数学上册(人教版)(解析版)

三角形(压轴必刷30题5种题型专项训练)—2023-2024学年八年级数学上册(人教版)(解析版)

三角形(压轴必刷30题5种题型专项训练)一.三角形的角平分线、中线和高(共1小题)1.(2022秋•瑞金市校级月考)如图,△ABC的周长是21cm,AB=AC,中线BD分△ABC为两个三角形,且△ABD的周长比△BCD的周长大6cm,求AB,BC.【分析】由BD是中线,可得AD=CD,又由△ABD的周长比△BCD的周长大6cm,△ABC的周长是21cm,AB=AC,可得AB﹣BC=6cm,2AB+BC=21cm,继而求得答案.【解答】解:∵BD是中线,∴AD=CD=AC,∵△ABD的周长比△BCD的周长大6cm,∴(AB+AD+BD)﹣(BD+CD+BC)=AB﹣BC=6cm①,∵△ABC的周长是21cm,AB=AC,∴2AB+BC=21cm②,联立①②得:AB=9cm,BC=3cm.【点评】此题考查了三角形面积与三角形的中线.注意掌握数形结合思想与方程思想的应用.二.三角形三边关系(共1小题)2.(2022春•徐汇区校级期末)周长为30,各边互不相等且都是整数的三角形共有个.【分析】不妨设三角形三边为a、b、c,且a<b<c,由三角形三边关系定理及题设条件可确定c的取值范围,以此作为解题的突破口.【解答】解:设三角形三边为a、b、c,且a<b<c.∵a+b+c=30,a+b>c∴10<c<15∵c为整数∴c为11,12,13,14∵①当c为14时,有5个三角形,分别是:14,13,3;14,12,4;14,11,5;14,10,6;14,9,7;②当c为13时,有4个三角形,分别是:13,12,5;13,11,6;13,10,7;13,9,8;③当c为12时,有2个三角形,分别是:12,11,7;12,10,8;④当c为11时,有1个三角形,分别是:11,10,9;故答案为:12个.【点评】此题主要考查学生对三角形三边关系的理解及运用能力.三.三角形内角和定理(共12小题)3.(2021秋•新罗区校级月考)在△ABC中,∠A=36°,当∠C=,△ABC为等腰三角形.【分析】分三种情形分别讨论,运用三角形内角和定理即可解决问题【解答】解:①当AB=AC时,∵∠A=36°,∴∠C=∠B=72°.②当CA=CB时,∵∠A=∠B=36°,∴∠C=108°.③当BA=BC时,∴∠C=∠A=36°,综上所述,∠C的值为72°或108°或36°,故答案为:72°,36°,108°.【点评】本题考查等腰三角形的判定和性质以及三角形内角和定理的运用,解题的关键是用分类讨论的思想思考问题.4.(2022秋•潍坊期末)如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是.【分析】设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠PAB=y,∠P=z,则∠B=2y,构建方程组解决问题即可.【解答】解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,∴∠C=∠AOC=∠BOD=∠BDO,∴∠B=∠CAO,设∠C=∠AOC=∠BOD=∠BDO=x,∠CAP=∠PAB=y,∠P=z,则∠B=2y,则有,解得,∴∠C=70°,故答案为70°.【点评】本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数构建方程组解决问题.5.(2021秋•武昌区期末)如图,在△ABC中,∠ACB=2α,CD平分∠ACB,∠CAD=30°﹣α,∠BAD=30°,则∠BDC=.(用含α的式子表示)【分析】延长CB到E,使CE=CA,连接DE,EA,利用SAS证明△ADC≌△EDC,得AD=ED,∠ADC=∠EDC,再证明△EDA为等边三角形,得出AB是∠EAD的角平分线,再通过导角得出答案.【解答】解:如图,延长CB到E,使CE=CA,连接DE,EA,∵CD平分∠ACB,∴∠ACD=∠BCD=,在△ADC与△EDC中,,∴△ADC≌△EDC(SAS),∴AD=ED,∠ADC=∠EDC,∵∠CAD=30°﹣α,∠ACD=α,∴∠ADC=180°﹣(30°﹣α)﹣α=150°,∴∠EDC=∠ADC=150°,∴∠EDA=360°﹣150°﹣150°=60°,∵ED=AD,∴△EDA为等边三角形,∴∠EAD=∠AED=60°,∵∠BAD=30°,∴∠EAB=60°﹣30°=30°,∴AB是∠EAD的角平分线,∵AB是ED的垂直平分线,∴BD=BE,∴∠BED=∠BDE,∵∠ACB=2α,∠EAC=∠EAD+∠DAC=60°+30°﹣α=90°﹣α,∴∠AEC=180°﹣2α﹣(90°﹣α)=90°﹣α,∴∠EDB=∠AEC﹣∠AED=90°﹣α﹣60°=30°﹣α,∴∠EDB=∠BED=30°﹣α,∴∠DBC=∠BDE+∠BED=(30°﹣α)×2=60°﹣2α,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(60°﹣2α)﹣α=120°+α,故答案为:120°+α.【点评】本题主要考查了三角形内角和定理,全等三角形的判定与性质,等边三角形的判定与性质等知识,作辅助线构造全等三角形是解题的关键.6.(2020秋•杏花岭区校级月考)如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为;第n个三角形中以A n为顶点的底角的度数为.【分析】先根据等腰三角形的性质求出∠BA1A的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA2A1,∠DA3A2及∠EA4A3的度数,找出规律即可得出第n个三角形的以An为顶点的底角的度数.【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以An为顶点的底角的度数=.故答案为:17.5°,.【点评】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA2A1,∠DA3A2及∠EA4A3的度数,进而找出规律是解答此题的关键.7.(2022春•台江区校级期末)如图,在△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,∠BAC>∠C,FH⊥BE交BD于G,交BC于H,下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=(∠BAC﹣∠C);④∠BGH=∠ABE+∠C.其中正确的是.【分析】①根据BD⊥FD,FH⊥BE和∠FJD=∠BJH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,证明结论正确;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:设BE交FH于点J.①∵BD⊥FD,∴∠FGD+∠F=90°∵FH⊥BE,∴∠BGJ+∠DBE=90°,∵∠FGD=∠BGJ,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);③正确;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠BGH=∠FEB,∴∠BGH=∠ABE+∠C,④正确,故答案为:①②③④.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.8.(2021秋•雷州市月考)如图,D是△ABC的BC边上的一点,∠B=∠BAD,∠ADC=80°,∠BAC=70°.(1)求∠B的度数.(2)求∠C的度数.【分析】(1)先由三角形外角的性质得出∠ADC=∠B+∠BAD,再由∠ADC=80°,∠B=∠BAD即可得出∠B的度数;(2)直接根据三角形的内角和定理得出∠C的度数.【解答】解:(1)∵∠ADC是△ABD的一个外角,∴∠ADC=∠B+∠BAD,又∵∠ADC=80°,∠B=∠BAD,∴∠B=∠ADC=×80°=40°;(2)在△ABC 中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=70°.【点评】本题考查的是三角形内角和定理及外角的性质,熟知三角形的内角和是180°是解答此题的关键.9.(2021春•东台市月考)如图,AD平分∠BAC,∠EAD=∠EDA.(1)∠EAC与∠B相等吗?为什么?(2)若∠B=50°,∠CAD:∠E=1:3,求∠E的度数.【分析】(1)由于AD平分∠BAC,根据角平分线的概念可得∠BAD=∠CAD,再根据三角形的一个外角等于和它不相邻的两个内角和,结合已知条件可得∠EAC与∠B相等;(2)若设∠CAD=x°,则∠E=3x°.根据(1)中的结论以及三角形的内角和定理及其推论列方程进行求解即可.【解答】解:(1)相等.理由如下:∵AD平分∠BAC,∴∠BAD=∠CAD.又∠EAD=∠EDA,∴∠EAC=∠EAD﹣∠CAD=∠EDA﹣∠BAD=∠B;(2)设∠CAD=x°,则∠E=3x°,由(1)知:∠EAC=∠B=50°,∴∠EAD=∠EDA=(x+50)°在△EAD中,∵∠E+∠EAD+∠EDA=180°,∴3x+2(x+50)=180,解得:x=16.∴∠E=48°.【点评】(1)建立要证明的两个角和已知角之间的关系,根据已知的相等的角,即可证明;(2)注意应用(1)中的结论,主要是根据三角形的内角和定理及其推论用同一个未知数表示相关的角,再列方程求解.10.(2021秋•新建区校级月考)如图,∠B=50°,点P在∠ABC内部,∠P的两边分别交AB,BC于点E,F.(1)若PE⊥AB,PF⊥BC.①如图1,则∠P=°;②如图2,EQ平分∠BEP,FQ平分∠BFP,求∠Q的度数.(2)若∠BEP与∠BFP两角的平分线交于ABC内一点Q,请写出∠Q与∠P的数量关系,并说明理由.【分析】(1)①由∠BEP=∠BFP=90°,∠ABC=50°,解可得∠EPF=130°;②根据EQ平分∠BEP,FQ平分∠BFP,得∠QEP=45°,∠QFP=45°,即可得∠Q=140°;(2)分两种情况:①四边形BEPF为凸四边形时,由∠B+2∠2+2∠4+∠P=360°,∠2+∠4=360°﹣∠P﹣∠Q,消去∠2、∠4即可得∠Q+∠P=200°;②四边形BEPF为凹四边形时,可得2∠Q﹣∠P=40°.【解答】解:(1)①∵PE⊥AB,PF⊥BC,∴∠BEP=∠BFP=90°,∵∠ABC=50°,∴∠EPF=360°﹣∠BEP﹣∠BFP﹣∠ABC=130°,故答案为:130;②∵EQ平分∠BEP,FQ平分∠BFP,∴∠QEP=∠BEP=45°,∠QFP=∠BFP=45°,∴∠Q=360°﹣∠QEP﹣∠QFP﹣∠EPF=140°;(2)①四边形BEPF为凸四边形时,如图:∵EQ平分∠BEP,FQ平分∠BFP,∴∠BEP=2∠2,∠BFP=2∠4,∵∠B+∠BEP+∠BFP+∠P=360°,∴∠B+2∠2+2∠4+∠P=360°,而∠B=50°,∴2∠2+2∠4=310°﹣∠P,即∠2+∠4=155°﹣∠P①,又∠2+∠4=360°﹣∠P﹣∠Q②,由①②可得:155°﹣∠P=360°﹣∠P﹣∠Q,整理得:∠Q+∠P=205°.②四边形BEPF为凹四边形时,如图:∵EQ平分∠BEP,FQ平分∠BFP,∴∠1=∠2,∠3=∠4,∵∠B=50°,∴2(∠2+∠3)+∠PEF+∠PFE=130°(Ⅰ),又∠Q+(∠2+∠3)+∠PEF+∠PFE=180°(Ⅱ),(Ⅱ)×2﹣(Ⅰ)得:2∠Q+∠PEF+∠PFE=230°(Ⅲ),而∠P+∠PEF+∠PFE=180°(Ⅳ),(Ⅲ)﹣(Ⅳ)得:2∠Q﹣∠P=50°;同理当四边形BEPF、四边形BEQF均为凸四边形时,2∠Q﹣∠P=310°,综上所述,∠Q与∠P的数量关系为∠Q+∠P=205°或2∠Q﹣∠P=50°或2∠Q﹣∠P=310°.【点评】本题考查多边形内角和,涉及角平分线、角的和差等知识,解题的关键是掌握四边形的内角和是360°.11.(2022秋•东港区校级月考)已知:如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线,∠B=30°,∠DAE=15°,(1)求∠BAE的度数;(2)求∠C的度数.【分析】(1)由AD是BC边上的高可得出∠ADE=90°,在△ADE中利用三角形内角和可求出∠AED的度数,再利用三角形外角的性质即可求出∠BAE的度数;(2)根据角平分线的定义可得出∠BAC的度数,在△ABC中利用三角形内角和可求出∠C的度数.【解答】解:(1)∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣15°=75°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=75°﹣30°=45°.(2)∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×45°=90°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣90°﹣30°=60°.【点评】本题考查了三角形内角和定理以及三角形外角的性质,解题的关键是:(1)在△ADE中利用三角形内角和求出∠AED的度数;(2)利用角平分线的定义求出∠BAC的度数.12.(2022秋•香洲区校级月考)△ABC中,∠C=80°,点D、E分别是△ABC边AC、BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在边AB上,且∠α=50°,如图1,则∠1+∠2=;(2)若点P在边AB上运动,如图2所示,则∠α、∠1、∠2之间的关系为.(3)若点P运动到边AB的延长线上,如图3,则∠α、∠1、∠2之间有何关系?猜想并说明理由【分析】(1)连接CP,根据三角形外角性质,即可得到∠1=∠DCP+∠DPC,∠2=∠ECP+∠EPC,再根据∠1+∠2=∠ACB+∠DPE进行计算即可;(2)连接CP,根据三角形外角性质,即可得到∠1=∠DCP+∠DPC,∠2=∠ECP+∠EPC,再根据∠1+∠2=∠ACB+∠DPE进行计算即可得到∠α、∠1、∠2之间的关系;(3)根据三角形外角性质,即可得到∠1=∠C+∠CMD,∠CMD=∠2+∠α,进而得到∠1=∠C+∠2+∠α,据此可得∠α、∠1、∠2之间的关系.【解答】解:(1)如图1,连接CP,∵∠1是△CDP的外角,∴∠1=∠DCP+∠DPC,同理可得,∠2=∠ECP+∠EPC,∴∠1+∠2=∠ACB+∠DPE=80°+50°=130°,故答案为:130°;(2)如图,连接CP,∵∠1是△CDP的外角,∴∠1=∠DCP+∠DPC,同理可得,∠2=∠ECP+∠EPC,∴∠1+∠2=∠ACB+∠DPE=80°+∠α,故答案为:∠1+∠2=80°+∠α;(3)∠1=80°+∠2+∠α,理由如下:如图3,∵在△CDM中,∠1=∠C+∠CMD,在△EMP中,∠CMD=∠2+∠α,∴∠1=∠C+∠2+∠α,即∠1=80°+∠2+∠α.【点评】本题主要考查了三角形外角性质以及三角形内角和定理的运用,解题时注意:三角形的一个外角等于与它不相邻的两个内角的和.13.(2021秋•仙桃校级月考)如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.【分析】根据三角形的内角和定理求出∠C,再根据直角三角形两锐角互余求出∠DAC,然后根据角平分线的定义求出∠DAE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠BAC=80°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°,∵AD⊥BC,∴∠DAC=90°﹣∠C=90°﹣40°=50°,∵AE平分∠DAC,∴∠DAE=∠DAC=×50°=25°,∴∠AEC=∠DAE+∠ADE=25°+90°=115°.【点评】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的角平分线和高线的定义,解题的关键是学会用分类的思想思考问题,属于中考常考题型.14.(2020秋•官渡区校级月考)如图,AD是△ABC的BC边上的高,AE是△ABC的一条角平分线,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.【点评】本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是熟练掌握三角形的内角和定理.四.三角形的外角性质(共10小题)15.(2022春•云龙区校级月考)如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【解答】解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵AD∥BC,∴∠ADB=∠DBC,∠DCF=∠ADC,∵∠ADC+∠ABD=90°,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠ADB=∠DBC=45°﹣∠BDC,故④正确;故答案为:①③④.【点评】此题考查了三角形外角性质,平行线的判定与性质,主要考查学生的推理能力,有一定的难度.16.(2022秋•游仙区校级月考)如图,D是△ABC内一点,连接AD、BD、CD,P是∠BDC的角平分线的反向延长线上的一点,连接BP,∠ABP=2∠PBD,△ABC和△ACD的外角平分线相交于点Q,若∠Q =45°,∠BDC=4∠ABD,则∠P的度数为°.【分析】设∠PBD=α,表示出∠BDE=6α,于是∠P=5α,由∠Q=45°可推出∠BAC+∠ACD=90°,根据∠BDC=∠ABD+∠BAC+∠ACD求得α的值,进一步得出结果.【解答】解:如图,设PD的延长线交BC于E,设∠PBD=α,则∠ABP=2α,∴∠ABD=∠ABP+∠PBD=3α,∴∠BDC=4∠ABD=12α,∵DE平分∠BDC,∴∠BDE==6α,∴∠P=∠BDE﹣∠PBD=6α﹣α=5α,在△ACQ中,∠QAC+∠ACQ=180°﹣∠Q=135°,∵AQ平分∠FAC,CQ平分∠ACG,∴∠FAC=2∠QAC,∠ACG=2∠ACQ,∴∠FAC+∠ACG=2(∠QAC+∠ACQ)=270°,∴∠BAC+∠ACD=180°﹣∠FAC+180°﹣∠ACG=90°,∵∠BDC=∠ABD+∠BAC+∠ACD,∴12α=3α+90°,∴α=10°,∴∠P=5α=50°,故答案为:50.【点评】本题考查了角平分线的性质,三角形内角和定理及其推论等知识,解决问题的关键是设未知数,寻找角之间的数量关系.17.(2021•惠济区校级开学)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.【分析】(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠A的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.【解答】解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.【点评】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.18.(2021秋•回民区校级月考)如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C,∵∠B=40°,∠C=70°,∴∠BAF=110°;(2)∵∠BAF=110°,∴∠BAC=70°,∵AD是△ABC的角平分线,∴∠DAC=BAC=35°,∵EF∥AD,∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.19.(2020秋•顺昌县月考)如图,已知:点P是△ABC内一点.(1)求证:∠BPC>∠A;(2)若PB平分∠ABC,PC平分∠ACB,∠A=40°,求∠P的度数.【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【解答】(1)证明:延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,在△ABC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣×140°=110°.【点评】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.20.(2022秋•威县校级月考)综合与探究:【情境引入】(1)如图1,BD,CD分别是△ABC的内角∠ABC,∠ACB的平分线,说明∠D=90°+∠A的理由.【深入探究】(2)①如图2,BD,CD分别是△ABC的两个外角∠EBC,∠FCB的平分线,∠D与∠A之间的等量关系是;②如图3,BD,CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线,BD,CD交于点D,探究∠D与∠A之间的等量关系,并说明理由.【拓展应用】(3)请用以上结论解决下列问题:如图4,在△ABC中,BD,CD分别平分∠ABC,∠ACB,M,N,Q 分别在DB,DC,BC的延长线上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ.若∠A=80°,则∠F的度数是.【分析】(1)利用角平分线的定义得出∠1+∠2=(∠ABC+∠ACB),再利用三角形内角和定理即可求解;(2)①利用三角形内角和定理可得∠DBC+∠DCB+∠D=180°,∠A+∠ABC+∠ACB=180°,利用角平分线的定义可得∠EBD=∠DBC,∠BCD=∠DCF,从而得到∠A﹣2(180°﹣∠D)=﹣180°,化简即可求解;②利用三角形的外角性质可得∠DCE=∠DBC+∠D,∠A+2∠DBC=2∠DCE,从而得到∠A+2∠DBC=2∠DBC+2∠D,化简即可求解;(3)由(1)知:∠D=90°+∠A,即可求出∠A,利用三角形内角和定理可得∠MBC+∠NCB,再利用角平分线的性质可得∠CBE+∠BCE,利用三角形内角和定理可得∠E,再由(2)②可知∠F=∠E,求解即可.【解答】解:(1)∵BD、CD分别是∠ABC、∠ACB的平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB),∵∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,∴∠D=180°﹣∠1﹣∠2=180°﹣(∠ABC+∠ACB),∴∠D=90°+∠A;(2)①∠D与∠A之间的等量关系是:∠D=90°﹣∠A,理由如下:∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∵∠DBC+∠DCB+∠D=180°,∠A+∠ABC+∠ACB=180°,∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∠DBC+∠DCB=180°﹣∠D,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A+2∠D=180°,∴∠D=90°﹣∠A,故答案为:∠D=90°﹣∠A;②∠D与∠A之间的等量关系是:∠D=∠A,理由如下:∵BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线,∵∠DCE=∠DBC+∠D,∠A+2∠DBC=2∠DCE,∴∠A+2∠DBC=2∠DBC+2∠D,∴∠A=2∠D,∴∠D=∠A;(3)由(1)知:∠D=90°+∠A,∵∠A=80°,∴∠D=130°,∴∠DBC+∠DCB=50°,∴∠MBC+∠NCB=360°﹣50°=310°,∵BE、CE分别平分∠MBC、∠BCN,∴∠CBE+∠BCE=(∠MBC+∠NCB)=155°,∴∠E=180°﹣155°=25°.由(2)②知:∠F=∠E,∴∠F=∠E=12.5°,故答案为:12.5°.【点评】本题考查三角形的外角性质,三角形的内角和定理,角平分线的定义,解题的关键是熟记三角形外角性质,内角和定理,角平分线的定义.21.(2021秋•信丰县校级月考)如图,求∠A+∠B+∠C+∠D+∠E的度数.【分析】要求∠A+∠B+∠C+∠D+∠E的度数,只要求出∠D+∠1+∠2的度数,利用三角形外角性质得,∠1=∠A+∠E,∠2=∠B+∠C;在△DOF中,∠D+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.【解答】解:∵∠1是△AEF的外角,∴∠1=∠A+∠E.∵∠2是△BOC的外角,∴∠2=∠B+∠C.在△DOF中,∠D+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=∠D+∠1+∠2=180°.【点评】考查三角形外角性质与内角和定理.将∠A+∠B+∠C+∠D+∠E拼凑在一个三角形中是解题的关键.22.(2020秋•兴义市校级月考)(1)如图1,这是一个五角星ABCDE,你能计算出∠A+∠B+∠C+∠D+∠E的度数吗?为什么?(必须写推理过程)(2)如图2,如果点B向右移动到AC上,那么还能求出∠A+∠DBE+∠C+∠D+∠E的大小吗?若能结果是多少?(可不写推理过程)(3)如图,当点B向右移动到AC的另一侧时,上面的结论还成立吗?(4)如图4,当点B、E移动到∠CAD的内部时,结论又如何?根据图3或图4,说明你计算的理由.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠C=∠1,∠B+∠D=∠2,然后利用三角形的内角和定理列式即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠D=∠1,在△BCE中,利用三角形的内角和列式计算即可得解;(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠C=∠1,∠B+∠D=∠2,然后利用三角形的内角和定理列式即可得解;(4)延长CE与AD相交,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠C=∠1,∠B+∠E=∠2,然后利用三角形的内角和定理列式即可得解.【解答】解:(1)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)如图,由三角形的外角性质,∠A+∠D=∠1,∵∠1+∠DBE+∠C+∠E=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°;(3)如图,由三角形的外角性质,∠A+∠C=∠1,∠B+∠D=∠2,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(4)如图,延长CE与AD相交,由三角形的外角性质,∠A+∠C=∠1,∠B+∠E=∠2,∵∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形内角和定理,比较简单,关键在于准确识图,理清图中各角度之间的联系与转化.23.(2022秋•冷水滩区校级月考)认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+∠A,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=90°+∠A.(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)【分析】(1)根据角平分线的定义表示出∠OBC,∠OCD,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ACD和∠OCD,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC和∠BCE,再根据角平分线的定义求出∠OBC+∠OCB,然后根据三角形内角和定理列式整理即可得解;(3)根据四边形内角和等于360°求出∠ABC+∠BCD,再根据角平分线的定义求出∠OBC+∠OCB,然后利用三角形内角和定理列式整理即可得解.【解答】解:(1)探究2结论:∠BOC=∠A.理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠OBC=∠ABC,∠OCD=∠ACD,又∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠ABC,∴∠OCD=(∠A+∠ABC)=∠A+∠ABC=∠A+∠OBC,又∵∠OCD是△BOC的一个外角,∴∠BOC=∠OCD﹣∠OBC=∠A+∠OBC﹣∠OBC=∠A;(2)探究3:结论∠BOC=90°﹣∠A.根据三角形的外角性质,∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∵O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,∴∠OBC=∠DBC,∠OCB=∠BCE,∴∠OBC+∠OCB=(∠DBC+∠BCE)=(∠A+∠ACB+∠A+∠ABC),∵∠A+∠ACB+∠ABC=180°,∴∠OBC+∠OCB=90°+∠A,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°+∠A)=90°﹣∠A;(3)拓展:结论∠BOC=(∠A+∠D).在四边形ABCD中,∠ABC+∠BCD=(360°﹣∠A﹣∠D),∵O是∠ABC与∠DCB的平分线BO和CO的交点,∴∠OBC=∠ABC,∠OCB=∠BCD,∴∠OBC+∠OCB=(∠ABC+∠BCD)=(360°﹣∠A﹣∠D),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(360°﹣∠A﹣∠D)=(∠A+∠D),即∠BOC=(∠A+∠D).【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.24.(2023•东兴区校级二模)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.【分析】(1)运用三角形的内角和定理及角平分线的定义,首先求出∠PBC+∠PCB,进而求出∠BPC即可解决问题;(2)根据三角形的外角性质分别表示出∠MBC与∠BCN,再根据角平分线的性质可求得∠CBQ+∠BCQ,最后根据三角形内角和定理即可求解;(3)在△BQE中,由于∠Q=90°﹣∠A,求出∠E=∠A,∠EBQ=90°,所以如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况进行讨论:①∠EBQ=2∠E=90°;②∠EBQ=2∠Q=90°;③∠Q=2∠E;④∠E=2∠Q;分别列出方程,求解即可.【解答】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.【点评】本题是三角形综合题,考查了三角形内角和定理、外角的性质,角平分线定义等知识;灵活运用三角形的内角和定理、外角的性质进行分类讨论是解题的关键.五.多边形内角与外角(共6小题)25.(2021秋•盖州市校级月考)如果一个多边形的内角和等于1800°,则这个多边形是边形;如果一个n边形每一个内角都是135°,则n=;如果一个n边形每一个外角都是36°,则n =.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个多边形的边数是n,则(n﹣2)•180°=1800°,解得:n=12,则这个多边形是12.如果一个n边形每一个内角都是135°,∴每一个外角=45°,则n==8,如果一个n边形每一个外角都是36°,则n==10,故答案为:十二,8,10.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.26.(2021秋•河东区校级期末)如图,AD,CE是△ABC的两条高,它们相交于点P,已知∠BAC的度数为α,∠BCA的度数为β,则∠APC的度数是.【分析】利用三角形的内角和定理和三角形的外角性质解决问题即可.【解答】解:∠B=180°﹣∠BAC﹣∠ACB=180°﹣(α+β),∵AD⊥BC,CE⊥AB,∴∠AEC=∠ADB=90°,∴∠BAD=90°﹣[180°﹣(α+β)]=α+β﹣90°,∴∠APC=∠AEC+∠BAD=α+β故填α+β.【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件,同时考查了四边形内角和定理.垂直和直角总是联系在一起.27.(2021秋•仙桃校级月考)如图,在五边形ABCDE中,AP平分∠EAB,BP平分∠ABC.(1)五边形ABCDE的内角和为度;(2)若∠C=100°,∠D=75°,∠E=135°,求∠P的度数.【分析】(1)根据多边形内角和公式求出即可;(2)求出∠EAB+∠ABC,根据角平分线定义求出∠PAB+∠PBA,即可求出答案.【解答】解:(1)五边形ABCDE的内角和为(5﹣2)×180°=540°,故答案为:540;(2)∵在五边形ABCDE中,∠EAB+∠ABC+∠C+∠D+∠E=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=230°,∵AP平分∠EAB,BP平分∠ABC,∴∠PAB=∠EAB,∠PBA=∠ABC,∴∠PAB+∠PBA=115°,∴∠P=180°﹣(∠PAB+∠PBA)=65°.【点评】本题考查了多边形的内角和外角,能熟记多边形的内角和定理是解此题的关键.28.(2022秋•礼县月考)小明计算一个多边形的内角和时误把一个外角加进去了,得其和为2620°.(1)求这个多加的外角的度数;(2)求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角和是180°的倍数,然后求出多边形的边数以及多加的外角的度数即可得解.【解答】解:设多边形的边数为n,多加的外角度数为α,则(n﹣2)•180°=2620°﹣α,∵2620°=14×180°+100°,内角和应是180°的倍数,∴小明多加的一个外角为100°,∴这是14+2=16边形的内角和.故这个多加的外角的度数为100°,这个多边形的边数是16.【点评】本题考查了多边形的内角和公式,根据多边形的内角和公式判断出多边形的内角和公式是180°的倍数是解题的关键.29.(2020秋•夏津县校级月考)如图,AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.(1)判断∠AOB与∠COD有怎样的数量关系,为什么?(2)若∠AOD=∠BOC,AB、CD有怎样的位置关系,为什么?【分析】(1)根据角平分线的定义得到∠1=DAB,∠2=ABC,∠3=ADC,∠4=BCD,根据四边形的内角和即可得到结论;(2)由(1)证得∠AOB+∠COD=180°,得到∠AOD+∠BOC=180°,根据角平分线的定义得到∠BAD+∠ADC=180°,由平行线的判定定理即可得到结论.【解答】解:(1)∠AOB+∠COD=180°,理由:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠1=DAB,∠2=ABC,∠3=ADC,∠4=BCD,∴∠1+∠2+∠3+∠4=(∠DAB+∠ABC+∠ADC+∠BCD)==180°,∴∠AOB+∠COD=360°﹣∠1﹣∠2﹣∠3﹣∠4=180°;(2)AB∥CD;理由:由(1)证得∠AOB+∠COD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=∠BOC,∴∠AOD=90°,∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠OAD+∠ADO=(∠BAD+∠ADC)=90°,∴∠BAD+∠ADC=180°,∴AB∥CD.【点评】本题考查了多边形的内角和外角,平行线的判定,角平分线的定义,正确的识别图形是解题的关键.30.(2019秋•广丰区校级月考)请你参与下面探究过程,完成所提出的问题.(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=70°,则∠BPC=度;(2)探究2:如图2,P是△ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,求∠BPC与∠A的数量关系?并说明理由.(3)拓展:如图3,P是四边形ABCD的外角∠EBC与∠BCF的平分线BP和CP的交点,设∠A+∠D =α.①直接写出∠BPC与α的数量关系;②根据α的值的情况,判断△BPC的形状(按角分类).。

八年级数学上册三角形解答题易错题(Word版 含答案)

八年级数学上册三角形解答题易错题(Word版 含答案)

八年级数学上册三角形解答题易错题(Word 版 含答案)一、八年级数学三角形解答题压轴题(难)1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小.(2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.【答案】(1)135°;(2)67.5°;(3)60°, 45°【解析】【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1ABE ABO 2∠=∠,由三角形内角和定理即可得出结论;(2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=︒ ,故PAB MBA 270∠+∠=︒,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠=∠,1ABC ABM 2∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知CDE DCE 112.5∠+∠=︒,进而得出结论;(3))由∠BAO 与∠BOQ 的角平分线相交于E 可知1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°, ∴OAB OBA 90∠+∠=︒,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴1BAE OAB 2∠=∠,1ABE ABO 2∠=∠, ∴()1BAE ABE OAB ABO 452∠+∠=∠+∠=°, ∴∠AEB=135°;(2)∠CED 的大小不变.如图2,延长AD 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴90∠=AOB °,∴OAB OBA 90∠+∠=°,∴PAB MBA 270∠+∠=°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴1BAD BAP 2∠=∠,1ABC ABM 2∠=∠, ∴()1BAD ABC PAB ABM 1352∠+∠=∠+∠=°,F 45∠=°, ∴FDC FCD 135∠+∠=°,∴CDA DCB 225∠+∠=°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴CDE DCB 112.5∠+∠=°,∴E 67.5∠=°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴1EAO BAO 2∠=∠,1EOQ BOQ 2∠=∠ , ∴()11E EOQ EAO BOQ BAQ ABO 22∠=∠-∠=∠-∠=∠, ∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴EAF 90∠=°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①EAF 3E ∠=∠,E 30∠=°,ABO 60∠=°;②EAF 3F ∠=∠,E 60∠=°,ABO 120∠=°;③EAF 3E ∠=∠,E 22.5∠=°,ABO 45∠=°;④EAF 3F ∠=∠,E 67.5∠=°,ABO 135∠=°.∴∠ABO 为60°或45°. 【点睛】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.2.(1)在ABC ∆中,AD BC ⊥,BE AC ⊥,CF AB ⊥,16BC =,3AD =,4BE =,6CF =,则ABC ∆的周长为______.(2)如图①,在ABC ∆中,已知点D ,E ,F 分别为边BC ,BD ,CD 的中点,且4ABC S ∆=2cm ,则AEF S ∆等于______2cm .① ②(3)如②图,三角形ABC 的面积为1,点E 是AC 的中点,点O 是BE 的中点,连接AO 并延长交BC 于点D ,连接CO 并延长交AB 于点F ,则四边形BDOF 的面积为______.【答案】(1)36(2)2(3)16 【解析】【分析】(1)利用三角形面积公式,求出AB 、AC 的长,再计算三角形的周长即可;(2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅,根据线段中点的定义以及线段的和差得出12EF BC =,继而再根据三角形面积公式进行求解即可; (3)设BOF S x ∆=,BOD S y ∆=,根据三角形中线将三角形分成两个面积相等的三角形可得14AOE COE AOB COB S S S S ∆∆∆∆====,从而得14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+,14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,利用等高的两三角形面积之比等于底边之比分别列出关于x 、y 的方程,求出x 、y 的值即可求得答案.【详解】(1)111222ABC S BC AD AC BE AB CF ∆=⋅=⋅=⋅, ∴BC AD AC BE AB CF ⋅=⋅=⋅,即16346AC AB ⨯=⋅=⋅,∴12AC =,8AB =,∴△ABC 的周长=AB+BC+AC=36;(2)设ABC ∆在BC 边上的高为h , 则12ABC S BC h ∆=⋅, ∵E 为BD 中点,∴12ED BD =, ∵F 为DC 中点,∴12DF DC =, ∴111222EF BD DC BC =+=, ∴211112cm 2222AEF ABC S EF h BC h S ∆∆=⋅=⋅⋅==; (3)设BOF S x ∆=,BOD S y ∆=,∵点E ,O 分别是AC ,BE 的中点,1ABC S ∆=, ∴14AOE COE AOB COB S S S S ∆∆∆∆====, ∴14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+, ∴134414x x x x --=+,即2213164x x x -=-, 解得112x =, 又14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+, ∴141344y y y y +=--,得112y =, 故11112126BDOF S x y =+=+=四边形. 【点睛】本题考查了三角形面积的应用,三角形的周长,解题关键在于找出等高的两三角形面积与底边的对应关系.3.如图四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.【答案】(1)证明见解析;(2)①20°;②160°;(3)13或73【解析】【分析】(1)根据AD//BC可知∠GAD=∠BGA,由AG平分∠BAD可知∠BAG=∠GAD,即可得答案.(2)①根据CF平分∠BCD,∠BCD=90°,可求出∠GCF的度数,由AD//BC可求出∠AEF 和∠DAB的度数,根据三角形外角的性质求出∠AFC的度数即可;②根据三角形外角性质求出即可;(3)根据M点在BP的上面和下面两种情况讨论,分别求出∠PBM和∠ABM 的值即可.【详解】(1)∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD,∴∠BAG=∠BGA;(2)①∵CF平分∠BCD,∠BCD=90°,∴∠GCF=45°,∵AD∥BC,∠ABC=50°,∴∠AEF=∠GCF=45°;∠DAB=180°﹣50°=130°,∵AG平分∠BAD,∴∠BAG=∠GAD=65°,∴∠AFC=65°﹣45°=20°;②如图:∵∠AGB=65°,∠BCF=45°,∴∠AFC=∠CGF+∠BCF=115°+45°=160°;(3)有两种情况:①当M在BC的下方时,如图:∵∠ABC=50°,∠ABP=2∠PBG,∴∠ABP=(1003)°,∠PBG=(503)°,∵AG∥CH,∴∠BCH=∠AGB=65°,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣65°=25°,∴∠ABM=∠ABP+∠PBM=(1003+25)°=(1753)°,∴∠ABM:∠PBM=(1753)°:25°=73;②当M在BC的上方时,如图:同理得:∠ABM=∠ABP﹣∠PBM=(1003﹣25)°=(253)°,∴∠ABM:∠PBM=(253)°:25°=13;综上,∠ABM:∠PBM的值是13或73.【点睛】本题考查平行线的性质和三角形外角性质,熟练掌握平行线性质是解题关键.4.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.【答案】(1)140°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由见解析;(4)∠2=90°+∠1﹣α.【解析】试题分析:(1)根据四边形内角和定理以及邻补角的定义,得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求的结论得出∠α、∠1、∠2之间的关系即可;(3)利用三角外角的性质,得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出∠α、∠1、∠2之间的关系.试题分析:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°,故答案为140;(2)由(1)得∠α+∠C=∠1+∠2,∴∠1+∠2=90°+∠α.故答案为∠1+∠2=90°+∠α.(3)∠1=90°+∠2+∠α.理由如下:如图③,设DP与BE的交点为M,∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)如图④,设PE与AC的交点为F,∵∠PFD=∠EFC,∴180°-∠PFD=180°-∠EFC,∴∠α+180°-∠1=∠C+180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α点睛:本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练掌握三角形外角的性质是解决问题的关键.5.已知:如图①,BP、CP分别平分△ABC的外角∠CBD、∠BCE,BQ、CQ分别平分∠PBC、∠PCB,BM、CN分别是∠PBD、∠PCE的角平分线.(1)当∠BAC=40°时,∠BPC=,∠BQC=;(2)当BM∥CN时,求∠BAC的度数;(3)如图②,当∠BAC=120°时,BM、CN所在直线交于点O,直接写出∠BOC的度数.【答案】(1) 70°,125°;(2)∠BAC=60° (3) 45°【解析】分析:(1)根据三角形的外角性质分别表示出∠DBC与∠BCE,再根据角平分线的性质可求得∠CBP+∠BCP,最后根据三角形内角和定理即可求解;根据角平分线的定义得出∠QBC=12∠PBC,∠QCB=12∠PCB,求出∠QBC+∠QCB的度数,根据三角形内角和定理求出即可;(2)根据平行线的性质得到∠MBC+∠NCB=180°,依此求解即可;(3)根据题意得到∠MBC+∠NCB,再根据三角形外角的性质和三角形内角和定理得到∠BOC 的度数.详解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=12(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=12∠PBC,∠QCB=12∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∴34(∠DBC+∠BCE)=180°,即34(180°+∠BAC)=180°,解得∠BAC=60°;(3)∵∠BAC=120°,∴∠MBC+∠NCB=34(∠DBC+∠BCE)=34(180°+α)=225°,∴∠BOC=225°﹣180°=45°.点睛:本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.6.如图1,在△ABC中,∠B=90°,分别作其内角∠ACB与外角∠DAC的平分线,且两条角平分线所在的直线交于点E.(1)∠E= °;(2)分别作∠EAB与∠ECB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②求∠AFC的度数;(3)在(2)的条件下,射线FM在∠AFC的内部且∠AFM=∠AFC,设EC与AB的交点为H,射线HN在∠AHC的内部且∠AHN=∠AHC,射线HN与FM交于点P,若∠FAH,∠FPH和∠FCH满足的数量关系为∠FCH=m∠FAH+n∠FPH,请直接写出m,n的值.【答案】(1)45;(2)67.5°;(3)m=2,n=﹣3.【解析】【分析】(1)根据角平分线的定义可得∠CAF=12∠DAC,∠ACE=12∠ACB,设∠CAF=x,∠ACE=y,根据已知可推导得出x﹣y=45,再根据三角形外角的性质即可求得答案;(2)①根据角平分线的尺规作图的方法作出图形即可;②如图2,由CF平分∠ECB可得∠ECF=12y,再根据∠E+∠EAF=∠F+∠ECF以及∠E+∠EAB=∠B+∠ECB,可推导得出45°+452y+=∠F+12y,由此即可求得答案;(3)如图3,设∠FAH=α,根据AF平分∠EAB可得∠FAH=∠EAF=α,根据已知可推导得出∠FCH=α﹣22.5①,α+22.5=30+23∠FCH+∠FPH②,由此可得∠FPH=22.53α+,再根据∠FCH=m∠FAH+n∠FPH,即可求得答案.【详解】(1)如图1,∵EA平分∠DAC,EC平分∠ACB,∴∠CAF=12∠DAC,∠ACE=12∠ACB,设∠CAF=x,∠ACE=y,∵∠B=90°,∴∠ACB+∠BAC=90°,∴2y+180﹣2x=90,x﹣y=45,∵∠CAF=∠E+∠ACE,∴∠E=∠CAF﹣∠ACE=x﹣y=45°,故答案为:45;(2)①如图2所示,②如图2,∵CF平分∠ECB,∴∠ECF=12 y,∵∠E+∠EAF=∠F+∠ECF,∴45°+∠EAF=∠F+12y ①,同理可得:∠E+∠EAB=∠B+∠ECB,∴45°+2∠EAF=90°+y,∴∠EAF=452y+②,把②代入①得:45°+452y+=∠F+12y,∴∠F=67.5°,即∠AFC=67.5°;(3)如图3,设∠FAH=α,∵AF平分∠EAB,∴∠FAH=∠EAF=α,∵∠AFM=13∠AFC=13×67.5°=22.5°,∵∠E+∠EAF=∠AFC+∠FCH,∴45+α=67.5+∠FCH,∴∠FCH=α﹣22.5①,∵∠AHN=13∠AHC=13(∠B+∠BCH)=13(90+2∠FCH)=30+23∠FCH,∵∠FAH+∠AFM=∠AHN+∠FPH,∴α+22.5=30+23∠FCH+∠FPH,②把①代入②得:∠FPH=22.53α+,∵∠FCH=m∠FAH+n∠FPH,α﹣22.5=mα+n22.5·3α+,解得:m=2,n=﹣3.【点睛】本题考查了三角形内角和定理、三角形外角的性质、基本作图——角平分线等,熟练掌握三角形内角和定理以及三角形外角的性质、结合图形进行求解是关键.7.在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.(1)如图,当点P在线段AB上运动,且n=90°时①若PD∥BC,PE∥AC,则m=_____;②若m=50°,求x+y的值.(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.【答案】(1)①90°,②140°;(2)详见解析.【解析】分析:(1)①证明四边形DPEC为平行四边形可得结论;②根据四边形内角和为360°,列等式求出x+y的值;(2)根据P、D、E位置的不同,分五种情况:①y-x=m+n,如图2,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;②x-y=m-n,如图3,点P在BA的延长线上时,根据三角形的内角和与外角定理列等式,化简后得出结论;③x+y=m+n,如图4,点P在线段BA上时,根据四边形的内角和为360°列等式,化简后得出结论;④x-y=m+n,如图5,同理得出结论;⑤y-x=m-n,如图6,同理得出结论.详解:(1)①如图1,∵PD∥BC,PE∥AC,∴四边形DPEC为平行四边形,∴∠DPE=∠C,∵∠DPE=m,∠C=n=90°,∴m=90°;②∵∠ADP=x,∠PEB=y,∴∠CDP=180°-x,∠CEP=180°-y,∵∠C+∠CDP+∠DPE+∠CEP=360°,∠C=90°,∠DPE=50°,∴90°+180°-x+50°+180°-y=360°,∴x+y=140°;(2)分五种情况:①y﹣x=m+n,如图2,理由是:∵∠DFP=n+∠FEC,∠FEC=180°﹣y,∴∠DFP=n+180°﹣y,∵x+m+∠DFP=180°,∴x+m+n+180°﹣y=180°,∴y﹣x=m+n;②x﹣y=m﹣n,如图3,理由是:同理得:m+180°﹣x=n+180°﹣y,∴x﹣y=m﹣n;③x+y=m+n,如图4,理由是:由四边形内角和为360°得:180°﹣x+m+180°﹣y+n=360°,∴x+y=m+n;④x﹣y=m+n,如图5,理由是:同理得:180°=m+n+y+180°﹣x,∴x﹣y=m+n;⑤y﹣x=m﹣n,如图6,理由是:同理得:n+180°﹣x=m+180°﹣y,∴y﹣x=m﹣n.点睛:本题考查了三角形综合、平行四边形的判定.8.等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转。

八年级上册三角形解答题易错题(Word版 含答案)

八年级上册三角形解答题易错题(Word版 含答案)

八年级上册三角形解答题易错题(Word版含答案)一、八年级数学三角形解答题压轴题(难)1.(1)如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,①写出图中一对全等的三角形,并写出它们的所有对应角;②设AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)③∠A与∠1、∠2之间有一种数量关系始终保持不变,请找出这个规律.(2)如图2,把△ABC纸片沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1、∠2的数量关系是否发生变化?如果发生变化,求出∠A与∠1、∠2的数量关系;如果不发生变化,请说明理由.【答案】(1)①△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②∠1=180°−2x,∠2=180°−2y;③∠A=12(∠1+∠2);(2)变化,∠A=12(∠2-∠1),见详解【解析】【分析】(1)①根据翻折方法可得△ADE≌△A′DE;②根据翻折方法可得∠AEA′=2x,∠ADA′=2y,再根据平角定义可得∠1=180°-2x,∠2=180°-2y;③首先由∠1=180°-2x,2=180°-2y,可得x=90-12∠1,y=90-12∠2,再根据三角形内角和定理可得∠A=180°-x-y,再利用等量代换可得∠A=12(∠1+∠2);(2)根据折叠的性质和三角形内角和定理解答即可.【详解】(1)①根据翻折的性质知△EAD≌△EA′D,其中∠EAD=∠EA′D,∠AED=∠A′ED,∠ADE=∠A′DE;②)∵∠AED=x,∠ADE=y,∴∠AEA′=2x,∠ADA′=2y,∴∠1=180°-2x,∠2=180°-2y;③∠A=12(∠1+∠2);∵∠1=180°-2x ,∠2=180°-2y ,∴x=90-12∠1,y=90-12∠2, ∴∠A=180°-x-y=190-(90-12∠1)-(90-12∠2)=12(∠1+∠2). (2))∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A,又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,∴∠A+∠AEA′+∠3=180°,即∠A+180°-∠2+∠A′+∠1=180°,整理得,2∠A=∠2-∠1. ∴∠A=12(∠2-∠1). 【点睛】 此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.如图①,在△ABC 中,CD 、CE 分别是△ABC 的高和角平分线,∠BAC =α,∠B =β(α>β).(1)若α=70°,β=40°,求∠DCE 的度数; (2)试用α、β的代数式表示∠DCE 的度数(直接写出结果);(3)如图②,若CE 是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α﹣β=30°,求∠DCE 的度数.【答案】(1)15°;(2)DCE 2αβ-∠=;(3)75°. 【解析】【分析】(1)三角形的内角和是180°,已知∠BAC 与∠ABC 的度数,则可求出∠BAC 的度数,然后根据角平分线的性质求出∠BCE ,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∠DEC 的度数,进而求出∠DCE 的度数;(2)∠DCE =2αβ- .(3)作∠ACB 的内角平分线CE′,根据角平分线的性质求出∠ECE′=∠ACE+∠ACE′=12∠ACB+12∠ACF=90°,进而求出∠DCE 的度数.【详解】 解:(1)因为∠ACB =180°﹣(∠BAC+∠B )=180°﹣(70°+40°)=70°,又因为CE 是∠ACB 的平分线,所以1352ACE ACB ∠=∠=︒. 因为CD 是高线,所以∠ADC =90°,所以∠ACD =90°﹣∠BAC =20°, 所以∠DCE =∠ACE ﹣∠ACD =35°﹣20°=15°.(2)DCE 2αβ-∠=.(3)如图,作∠ACB 的内角平分线CE′,则152DCE αβ-'==︒∠.因为CE 是∠ACB 的外角平分线,所以∠ECE′=∠ACE+∠ACE′=11+22ACB ACF ∠∠=1(+)2ACB ACF ∠∠=90°, 所以∠DCE =90°﹣∠DCE′=90°﹣15°=75°.即∠DCE 的度数为75°.【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3),作辅助线是关键.3.如图, A 为x 轴负半轴上一点, B 为x 轴正半轴上一点, C(0,-2),D(-3,-2).(1)求△BCD 的面积;(2)若AC ⊥BC,作∠CBA 的平分线交CO 于P ,交CA 于Q,判断∠CPQ 与∠CQP 的大小关系, 并证明你的结论.【答案】(1)3;(2)∠CPQ=∠CQP,理由见解析;【解析】【分析】(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据角平分线的定义可得∠ABQ=∠CBQ,然后根据等角的余角相等解答;【详解】解:(1)∵点C(0,-2),D(-3,-2),∴CD=3,且CD//x轴∴△BCD面积=12×3×2=3;(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ(2)∠CPQ=∠CQP,∵AC⊥BC,∴∠ACO+∠BCO=90°,又∠ACO+∠OAC=90°∴∠OAC=∠BCO,又BQ平分∠CBA,∴∠ABQ=∠CBQ,∵∠CQP=∠OAC+∠ABQ∠CPQ=∠CBQ+∠BCO,∴∠CQP=∠CPQ【点睛】本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质,综合题,熟记性质并准确识图是解题的关键.4.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β(1)如图,若α+β=120°,求∠MBC+∠NDC的度数;(2)如图,若BE与DF相交于点G,∠BGD=30°,请写出α、β所满足的等量关系式;(3)如图,若α=β,判断BE、DF的位置关系,并说明理由.【答案】(1)120°;(2)β﹣α=60° 理由见解析;(3)平行,理由见解析.【解析】【分析】(1)利用四边形的内角和求出∠ABC与∠ADC的和,利用角平分线的定义以及α+β=120°推导即可;(2)由(1)得,∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBG+∠CDG=12(α+β),在△BCD中利用三角形的内角和定理得∠BDC+∠CDB =180°﹣β,在△BDG中利用三角形的内角和定理得出关于α、β的等式整理即可得出结论;(3)延长BC交DF于H,由(1)得∠MBC+∠NDC=α+β,利用角平分线的定义得∠CBE+∠CDH=12(α+β),利用三角形的外角的性质得∠CDH=β﹣∠DHB,然后代入∠CBE+∠CDH=12(α+β)计算即可得出一组内错角相等.【详解】(1)解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°-(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°-∠ABC+180°-∠ADC=360°-(∠ABC+∠ADC)=360°-[360°-(α+β)]=α+β,∵α+β=120°,∴∠MBC+∠NDC=120°;(2)β﹣α=60°理由:如图1,连接BD,由(1)得,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=12∠MBC,∠CDG=12∠NDC,∴∠CBG+∠CDG=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),在△BCD中,∠BDC+∠CDB=180°﹣∠BCD=180°﹣β,在△BDG中,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴12(α+β)+180°﹣β+30°=180°,∴β﹣α=60°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=12∠MBC,∠CDH=12∠NDC,∴∠CBE+∠CDH=12∠MBC+12∠NDC=12(∠MBC+∠NDC)=12(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=12(α+β),∵α=β,∴∠CBE+β﹣∠DHB=12(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.【点睛】此题是三角形综合题,主要考查了平角的意义,四边形的内角和,三角形内角和,三角形的外角的性质,角平分线的意义,用整体代换的思想是解本题的关键,整体思想是初中阶段的一种重要思想,要多加强训练.5.(1)在ABC ∆中,AD BC ⊥,BE AC ⊥,CF AB ⊥,16BC =,3AD =,4BE =,6CF =,则ABC ∆的周长为______.(2)如图①,在ABC ∆中,已知点D ,E ,F 分别为边BC ,BD ,CD 的中点,且4ABC S ∆=2cm ,则AEF S ∆等于______2cm .① ②(3)如②图,三角形ABC 的面积为1,点E 是AC 的中点,点O 是BE 的中点,连接AO 并延长交BC 于点D ,连接CO 并延长交AB 于点F ,则四边形BDOF 的面积为______.【答案】(1)36(2)2(3)16【解析】【分析】(1)利用三角形面积公式,求出AB 、AC 的长,再计算三角形的周长即可; (2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅,根据线段中点的定义以及线段的和差得出12EF BC =,继而再根据三角形面积公式进行求解即可; (3)设BOF S x ∆=,BOD S y ∆=,根据三角形中线将三角形分成两个面积相等的三角形可得14AOE COE AOB COB S S S S ∆∆∆∆====,从而得14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+,14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+,利用等高的两三角形面积之比等于底边之比分别列出关于x 、y 的方程,求出x 、y 的值即可求得答案.【详解】(1)111222ABC S BC AD AC BE AB CF ∆=⋅=⋅=⋅, ∴BC AD AC BE AB CF ⋅=⋅=⋅,即16346AC AB ⨯=⋅=⋅,∴12AC =,8AB =,∴△ABC 的周长=AB+BC+AC=36;(2)设ABC ∆在BC 边上的高为h ,则12ABC S BC h ∆=⋅, ∵E 为BD 中点,∴12ED BD =, ∵F 为DC 中点,∴12DF DC =, ∴111222EF BD DC BC =+=, ∴211112cm 2222AEF ABC S EF h BC h S ∆∆=⋅=⋅⋅==; (3)设BOF S x ∆=,BOD S y ∆=,∵点E ,O 分别是AC ,BE 的中点,1ABC S ∆=, ∴14AOE COE AOB COB S S S S ∆∆∆∆====, ∴14AOF S x ∆=-,34ACF S x ∆=-,14BCF S x ∆=+, ∴134414x x x x --=+,即2213164x x x -=-, 解得112x =, 又14COD S y ∆=-,34ACD S y ∆=-,14ABD S y ∆=+, ∴141344y y y y +=--,得112y =, 故11112126BDOF S x y =+=+=四边形. 【点睛】本题考查了三角形面积的应用,三角形的周长,解题关键在于找出等高的两三角形面积与底边的对应关系.6.如图1:ABC 中,AD 是高,AE 是BAC ∠的平分线,=40=70ABC ACB ,∠︒∠︒.(1)求EAD ∠的度数(2)当==ABC ACB αβ∠∠,,请用αβ,表示EAD ∠,并写出推导过程(3)当AE 是BAC ∠的外角FAC ∠的平分线,如图2则此时EAD ∠的度数是多少,用,αβ表示,直接写出结果.【答案】(1)15o ;(2) -2EAD βα∠=;(3) 902EAD αβ-∠=︒+【解析】【分析】(1)先根据三角形的内角和定理求得∠BAC=180°-∠B-∠C=70°,利用角平分线的定义得∠EAC=12∠BAC=35°,而∠DAC=90°-∠C=20°,通过∠EAD=∠EAC-∠DAC 即可得到结果. (2)猜想∠DAE=12(β-α),重复(1)的过程找出∠BAD 和∠BAE 的度数,二者做差即可得出结论; (3)作∠BAC 的内角平分线AE ′,根据角平分线的性质求出∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=90°,进而求出∠DAE 的度数. 【详解】解:(1)40,70,ABC ACB ∠=︒∠=︒180704070BAC ∴∠=︒-︒-︒=︒, AE 是BAC ∠的平分线,1=352BAE CAE BAC ∴∠=∠=∠︒, 在ACD Rt 中,9020CAD C ∠=︒-∠=︒,15EAD EAC CAD ∴∠=∠-∠=︒.(2),,ABC ACB αβ∠=∠=180BAC αβ∴∠=︒--, AE 是BAC ∠的平分线,1111=180--=90--2222BAE CAE BAC αβαβ∴∠=∠=∠︒︒(), 在Rt △ACD 中,90CAD β∠=︒-,-=2EAD CAE CAD βα∴∠=∠-∠. (3)902EAD αβ-∠=︒+.如图,作∠CAB 的内角平分线AE′,则∠DAE′=-2βα.因为AE 是∠ACB 的外角平分线,所以∠EAE′=∠CAE+∠CAE′=12∠CAB+12∠CAF=12(∠CAB+∠CAF )=90°, 所以∠DAE=90°-∠DAE′=90°--2βα=902αβ-︒+. 即∠DAE 的度数为902αβ-︒+. 【点睛】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.解决(3)作辅助线是关键.7.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .【答案】解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.8.等边△ABC边长为6,P为BC上一点,含30°、60°的直角三角板60°角的顶点落在点P上,使三角板绕P点旋转。

(文末附解析)人教版初中数学八年级上册三角形必须掌握的知识点易错点拔

(文末附解析)人教版初中数学八年级上册三角形必须掌握的知识点易错点拔

(文末附解析)人教版初中数学八年级上册三角形必须掌握的知识点易错点拔单选题1、如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A.线段DEB.线段BEC.线段EFD.线段FG2、如图,在Rt△ABF中,∠F=90°,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CD⊥AC交AB 于点D,过点C作CE⊥AB交AB于点E,则下列说法中,错误的是()A.△ABC中,AB边上的高是CE B.△ABC中,BC边上的高是AFC.△ACD中,AC边上的高是CE D.△ACD中,CD边上的高是AC3、下列说法中,正确的个数有()①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°;③三角形的外角大于与它不相邻的任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;A.1个B.2个C.3个D.44、将一副直角三角尺的按照如图所示方式叠放在一起(其中∠A=60°,∠B=30°,∠C=∠D=45°),若AB∥CD,则∠AOC等于()A.75°B.90°C.100°D.105°5、如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A.30°B.35°C.40°D.45°6、三个等边三角形的摆放位置如图所示,若∠1+∠2=120°,则∠3的度数为()A.90°B.60°C.45°D.30°7、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A.1B.2C.3D.48、下列长度的三条线段能组成三角形的是( )A.5cm 2cm 3cmB.5cm 2cm 2cmC.5cm 2cm 4cmD.5cm 12cm 6cm填空题9、如图,∠A=α,∠ABC,∠ACD的平分线相交于点P1,∠P1BC,∠P1CD的平分线相交于点P2,∠P2BC,∠P2CD的平分线相交于点P3……以此类推,则∠P n的度数是___________(用含n与α的代数式表示).10、用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=____度.11、若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是___________.12、如果一个多边形的边数恰好是从—个顶点引出的对角线条数的2倍,则此多边形的边数为__________.13、等腰三角形的两边长分别是3cm和6cm,则它的周长是_________cm.解答题14、如图,∠B=90°,∠1=∠2,∠3=∠4,则∠D=__°.15、如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.(文末附解析)人教版初中数学八年级上册三角形_00F参考答案1、答案:B解析:根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.小提示:本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.2、答案:C解析:根据三角形某边上的高的定义(从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高),依次检验四个选项,即可得到答案.解:根据三角形某边上的高的定义验证:A. △ABC中,AB边上的高是CE,故A正确;B. △ABC中,BC边上的高是AF,故B正确;C. △ACD中,AC边上的高是CD,故C错误;D. △ACD中,CD边上的高是AC,故D正确;故选C.小提示:本题考查了三角形某边上的高的定义;从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,掌握此定义是解题的关键.3、答案:C解析:分别根据三角形的三边关系,三角形的内角和定理,三角形的外角性质以及多边形的内角和公式逐一判断即可.解:①若三条线段中有两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形,说法错误;改正为:若任意两条线段之和大于第三条线段,则以这三条线段为边可作一个三角形;②一个三角形中,至少有一个角不小于60°,说法正确;③三角形的外角大于与它不相邻的任意一个内角,说法正确;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°,说法正确.所以正确的个数有3个.故选:C.小提示:本题主要考查了三角形的三边关系,三角形的内角和定理,多边形的内角与外角以及三角形的外角性质,熟记相关知识是解答本题的关键.4、答案:D解析:连接AC,根据平行线的性质得到∠BAC+∠DCA=180°,进而得到∠CAO+∠ACO =75°,根据三角形内角和定理即可求得∠AOC.解:如图,连接AC,∵AB∥CD,∴∠BAC+∠DCA=180°,即∠BAO+∠CAO+∠ACO+∠DCO=180°,∵∠BAO=60°,∠DCO=45°,∴∠CAO+∠ACO=180°﹣60°﹣45°=75°,∵∠CAO+∠ACO+∠AOC=180°,∴∠AOC=180°﹣∠CAO+∠ACO=180°﹣75°=105°,故选:D.小提示:本题主要考查了平行线的性质和三角形内角和定理,熟记“两直线平行,同旁内角互补”是解决问题的关键.5、答案:C解析:由AC⊥BC可得∠ACB=90°,又∠B=50°,根据直角三角形两个锐角互余可得∠CAB=40°,再根据平行线的性质可得∠DCA=∠CAB=40°.解:∵AC⊥BC,∴∠ACB=90°,又∵∠B=50°,∴∠CAB=90°﹣∠B=40°,∵CD∥AB,∴∠DCA=∠CAB=40°.故选:C.【小提示】本题主要考查了平行线的性质以及直角三角形的性质,根据题意得出∠CAB的度数是解答本题的关键.6、答案:B解析:先根据图中是三个等边三角形可知三角形各内角均等于60°,用∠1,∠2,∠3表示出中间三角形的各内角,再根据三角形的内角和即可得出答案.解:如图所示,图中三个等边三角形,∴∠ABC=180°−60°−∠3=120°−∠3,∠BAC=180°−60°−∠1=120°−∠1,∠ACB=180°−60°−∠2=120°−∠2,由三角形的内角和定理可知:∠ABC+∠BAC+∠ACB=180°,即120°−∠3+120°−∠1+120°−∠2=180°,又∵∠1+∠2=120°,∴∠3=60°,故答案选B.小提示:本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60°是解答此题的关键.7、答案:A解析:用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边所以答案是:A.小提示:本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.8、答案:C解析:根据三角形的三边关系进行分析判断.解:根据三角形任意两边的和大于第三边,得A、3+2=5,不能组成三角形,不符合题意;B、2+2=4<5,不能组成三角形,不符合题意;C 、4+2=6>5,能够组成三角形,符合题意;D 、5+6=11<12,不能组成三角形,不符合题意.故选:C .小提示:本题考查了能够组成三角形三边的条件,解题的关键是用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.9、答案:(12)n α 解析:由∠P 1CD =∠P 1+∠P1BC ,∠ACD =∠ABC +∠A ,而P 1B 、P 1C 分别平分∠ABC 和∠ACD ,得到∠ACD =2∠P 1CD ,∠ABC =2∠P 1BC ,于是有∠A =2∠P 1,同理可得∠P 1=2∠P 2,即∠A =22∠P 2,因此找出规律. ∵P 1B 、P 1C 分别平分∠ABC 和∠ACD ,∴∠ACD =2∠P 1CD ,∠ABC =2∠P 1BC ,而∠P 1CD =∠P 1+∠P 1BC ,∠ACD =∠ABC +∠A ,∴∠A =2∠P 1,∴∠P 1=12∠A ,同理可得∠P 1=2∠P 2,即∠A =22∠P 2, ∴∠A =2n∠P n , ∴∠P n =(12)n α.所以答案是:(12)n α.小提示:本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质,难度适中.10、答案:36解析:利用多边形的内角和定理和等腰三角形的性质即可解决问题.=108°,ΔABC是等腰三角形,解:∵∠ABC=(5−2)×180°5∴∠BAC=∠BCA=36度,所以答案是:36.小提示:本题主要考查了多边形的内角和定理和等腰三角形的性质.解题关键在于知道n边形的内角和为:180°(n﹣2).11、答案:6解析:试题分析:凸n边形的内角和公式180。

(完整word版)初二数学八上三角形所有知识点总结和常考题型练习题,文档

(完整word版)初二数学八上三角形所有知识点总结和常考题型练习题,文档

三角形知识点一、三角形及其有关看法1、三角形:由不在同素来线上的三条线段首尾按次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的极点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形的表示:三角形用符号“△〞表示,极点是A、 B、 C 的三角形记作“△ ABC〞,读作“三角形ABC〞。

3、三角形的三边关系:(1〕三角形的任意两边之和大于第三边。

(2〕三角形的任意两边之差小于第三边。

(3〕作用:①判断三条线段能否组成三角形②当两边时,可确定第三边的范围。

③证明线段不等关系。

4、三角形的内角的关系:(1〕三角形三个内角和等于 180°。

(2〕直角三角形的两个锐角互余。

5、三角形的牢固性:三角形的形状是固定的,三角形的这个性质叫做三角形的牢固性。

6、三角形的分类:(1)三角形按边分类:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形(2)三角形按角分类:直角三角形〔有一个角为直角的三角形〕三角形锐角三角形〔三个角都是锐角的三角形〕斜三角形钝角三角形〔有一个角为钝角的三角形〕还有一种特其余三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

7、三角形的三种重要线段:(1〕三角形的角均分线:定义:在三角形中,一个内角的均分线与它的对边订交,这个角的极点与交点之间的线段叫做三角形的角均分线。

性质:三角形的三条角均分线交于一点。

交点在三角形的内部。

(2〕三角形的中线:定义:在三角形中,连接一个极点和它对边的中点的线段叫做三角形的中线。

性质:三角形的三条中线交于一点,交点在三角形的内部。

(3〕三角形的高线:定义:从三角形一个极点向它的对边所在直线作垂线,极点和垂足之间的线段叫做三角形的高线〔简称三角形的高〕。

性质:三角形的三条高所在的直线交于一点。

锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点在它的直角极点;钝角三角形的三条高所在的直线的交点在它的外面;8、三角形的面积:三角形的面积= 1×底×高2二、全等图形:定义:能够完满重合的两个图形叫做全等图形。

八年级数学上册 全等三角形易错题(Word版 含答案)

八年级数学上册 全等三角形易错题(Word版 含答案)

八年级数学上册全等三角形易错题(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,线段AB,DE的垂直平分线交于点C,且72ABC EDC∠=∠=︒,92AEB∠=︒,则EBD∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE,由线段AB,DE的垂直平分线交于点C,得CA=CB,CE=CD,ACB=∠ECD=36°,进而得∠ACE=∠BCD,易证∆ACE≅∆BCD,设∠AEC=∠BDC=x,得则∠BDE=72°-x,∠CEB=92°-x,BDE中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE,∵线段AB,DE的垂直平分线交于点C,∴CA=CB,CE=CD,∵72ABC EDC∠=∠=︒=∠DEC,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD,在∆ACE与∆BCD中,∵CA CBACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩,∴∆ACE≅∆BCD(SAS),∴∠AEC=∠BDC,设∠AEC=∠BDC=x,则∠BDE=72°-x,∠CEB=92°-x,∴∠BED=∠DEC-∠CEB=72°-(92°-x)=x-20°,∴在∆BDE中,∠EBD=180°-(72°-x)-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.2.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案. 【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A=,44128A B B A=,551216A B B A=进而发现规律是解题关键.3.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4【解析】【分析】①连接NP,MP,根据SSS定理可得△ANP≌△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC=60°;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】①连接NP,MP.在△ANP与△AMP中,∵AN AMNP MPAP AP=⎧⎪=⎨⎪=⎩,∴△ANP≌△AMP,则∠CAD=∠BAD,故AD是∠BAC的平分线,故此选项正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.∵AD是∠BAC的平分线,∴∠1=∠2=12∠CAB=30°,∴∠3=90°﹣∠2=60°,∴∠ADC=60°,故此选项正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;④∵在Rt △ACD中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC=12AC •BC =12AC •32AD =34AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.4.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】 如图1,当点D 在线段AB 上,且A DBC '时,45A DB B '∠=∠=︒, 45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2【点睛】本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.5.如图,在第一个△A 1BC 中,∠B =30°,A 1B =CB ,在边A 1B 上任取一D ,延长CA 2到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ,在边A 2B 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.6.如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M 在AB 下方且∠AMB=90°时,②当M 在AB 上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB =90°时,∵O 是AB 的中点,AB =8,∴OM =OB =4,又∵∠AOC =∠BOM =60°,∴△BOM 是等边三角形,∴BM =BO =4,∴Rt △ABM 中,AM 22AB BM -3如图2,当∠AMB =90°时,∵O 是AB 的中点,AB =8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM=22-=43,MO OB∴Rt△ABM中,AM=22+=47.AB BM综上所述,当△ABM为直角三角形时,AM的长为43或47或4.故答案为43或47或4.7.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。

八年级上册数学三角形经典题型辅导讲解

八年级上册数学三角形经典题型辅导讲解

文章标题:深度解析八年级上册数学三角形经典题型序夯实基础,扎实数学能力是每位学生的必修课。

而在数学学习中,三角形作为一个重要的基本图形,在八年级上册数学中扮演着非常重要的角色。

本文将深度解析八年级上册数学中关于三角形的经典题型,帮助学生更好地掌握这一部分知识。

一、基本定义在深入探讨具体题型之前,我们首先要对三角形的基本定义进行回顾和总结。

三角形是由三条边和三个内角组成的简单多边形,其中包括了多种类型,如等边三角形、等腰三角形、直角三角形等。

了解这些基本定义,将有助于我们更好地应对后续的题型解答。

二、图形性质1.等腰三角形在数学学习中,等腰三角形是一个非常经典的题型。

通过学习等腰三角形的性质和特点,我们可以更好地应对相关的题目。

等腰三角形的两边是相等的,而对应的两个底角也是相等的。

在解答题目时,我们就可以通过这些性质来快速得出结论,提高解题效率。

2.直角三角形直角三角形作为三角形中最基础的一种,同样也承担着非常重要的作用。

学生需要掌握勾股定理、正弦定理、余弦定理等相关知识,并能灵活运用到实际问题中。

通过灵活地应用这些知识,我们可以更好地解决与直角三角形相关的各种题目。

三、题型解析1.计算周长和面积在数学学习中,求解三角形的周长和面积是一个非常基础且常见的题型。

通过掌握计算周长和面积的公式和方法,我们可以更好地理解三角形的特点和性质。

这不仅有助于我们巩固基础知识,还能提高我们的计算能力和逻辑思维能力。

2.解决角度和边长问题另外,解决与三角形内角和边长相关的问题也是数学学习中常见的题型。

已知三角形的一些角度或边长,求解未知的角度或边长。

通过灵活运用三角形的性质和相关定理,我们可以更好地解决这类问题,提高数学解题能力。

四、个人观点通过对八年级上册数学三角形经典题型的深度解析,我们不仅能够巩固基础知识,还能提高解题效率和能力。

在学习数学的过程中,我们需要多加练习,并且灵活运用所学知识和方法,才能更好地掌握这一部分内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档