微积分试卷及答案4套

合集下载

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2在区间(-1, 1)上是:A. 增函数B. 减函数C. 先减后增函数D. 先增后减函数答案:A2. 极限lim (x->0) [sin(x)/x]的值是:A. 0B. 1C. 2D. 无穷大答案:B3. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = cos(x)答案:C4. 曲线y = x^3在点(1, 1)处的切线斜率是:A. 1B. 2C. 3D. 4答案:C5. 定积分∫[0, 1] x dx的值是:A. 0B. 1/2C. 1/3D. 1答案:C6. 微分方程dy/dx = x^2的通解是:A. y = x^3 + CB. y = e^x + CC. y = sin(x) + CD. y = ln(x) + C答案:A7. 函数f(x) = e^x在点x=0处的导数是:A. 0B. 1C. 2D. e答案:B8. 以下哪个级数是收敛的?A. ∑(-1)^n / nB. ∑n^2C. ∑(1/n)D. ∑(1/n^2)答案:D9. 曲线y = ln(x)的拐点是:A. x = 1B. x = eC. x = 0D. 没有拐点答案:D10. 以下哪个选项是正确的泰勒公式展开?A. e^x = ∑x^nB. sin(x) = ∑(-1)^n * x^(2n+1) / (2n+1)!C. ln(1+x) = ∑(-1)^n * x^n / nD. cos(x) = ∑x^(2n) / (2n)!答案:D二、填空题(每题4分,共20分)11. 函数f(x) = x^4 - 4x^3 + 4x^2的驻点是______。

答案:x = 0, x = 312. 极限lim (x->∞) (1 + 1/x)^x的值是______。

答案:e13. 定积分∫[1, e] e^x dx可以通过分部积分法计算,其结果是______。

微积分试题及答案【精选】

微积分试题及答案【精选】

一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。

微积分考试试卷及答案6套

微积分考试试卷及答案6套

微积分考试试卷及答案6套微积分试题 (A 卷)⼀. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>?ε,总存在δ>0,使得当时,恒有│?(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β是等价⽆穷⼩量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是。

6. 设函数y =?(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为。

8. ='?))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最⼤时产量Q 是。

⼆. 单项选择题 (每⼩题2分,共18分)1. 若数列{x n }在a 的ε邻域(a -ε,a +ε)内有⽆穷多个点,则()。

(A) 数列{x n }必有极限,但不⼀定等于a (B) 数列{x n }极限存在,且⼀定等于a(C) 数列{x n }的极限不⼀定存在 (D) 数列{x n }的极限⼀定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的()。

(A) 可去间断点 (B) 跳跃间断点 (C) ⽆穷型间断点→13)11(lim x x x()。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ()时,需求量减少的幅度⼩于价格提⾼的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,⼜a 是常数,则下列结论正确的是()。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

微积分自考试题及答案

微积分自考试题及答案

微积分自考试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数是()。

A. 0B. 2C. 1D. 2x答案:C2. 定积分∫(0,1) x dx的值是()。

A. 0B. 1/2C. 1D. 2答案:B3. 函数y=e^x的不定积分是()。

A. e^xB. e^x + CC. e^(-x) + CD. ln(x) + C答案:B4. 函数f(x)=x^3-3x+2在x=1处的极值是()。

A. 最大值B. 最小值C. 拐点D. 无极值答案:B二、填空题(每题5分,共20分)1. 函数y=x^3-6x^2+11x-6的一阶导数是______。

答案:3x^2-12x+112. 函数y=ln(x)的二阶导数是______。

答案:1/x^23. 定积分∫(1,e) e^x dx的值是______。

答案:e^e-e4. 函数y=x^2-4x+c的顶点坐标是______。

答案:(2, c-4)三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的单调区间。

答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)>0,解得x>3或x<1,令f'(x)<0,解得1<x<3。

因此,函数在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减。

2. 求定积分∫(0,2) (2x+1) dx。

答案:首先求原函数F(x)=x^2+x,然后计算F(2)-F(0)=4+2-0=6。

3. 求函数y=e^x的原函数。

答案:原函数为y=e^x+C。

4. 求函数f(x)=x^3-3x+2的极值。

答案:首先求导数f'(x)=3x^2-3,令f'(x)=0,解得x=±1。

当x<-1或x>1时,f'(x)>0,函数单调递增;当-1<x<1时,f'(x)<0,函数单调递减。

微积分试卷及答案4套

微积分试卷及答案4套

微积分试卷及答案4套(共14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,与 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

3(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C) 2e (D)3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

微积分试卷及标准答案6套

微积分试卷及标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

微积分考试题及答案

微积分考试题及答案

微积分初步期末模拟试题及答案一、填空题(每小题4分,本题共20分) ⒈函数241)(xx f -=的定义域是 .⒉若24sin lim=→kxx x ,则=k .⒊已知x x f ln )(=,则)(x f ''= . ⒋若⎰=x x s d in .⒌微分方程y x e x y y x +='+'''sin )(4的阶数是 . 二、单项选择题(每小题4分,本题共20分) ⒈设函数x x y sin =,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数⒉当k =( )时,函数⎩⎨⎧=≠+=00,,1)(2x kx x x f ,在0=x 处连续.A .1B .2C .1-D .0 ⒊满足方程0)(='x f 的点一定是函数)(x f 的( )。

A .极值点 B .最值点 C .驻点 D . 间断点 ⒋设)(x f 是连续的奇函数,则定积分=⎰aa x x f -d )(( )A .⎰0-d )(2ax x f B .⎰0-d )(ax x f C .⎰ax x f 0d )( D . 0⒌微分方程1+='y y 的通解是( )A. 1e -=Cx y ;B. 1e -=x C y ;C. C x y +=;D. Cx y +=221三、计算题(本题共44分,每小题11分) ⒈计算极限423lim222-+-→x x x x .⒉设x x y 3cos 5sin +=,求y '. ⒊计算不定积分x x x d )1(2⎰+⒋计算定积分⎰πd sin 2x x x四、应用题(本题16分)欲用围墙围成面积为216平方米的一成矩形的土地,并在正中用一堵墙将其隔成两块,问这块土地的长和宽选取多大尺寸,才能使所用建筑材料最省?模拟试题答案及评分标准一、填空题(每小题4分,本题共20分) ⒈)2,2(- ⒉2 ⒊21x-⒋C x +-cos ⒌3二、单项选择题(每小题4分,本题共20分) ⒈B ⒉A ⒊C ⒋D ⒌B三、(本题共44分,每小题11分) ⒈解:原式41)2)(2()2)(1(lim2=+---=→x x x x x 11分⒉解:)sin (cos 35cos 52x x x y -+=' 9分x x x 2c o s s i n 35c o s 5-= 11分⒊解:x xx d )1(2⎰+= Cx x x ++=++⎰32)(132)d(1)1(211分⒌解:⎰πd sin 2x x x 2sin 212d cos 21cos 210πππππ=+=+-=⎰xx x xx 11分四、应用题(本题16分) 解:设土地一边长为x ,另一边长为x216,共用材料为y于是 y =3xx xx 43232162+=+24323xy -='令0='y 得唯一驻点12=x (12-=x 舍去) 10分 因为本问题存在最小值,且函数的驻点唯一,所以,当土地一边长为12,另一边长为18时,所用材料最省. 16分。

微积分综合练习题及参考答案精选全文完整版

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

(完整版)微积分综合练习题及参考答案

(完整版)微积分综合练习题及参考答案

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

微积分下试卷(四套含答案)

微积分下试卷(四套含答案)

一. 填空题(共30分) 1设()xy y z e x sin cos -=,则.1|0ππ--=∂∂==y x xz2.曲面z xy 2=在点()1,1,1的切平面方程为.02=-+y x3.曲线t e z t t y x t 2sin ,cos ,=-==在2π=t 处的切线方程.42202πππ-=-=-z y ex4.计算().1cos 121sin 1210-=⎰⎰dx dy y x5.把直角坐标系下的二次积分化为极坐标系下的二次积分有()()rdr r r f d dx yyy x f dy ⎰⎰⎰⎰=---1001110sin ,cos ,22θθθπ 6.积分().16242224π=⎰⎰-+≤+dxdy y x x x7.()e e x e d x y x y x 11ln 211112-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-⎰⎰≤≤-≤≤-+σ8.级数∑∞=+--1231n n n n的敛散性为.发散9.级数∑∞=1n nnx 的和函数()()x x s --=1ln ,.2ln 112=∑∞=n nn10.().2111222222-=++--⎰⎰≤+ππdxdy y x yx y x二. 计算题(每小题7分,共70分) 1。

设z yx xzy u =的全微分du分数 评卷人解:两边取对数z x y z x y u ln ln ln ln ++=-----(1), 再对(1)两边取全微分:⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=dz z x zdx ydz dy y zxdy dx x y du u ln ln ln 1.ln ln ln dz z x y dy y z x dx z x y ⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+= 所以,.ln ln ln dz z x y dy y z x dx z x y u du ⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+= 2.计算由方程yz zxln =确定的函数()y x z z ,=的全微分。

微积分基础试题及答案

微积分基础试题及答案

微积分基础试题及答案微积分是数学中的重要分支之一,它研究的是函数的变化规律与积分求解等问题。

而作为微积分学习的基础,我们需要掌握一些基本的概念和技巧。

本文将为您提供一些微积分基础试题及答案,帮助您巩固相关知识。

一、选择题1. 函数 f(x) = 2x^3 - 5x^2 + 3x 的导数是:A. f'(x) = 6x^2 - 10x + 3B. f'(x) = 6x^2 - 10x + 9C. f'(x) = 6x^2 - 5x + 3D. f'(x) = 6x^3 - 5x^2 + 3答案:A2. 函数 f(x) = e^x ln x 的导数是:A. f'(x) = e^x ln x + e^x/xB. f'(x) = e^x/xC. f'(x) = e^x ln x + 1D. f'(x) = e^x ln x + e^x答案:C3. 曲线 y = x^3 + 2 在点 (1, 3) 处的切线斜率为:A. 5B. 6C. 7D. 8答案:B二、填空题1. 假设函数 f(x) = x^2 + 2x 的不定积分为 F(x),则 F(x) = 。

答案:(1/3)x^3 + x^2 + C (C为常数)2. 曲线 y = 2x^3 + 3x^2 - x + 1 在 x = 0 处的切线方程为 y = 。

答案:y = -x + 1三、简答题1. 请解释导数的几何意义。

答案:导数表示函数曲线在某一点处的切线斜率,即函数在该点附近的变化率。

几何意义上,导数可理解为函数曲线在该点处的局部近似线性变化率。

2. 什么是定积分?定积分的几何意义是什么?答案:定积分是通过将曲线下的面积划分成无穷多个区间,并将各个区间的面积累加得到的数值。

几何意义上,定积分表示曲线与 x 轴之间的有向面积。

当曲线在 x 轴上方时,定积分为正值;当曲线在 x 轴下方时,定积分为负值。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

大学微积分试题及答案

大学微积分试题及答案

大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。

答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。

答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。

答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。

答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-6x+4。

令f'(x)=0,解得x=1, 2。

在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。

因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。

在区间端点处,f(0)=-2,f(3)=1。

所以,函数在区间[0,3]上的最大值为1,最小值为-2。

2. 求由曲线y=x^2与直线y=4x-3围成的面积。

大学微积分考试题及答案

大学微积分考试题及答案

大学微积分考试题及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 1D. 2答案:A2. 曲线y=x^3在x=1处的切线斜率是:A. 0B. 1C. 3D. 2答案:C3. 定积分∫(0到1) x dx的值是:A. 0B. 0.5C. 1D. 2答案:B4. 函数f(x)=sin(x)的不定积分是:A. cos(x)B. -cos(x)C. xD. -x答案:B5. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. 2D. ∞答案:B6. 曲线y=e^x与直线x=1所围成的面积是:A. e-1B. 1-eC. 1D. e答案:A7. 函数f(x)=ln(x)的反函数是:A. e^xB. x^eC. 10^xD. x^2答案:A8. 函数f(x)=x^3-3x+2的极值点是:A. 1B. -1C. 2D. 0答案:A9. 函数f(x)=x^2-4x+3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)答案:A10. 曲线y=x^2与x轴的交点坐标是:A. (0, 0)B. (2, 0)C. (-2, 0)D. (0, 2)答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-6x^2+11x-6的拐点是______。

答案:(2, -2)2. 曲线y=x^2-4x+3与y轴的交点坐标是______。

答案:(0, 3)3. 函数f(x)=x/(x^2+1)的不定积分是______。

答案:(1/2)*ln(x^2+1)+C4. 函数f(x)=cos(x)的泰勒展开式(仅考虑x=0处的前三项)是______。

答案:1 - (x^2)/2! + (x^4)/4!5. 曲线y=ln(x)在x=e处的切线方程是______。

答案:y=1/e*x-1/e三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x^2+2x-1在区间[0, 2]上的最大值和最小值。

微积分试卷及答案4套

微积分试卷及答案4套

微积分试卷及答案4套微积分试题(A卷)一.填空题(每空2分,共20分)1.已知$\lim\limits_{x\to1^+}f(x)=A$,则对于$\forall\epsilon>0$,总存在$\delta>0$,使得当$x\to1^+$时,恒有$|f(x)-A|<\epsilon$。

2.已知$\lim\limits_{n\to\infty}\dfrac{a_n^2+bn+5}{n^2+3n-2}=2$,则$a=1$,$b=3$。

3.若当$x\to x_0$时,$\alpha$与$\beta$是等价无穷小量,则$\lim\limits_{x\to x_0}\dfrac{\alpha-\beta}{\beta}=0$。

4.若$f(x)$在点$x=a$处连续,则$\lim\limits_{x\toa}f(x)=f(a)$。

5.函数$f(x)=\ln(\arcsin x)$的连续区间是$(0,1]$。

6.设函数$y=f(x)$在$x$点可导,则$\lim\limits_{h\to0}\dfrac{f(x+3h)-f(x)}{h}=3f'(x)$。

7.曲线$y=x^2+2x-5$上点$M$处的切线斜率为6,则点$M$的坐标为$(-1,2)$。

8.$\dfrac{d(xf'(x))}{dx}=xf''(x)+2f'(x)$。

9.设总收益函数和总成本函数分别为$R=24Q-2Q^2$,$C=Q+5$,则当利润最大时产量$Q=6$。

二.单项选择题(每小题2分,共18分)1.若数列$\{x_n\}$在$a$的$\epsilon$邻域$(a-\epsilon,a+\epsilon)$内有无穷多个点,则(B)数列$\{x_n\}$极限存在,且一定等于$a$。

2.设$f(x)=\arctan\dfrac{2}{x-1}$,则$x=1$为函数$f(x)$的(A)可去间断点。

微积分考试题库(附答案)

微积分考试题库(附答案)

85考试试卷(一)一、填空1.设c b a,,为单位向量,且满足0=++c b a ,则a c c b b a ⋅+⋅+⋅=2.xx e 10lim +→= ,xx e 10lim -→=,xx e 1lim →=3.设211)(x x F -=',且当1=x 时,π23)1(=F ,则=)(x F4.设=)(x f ⎰dt t x 2sin 0,则)(x f '=5.⎩⎨⎧>+≤+=0,0,1)(x b ax x e x f x 在x =0处可导,则=a ,=b二、选择1.曲线⎩⎨⎧==-0122z y x 绕x 轴旋转一周所得曲面方程为( )。

(A )12222=+-z y x ; (B )122222=--z y x ;(C )12222=--z y x ; (D )122222=+-z y x2.2)11(lim xx x x -∞→-+=( )。

(A )1(B )21e (C )0 (D )1-e3.设函数)(x f 具有连续的导数,则=+'⎰dx x f x f x )]()([( ) (A )c x xf +)(; (B )c x f x +')(; (C )c x f x +'+)(; (D )c x f x ++)(4.设)(x f 在],[b a 上连续,则在],[b a 上至少有一点ξ,使得( ) (A )0)(='ξf (B )ab a f b f f --=')()()(ξ86(C )0)(=ξf (D )ab dxx f a bf -=⎰)()(ξ5.设函数x x a y 3sin 31sin +=在x =3π处取得极值,则=a ( ) (A )0 (B )1 (C )2 (D )3 三、计算题1. 求与两条直线⎪⎩⎪⎨⎧+=+==211t z t y x 及112211-=+=+z y x 都平行且过点(3,-2,1)的平面方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。

2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。

3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。

4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。

5. )ln(arcsin )(x x f =的连续区间是 。

6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。

7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。

8. ='⎰))((dx x f x d 。

9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。

二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。

(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。

(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。

(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。

当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。

(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。

(A) 若a x g x f x x =→)()(lim或∞,则a x g x f x x =''→)()(lim 0或∞(B) 若a x g x f x x =''→)()(lim0或∞,则a x g x f x x =→)()(lim 0或∞ (C) 若)()(limx g x f x x ''→不存在,则)()(lim 0x g x f x x →不存在(D) 以上都不对6. 曲线223)(a bx ax x x f +++=的拐点个数是( ) 。

(A) 0 (B)1 (C) 2 (D) 3 7. 曲线2)2(14--=x x y ( )。

(A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线,又有垂直渐近线8. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有(A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值9. 若ƒ(x )的导函数是2-x ,则ƒ(x )有一个原函数为 ( ) 。

x(A) x ln ; (B) x ln -; (C) 1--x ;(D) 3--x 三.计算题(共36分)1. 求极限xxx x --+→11lim(6分)2. 求极限xx x 1)(ln lim +∞→ (6分)3. 设0001sin 2sin )(>=<⎪⎪⎩⎪⎪⎨⎧+=x x x b x x ax x x f ,求b a ,的值,使)(x f 在(-∞,+∞)上连续。

(6分) 4. 设1+=+xy eyx ,求y '及0='x y (6分)5. 求不定积分dx xe x ⎰-2(6分)6. 求不定积分.42dx x ⎰-(6分)四.利用导数知识列表分析函数211x y -=的几何性质,求渐近线,并作图。

(14分)五.设)(x f 在[0, 1]上连续,在(0, 1)内可导,且1)21(,0)1()0(===f f f ,试证:(1) 至少存在一点)1,21(∈ξ,使ξξ=)(f ;(2) 至少存在一点),0(ξη∈,使1)(='ηf ;(3) 对任意实数λ ,必存在),0(0ξ∈x ,使得1])([)(000=--'x x f x f λ。

(12分)微积分试卷 (B)一. 填空题 (每空2分,共20分)1. 数列}{n x 有界是数列}{n x 收敛的 条件。

2.若2sin x y =,则=dy 。

3. 函数0,tan ==x xxy 是第 类间断点,且为 间断点。

4. 若31lim1=-+→x bax x ,则a = ,b = 。

5. 在积分曲线族⎰xdx2中,过点(0,1)的曲线方程是 。

6. 函数x x f =)(在区间]1,1[-上罗尔定理不成立的原因是 。

7. 已知⎰-=x t dt e x F 0)(,则=')(x F 。

8. 某商品的需求函数为212PQ -=,则当p = 6时的需求价格弹性为=EPEQ。

二. 单项选择题 (每小题2分,共12分) 1. 若3lim=→βαx x ,则=-→αβα0lim x x ( )。

(A) –2 (B) 0 (C)31 (D) 322. 在1=x 处连续但不可导的函数是( )。

(A) 11-=x y (B) 1-=x y (C))1ln(2-=x y(D)2)1(-=x y3. 在区间(-1,1)内,关于函数21)(x x f -=不正确...的叙述为( )。

(A)连续(B) 有界(C) 有最大值,且有最小值 (D) 有最大值,但无最小值4. 当0x →时,x 2sin 是关于x 的( )。

(A) 同阶无穷小 (B) 低阶无穷小 (C) 高阶无穷小 (D) 等价无穷小5. 曲线35x x y +=在区间( )内是凹弧 。

(A) )0,(-∞ (B) ),0(∞+ (C) ),(∞+-∞ (D) 以上都不对6. 函数xe 与ex 满足关系式( )。

(A) ex e x≤ (B) ex e x≥ (C) ex e x> (D) ex e x<三.计算题(每小题7分,共42分)7. 求极限xe x x x cos 1)1(lim 0--→。

8. 求极限nnn x2sin2lim ⋅∞→(x 为不等于0的常数)。

9. 求极限xx x x 21lim ⎪⎭⎫⎝⎛+∞→ 。

10. 已知yxe y +=1,求0='x y 及0=''x y 。

11. 求不定积分dx xx ⎰sin 。

12. 求不定积分dx x x ⎰+)1ln(。

四.已知函数21xx y +=,填表并描绘函数图形。

(14分)图形:五.证明题(每小题6分,共12分)1. 设偶函数)(x f 具有连续的二阶导函数,且0)(≠''x f 。

证明:0=x 为)(x f 的极值点。

2. 就k 的不同取值情况,确定方程k x x =-sin 2π在开区间(0,2π)内根的个数,并证明你的结论。

《微积分》试卷(C 卷)一、单项选择题(每小题3分,共18分)1. 设函数()2; 1;1x x f x ax b x ⎧≤=⎨+>⎩在1x =处可导,则( )A. 0,1a b ==B. 2,1a b ==-C. 3,2a b ==-D.1,2a b =-= 2. 已知()f x 在0x =的某邻域内连续,且()()000,lim21cos x f x f x→==-,则在0x =处()f x 满足( )A. 不可导B. 可导C. 取极大值D. 取极小值 3. 若广义积分()2ln kdx x x +∞⎰收敛,则( )A. 1k >B. 1k ≥C. 1k <D. 1k ≤ 4. )(lim 111=+-→x x eA . 0 B.∞ C.不存在 D.以上都不对 5. 当0→x 时,x cos 1-是关于2x 的( ).A .同阶无穷小.B .低阶无穷小.C .高阶无穷小.D .等价无穷小. 6.函数)(x f 具有下列特征:0)0(,1)0(='=f f ,当0≠x 时,⎩⎨⎧>><<''>'0,00,0)(,0)(x x x f x f则)(x f 的图形为( )。

(A)(B) (C) (D)二、填空(每小题3分,共18分)1.sin lim x xx →∞= 。

2. 1-=⎰。

3. 已知0()f x '存在,则000()()limh f x h f x h h →+--= 。

4.设ln(1)y x =+,那么()()n yx = 。

5.220t x d e dt dx =⎰ 。

6.某商品的需求函数275Q P =-,则在P =4时,需求价格弹性为4P η== ,收入对价格的弹性是4P ER EP== 。

三、计算(前四小题每题5分,后四小题每题6共44分) 1.arctan xx tdt →∞2. x x x x 21lim ⎪⎭⎫⎝⎛+∞→3.1ln ex xdx ⎰4.6(1)dx x x +⎰5.求由 0cos 0yxt e dt tdt +=⎰⎰所决定的隐函数()x y y =的导数.dxdy 6.已知sin xx是()f x 的原函数,求()xf x dx '⎰。

7.求由曲线3y x =与1,0x y ==所围成的平面图形绕x 轴旋转形成的旋转体的体积。

8.求曲线2y x =与直线1y kx =+所围平面图形的面积,问k 为何时,该面积最小?四、(A 类12分) 列表分析函数xx y +=12函数的单调区间、凹凸区间等几何性质,并作出函数图形。

解:(1) 函数的定义域D :),1()1,(+∞---∞ ,无对称性;(2) 0,2,0)1(22122=-==++='x x x xx y 得 ()3422)1(21)1)(2(2)1)(22(x x x x x x x y +=+++-++='' (3) 列表:(4) 垂直渐近线:1-=x ;斜渐近线:=y (5) 绘图,描几个点2(),21,1(),0,0(),4,2(--(B 类12分)列表分析函数)1ln(2x y +=函数的单调区间、凹凸区间等几何性质,并作出函数图形。

解: ⑴ 函数定义域D :(-∞,+∞),偶函数关于Y 轴对称; ⑵ 0,0122==+='x x xy 得()1,1,0)1()1)(1(2122)1(22122222=-==+-+=+⋅-+=''x x x x x x xx x y 得 ⑶ 列表:(极小值f ⑷ 该函数无渐近线;⑸ 绘图,描几个点:(0,0),(-1,ln2),(1,ln2)五、(B 类8分) 设()f x 连续,证明:()()() 0 0 0xu x f t dt du x u f u du ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰证明:令dt t f x F x u⎰⎰=00)()( du u f u x x G x)()()(0⎰-= 只需证明)()(x G x F '='(3分)dt t f x F x⎰='0)()(du u uf du u f xx G xx⎰⎰-=0)()()(du u f x xf x xf du u f x G x x⎰⎰=-+='0)()()()()(所以)()(x G x F '=' (8分) (A 类8分)设)(x f 在[a, b ]上连续在(a ,b )内可导且0)(<'x f),(,)(1)(b a x dt t f a x x F x a ∈-=⎰试证(1))(x F 在(a ,b )内单调递减x(2) )()()()(0b f a f x f x F -<-<证(1)ax f(ξf(x)a)(x a)(x f(ξa)f(x)(x a,x a x dtt f x f a x x F 2xa--=----∈---='⎰)))()()()()(2)(积分中值定理ξ 由0)(<'x f 知)(x f 单调减,即在(a ,b )内当x <ξ时有))(ξf(x f <又0)>-a (x 可得 0)(<'x F .即)(x F 在(a ,b )内单调减.f(x)f(ξx f dt t f a x x f x F x a >---=-⎰)积分中值定理因)()(1)()()2(又由)(x f 单调减 知,f(b)f(x)f f(a)>>>)(ξ于是有f(b)f(a)f(x)F(x)0-<-<《微积分》试卷(D 卷)一、单项选择题(每小题3分,共18分)1. 设函数()2; 1;1x x f x ax b x ⎧≤=⎨+>⎩在1x =处可导,则( ) A. 0,1a b == B. 2,1a b ==- C. 3,2a b ==- D.1,2a b =-=2. 当0→x 时,x cos 1-是关于2x 的( ).A .同阶无穷小.B .低阶无穷小.C .高阶无穷小.D .等价无穷小.3. 若广义积分() 2ln k dxx x +∞⎰收敛,则( )A. 1k >B. 1k ≥C. 1k <D. 1k ≤4. )(lim 111=+-→x x eA . 0 B.∞ C.不存在 D.以上都不对5.函数)(x f 具有下列特征:0)0(,1)0(='=f f ,当0≠x 时,⎩⎨⎧>><<''>'0,00,0)(,0)(x x x f x f 则)(x f 的图形为( )。

相关文档
最新文档