第三章 正方体和长方体
五年级下册第三章长方体正方体体积表面积
关于长方体正方体的几个小问题1.长方体最多只能有4个面是正方形。
同样的最多只能有8条棱相等。
2.正方体的棱长扩大2倍,表面积会扩大4倍,体积会扩大8倍。
表面积=棱长×棱长×6体积=棱长×棱长×棱长3.长方体的高扩大2倍,表面积不会成倍增加,体积会增加2倍。
表面积=长×宽×2 + 宽×高×2 + 长×高×2体积=长×宽×高4.棱长为6的正方体表面和体积不能比较。
单位不同,没有比较的意义。
就类似1千米和1千克不能比较。
5.体积和容积的计算方式相同。
但是体积和容积不是一样的意义。
体积是占用的空间大小,容积是容纳的空间大小。
简单的说是体积是从物体的外面测量,容积是从物体的内部测量。
在有些计算题目中,体积可以等于容积。
判断易错点1、两个正方体的体积相等,表面积也一定相等。
2、两个长方体的体积相等,表面积也一定相等。
3、a3=3a(a不为0)1、关于棱长的几个考点2、长方体正方体的表面积问题(基础)关于做成一个无盖纸盒子的问题3、长、正方体切割、拼合引起的表面积体积问题4、容器里面加石块引起的问题关于棱长的问题用棱长1厘米的正方体木块摆成一个长5厘米,宽4厘米,高3厘米的长方体,共需要用多少块木块?5×4×3=60(cm3) 1×1×1=1(cm3)60÷1=60(个)一个长方体的12条棱长总和是68厘米,侧面是一个周长为18厘米的长方形,它的长是多少?(68-18×2)÷4=8 cm一个长方体和一个正方体的棱长之和相等,已知长方体的长、宽、高分别是3厘米、2厘米、1厘米,那么正方体的棱长是多少?(3+2+1)×4=24cm 24÷12=2cm一个长方体的棱长之和是60厘米,从一个顶点引出的三条棱长的和是多少?60÷4=15cm把一个正方形棱长扩大三倍,体积会扩大多少倍?表面积呢?表面积 6a2 6(3a)2=6×9a2体积 a3 (3a)3=27a32、长方体正方体的表面积问题(基础)正方体:表面积=棱长×棱长×6体积=棱长×棱长×棱长3体积棱长=长方体:表面积=(长×宽 + 长×高 + 宽×高)×2体积=长×宽×高= 底面积×高高=体积÷底面积=体积÷长÷高什么是求表面积?比如说需要贴瓷砖、贴红纸、粉刷墙面、看单位为平方。
第三单元《长方体和正方体》单元教学设计
522《长方体(一)》单元教学设计一、本单元知识框架1、长方体的认识:包括长方体的基本特点、正方体的基本特点。
2、长方体的表面积:包括长方体的表面积及计算方法、正方体的表面积及计算方法。
二、本单元学习内容的前后联系三、与本单元相关知识学生的学习情况分析学生在第一学段直观地认识了长方体、正方体,并已经学习了长方形、正方形等平面图形以及它们周长和面积的计算,本单元在此基础上进一步学习长方体、正方体。
长方体和正方体是最基本的几何形体,学生由研究平面图形到研究立体图形,是学生发展空间观念的一次飞跃。
因此,在教学时,教师要给学生更多的时间进行动手操作、小组合作,在合作交流中总结长方体、正方体的特点,探索长方体、正方体表面积的计算方法。
四、本单元教学目标1、通过观察、操作等活动,认识长方体、正方体的基本特点及其展开图。
2、结合具体情境,探索并掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题。
3、经历展开与折叠、寻找规律等活动过程,发展空间观念和探索规律的能力。
五、本单元教学重点、难点单元教学重点:1、认识长方体、正方体的基本特点;2、掌握长方体、正方体表面积的计算方法,并能解决生活中一些简单的问题。
单元教学难点:1、长方体、正方体的展开图。
2、长方体、正方体表面积知识在实际生活中的应用问题。
六、本单元评价要点:1、能正确描述长方体、正方体的特点;2、认识简单的长方体、正方体的展开图;3、能正确计算长方体、正方体的表面积,并能解决一些简单的实际问题。
七、各小节教学目标及课时安排本单元计划课时数:10节八、各课时教学设计第一节《长方体的认识》教学设计教学目标:1、通过观察、分类、操作、讨论等活动,进一步认识长方体、正方体,了解长方体、正方体各部分名称。
2、经历观察、操作和归纳过程,发现长方体和正方体的特点,能运用长方体和正方体的特点解决一些简单问题。
3、通过具体的操作活动,发展空间观念。
教学重点、难点:经历观察、操作和归纳过程,发现长方体和正方体的特点,能运用长方体和正方体的特点解决一些简单问题。
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析教学目标1、通过观察、操作,认识长方体和正方的特征以及它们的展开图。
2、通过实例,理解体积(包括容积)的含义,认识常用的度量单位(立方米、立方分米、立方厘米、升、毫升),建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,会利用单位间的进率进行简单的换算。
3、探索并掌握长方体、正方体的体积和表面积的计算方法,并能解决一些简单的实际问题。
4、探索某些实物体积的测量方法。
二、内容安排三、各小节的教材说明和教学建议例1、例2例3例1、例2例6(一)长方体和正方体的认识(第18~22页)a、理解长方体各部分的名称,面、棱、顶点。
b、理解和掌握长方体的特征,形成长方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
c、认识长方体的长、宽、高。
d、理解和掌握正方体的特征,形成正方体的概念。
正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
e、长方体和正方体的相同点和不同点f、长方体和正方体的关系本小节学生应掌握的基本技能正确找出长方体横放、竖放、侧放几种不同情况下摆放的长、宽、高。
培养学生的动手能力和观察能力。
例如:用附页的图样做长方体和正方体;用小棒、橡皮泥做长方体框架;测量长方体的长、宽、高;用棱长1厘米的小正方体搭一搭等等。
运用所学知识解决实际问题。
例如:练习五中的第6题,学生要明确需要的彩灯线实际上是哪些棱长之和。
再例如练习五的第9题,要教给学生做这类题的方法对例题的理解主题图教材首先呈现了一些长方体或正方体形状的建筑物和生活用品。
让学生观察它们的形状,其落脚点是让学生感受到生活中很多物品的形状都是长方体和正方体的。
为进一步研究长方体,正方体的特征做准备。
看完主题图后,可以让学生说一说生活中还有哪些物体的形状是长方体或正方体的。
然后从实物图中抽象出长方体的几何直观图,让学生观察这个长方体,图中有什么?学生回答有面、线段、顶点。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析
人教版小学数学五年级下册第三单元《长方体和正方体》教材分析1.通过观察、操作,学生能够认识长方体和正方体的特征以及它们的展开图。
2.学生能够理解体积(包括容积)的含义,并能够使用常用的度量单位(立方米、立方分米、立方厘米、升、毫升)建立1立方米、1立方分米、1立方厘米以及1升、1毫升的表象,并能够进行简单的换算。
3.学生能够掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
4.学生能够探索某些实物体积的测量方法。
长方体和正方体的认识本小节介绍了长方体和正方体的特征和形状,学生需要理解长方体各部分的名称,面、棱、顶点,并能够形成长方体和正方体的概念。
长方体一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形,而正方体是由6个完全相同的正方形围成的立体图形,所有的棱长度相等。
长方体和正方体的体积和表面积计算本小节介绍了长方体和正方体的体积和表面积的计算方法,学生需要掌握体积计算公式的推导和体积单位间的进率及名数的换算。
同时,学生需要理解表面积的含义,并能够计算出长方体和正方体的表面积。
容积和容积单位本小节介绍了容积和容积单位的概念,学生需要理解容积的含义,并能够使用常用的容积单位(升、毫升)进行换算。
不规则物体的体积本小节介绍了如何测量不规则物体的体积,学生需要探索并掌握测量不规则物体体积的方法。
总体来说,本单元的教学目标是让学生通过观察、操作,认识长方体和正方体的特征以及它们的展开图,理解体积(包括容积)的含义,掌握长方体、正方体的体积和表面积的计算方法,并能够解决一些简单的实际问题。
同时,学生需要探索某些实物体积的测量方法。
同。
第二个价值是通过操作让学生深入理解长、宽、高的概念。
建议在活动中引导学生思考:为什么要把12条棱分成三组?为什么这三组棱分别叫长、宽、高?通过思考和操作,学生会逐渐理解长、宽、高的概念和它们之间的关系。
练五是应用题,要求学生根据长方体的特征计算面积、体积等。
五年下册第三单元,长方体和正方体,长方体的认识,面、棱、点、棱长总和
长方体有12条棱,每相对的4条棱相等 (按照相等的棱长可分为3组)
认识长方体
顶点.
三条棱相交的点叫做顶点.
长方体一共 有8个顶点.
长方体有8个顶点。
以同一顶点上的长,宽,高为一组,可分为4 组。
宽
长
宽
高 高 高 长 宽 长 宽
长
高
长方体有8个顶点。 以同一顶点上的长,宽,高为一组,可分为4组。
5
1 6
宽(
高(
5 )厘米;
1 )厘米。 长( 2 )厘米;
宽(
2 2
5
5 )厘米; 高( 2 )厘米。
四 : 下图中的长方体和正方体都是由棱长1厘米的 小正方体摆成的,它们的长,宽,高各是多少?
长2厘米 宽2厘米
(1)
长3厘米
高4厘米
(2)
长3厘米
宽3厘米 高3厘米
宽3厘米
高2厘米
(3)
分别计算每个长方体或正方体向上的面的面积。
2
(1)
厘 米
7厘米
5厘米
(3)
5 厘 米
5厘米
3 厘 米
3厘米
(2)
7厘米
5厘米
填一填
(1)长方体有(6 )个面,(12)条棱,
( 8 )个顶点。
(2)长方体相对的面( 完全相同 ),
相对的棱长度( 相等
)。
(3)一个长方体最多可能有( 2 )个面是 正方形。
根据所提供的条件,回答问题:
单位:厘米
下图中的长方体和正方体都是由棱长1厘米的长2厘米宽厘米宽2厘米12长3厘米3长3厘米宽3厘米高2厘米宽3厘米高3厘米高4厘米分别计算每个长方体或正方体向上的面的面积
认识正方体与长方体幼儿园教学教案
认识正方体与长方体幼儿园教学教案第一章:正方体与长方体的基本概念1.1 正方体与长方体的定义教学目标:让幼儿了解正方体与长方体的定义,并能分辨它们的特点。
教学方法:通过实物展示、图片观察、互动讨论等方式进行教学。
教学内容:(1) 实物展示正方体和长方体,让幼儿观察它们的形状。
(2) 讲解正方体和长方体的定义,引导幼儿分辨它们的特点。
(3) 组织幼儿进行互动讨论,巩固对正方体和长方体的认识。
1.2 正方体与长方体的性质教学目标:让幼儿了解正方体与长方体的性质,并能运用它们进行简单的判断。
教学方法:通过实物操作、图片观察、互动讨论等方式进行教学。
教学内容:(1) 讲解正方体与长方体的性质,如:六个面、八个顶点、十二条棱等。
(2) 让幼儿通过实物操作,观察正方体与长方体的性质。
(3) 组织幼儿进行互动讨论,运用正方体与长方体的性质进行简单判断。
第二章:正方体与长方体的特征2.1 正方体与长方体的面教学目标:让幼儿了解正方体与长方体的面,并能分辨它们的特点。
教学方法:通过实物展示、图片观察、互动讨论等方式进行教学。
教学内容:(1) 实物展示正方体和长方体,让幼儿观察它们的面的形状。
(2) 讲解正方体和长方体的面的特点,引导幼儿分辨它们。
(3) 组织幼儿进行互动讨论,巩固对正方体和长方体的面的认识。
2.2 正方体与长方体的棱教学目标:让幼儿了解正方体与长方体的棱,并能分辨它们的特点。
教学方法:通过实物展示、图片观察、互动讨论等方式进行教学。
教学内容:(1) 实物展示正方体和长方体,让幼儿观察它们的棱。
(2) 讲解正方体和长方体的棱的特点,引导幼儿分辨它们。
(3) 组织幼儿进行互动讨论,巩固对正方体和长方体的棱的认识。
第三章:正方体与长方体的实际应用3.1 正方体与长方体在日常生活中的应用教学目标:让幼儿了解正方体与长方体在日常生活中的应用,培养幼儿的观察能力。
教学方法:通过实物观察、互动讨论等方式进行教学。
新人教版五年级下册《第3章_长方体和正方体》小学数学-有答案-单元测试卷(30)
新人教版五年级下册《第3章长方体和正方体》小学数学-有答案-单元测试卷(30)一、填空1. 正方体有________个面,每个面积都是________形。
2. 长方体有________条棱,相对的棱的长度________,有________个面,________的面的面积相等。
3. 用字母表示正方体(或长方体)的表面积=________;用字母表示长方体的体积公式是________.4. 3.07立方分米=________立方厘米5400立方厘米=________立方分米4210毫升=________升530平方分米=________平方米9600立方厘米=________毫升=________升。
5. 用一根长12分米的铁丝焊接成一个最大的正方体框架,这个正方体的表面积是________,体积是________.6. 一个长方体的盒子,里面长5分米,宽4分米,深3分米,放棱长为5厘米的正方体小木块共可以放________块。
7. 两个棱长1厘米的正方体木块,拼成一个长方体,这个长方体表面积是多少平方厘米?8. 一个正方体的棱长之和是108厘米,这个正方体一个面的面积是________,表面积是________,体积是________.9. 一个正方体棱长2厘米,体积是________立方厘米,如果这个正方体的棱长扩大2倍,它的体积是________立方厘米。
二、判断正方体的相邻三条棱的交点叫做顶点。
________(判断对错)有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
________(判断对错)一个正方体的棱长是3厘米,它的体积是18立方厘米。
________(判断对错)判断下面题中哪个答案是正确的,在横线上画“√”;哪个答案是错误的在横线上画“×”.水池内有一个直立的棱长为4分米的正方体木块,它入水深度为3分米,露在水面上的木块的表面积是多少平方分米?A.4×3×6=72(平方分米)________B.4×4×3=48(平方分米)________C.3×3×4+4×4=52(平方分米)________D.4×4+4×3×4=64(平方分米)________F.4×4+4×(4−3)×4=32(平方分米)________.三、解决问题一个长方体长1.25米,宽0.8米,高0.5米,求它的表面积。
第 三 章 长 方 体 和 正 方 体1 讲义
)厘米铁丝,是求长方体 ),在里面能 ). )厘米,六个面中最大的面积 )立方厘米. )
),这个盒子有(
5、长方体的长是 6 厘米,宽是 4 厘米,高是 2 厘米,它的棱长总和是 ( 是( )平方厘米,表面积是( )平方厘米,体积是(
6、一个正方体棱长 2 厘米,体积是( 立方厘米。
)立方厘米,如果这个正方体的棱长扩大 2 倍,它的体积是(
练 习 4 : 1、一个长方体,如果高增加 3 厘米,就成为一个正方体。这时表面积比原来增加了 96 平方厘米。原来的长方体的体 积是多少立方厘米?
龙文教育教务处
龙文教育
中小学 1 对 1 课外辅导专家
2、一个长方体,把它的高减少5厘米,它就变成一个正方体,并且表面积比原来减少了200平方厘米,求原来的体 积是多少?
思路二:从左边剪下两个边长为10厘米的正方形,然后把这两个正方形焊接到 右边,做成一个无盖的长方体,观察思考做成的长方体长是( ( ) ,高是多少?求出它的容积。 ) ,宽是
思路三:从这个长方体上先剪下一个连长为40厘米的正方形做底面,然后把剩 下的长方体平均分成四个长方形做前后左右面这样做成一个无盖长方体,观察思考做成的长方体长是( 是( ) ,高是多少?求出它的容积。 ) ,宽
(3)一个长方体鱼缸,长80厘米,宽60厘米,深40厘米,把一块长30厘米,宽24厘米,铁块浸入在水中, 水面上升9厘米,求铁块的高。
龙文教育教务处
龙文教育
中小学 1 对 1 课外辅导专家
【知识点 6】展开图形拼长方体或正方体 】
例如:用一张长 60 厘米,宽 40 厘米的长方形铁皮,做成一个无盖长方体盒子, 做成盒子的容积是多少? 思路一:从四个角上分别剪去一个边长为10厘米的正方形后,观察思考做成的 长方体长是( ) ,宽是( ) ,高是多少?求出它的容积。
正方体和长方体的知识归纳
正方体与长方体知识归纳
说起这个正方体和长方体嘞,咱们四川人儿得把它摆扯清楚。
你想嘛,正方体就像咱们过年摆的麻将里的“骰子”,每个面都是四四方方,一样大,没得哪个面敢“耍大牌”,边长都是一样的,所以说它的体积就是边长的三次方,简单得很!
再来看长方体,它就稍微“灵活”点儿了,像咱们屋头的衣柜,长点儿、短点儿、高点儿、矮点儿都有,但始终是规规矩矩的直条条。
它有三组边,每组边都是平行的,而且每组里头的边长都是相等的。
要算它的体积,就得长乘宽再乘高,三兄弟一起上,答案自然就出来了。
这两个家伙还有个共同点,那就是都有六个面、十二个棱、八个顶点,就像咱们四川的“六六大顺”,十二个月年年有余,八个方位四通八达,吉利得很!
不过,用起它们来可得留心,比如修房子用砖,要是都堆成圆不溜秋的,那房子还怎么立得稳?就得靠这些方方正正的家伙来打底子。
所以说,学习正方体和长方体的知识,不光是算数那么简单,它里头还藏着生活的智慧和道理嘞!。
长方体和正方体长方体的认识
行比较,找出它们的共性和特性。
THANKS
感谢观看
思维拓展与延伸讨论
01
长方体和正方体在现实生活中的应用
讨论长方体和正方体在建筑、艺术、科学和技术等领域的应用,例如建
筑设计中的立方体结构,电路板中的方形元件等。
02
长方体和正方体的几何变换
探讨当长方体或正方体进行旋转、翻转等几何变换时,其性质如何变化
。
03
超越长方体和正方体的多面体
研究其他类型的多面体,例如五棱柱、六棱柱等,与长方体和正方体进
性质
长方体有三组不同的棱,每组棱平行且相等;长方体有八个顶点,每个顶点连 接三条棱;长方体的对角线交于一个点,且该点到长方体各顶点的距离相等。
正方体的定义和性质
定义
正方体是一种特殊的长方体,其中每个面都是正方形,并且所有的棱长度相等。
性质
正方体有六个面,每个面都是正方形,面积相等;正方体有十二条棱,每条棱长 度相等;正方体有八个顶点,每个顶点到相邻的三个面的距离相等。
其他领域中的长方体和正方体应用
工业生产
01
在工业生产中,长方体和正方体被广泛用于制作各种产品的外
包装,既方便运输,又能保护产品。
艺术创作
02
艺术家们利用长方体和正方体进行各种艺术创作,如雕塑、装
置艺术等,展现出几何体的艺术魅力。
教育领域
03
长方体和正方体作为基本的几何体,在教育领域中也扮演着重
要角色,帮助学生理解三维空间的概念。
空间对角线计算
长方体的空间对角线长度可以通过计算其长、宽、高的平方和的平方根得到。对于正方体,空间对角线长度等于 棱长的倍乘以根号3。
性质探究
空间对角线是长方体和正方体的重要空间特征,它连接了长方体或正方体的八个顶点。在空间几何中,空间对角 线往往与长方体或正方体的其他性质,如表面积、体积等密切相关。
新人教版五年级下册《第3章_长方体和正方体》小学数学-有答案-单元测试卷(2)(某校)
新人教版五年级下册《第3章 长方体和正方体》小学数学-有答案-单元测试卷(2)(某校)一、小小探索家填空.1. 长方体和正方体都有________个面,________个顶点,________条棱。
2. 正方体是________的长方体,它的长、宽、高都________.3. 一个正方体的棱长是4分米,它所有棱长的和是________分米。
4. 用一根长156厘米的铁丝围成一个正方体的模型,一条棱长应是________厘米,如果围成一个长方体的模型,长、宽、高的和是________厘米。
长方体(或正方体)六个面的总面积叫做它们的________.5. 长方体(或正方体)六个面的总面积叫做它们的________.6. 一个长5分米,宽4分米,高3分米的纸箱,它占地的最大面是________平方分米,它的表面积是________平方分米。
7. 一个长方体的长是10厘米、宽是长的45,高是宽的12,长方体的表面积是________平方厘米。
8. 一个面积是96平方厘米的正方体,它的底面积是________.9. 用2个棱长是1分米的小正方体拼成一个长方体,拼成后的表面积是________平方分米。
10. 用一根长48厘米的铁丝围成一个正方体框架,它的棱长是________厘米,体积是________立方厘米,表面积是________.二、快乐选一选.把两个棱长都是10厘米的正方体拼成一个长方体后,表面积减少( )平方厘米。
A.100B.200C.80长方体表面积大小是由( )决定的。
A.长和宽B.宽和高C.长、宽、高一个长方体长5厘米,宽4厘米,高2厘米,它最小的一个面的面积是最大的一个面的面积的( )A.310B.25C.12D.14至少用()个相同的小正方体才能拼成一个大正方体。
A.4B.6C.8D.2一个长方体(不含正方体)最多有()条棱长度相等。
A.12B.8C.4D.2下面图形中能折成正方体的是()A. B. C.三、错对我来判从一个角度去观察长方体,最多可以看到6个面。
新人教版五年级下册《第3章_长方体和正方体》小学数学-有答案-单元测试卷(4)
新人教版五年级下册《第3章长方体和正方体》小学数学-有答案-单元测试卷(4)一、“认真细致”填一填:(30分,每空1.5分)1. 长方体和正方体都有________个面、________条棱、________个顶点,每个顶点都有________条棱相交。
2. 物体所占________的________叫做物体的体积。
3.4. 一个正方体的棱长为4cm,它的表面积是________,体积是________.5. 一个长方体长5dm、宽4dm、高2dm,它的表面积是________,体积是________.6. 1dm3的正方体可以分成________个1cm3的小正方体。
如果把这些小正方体排成一行,一共长________.7. 焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用________cm的铁丝。
8. 挖一个长和宽都是5米的长方体菜窖,要使菜窖的容积是50立方米,应该挖________米深。
9. 一个正方体木箱的表面积是72dm2,这个木箱占地面积是________dm2.10. 把3个棱长2厘米的正方体拼成一个长方体,拼成的长方体的表面积是________,体积是________.二、“对号入座”选一选:(选择正确答案的序号填在括号里)(20分,每题4分)一本数学书的体积大约是220()A.m3B.dm3C.cm3加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积B.体积C.容积一个正方体的棱长扩大3倍,它的体积扩大()倍。
A.27B.9C.3下面正确的是()A.一个物体的表面积有可能与体积一样大B.0.23=0.06C.一个正方体的棱长之和是12cm,它的体积是1cm3()个棱长2厘米的小正方体可以拼成一个大正方体。
A.4B.8C.12D.27三、解答题(共1小题,满分12分)求下面各立方体的表面积和体积:四、走进生活,解决问题:(38分)一个长方体木箱,长10dm,宽8dm,高6dm,做这个木箱至少需要木板多少dm2?一块正方体石料,它的棱长是4dm,如果1dm3的石料重2.7kg,这块石料重多少kg?修路队要修一条长1km、宽6m的公路,铺30cm厚的三合土,至少需要三合土多少m3?装修一间长9m,宽6m,高4m的会议室,在会议室的四周和顶棚贴塑料壁纸,扣除门窗面积20m2,至少需要壁纸多少m2?一个油箱从里面量,长4dm,宽3dm,深1.8dm,如果每升柴油重0.82kg,这个油箱能装柴油多少kg?(得数保留一位小数)把一块棱长8dm的正方体钢锭,熔铸成横截面积是0.1m2的长方体钢材,熔铸后的钢材有多长?(用方程解)有一个长60厘米,宽50厘米的长方体水缸,把买的西瓜完全浸入在水里,水面上升了3厘米。
五年级下册数学试题 第三章《长方体和正方体》(含答案)(人教版)
第三章《长方体和正方体》一.选择题1.(2020秋•新沂市期中)4瓶250毫升的饮料正好是()升.A.1 B.100 C.10002.(2020秋•洪洞县期中)如果两个不同容器的容积相等,它们的体积()A.相等B.不相等C.无法判断3.(2020春•和平区期末)小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积()A.变大B.变小C.不变4.(2019•永州模拟)一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的()A.体积B.容积C.表面积D.底面积5.(2019春•兴县期末)长方体的6个面展开后()A.都是长方形B.至少有2个面是长方形C.至少有4个面是长方形6.(2019•长沙)一个长方体的底是面积为3平方米的正方形,它的侧面展开图正好是一个正方形,这个长方体的侧面积是()平方米.A.18 B.48 C.54二.填空题7.(2019•株洲模拟)公顷=平方米2.04升=毫升3.25小时=小时分2吨50千克=吨8.(2019春•高密市期末)用一根长36厘米的铁丝做一个正方体模型,这个正方体模型的表面积是平方厘米.9.(2018春•乌鲁木齐期末)750毫升=升7.65立方米=立方分米.10.(2018秋•盐城月考)计量比较少的液体,通常用作单位,可以用字母表示.11.(2018•延平区)如图,一个长方体是由三个同样大小的正方体拼成的,如果去掉一个正方体,表面积就比原来减少30cm2.原来长方体的表面积是cm2.三.判断题13.(2020春•扶风县期末)物体所占空间越大,表示它的体积越大..(判断对错)14.(2020春•芦溪县期末)一个长方体棱的总长为60厘米,相交于一个顶点的三条棱的长度和是15厘米..(判断对错)15.(2019春•昌乐县期末)物体的容积就是这个物体的体积..(判断对错)16.(2019春•禅城区期末)相邻两个面是正方形的长方体一定是正方体..(判断对错)17.(2016春•托里县校级期中)正方体的棱长扩大2倍,则正方体的表面积就扩大4倍.(判断对错)18.(2014春•楚雄市期中)一个火柴盒的容积大约是8立方米..(判断对错)四.计算题19.(2014春•海口校级月考)一个长方体从正面看如图(1)所示,从上面看如图(2)所示.求该长方体的表面积.五.应用题20.两根同样长的铁丝,一根正好围成一个长9cm、宽4cm、高2cm的长方体框架,另一根正好围成一个正方体框架,这个正方体的棱长是多少厘米?(接头忽略不计)21.一个长方体的饼干盒,长18cm,宽12cm,高20cm,现在要围着它贴一圈商标纸(上下两个面不贴),如果商标纸的接头处是3cm,那么这张商标纸的面积是多少平方厘米?六.解答题22.(2007•江阴市)有一个立方体,每个面上分别写着数字1、2、3、4、5、6,有三个人从不同角度观察的结果如图所示,那么这个立方体1的对面是,3的对面是,4的对面23.王老师请工人给他做一个棱长为60cm的玻璃鱼缸,至少需要多大面积的玻璃?24.一个木箱的形状是正方体,棱长为0.8m,制作这个木箱至少需要木板多少平方米?(木箱的上面没有盖)25.(2019春•长清区期末)科技小组用60厘米的铁丝做个长方体模型,这个长方体的长是6厘米,宽是5厘米,高是多少厘米?26.(2019春•长清区期末)亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩(没有底面).至少需要用布多少平方米?27.(2017春•裕安区期末)一个长方体无盖的玻璃鱼缸,长2米,宽0.5米,高1米,做这样的一个鱼缸,需玻璃多少平方米?28.把12个棱长都是5厘米的小正方体纸盒用包装纸包装成长方体,至少需要多少平方厘米的包装纸?(包装时重叠部分多用120平方厘米的包装纸.)29.(2019•上街区)用橡皮泥做一个圆柱体学具,做出的圆柱底面直径4厘米,高6厘米.如果再做一个长方体纸盒,使橡皮泥圆柱正好装进去,至少需要多少平方厘米硬纸?30.(2015•深圳)如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?参考答案与试题解析一.选择题1.【分析】首先求4个250是多少用乘法,得到1000毫升,然后把1000毫升化成升数,用1000除以进率1000;即可得解.【解答】解:250×4=1000(毫升)答:4瓶250毫升的饮料正好是1升.故选:A.【点评】此题考查名数的换算,把高级单位的名数换算成低级单位的名数,就乘单位间的进率,把低级单位的名数换算成高级单位的名数,就除以单位间的进率.2.【分析】容积是指容器所能容纳物体体积的大小,体积是指这个物体所占空间的大小,容积的计算方法和体积的计算方法相同,但是两个不同意义的概念,所以无法判断.【解答】解:容积和体积不完全相同,所以如果两个不同容器的容积相等,它们的体积的大小无法判断.故选:C.【点评】正确掌握容积和体积的概念是解决此题的关键.3.【分析】同一块橡皮泥捏成不同的形状,只是形状和表面积的变化,所占空间的大小不变,即体积不变.【解答】解:小明用同一块橡皮泥先捏成一个正方体,又捏成一个球,体积不变;故选:C.【点评】解答本题的关键是,正方体或球的体积就是橡皮泥的体积,不论形状是否改变,橡皮泥的体积不会发生改变.4.【分析】此题考查了体积、容积、表面积和底面积的概念问题,要求粮仓能放进多少粮食,就是球的粮仓的容积.【解答】解:一个圆柱形粮仓,要求能放进多少粮食,是求这个粮仓的容积;故选:B。
第三章正方体介绍
例1、做一个微波炉的包装箱, (如右图),至少要用多少平方 米的硬纸板?
0.7m
0.5m
上、下每个面,长______,宽_______,面积是__________;
前、后每个面,长______,0.宽7m_______,面积0.4是m__________;
左、右每个面,长______,0.宽5m_______,面积0.4是m__________。
(2)两个面相交的边叫做(棱),长方体有
( 12)条棱,可分( 3)组,( 相对)
的( 4)条棱的长度相等.
(3)相交于一个顶点的三条棱的长度分别叫
长方体的( 长、宽、高 ).
5cm 12cm
5cm 12cm
5cm 12cm
5cm 12cm
5cm 10cm
5cm 8cm
5cm 7cm
5cm 6cm
长方体上平平的部分是长方体的面。 两个面相交的边叫做长方体的棱。
三条棱相交的点叫做顶点
长方体一共有6个面。
相对的面完全相同
长方体有8个顶点。
(1)长方体有 6 个面。 (2)每个面都是什么形状的?
长方形。
(3)哪些面是完全相同的? 相对的面。
(4)长方体有 12条棱。
(5)哪些棱长度相等? 相对的。棱
正方体是由(6)个完全相同的(正方形 )围
成的立体图形.也有(12 )条棱,它们的长
度都(相等)。正方体有(8)个顶点。由于 正方体的棱长都相等,所以它的长、宽、高都叫做
(棱长)。
正方体棱长总和=棱长×12
观察比较,找到关系。
(1)长方体、正方体异同点:
都有8个顶点,6个面,12条棱
人教版第三单元《长方体和正方体》知识点梳理总结
人教版第三单元《长方体和正方体》知识点梳理总结1、长方体或正方体的认识①一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
判断:长方体的三条棱分别叫做长方体的长宽高。
(×)长方体特点:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
一个长方体(不含正方体)最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
最多有4个面完全相同。
用6个完全一样的长方形可以围成一个长方体(×)。
长方体12条棱可以分成3组,分别有4条长、4条宽、4条高。
②由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:正方体有12条棱,它们的长度都相等。
有8个顶点。
正方形的6个面是完全相同的正方形。
正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
③比较图片④长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例1、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米。
一共要用绳子多长?2、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?2、长方体或正方体的表面积表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点总结:三长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
四条棱是相对的棱,共有三组相对棱。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4 长=棱长总和÷4-宽-高 a=L÷4-b-h宽=棱长总和÷4-长-高 b=L÷4-a-h高=棱长总和÷4-长-宽 h=L÷4-a-b长方体棱长和=下面周长×2+高×4长方体棱长和=右面周长×2+长×4长方体棱长和=前面周长×2+宽×4棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前面和后面的彩带长度=高的长度;左面和右面的彩带长度=高的长度;上面和下面的彩带长度=长的长度。
需要彩带的长度=高×4+长×2+打结部分长度正方体的棱长总和=棱长×12 L=a ×12正方体的棱长=棱长总和÷12 a=L ÷12长方体或正方体6个面和总面积叫做它的表面积。
前面面积=后面面积;左面面积=右面面积;上面面积=下面面积两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!4、长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab +ah +bh ) 无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab +ah +bh )-ab S=2(ah +bh )+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah +bh ) 贴墙纸正方体的表面积=棱长×棱长×6 S=a ×a ×6 用字母表示: S= 6a 2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。
(表面积相应增加)注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
棱长和会扩大相同的倍数。
体积会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V ÷b ÷h30㎝ 20cm 20cm宽=体积÷长÷高 b=V ÷a ÷h高=体积÷长÷宽 h= V ÷a ÷b正方体的体积=棱长×棱长×棱长V=a ×a ×a = a 3读作“a 的立方”表示3个a 相乘,(即a ·a ·a ) 长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高 用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L 和ml 。
1升=1立方分米 1毫升=1立方厘米 1升=1000毫升(1 L = 1 dm 3 1 ml = 1 cm 3)长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。
(所以,对于同一个物体,体积大于容积。
)注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
*形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:V 物体 =V 现在-V 原来也可以 V 物体 =S ×(h 现在- h 原来)V 物体 = S ×h 升高8、【体积单位换算】 大单位 小单位 小单位 大单位进率: 1立方米=1000立方分米=1000000立方厘米 (立方相邻单位进率1000)×进率÷进率1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率【单位换算】 大单位 小单位小单位 大单位长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米1米=10分米=100厘米=1000毫米 (相邻单位进率10) 面积单位:1平方千米=100公顷 1平方米=100平方分米1平方分米=100平方厘米 1公顷=10000平方米 (平方相邻单 位进率100)质量单位:1吨=1000千克 1千克=1000克人 民 币:1元=10角 1角=10分 1元=100分【知识点4】折叠可以组合成正方体:×进率÷进率经过折叠可以组合成长方体:练习:下列三个图形中,能拼成正方体的是()①②③【知识点5】长方体或正方体的切割组合对棱长的影响(1)切割将长方体横向切割成两个长方体后,棱长将比原来一个长方体时增加4条长和4条宽;(棱长增加的最长)将长方体竖向切割成两个长方体后,棱长将比原来一个长方体时增加4条宽和4条高;(棱长增加的最短)将正方体沿无论沿那个方向切割成两个长方体后,棱长将比原来增加4条棱。
(2)组合将两个完全相同的长方体沿上下面组合后,棱长比原来两个长方体时减少4条长和4条宽;(棱长减少的最多)将两个完全相同的长方体沿前后面组合后,棱长比原来两个长方体时减少4条长和4条高;将两个完全相同的长方体沿左右面组合后,棱长比原来两个长方体时减少4条宽和4条高;(棱长减少的最少)将两个完全相同的正方体沿上下面组合后,棱长比原来两个正方体时减少8条棱;一次类推将三个完全相同的正方体沿上下面组合后,棱长比原来三个正方体时减少16条棱,四个组合减少24条棱,五个组合减少32条……(公式:8×(N—1))例如:将五个完全相同的正方体组合成一个长方体后,棱长和为140厘米,原来每个正方体的棱长和是多少?分析:五个正方体棱长共有12×5=60条;将五个完全相同正方体组合后棱长比原来减少32条,还剩60-32=28条;即这28条棱的长度和即为新长方体的棱长和,所以正方体一条棱的长度为:140÷28=5cm;所以一个正方体的棱长和为:5×12=60cm。
【知识点6】小正方体拼大正方体的规律由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……从中我们可以发现要用小的正方体拼出大的正方体所需要的小正方体的个数应该是一个数的立方。
这就要求我们能够熟记一些数的立方:23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729 103=1000小正方体拼大长方体的规律规律同正方体,首先观察大长方体各棱长分别是小正方体棱长的几倍,如,长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方体组成的。
练习:(1)用棱长为1厘米的小正方体拼一个棱长为6厘米的大正方体需要()个小正方体。
(2)用棱长为3厘米的小正方体拼棱长为9厘米的大正方体需要()个小正方体。
A、8个B、27个C、26个D、64个(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要()个小正方体。
A、4个B、8个C、16个D、27个(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。
()A、27个B、4个C、1个D、8个E、32个F、125个(5)一个长方体的长宽高分别是18、12、9,如果用棱长为3的小正方拼一个这样的长方体,一共需要()块这样的小正方体。
(6)用()个棱长为4cm的小正方体可以拼出一个长为16cm,宽和高均为8cm的长方体。
(7)一个长方体的盒子里面长5分米,宽4分米,深3分米,放棱长为5厘米的正方体小木块共可以放()块。
(8)两个棱长1厘米的正方体木块,拼成一个长方体,这具长方体表面积是()平方厘米。
【知识点2】长方体表面求法的变形:①贴商标类型:只求四周面积。
例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?②游泳池类型:只求四周和底面。
例如:一座游泳池,长宽高分别为10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖?③抽纸盒类型:六个面面积减去缺口面积。
例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?④占地面积问题:只求底面面积。