大学物理-光的干涉.ppt
合集下载
大学物理-12章:光的干涉
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
§4 分波面双光束干涉
一、杨氏双缝实验(1801)
装置: 稳定、明暗相间条纹
P
S1
Sd
r1
r2
y o
S2
D
物理分析:
d sin d tg yd
D
P
S1
d
r1
r2
y
o
S2 r2 r1
D
yd D
2k
2 (2k 1)
亮纹
暗纹
2
明、暗纹位置:
k 3, 2n1e / 3 368nm
讨论:
1 2k k 0,1, 2
I I1 I2 2 I1I2
if I1 I2 4I1
光的强度为最大值,干涉极大
I I1 I2 2 I1I2 cos
讨论:
2 (2k 1) k 0,1, 2
I I1 I2 2 I1I2
if I1 I2
0
光的强度为最小值,干涉极小
§3 两列单色波的干涉
2e
n22
n12
sin2
i
2
k
2ne 2 k
4ne 41.301.0107 5.20107
2k 1
2k 1
2k 1
k=1时: 5.20 107 m ----绿色光
k=2时: 1.733107 m
----紫外光,不可见
练习:一油轮漏油(n1=1.2)污染海面,在 海水(n2=1.3)表面形成一层薄油污。
随机变化
cos(2
1)
1
cos(2 1)dt 0
0
I I1 I2 非相干叠加加!
大学物理_光的干涉
d
x x r1 P · x r2 0
x0
x I
D
明纹 暗纹
D k , x k k , k 0,1,2 … d D ( 2k 1) , x( 2 k 1) ( 2k 1) 2 2d
D 条纹间距: x d
10
条纹特点: (1)一系列平行的明暗相间的条纹; (2) 不太大时条纹等间距; (3)中间级次低,两边级次高; r2 r1 (某条纹级次 = 该条纹相应的 之值) 明纹: k ,k =1,2…(整数级)
M1 反射镜
M2 M3
遥远星体相应的d0 几至十几米。
S1
S2 M4
迈克耳孙巧妙地用四块反 射镜增大了双缝的缝间距。
屏
屏上条纹消失时,M1M4
间的距离就是d0。 猎户座 星 nm (橙色),
迈克耳孙测星干涉仪
1920年12月测得: d0 3.07m 。 由此得到: 9 570 10 1.22 2 103 rad 0.047 33 d0 3.07
一. 光源(light source) 光源的最基本发光单元是分子、原子。
能级跃迁辐射 E2
波列
= (E2-E1)/h
E1
波列长 L = c
2
1. 普通光源:自发辐射
间歇:随机(相位、振动方向均随机)
· ·
独立(不同原子发的光) 独立(同一原子先后发的光)
2. 激光光源:受激辐射
= (E2-E1) / h
I
合成光强
-1N 0M 0N 0L +1L
x
x
D x d
27
大学物理第22章 光的干涉
r2
相位差和光程差的关系:
2
8
例如:在S2P间插入折射率为n、厚度为d的媒质。求:光 由S1、 S2 到 P的相位差φ 。
2 2π φ δ λ
r d nd r
2 1
2 r2 r1 n 1d
r1 P · r2 d
第22章 光的干涉
§22.1 杨氏双缝干涉 §22.2 相干光 §22.5 光程 §22.6 薄膜干涉(一) —— 等厚干涉 §22.7 薄膜干涉(二) —— 等倾干涉 §22.8 迈克尔逊干涉仪 本章要点:理解掌握光的干涉条件、干涉实例 的分析及方法
1
§22.2 相干光
1.振动方向相同,频率相同的两列波的叠加
14 14
5.0 1014 ~ 5.4 1014 5.4 1014 ~ 6.1 1014 6.1 1014 ~ 6.4 1014
兰
紫
470~455
455~400
6.4 1014 ~ 6.6 1014
6.6 1014 ~ 7.5 1014
460
430
12
§22.1 杨氏双缝干涉
r暗 kR
1 r暗 R k ; 令k 1, 则r 随 k 间距 。 k 31
(2)牛顿环应用
•测量未知单色平行光的波长
已知第 k 级和第 m 级暗环直径 dk、dm
2
a 纹路深为: h 2L
L
h h
e
a L
27
ek ek+1
(2)测膜厚
A
B
Si O2
e e
n1 1
n2 1.57
大学物理实验光的干涉
大学物理实验光的干涉
目录
• 光的干涉概述 • 实验原理 • 实验步骤与操作 • 实验结果与分析 • 结论与总结
01 光的干涉概述
光的干涉现象
01
光的干涉是指两束或多束相干光 波在空间某些区域相遇叠加,形 成光强分布的周期性变化现象。
02
在干涉区域,光强增强或减弱, 形成明暗相间的干涉条纹。
干涉的形成条件
相干光源
干涉现象要求光源具有 相干性,即光源发出的 光波具有确定的相位关
系。
频率相同
参与干涉的两束光波的 频率必须相同。
振动方向相同
参与干涉的两束光波的 振动方向必须相同。
恒定的相位差
两束光波在相遇点必须 具有恒定的相位差。
干涉的应用
01
02
03
04
干涉测量
利用光的干涉现象测量长度、 厚度、表面粗糙度等物理量。
调整激光器
确保激光束垂直照射到双缝上 。
观察干涉图样
调整屏幕位置,观察到明暗交 替的干涉条纹。
测量条纹间距
使用测量尺测量相邻亮条纹或 暗条纹之间的距离。
薄膜干涉实验步骤
准备实验器材
包括单色光源、薄膜、屏幕和测量尺。
观察干涉图样
调整屏幕位置,观察到明暗交替的干涉图样。
调整光源和薄膜
确保单色光垂直照射到Байду номын сангаас膜上。
解释
干涉现象的产生是由于波的振动方向相同使得波峰与波峰或波谷与波谷叠加,使振幅增强 ;而振动方向相反时则会使振幅相互抵消。干涉现象是光的波动性质的重要体现之一。
应用
干涉现象在光学、声学、电子等领域有广泛应用,如光学干涉仪、声呐、电子显微镜等。
03 实验步骤与操作
目录
• 光的干涉概述 • 实验原理 • 实验步骤与操作 • 实验结果与分析 • 结论与总结
01 光的干涉概述
光的干涉现象
01
光的干涉是指两束或多束相干光 波在空间某些区域相遇叠加,形 成光强分布的周期性变化现象。
02
在干涉区域,光强增强或减弱, 形成明暗相间的干涉条纹。
干涉的形成条件
相干光源
干涉现象要求光源具有 相干性,即光源发出的 光波具有确定的相位关
系。
频率相同
参与干涉的两束光波的 频率必须相同。
振动方向相同
参与干涉的两束光波的 振动方向必须相同。
恒定的相位差
两束光波在相遇点必须 具有恒定的相位差。
干涉的应用
01
02
03
04
干涉测量
利用光的干涉现象测量长度、 厚度、表面粗糙度等物理量。
调整激光器
确保激光束垂直照射到双缝上 。
观察干涉图样
调整屏幕位置,观察到明暗交 替的干涉条纹。
测量条纹间距
使用测量尺测量相邻亮条纹或 暗条纹之间的距离。
薄膜干涉实验步骤
准备实验器材
包括单色光源、薄膜、屏幕和测量尺。
观察干涉图样
调整屏幕位置,观察到明暗交替的干涉图样。
调整光源和薄膜
确保单色光垂直照射到Байду номын сангаас膜上。
解释
干涉现象的产生是由于波的振动方向相同使得波峰与波峰或波谷与波谷叠加,使振幅增强 ;而振动方向相反时则会使振幅相互抵消。干涉现象是光的波动性质的重要体现之一。
应用
干涉现象在光学、声学、电子等领域有广泛应用,如光学干涉仪、声呐、电子显微镜等。
03 实验步骤与操作
大学物理演示(赵)(光干涉)
17.2、 杨氏双缝干涉实验 双镜 劳埃德镜
1. 杨氏双缝干涉实验
实验装置 分波阵面干涉 缝宽: 10-4 m 双缝距离 d: 0.1--3 mm
屏到双缝距离 D: 1--10 m
屏上横向观测范围: 1--10 cm
2、 杨氏干涉条纹
S1 和 S2 振动方向相同, 频率相同 相位相同
A
P点光强 I I1 I2 2 I1I2 cos 2I0 (1 cos )
2
n1 n2 n3
光线1有,光线2有 2n2e cos
n1 n2 n3
n1 n2 , n3 n2
光线1没有,光线2没有 2n2e cos
光线1没有,光线2有
2n2e cos
2
2n2e cos 0
Oi
f tgi P 屏幕 f
谱线的自然宽度 ν
波包 i()
λ 谱线宽度
λ0 λ
波列
L c ~ 1 ~109 s
ν
2.相干光的获得
S1
分波前法 S
分波面法 S2
cos 0
不满足相 干条件
满足相 干条件 先分 后合
P
S
分振幅法
薄膜
1
2
托马斯.扬 (Thomas.Yong ,1773—1829)。幼年 时就聪慧过人,尤其擅长语言,青年 时会10种语言。后来他攻读医学,但 对物理学也有很大的兴趣。在研究听 觉和视觉问题时。他注意到光的微粒 说和波动说的争论,尽管当时在学术 界占统治地位的是微粒说,但是他注 意到惠更斯的波动说的合理性,1801 年他完成了著名的杨氏双缝实验,验 证了光的波动性
大学物理光的干涉
干涉在光谱分析中的应用
干涉滤光片
利用光的干涉原理,设计出具有特定光谱透过率 的滤光片,用于光谱分析和图像增强。
傅里叶变换光谱仪
通过干涉原理,将复杂的光谱分解为简单的干涉 图样,便于分析物质的成分和结构。
原子干涉仪
利用原子在空间中的干涉现象,测量原子波长和 原子能级,用于原子结构和量子力学的研究。
干涉在全息摄影中的应用
大学物理光的干涉
目录
CONTENTS
• 光的干涉基本理论 • 干涉现象的实验验证 • 光的干涉的应用 • 光的干涉的深入研究
01 光的干涉基本理论
CHAPTER
光的波动性
01
光的波动性描述了光在空间中传播的方式,类似于水波在液体 中的传播。
02
光的波动性表现为光在传播过程中产生的振动和波动,这些振
动和波动具有特定的频率和波长。
光的波动性是理解光的干涉、衍射等光学现象的基础。
03
波的干涉
波的干涉是指两个或多个波在空间中相遇时,它们相互叠加产生新的波动现象。
当两个波的相位相同,即它们的振动方向一致时,它们会产生相长干涉,导致波峰 叠加和波谷叠加。
当两个波的相位相反,即它们的振动方向相反时,它们会产生相消干涉,导致波峰 抵消和波谷抵消。
量子通信、量子计算等领域。
03
量子纠缠的实验验证
科学家们通过实验验证了光子纠缠现象的存在,如著02
03
光的相干性
光的偏振
干涉现象的产生是由于两束光的 波前相干,即它们的相位差恒定。
光波的电场和磁场在垂直于传播 方向上的振动方向称为光的偏振 态。
光子纠缠现象
01
光子纠缠
当两个或多个光子相互作用后,它们的状态变得相互关联,即一个光子
基础物理学光的干涉(ppt)
(1) 2k
I 4I0 干涉极大;
(2) (2k1) I 0 干涉极小;
(3) 为其他值时,光强介于0 ~ 4I0之间。
7.1.2 光程差
S1
在折射率n介质中传播几 n1
何路程为r,相位变化为
2nr2L
n2
S2
r1
P
r2
L = nr 是光程。
S1和S2发出光束,在折射率为n1和n2媒质中
传播,在P点相遇。当初相相同时,相位差为
基础物理学光的干 涉(ppt)
2020/12/30
吉林大学 物理教学中心
7.1 光的相干性
7.1.1 光的干涉 相干条件
一、光矢量 可见光:400~760nm 光是电磁波,电场强度矢量 称E为光矢量。 产生感光和生理作用主要是电矢量。
二、光的干涉现象 满足条件若干束光波的相遇区域里,有些点
振动始终加强(亮条纹),有些点振动始终减弱 (暗条纹),称为干涉现象。
三、相干条件 相干条件1:只有平行振动分量间才能发生干涉。 相干条件2:频率相同光波之间才能发生干涉。
相干条件3:相位差恒定光波之间才能发生干涉。
四、相干强度
满足相干条件时,两相干光光强为
I I1 I2 2I1 I2c o sΔ (7 .1 )
相位差 Δ(12)2π(r1r2)
若 I1I2I0 I 2 I 0 (1 c o s ) 4 I 0 c o s 22 (7 .2 )
由透射光加强条件
2n2e
2
k
e
n2
4n2
=1.38 n3 =1.55
(2k 1)
注意:也可以利用反射减弱条件
照相 机镜 头是 蓝紫 色
(7 .1 2 )
大学物理学第三版(张三慧)课件第22章光的干涉详解
因而 kr k 1 v
k v 390 1.08
r v 750 390
9
由于k只能取整数,故有从紫到红的排列清 晰的可见光谱只有正负一级,如下图所示
10
22.2 相干光
一、相干光源 一般光源的发光机制:被激发到较高能级 的原子跃迁到低能级时,辐射出能量。
⑴不同原子发出的光,一般不是相干光。
薄膜干涉(二)等倾条纹
迈克耳孙干涉仪
3
22.1 杨氏双缝干涉
一、双缝干涉
Thomas Young (1773-1829), 1801年做成实
验,确认了光的波动性。 X
r1
px
d
r2
O
D
几何: D>>d ( D/d~104 )
屏幕
很小 (~10-3 rad)
4
波程差:
r2
r1
d
sin
d
tg
d
x D
此绿光波长=546.1nm,谱线宽度
Δ=0.044nm , 试 求 能 观 察 到 干 涉
条纹的级次和最大允许的光程差。
解:k / 546.1/ 0.044 1.241104
max
2
546.12 0.044
6.8 103 (m)
6.8(mm)
对普通单色光源,就光的非单色性,实验
中总能观察到很多的干涉条纹。
测星干涉仪:
迈克耳孙巧妙地用四块反射 镜增大了双缝的缝间距。
屏上条纹消失时,M1M2 间的距离就是d0。猎户座
星 nm(橙色),
c1
S c2
b1 S1
a1·P a2
b2
S2
不能干涉
只有同一波列分成的两部分,经过不同的
大学物理-第十一章光的干涉
x14 x 4 x1
d x14 D ( k 4 k1 )
d
( k 4 k1 ) λ
0 .2 7 .5 500nm 1000 3
(2)当λ =600nm 时,相邻两明纹间的距离为
D 1000 4 x 6 10 3.0mm d 0 .2
2 10 2 20
合光强
I I1 I 2 2 I1 I 2 cos( 2 1 )
若
其中 2 1 2 π
则
I1 I 2 I 0
干涉项
I 4 I 0 cos (π )
2
4 I 0 , k
0 , (2k 1) 2
s
s1
d o
θ
r1
θ
B
p
r2
x
o
s2
d ' d
r
d'
光程差
x r2 r1 d sin d d' x
d tan sin
实 验 装 置
s
s1
d o
θ
r1
θ
B
p
x
o
r2
s2
d ' d
r
d'
相长干涉(明) 2k π, 2 (k = 0,1,2…) x k 加强 d k 0,1,2, d' (2k 1) 减弱 2 d' k 明纹 k 0 , 1 , 2 , x d 'd k 1, 2, 暗纹
波动光学
光的干涉 光的衍射 光的偏振
光学研究光的传播以及它和物质相互作用。 通常分为以下三个部分:
《大学物理》-光的干涉
第22章
光的干涉
针孔的衍射
二、光的衍射现象的分类
单缝衍射
不同波长光的单缝衍射条纹照片
白光, a = 0.4 mm
方孔衍射
等厚干涉
双缝干涉
增透膜
网格衍射
一、光的本性
1、微粒说与波动说之争
牛顿的微粒说: 光是由光源发出的微粒流。
惠更斯的波动说: 光是一种波动。
2、 光的电磁本性
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
s1
r2
s2
P 0
7 dn 1
d 7 7 55001010 6.6 106 m
n 1 1.58 1
三 薄膜干涉
1 等倾干涉
一、倾斜入射*
光程差:
n2 ( AB BC ) n1 AD n1
: :
c : 2
(b c)
(a d
2
b) :a
x1 x2
0.495cm 10mm
4.95mm
明纹的位置 d sin k
2
s1
s 2*
a
Mb
d xk k
abc 2
K=3, K=4, K=5,
x3=5.05mm x4=7.07mm x5=9.09mm
光的干涉
针孔的衍射
二、光的衍射现象的分类
单缝衍射
不同波长光的单缝衍射条纹照片
白光, a = 0.4 mm
方孔衍射
等厚干涉
双缝干涉
增透膜
网格衍射
一、光的本性
1、微粒说与波动说之争
牛顿的微粒说: 光是由光源发出的微粒流。
惠更斯的波动说: 光是一种波动。
2、 光的电磁本性
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
夹角变小,条纹变宽, 条纹向右移动
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
s1
r2
s2
P 0
7 dn 1
d 7 7 55001010 6.6 106 m
n 1 1.58 1
三 薄膜干涉
1 等倾干涉
一、倾斜入射*
光程差:
n2 ( AB BC ) n1 AD n1
: :
c : 2
(b c)
(a d
2
b) :a
x1 x2
0.495cm 10mm
4.95mm
明纹的位置 d sin k
2
s1
s 2*
a
Mb
d xk k
abc 2
K=3, K=4, K=5,
x3=5.05mm x4=7.07mm x5=9.09mm
《大学物理(上)》光的干涉
★ 结论:薄透镜不会引起各相干光之间的附加光程差。
20
万物之美 科学之理
目录
第一节 光源 光波 光的相干性 第二节 光波的叠加 光程与光程差 第三节 分波阵面干涉 第四节 分振幅干涉 第五节 迈克尔逊干涉仪 第六节 迈克尔逊干涉仪
第三节 分波阵面干涉
杨氏双缝干涉实验
实验现象
s1
S
s2
明条纹位置 明条纹位置 明条纹位置
42
第四节 分振幅干涉
43
第四节 分振幅干涉
练一练 观察 n=1.33 的薄油膜的反射光,它呈波长为 500nm 的绿光, 且这时法线和视线夹角 i=45o
求 (1)膜的最小厚度
i
(2)若垂直观察,此膜呈何种颜色
d
解 (1) 绿光干涉相长
数据代入(k=1): (2) 垂直观察
深黄色
44
第四节 分振幅干涉
P
S1
r2 d
x
2
1
0
I
S2
D
1
x
2
25
第三节 分波阵面干涉
讨论
D、d 一定时, x 或 x
若用白光照射双缝,屏上中心明纹仍为白色,两侧对称分布各级紫内红 外的彩色条纹。更高级次的彩色条纹可能会发生重叠 。
0
1
2
3
0 1 23 4
中央明纹
3
2
1
0
1
2
3
26
第三节 分波阵面干涉 洛埃镜
M
S1 •
5
第一节 光源 光波 光的相干性
光波
1、颜色与光波
光色 波长(nm)
可
红
760~622
见
光 七
20
万物之美 科学之理
目录
第一节 光源 光波 光的相干性 第二节 光波的叠加 光程与光程差 第三节 分波阵面干涉 第四节 分振幅干涉 第五节 迈克尔逊干涉仪 第六节 迈克尔逊干涉仪
第三节 分波阵面干涉
杨氏双缝干涉实验
实验现象
s1
S
s2
明条纹位置 明条纹位置 明条纹位置
42
第四节 分振幅干涉
43
第四节 分振幅干涉
练一练 观察 n=1.33 的薄油膜的反射光,它呈波长为 500nm 的绿光, 且这时法线和视线夹角 i=45o
求 (1)膜的最小厚度
i
(2)若垂直观察,此膜呈何种颜色
d
解 (1) 绿光干涉相长
数据代入(k=1): (2) 垂直观察
深黄色
44
第四节 分振幅干涉
P
S1
r2 d
x
2
1
0
I
S2
D
1
x
2
25
第三节 分波阵面干涉
讨论
D、d 一定时, x 或 x
若用白光照射双缝,屏上中心明纹仍为白色,两侧对称分布各级紫内红 外的彩色条纹。更高级次的彩色条纹可能会发生重叠 。
0
1
2
3
0 1 23 4
中央明纹
3
2
1
0
1
2
3
26
第三节 分波阵面干涉 洛埃镜
M
S1 •
5
第一节 光源 光波 光的相干性
光波
1、颜色与光波
光色 波长(nm)
可
红
760~622
见
光 七
光的干涉-PPT
光的干涉
薄膜干涉
让一束光经薄膜的两个表面反射后,形成的两束 反射光产生的干涉现象叫薄膜干涉.
点 击 画 面 观 看 动 画
光的干涉
薄膜干涉
1、在薄膜干涉中,前、后表面反射光的路程差由膜 的厚度决定,所以薄膜干涉中同一明条纹(暗条纹)应 出现在膜的厚度相等的地方.由于光波波长极短,所以 微薄膜干涉时,介质膜应足够薄,才能观察到干涉条 纹.2、用手紧压两块玻璃板看到彩色条纹,阳光下的肥 皂泡和水面飘浮油膜出现彩色等都是薄膜干涉.
第1节 光的干涉
光到底是什么?……………
17世纪明确形成 了两大对立学说
由于波动说没有 数学基础以及牛 顿的威望使得微 粒说一直占上风
牛顿
19世纪初证明了 波动说的正确性
惠更斯
微粒说
19世纪末光电效应现象使得 爱因斯坦在20世纪初提出了 光子说:光具有粒子性
波动说
这里的光子完全不同于牛顿所说的“微粒”
光的干涉
干涉现象是波动独有的特征,如果光真的 是一种波,就必然会观察到光的干涉现象.
光的干涉 光的干涉
1801年,英国物理学家托马斯·杨(1773~1829) 在实验室里成功的观察到了光的干涉.
双缝干涉
激
双
光
缝
束
屏上看到明暗相间的条纹 屏
光的干涉
S1 S2 d
双缝干涉
P2
P1
P
P
P1 P2
S1、S2
相干波源
P1S2-P1S1= d
光程差
P2S2-P2S1> d 距离屏幕的中心越远路程差越大
光的干涉
双缝干涉
1、两个独立的光源发出的光不是相干光,双缝干 涉的装置使一束光通过双缝后变为两束相干光,在光屏 上形成稳定的干涉条纹.
大学物理12光的干涉
第十二章 光的干涉
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e
S1
Sd
S2
杨氏双缝实验
§12-1 光源 光的特性
2.分振幅法:利用光在两种介质分界面 上的反射光和透射光作为相干光
iD
n1
e
A
C n2 n1
B
n1
薄膜干涉
第十二章 光的干涉
§12-1 光源 光的特性
§12-2 双缝干涉
一、杨氏双缝实验 1.装置原理
S1
Sd
S2
第十二章 光的干涉
第十二章 光的干涉
§12-3 光程与光程差
三、反射光的相位突变和附加光程差
1、n1 n2 n3 或 n1 n2 n3 无附加光程差
12
i
n1
e
n2
n3
2、n1 n2 n3 或 n1 n2 n3 1’ 2’
有附加光程差 2
3、对于折射光,无任何相位突变
第十二章 光的干涉
§12-3 光程与光程差
§12-2 双缝干涉
2.干涉明暗条纹的位置
r1
S1
S d
r2
波程差
S2
r2 r1
D
P
x
0
r2
r1
d sin
d
tan
d
x D
第十二章 光的干涉
§12-2 双缝干涉
d
x D
k 极大
(2k 1) 极小
2
干涉明暗条纹的位置
d x
D
x
k
D
d
2k 1
D
2d
明纹 暗纹
其中 k 0, 1, 2, 3
实际中,i 0
2n2e '
明纹和暗纹条件
2n2e
大学物理-光的干涉和衍射
(k = 0,1,2,......) 1 ± (k + )λ 暗纹 2
± kλ
明纹
12
r1
s1 s
x p
K=2 K=1 K=0 K=-1
x
*
d s2
r2
L
o
图20-4
K=-2
建立坐标系,将条纹位置用坐标x来表达最方便. 来表达最方便. 建立坐标系,将条纹位置用坐标 来表达最方便 r12=L2+(x-d/2)2, r22=L2+(x+d/2)2 考虑到Ld, r1+r2≈2L,于是明暗纹条件可写为 考虑到 于是明暗纹条件可写为
例题20-1 双缝间的距离 双缝间的距离d=0.25mm,双缝到屏幕的 例题 双缝到屏幕的 距离L=50cm,用波长 用波长4000~7000的白光照射双缝, 的白光照射双缝, 距离 用波长 的白光照射双缝 求第2级明纹彩色带 级明纹彩色带(第 级光谱 的宽度. 级光谱)的宽度 求第 级明纹彩色带 第2级光谱 的宽度. 所求第2级明纹彩色带 级明纹彩色带(光 解 所求第 级明纹彩色带 光 k=2 x 的宽度实际上是7000的第 级 的第2级 谱)的宽度实际上是 的宽度实际上是 的第 亮纹和4000的的第 级亮纹之间 的的第2级亮纹之间 亮纹和 的的第 k=1 的距离d. 的距离 . k=0 Lλ Lλ 明纹坐标为 x = k k=-1 d 代入:d=0.25mm, L=500mm, λ2=7×10-4mm , 代入: × 得 λ1= 4 ×10-4mm得: x =1.2mm
光程差
δ=
± kλ
1 ± (k + )λ 2
明纹 暗纹
(k = 0,1,2,......)
9
4.薄透镜不产生附加程差
《光的干涉》课件
实验原理:当光波入射到薄膜表面时 ,反射光和透射光会发生干涉,形成
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。
特定的干涉条纹。
实验步骤
1. 制备不同厚度的薄膜样品。
2. 将光源对准薄膜,使光波入射到薄 膜表面。
3. 观察薄膜表面的干涉条纹,分析干 涉现象与薄膜厚度的关系。
迈克尔逊干涉仪
实验目的:利用迈克尔逊干涉仪观察不同波长的光的干 涉现象。 实验步骤
2. 将不同波长的光源依次对准迈克尔逊干涉仪。
实验原理:迈克尔逊干涉仪通过分束器将一束光分为两 束,分别经过反射镜后回到分束器,形成干涉。
1. 调整迈克尔逊干涉仪,确保光路正确。
3. 观察不同波长光的干涉条纹,分析干涉现象与波长 的关系。
04
光的干涉的应用
光学干涉测量技术
干涉仪的基本原理
干涉仪利用光的干涉现象来测量长度、角度、折射率等物理量。干涉仪的精度极高,可以达到纳米级 别。
光的波动性是指光以波的形式传播, 具有振幅、频率和相位等波动特征。
光的干涉是光波动性的具体表现之一 ,当两束或多束相干光波相遇时,它 们会相互叠加产生加强或减弱的现象 。
波的叠加原理
波的叠加原理是物理学中的基本原理之一,当两列波相遇时,它们会相互叠加, 形成新的波形。
在光的干涉中,当两束相干光波相遇时,它们的光程差决定了干涉加强或减弱的 位置。
多功能性
光学干涉技术将向多功能化发展,实现同时进行 多种参数的测量和多维度的信息获取。
光学干涉技术的挑战与机遇
挑战
光学干涉技术面临着测量精度、 稳定性、实时性等方面的挑战, 需要不断改进和完善技术方法。
机遇
随着科技的不断进步和应用需求 的增加,光学干涉技术在科学研 究、工业生产、医疗等领域的应 用前景将更加广阔。