小学植树问题总结讲解讲义
植树问题知识归纳
知识点三:植树问题的衍生问题
1马路问题2钟点问题3队列问题4楼梯问题5公交车站点问题6锯木头问题
二、经典例题
不封闭图形:
求棵数:
例1、在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,共需电线多少根?
求间距:
9、在一条绿荫大道的一侧从头到尾坚电线杆,共用电线杆86根,这条绿荫大道全长1700米。每两根电线杆相隔多少米?
三、课堂备注
知识归纳
植树问题专题
课程类型:数学专项
一、概念梳理
知识点一:植树问题的意义
植树问题通常是指沿着一定的路线植树,这条路线被树平均分成若干段(间隔),由于路线或植树要求的不同,求解路线的总长度与路线被分成的(间隔数)和植树的棵数之间的关系。
基本关系:路长=株距× 段数 株距 = 路长 ÷ 段数 段数 = 路长 ÷ 株距
锯木头问题:
例4、有一根木料,打算把每根锯成9段,每锯开一处,需要5分钟,全部锯完需要多少分钟?
爬楼梯问题:
例5、从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?
钟表问题:
例6、时钟4点钟敲4下,用12秒敲完。那么 6点钟敲 6 下,多少秒敲完?
练习:
1、挂钟5点钟敲5下,10秒敲完,那么12点钟敲12下,几秒敲完?
2、一座楼房每上1层要走16级台阶,到小英家要走64级台阶,小英家住在几楼?
3、有一根木料长 20 米,先锯下 2 米长的损坏部分, 然后把剩下的木料锯成一样长的木条,又锯了 5 次,每根短木条长多少米?
4、一个圆形水池周围每隔 2 米栽一棵柳树,共栽40棵,水池的周长是多少?
(完整版)植树问题讲义
4.70.两盆花之间的距离:12÷(7-1)=2(米),(36-1)×2=70(米).
5.4. (50-6×5)÷(6-1)=4(米)
6.3.同学们通过主席台所走的路程包括:主席台的长度和队伍本身的长度.
队伍长:(246÷6-1)×2=80(米),(80+40)÷40=3(分钟).
6.师专附小举行运动会入场仪式,四年级有246名同学排成6路纵队,前后每行间隔2米,主席台长40米.他们以每分钟40米的速度通过主席台.需要______分钟.
二、解答题
7.圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?
8.有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?
7.在封闭曲线上,分成段数就是需装灯的盏数.同时,因为每段上放3盆花,所以花的盆数是段数的3倍.400÷40=10(盏)......灯,3×10=30(盆)......花.
8.从图可看到,四边共种了16棵,若每边种了(5-1)棵,则4边种了4×4=16棵;若每边种5棵树,四边共5×4=20棵树,去掉四个角上重复的棵数,那么也成了20-1×4=16
第4讲植树问题
知识点、重点、难点
以植树为内容,研究植树的棵树、棵与棵之间的距离(棵距)和需要植树的总长度(总长)等数量间关系的问题,称为植树问题.
植树问题在生活中很有实际运用价值,其基本数量关系和解题的要点是:
1.植树问题的基本数量关系:每段距离×段数=总距离.
2.在直线上植树要根据以下几种情况,弄清棵数与段数之间的关系:
(1)在一段距离中,两端都植树,棵数=段数+1;
整理植树问题知识点总结
整理植树问题知识点总结一、树种选择1. 生态要求不同的树种对生态环境的要求是不同的,有些树种耐旱,有些树种喜阴,有些树种耐寒,有些树种适合生长在沙漠地区,有些树种适合生长在海拔较高的地区,而有些树种则适合生长在平原地区。
根据具体的生态环境情况选择适合的树种,有助于提高树木种植的成活率和生长速度。
2. 功能需求植树有很多功能需求,比如美化环境、固土保水、防风蓄热、防治风沙、净化空气等。
根据植树的具体功能需求选择相应的树种,可以更好地发挥植树的作用。
3. 抗逆性选择有一定抗逆性的树种,有助于提高树木的生存率。
一般来讲,对于初植树苗来说,选用抗旱、抗寒、耐盐碱、快速生长的品种是最为合适的。
二、地形地貌1. 地势高低地势高低对植树有一定的影响,地势高的地方可能气温较低,对树种的选择需要注意;地势低的地方可能易受水浸影响,对排水设施要求较高。
2. 地势平缓地势平缓的地方适合植树,易于树木的植根生长,也有利于水分的渗透和树种的生存。
3. 地势起伏地势起伏的地方可能会导致土壤流失、水土流失等问题,需要通过适当的治理措施,提高土壤的保水保肥能力。
三、土壤状况1. 土壤类型不同的土壤类型适合的树种有所不同,有些土壤酸性较高,有些土壤碱性较高,有些土壤盐碱度较高,有些土壤肥力较高。
需要根据土壤的具体条件选择适合的树种。
2. 土壤肥力土壤的肥力直接影响着树木的生长情况,需要通过施肥、保水、保土、改良土壤等手段来提高土壤的肥力。
3. 土壤水分土壤的水分含量对树木的生存和生长有着重要的影响,需要根据土壤的水分情况来安排树木的种植。
四、植树技术1. 种植方法植树时要选择适宜的种植方法,比如坑穴种植、沟槽种植、管苗播种等方法。
不同的树木可能需要不同的种植方法。
2. 养护管理种植后的树木需要进行适当的养护管理,包括浇水、松土、除草、施肥、防病虫害等措施。
这些措施有助于提高树木的成活率和生长速度。
3. 造林技术对于大规模的植树工程,还涉及到造林技术的问题,包括地面准备、栽植、养护等方面的技术。
植树问题知识点公式及例题详解
植树问题知识点公式及例题详解公式直线植树:距离÷间隔 +1 = 棵数四周植树:距离÷间隔 = 棵数楼间植树:单边植树距离÷间隔 -1=棵数双边植树距离÷间隔 -1×2=棵数循环植树距离等于棵树加间距1.植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题;2.为使其更直观,用图示法来说明;树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题;专题分析一、在线段上的植树问题可以分为以下三种情形;1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1;2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数;3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1;~4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二;二、在封闭线路上植树,棵数与段数相等,即:棵数=段数;三、在正方形线路上植树,如果每个顶点都要植树;则棵数=每边的棵数-1×边数;例题:例1长方形场地:一个长84米,宽54米的长方形园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵解:解法一:①一行能种多少棵84÷2=42棵.|②这块地能种苹果树多少行54÷3=18行.③这块地共种苹果树多少棵42×18=756棵.如果株距、行距的方向互换,结果相同:84÷3×54÷2=28×27=756棵.解法二:①这块地的面积是多少平方米84×54=4536平方米.②一棵苹果树占地多少平方米2×3=6平方米.③这块地能种苹果树多少棵4536÷6=756棵.当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系;锯木头问题就是典型的不封闭线段上,两头不植树问题;所锯的段数总比锯的次数多一;上楼梯问题,就是把每上一层楼梯所需的时间看成一个时间间隔,那么:上楼所需总时间 =终点层—起始层×每层所需时间;而方阵队列问题,看似与植树问题毫不相干,实质上都是植树问题;例2直线场地:在一条公路的两旁植树,每隔3米植一棵,植到头还剩3棵;每隔米植一棵,植到头还缺少37棵,求这条公路的长度;解法一:代数解法设一共有x棵树x-3/2-1X3=x+37/2-1x=205公路长:205-3/2-1X3=300得:公路长度为300米解法二:算术解法这道题可以用解盈亏问题的思路来考虑:首先,我们在两边起点处各栽下一棵树,这两棵树与路长没有关系,以后每栽下一棵树,不论栽在哪一侧,植树的路线不是路就增加一个间距,为了简单起见,我们按单侧植树来考虑;当按3米的间距植树时,最后剩下3棵,也就是说植树的路线要比路长出3个间距,3×3=9米,当按米的间距植树时,最后还缺37棵树,也就是说植树的路线比路短了37个间距,×37=米,两次相差9+=米,两次植树的间距相差是3-=米,据此可以求出树的棵数:不包括起点的2棵÷=203个知道了树的棵数,就可以求出植树路线的长度了:3×203-3=600米或×203+37=600米因为是双侧植树,所以路长为:600÷2=300米综合算式为:3×〔3×3+×37÷3--3〕÷2=300米或×〔3×3+×37÷3-+37〕÷2=300米答:略例3圆形场地难题:有一个圆形花坛,绕它走一圈是120米;如果在花坛周围每隔6米栽一株丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花;可栽丁香花多少株可栽月季花多少株每2株紧相邻的月季花相距多少米解:解:根据棵数=全长÷间隔可求出栽丁香花的株数:120÷6=20株由于是在每相邻的2株丁香花之间栽2株月季花,丁香花的株数与丁香花之间的间隔数相等,因此,可栽月季花:2×20=40株由于2株花之间的2株月季花是紧相邻的,而2株丁香花之间的距离被2株月季花分为3等份,因此紧相邻2株月季花之间距离为:6÷3=2米答:可栽丁香花20株,可栽花40株,2株紧相邻月季花之间相距2米;例4在圆形水池边植树,把树植在距离岸边均为3米的圆周上,按弧长计算,每隔2米植一棵树,共植了314棵;水池的周长是多少米适于六年级程度解:先求出植树线路的长;植树线路是一个圆的周长,这个圆的周长是:2×314=628米这个圆的直径是:628÷=200米由于树是植在距离岸边均为3米的圆周上,所以圆形水池的直径是:200-3×2=194米圆形水池的周长是:194×=米综合算式:2×314÷×2×=200-6×=194×=米例5小明家门前有一条10米长的水沟,在沟的一侧每隔2米栽一棵树,一共可栽几棵两端都植树按常规解法,答案应该是610÷2+1棵,同理,如果小光家门前也有一段10米长的水沟,同样可以栽6棵,也就是两家一共可以栽12棵,这并看不出有什么不妥;但是,当小明与小光家是邻居时,我们再计算一下:两家的水沟总长是20米,20÷2+1=11棵,也就是两家一共可以栽11棵树,结果比上次计算少了一棵本人称之为“邻里冲突”,这是因为在端点处有两棵树“重合”了,这两棵树的间距为0,与题中要求间距2米不符,因此,可以看出两端植树是不妥当的;但如果两端都不植树,又会出现公共点没有树邻近的两棵树间距4米的情况,仍与题意不符;那么一端植树又会怎样呢这种要求是无法实现的,因为当一方在与邻家相接的端点上植上树后,就会使邻家地段两端都有树存在,还是不合题意;因此,要求在端点上植树或不植树都会出现矛盾,这样的计算方法也不能正确的反映出各个数量间的关系;数学是一门严谨的科学,出题者固然可以任意给定条件,但用不同的计算方法得出的结果应该是相同的,当计算结果出现矛盾时,应该找出问题的原因所在,不能简单的用“两树重合”来解释解释;再按照“棵树=段数”的方法计算一下:小明家可栽树:10÷2=5棵小光家可栽树:10÷2=5棵两家一共可栽树10棵;当两家是邻居时,可栽树:10+10÷2=10棵两次计算结果相同,因此可以说这种计算方法才能正确的反映出各个数量之间的关系; 为什么说常规的解法不够正确呢那是因为在常规解法中,只考虑了植树路段为一家独有的情况,多栽或少栽一棵都不会出现“争议”,也就无法判定栽法是否妥当;然而当植树路段为多家共有时就会出现一方或双方将树栽到了公共端点上的情况,从理论上讲这是不正确的;相对于“路边加一”,“楼间减一”也无道理,因为完全可以按“间距2米”栽下5棵而不是4棵树,至于端点处的两棵树与楼相距只有1米的情况,与题意并不矛盾:1、要求“间距2米”可以认为每棵树需要2米的生长空间,端点的树和中间的树同样都具有2米的空间;2、如果把“楼”也看做“树”而使间距不足,那么则是因为“他”将树栽倒了公共端点上而侵占了“我”的空间,“我”并没有栽错;点击图片可放大反过来想,如果要将已有的若干棵树平均分给几家,不论这些树是直线分布还是平面分布,无疑是要把分割点端点确定在两棵树之间而不是在某一棵树上,至于在某些情况下比如划分卫生分担区或除雪将端点确定在路边现有标志物如电杆或树上,那是因为分割的对象是“路”而不是“树”,这时以固有标志物为界限,具有简单方便、标志物不易移动和消失的好处;“棵数=段数”的算法不仅适用于“路边”,同样适用于“楼间”、“四周圆周”和“田间”见下图,不同颜色代表不同家庭;实际上“例1”的果园植树就是默认了“段块间”植树;实际教学中,应该按“棵数”=“段块数”作为正规解法,既不用加1,也不用减1,即在每一段块的中点植一棵树,这样就不仅没有“邻里冲突”,也能很好的适应各种情况,而端点植树或不植树只能按特殊情况来介绍;。
植树问题知识点总结
植树问题知识点总结
对于非封闭线路上的植树问题,主要可以分为以下两种情形:
如果在非封闭线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1。
这是因为两端都要植树,所以需要在每个间隔的起点和终点都种上一棵树。
如果在非封闭线路的一端要植树,另一端不要植树,那么植树的棵数和要分的段数相等,即:棵数=段数。
这是因为只有一端需要植树,所以每个间隔的起点都会种上一棵树,而终点则不需要。
对于封闭线路上的植树问题,棵数与段数相等,即:棵数=段数。
这是因为封闭线路上的起点和终点是相连的,所以每个间隔的起点和终点都会种上一棵树。
在解决植树问题时,还需要注意以下几点:
选择适宜的树种。
不同的树种适应不同的环境条件,包括土壤、气候、光照等。
在种植树木之前,应该了解当地的气候和土壤特点,并选择适应这些条件的树种。
检查土壤质量。
树木的生长受土壤的影响很大。
在种植树木之前,应该对土壤进行测试,了解其养分含量、PH值、排水性等特点。
如果土壤质量不佳,可以采取相应的改良措施,如施肥、改善排水等,从而提高树木生长的条件。
总之,植树问题是一个涉及多个因素的问题,需要考虑总路程、间隔长、棵数、树种和土壤等因素。
通过理解这些因素之间的关系,可以更好地解决植树问题。
植树问题讲解
植树问题讲解授课老师:学生姓名:教学内容:植树应用题讲解数学广角:植树问题讲解一.植树问题(1):封闭类:封闭线路植树棵数=总间距÷棵间距例如:一个圆形的花坛周长是20米,如果每隔5米种一棵树,那么一共可以种多少棵树?(2):不封闭路线:两端都植树:棵数=总距离÷棵间距+1例如:一条路长200米,如果每隔5米种一棵树,那么只种路的一边需要多少棵树?如果两边都种呢?(路的两端都种)路的一端植树,另外一端不植树:棵数=总距离÷棵间距例如:一条路长200米,如果每隔5米种一棵树,那么只种路的一边需要多少棵树?如果两边都种呢?(路的一端种,一端不种)两端都不植树:棵数=总间距÷棵间距-1例如:一条路长200米,如果每隔5米种一棵树,那么只种路的一边需要多少棵树?如果两边都种呢?(路的两端都不种)小结:1,在一段路的一侧植树,如果两端都植,植树棵树比间隔数多1,如果只在一端植树,而另一端不植树,则植树的棵树与间隔的段数相等。
2,如果两端都不栽树,则植树的棵树比间隔数少1.题型转换1.两栋居民楼相距60米,绿化队准备把19棵树苗在两楼之间栽成一行,平均每两棵树苗之间的距离是多少?2.一条路全长234米,在路的两旁种植桃树,两棵树之间的距离都相等,共种158棵.求每两棵桃树之间的距离。
(两端都种)二.锯木头问题例如:1.把一根木料锯成3段,每锯下一段要5分钟,锯完要多少时间?2.工人师傅把一根30米长的木料锯成5米长的短料,每锯一段要2分钟,完成任务需要多少时间?三.敲钟问题例如:1.车站的大钟3时敲响3下,4秒钟敲完。
11时敲响11下要多少秒钟?2.广场上的大钟5时敲响5下,8秒钟敲完,12时敲12下,要多长时间?四.爬楼梯问题例如:1.一座15层的高楼,每两层之间的台阶数都相等。
一个小朋友从一楼上到三楼,剩下的楼梯台阶数是已登楼梯台阶数的几倍?2.小红要到一高层建筑的12楼,她走到第四层用了60秒,照这样计算,她还需要走多少秒才能到达第12层?【植树问题总结】一、植树问题1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数【智趣练习】1、两座楼房之间相距56米,每隔4米栽雪松一棵,一直能栽多少棵?2、学校要在80米得直跑道德两侧每隔5米插一面彩旗,如果一端不插,那么需要多少面彩旗?3、植树节到了,少先队员要在相距72米得两栋楼房之间钟8棵杨树。
植树问题分析讲解Word 文档
植树问题一、概念在一段路线上,每隔一定的距离种一棵树,一共可以种多少棵树,像这类型问题都是植树问题。
这段路线的长度就叫总长,相邻两棵树之间的距离就叫每段长,树把路线分成很多个间隔,叫段数;一共种了多少棵树叫棵数。
植树问题就是研究总长、每段长、段数、棵数四者之间的关系,在不同情况下,四者的关系都会不同。
解题关键就在于,分析把握是哪种情况及四者间关系。
思考方法就是画图初步判断属哪种情况及四者的关系(一般画最简单的情况,如种一棵或两棵来帮助理解)二、类型:(一)、非封闭路线1、非封闭路线两端都种树拓展:上楼梯问题、敲钟问题棵树=段数+1 总长=段数×每段长例1、在一条长1000米的公路一边栽树,每隔4米栽一棵树,如果公路的起点和终点都栽树,问一共可以栽多少棵树?分析:由“如果公路的起点和终点都栽树”这句话我们就可以判断,它是属于非封闭路线两端都种树的情况;总长=1000米,每段长=4米,求棵数;要求棵数,必须先求段数,而要求段数,我们可以用这个公式“段数=总长÷每段长”算式:1000÷4+12、非封闭路线一端种树棵数=段数总长=段数×每段长例2、一栋楼房门前有一条长1000米的公路,沿着公路一边栽树,每隔4米栽一棵树,离门最近的一棵树到门的距离也是4米。
这条公路一边一共栽树多少棵?算式:1000÷43、非封闭路线两端都不种树拓展:锯木问题棵数=段数-1 总长=段数×每段长例3:两幢楼房相隔16米,每隔2米种一棵树,一共种多少棵树?分析:种树的路线上,两端是楼房,不能种树,这时,棵树等于段数-1,而题目告诉了我们总长(16米),每段长(2米),就可以求出段数(16÷2=8段),即棵数是:8-1=7棵(二)在封闭路线上种树段数=棵数总长=段数×每段长例:学校在一个圆形花坛四周摆花,每隔3米摆一盆花,一共摆了12盆花,问这个花坛的周长是多少?分析:先在上图圆中画一画后上我们很容易看出,12盆花有12个间隔,即段数为12段,每段长是3米,所以总长是:12×3=36米,即为花坛的总长练习:1、有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?2、2、某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?3、在一条长300米的公路两边种树,每隔4米种一棵,一共可以种多少棵树?4、一条路上每隔10米有一根电线杆,连两端共有24棵,这条路有多长?5、一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?6、一个湖泊周长1800米,沿湖泊周围每隔30米栽一棵柳树,每两棵柳树中间栽2棵桃树,湖周围各栽了多少棵柳树和桃树?7、一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?8、8、48个同学围成一个正方形,相邻两人之间的距离相等。
小学四年级奥数班讲义_植树问题
四年级奥数班讲义植树问题姓名:植树问题在生活中很有实际运用价值,其基本数量关系和解题的要点是:1.植树问题的基本数量关系:每段距离×段数=总距离.2.在直线上植树要根据以下几种情况,弄清棵数与段数之间的关系:(1)在一段距离中,两端都植树,棵数=段数+1;(2)在一段距离中,两端都不植树,棵数=段数-1;(3)在一段距离中,一端不植树,棵数=段数.3.在封闭曲线上植树,棵数=段数.例1、大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?课堂练习1、有一条长1000米的公路,在公路的一侧从头到尾每隔25米栽一棵树苗,一共需要准备多少棵树苗?课堂练习2、一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?例2、晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)课堂练习1、小王要到大厦的36层去上班,一日因停电他步行上楼,他从一层到六层用了100秒.如果用同样的速度走到36层,还需要多少秒?课堂练习2、某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要30秒,请问以同样的速度走到8层,还需要多少秒?课堂练习3、一座楼房每上1层要走13级台阶,到小英家要走39级台阶,小英家住在几楼?例3、丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?课堂练习1、在一幢高25层的大楼里,甲、乙两个比赛爬楼梯.甲到9楼时,乙刚上到5楼.照这样的速度,当甲到了顶层时乙到了几楼?课堂练习2、A、B二人比赛爬楼梯,A跑到5层时,B恰好跑到3层,照这样计算,A跑到17层楼时,B跑到几层楼?例4、从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共53棵;现在改成每隔60米种一棵树.求可余下多少棵树?课堂练习1、从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔20米安装一根电线杆.求还需要多少根电线杆?课堂练习2、公路的一旁每隔40米有木电杆一根(两端都有),共121根.;现改为水泥电杆51根(包括两端),求两根相邻水泥电杆之间的距离.例5、马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?课堂练习1、马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?课堂练习2、.铁路旁每隔50米有一根电线杆,某旅客为了计算火车的速度,测量出从第一根电线杆起到第37根电线杆共用了2分钟,火车的速度是每秒多少米?例6、一根木料在24秒内被锯成了4段,用同样的速度锯成5段,需要多少秒?课堂练习1、裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?课堂练习2、一根木料锯成4段需要18分钟,改成锯8段要多少分钟?课堂练习3、一根钢管长8米,锯成1米一段,如果每锯一次需要3分钟,要几分钟才能锯完?例7、在一个圆形小花园的四周植树8棵,每两棵树之间的间隔是3米,请问:这个小花园的周长一共有多长?课堂练习1、一个圆形水池的周长是60米,如果在水池的四周每隔3米放一盆花,那么一共能放多少盆花?课堂练习2、学校有一块正方形的草坪,为了让这块草坪更漂亮,绿化小组的成员决定沿正方形草坪一周种上树,要求每边植7棵,并且四个角上都要植,一共要几棵?例8、时钟2点钟敲2下,2秒钟敲完,那么8点钟敲8下,几秒钟完成?课堂练习1、有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?课堂练习2、小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少?例9、同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?课堂练习1、一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?课堂练习2、(2008年“陈省身杯”国际青少年数学邀请赛)小朋友们做广播体操,小明恰好站在队列的正中心,此时无论是从前往后或者从后往前数他都排在第5个,无论是从左往右或者是从右往左数他都排在第6个,则这个队列中一共有________位小朋友.例10、一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后两车相隔5米,问这列车队共长多少米?课堂练习1、国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米,这列车队要通过536米长的检阅场地,要多少分钟.课堂练习2、一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
植树问题知识点公式及例题详解完整版
植树问题知识点公式及例题详解HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】植树问题知识点公式及例题详解公式直线植树:距离÷间隔 +1 = 棵数四周植树:距离÷间隔 = 棵数楼间植树:单边植树距离÷间隔 -1=棵数双边植树(距离÷间隔 -1)×2=棵数循环植树距离等于棵树加间距1.植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。
2.为使其更直观,用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
专题分析一、在线段上的植树问题可以分为以下三种情形。
1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1。
2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数。
3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1。
~4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二。
二、在封闭线路上植树,棵数与段数相等,即:棵数=段数。
三、在正方形线路上植树,如果每个顶点都要植树。
则棵数=(每边的棵数-1)×边数。
例题:例1长方形场地:一个长84米,宽54米的长方形园中,苹果树的株距是2米,行距是3米.这个苹果园共种苹果树多少棵?解:解法一:①一行能种多少棵?84÷2=42(棵).|②这块地能种苹果树多少行?54÷3=18(行).③这块地共种苹果树多少棵?42×18=756(棵).如果株距、行距的方向互换,结果相同:(84÷3)×(54÷2)=28×27=756(棵).解法二:①这块地的面积是多少平方米?84×54=4536(平方米).②一棵苹果树占地多少平方米?2×3=6(平方米).③这块地能种苹果树多少棵?4536÷6=756(棵).当长方形土地的长、宽分别能被株距、行距整除时,可用上述两种方法中的任意一种来解;当长方形土地的长、宽不能被株距、行距整除时,就只能用第二种解法来解.但有些问题从表面上看,并没有出现“植树”二字,但题目实质上是反映封闭线段或不封闭线段长度、分隔点、每段长度三者之间的关系。
小学数学二年级奥数植树问题锯木头问题知识讲解+练习题+答案(已整理)
二年级植树问题:知识点+练习题+答案一、知识点讲解。
1、“植树问题”又称为“锯木头”问题。
2、植树问题的基本数量关系:每段距离x段数=总距离。
总距离÷每段距离=段数总距离÷段数=每段距离3、分情况解决问题。
①在一段距离中,两端都植树,棵数=段数+1; 段数=棵树-1适用于弯曲路段练习题:(1)公园门前的一条路长42米,在路的一边从头到尾栽树,每6米栽一棵,一共能栽多少棵?(2)同学们植树,8棵树之间的距离是14米,照这样计算,16棵树间的距离是多少米?(3)两根同样长的彩带上,每隔2米挂一个灯笼,起点和终点都挂,一共挂了12个,每根绳子长多少米?答案:(1)42÷6+1=8(棵)答:一共能栽8棵。
(2)8-1=7(段) 14÷7=2(米)16-1=15(段) 2×15=30(米)答:16棵树间的距离是30米。
(3)12÷2=6(个) 6-1=5(段) 2×5=10(米)答:每根绳子长10米。
②在一段距离中,两端都不植树,棵数=段数-1; 段数=棵树+1适用于弯曲路段练习题:(1)在一条长200米的公路一侧植树,每隔5米植一棵,若两端都不植树,共需多少棵树?(2)两座楼房之间相距56米,每隔 4 米栽一棵雪松,一行能栽多少棵?答案:(1)200÷5=40(段) 40-1=39(棵)答:共需39棵树。
(2)56÷4=14(段) 14-1=13(棵)答:一行能栽13棵。
③在一段距离中,一端不植树,棵数=段数;分右端不植树和左端不植树两种情况。
练习题(1)志愿者在路的一旁每隔5米栽一棵树,从起点开始栽,终点不栽,一共栽了 8棵树,这条路长多少米?(2)在一段长18米的道路上摆放花盆,每隔2米摆一盆花,头摆尾不摆,一共摆了多少盆花?答案:(1)5×8=40(米)答:这条路长40米。
(2)18÷2=9(盆)答:一共摆了9盆花。
小学思维数学讲义:植树问题(一)-带详解
植树问题(一)1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造一、植树问题分两种情况:(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲知识点拨 教学目标【例1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【考点】直线上的植树问题【难度】1星【题型】解答【解析】从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵). 【答案】101棵【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。
专题25 植树问题—四年级数学思维拓展精编讲义(解析)
2022-2023学年小学四年级思维拓展举一反三精编讲义专题25 植树问题知识精讲专题简析:1.线段上的植树问题可以分为以下三种情形:(1)如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=段数+1;(2)如果一端植树,另一端不植树,那么棵数与段数相等,即:棵数=段数;(3)如果两端都不植树,那么棵数应比段数少1,即:棵数=段数-1。
2.在封闭的路线上植数,棵数与段数相等,即:棵数=段数。
典例分析【典例分析01】城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。
这条路长多少米?分析与解答:题中已知栽树28棵,28棵树之间有28-1=27段,每隔6米为一段,所以这条大路长6×27=162米。
【典例分析02】在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽多少棵树?分析与解答:这道题是封闭线路上的植树问题,植树的棵数和段数相等。
240÷5=48(棵)【典例分析03】在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。
求相邻两盏彩灯之间的距离。
分析与解答:大桥两边一共挂了202盏彩灯,每边各挂202÷2=101盏,101盏彩灯把800米长的大桥分成101-1=100段,所以,相邻两盏彩灯之间的距离是800÷100=8米。
【典例分析04】一个木工锯一根19米的木料,他先把一头损坏部分锯下来1米,然后锯了5次,锯成同样长的短木条。
每根短木条长多少米?分析与解答:根据题意,把长19-1=18米的木条锯了5次,可以锯成5+1=6段,所以每根短木条长18÷6=3米。
【典例分析05】有一幢10层的大楼,由于停电电梯停开。
某人从1层走到3层需要30秒,照这样计算,他从3层走到10需要多少秒?分析与解答:把每一层楼所需要的时间看作一个间隔,1层至3层有两个时间间隔,所以每个间隔用去的时间是30÷(3-1)=15秒,3层到10层经过了10-3=7个时间间隔,所以,他从3层到10层需要15×7=105秒。
植树问题归纳知识点总结
植树问题归纳知识点总结一、植树的目的1.美化环境植树可以美化环境,增加绿化覆盖,使城市更加美丽宜居。
2.保护水土资源植树可以保护水土资源,减少水土流失,防止沙漠化、荒漠化等环境问题。
3.改善气候植树可以改善气候,调节气温、湿度和空气质量,减少自然灾害。
4.促进生态平衡植树可以促进生态平衡,增加生物多样性,减少生态灾害。
5.提高农民收入植树可以提高农民收入,种植经济作物和果树,增加农民的经济收入。
二、植树的方法1.直播法将树苗直接种植在地里,适用于根系发达的树种和碱性土壤。
2.移植法将树苗移植到适宜的土壤中进行生长,适用于树苗生长期较长的树种。
3.育苗法将树苗在育苗土中培育,等树苗长大后再移植到地里。
4.嫁接法将优质的树苗和其他树种进行嫁接,培育出更好的品种。
5.插秧法将枝条插入土壤中培育,等枝条生根后移植到地里。
三、适宜树种的选择1.应根据当地的气候、土壤条件、水资源等因素选择适宜的树种,包括阔叶树、针叶树、果树、经济作物等。
2.要考虑树种的生长速度、耐寒性、耐旱性、根系发达程度等因素,选择适宜的树种。
3.要考虑树种的用途,包括美化景观、防风固沙、水土保持、经济作物等方面。
四、植树的时间1.应根据当地的气候和土壤条件选择适宜的植树时间,一般在春秋两季进行植树最为适宜。
2.在干燥地区,应在春季进行植树,以便树苗在雨季来临前生根发芽。
3.在潮湿地区,应在秋季进行植树,以便树苗在干季来临前扎根成活。
五、植树的技术要点1.挖坑栽树时要根据树苗的大小和根系情况选择适当大小的坑洞。
2.树苗栽入坑洞后,要及时灌水培土,以保持树苗的生长。
3.树苗栽植后要及时浇水,保持土壤湿润,促进树苗的成活。
4.可以施加适量的有机肥料,促进树苗的生长,提高树苗的成活率。
5.要及时修剪树苗,促进树木的正常生长,防止蔓延生长。
以上就是植树问题的一些归纳总结,希望对大家了解植树有所帮助。
植树造林是一项长期而艰巨的工作,希望大家能够积极参与其中,共同为改善生态环境、保护生态平衡做出贡献。
关于植树问题的知识点总结(6篇)
关于植树问题的知识点总结(6篇)关于植树问题的知识点总结(精选6篇)关于植树问题的知识点总结篇11、方法:化大为小或化繁为简,画图,列表,再总结应用2、植树问题:(1)、两端要栽:间隔数=总长÷间距;总长=间距_间隔数;棵数=间隔数+1;间隔数=棵数-1(类似问题有:竖电线杆,两端插旗......)(2)、两端不栽:间隔数=总长÷间距;总长=间距_间隔数;棵数=间隔数-1;间隔数=棵数+1(类似问题有:锯木头,剪铁丝......)(3)、一端栽一端不栽:间隔数=总长÷间距;总长=间距_间隔数;棵数=间隔数;间隔数=棵数(类似问题有:敲钟听声,上楼时间.....)3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间_次数4、方阵问题:最外层的数目是:边长_4—4或者是(边长-1)_4;单边边长=(最外层数目+4)÷4整个方阵的总数目是:边长_边长5、封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数。
6、过桥问题总长=车身长+车间距_车间隔数+桥(路长)速度=总长÷时间7、出租车计费(信件邮资、洗照片)等问题。
计算时分成两部分。
(1)标准部分。
已经知道总价的,不再计算,不知道总价需计算。
(2)超出部分。
超出数量_超出单价。
最后相加。
关于植树问题的知识点总结篇21、非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1全长=株距_(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距_株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1全长=株距_(株数+1)株距=全长÷(株数+1)2、封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距_株数株距=全长÷株数 ?关于植树问题的知识点总结篇3常见题型:(1)5路公共汽车行驶路线全长14km,相邻两站之间都是1km,一共要设(15)个车站。
第十九讲植树问题(专项复习讲义)小升初数学专项复习讲义(苏教版)
第十九讲植树问题(专项复习讲义)(知识梳理+专项练习)1、植树问题植树问题:这类应用题是以“植树”为内容。
凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
2、解题关键解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
3、解题规律:(1)沿线段植树棵树=段数+1棵树=总路程÷株距+1株距=总路程÷(棵树-1)总路程=株距×(棵树-1)(2)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树一、选择题1.一根木头锯成3段需要12分钟,照这样计算,锯成6段需要()分钟。
A.24B.20C.30D.362.一块三角地带,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?()A.93B.95C.96D.99二、填空题7.某人到十层大楼的第十层办事,他从一层到第五层用64秒,那么以同样的速度往上走到第十层,还需要( )秒才能到达.8.在一条40米的小路一旁栽树,每隔4米栽一棵(一端栽,一端不栽),一共要栽( )棵树。
9.将一段长4m的长方体木料横截成3段,表面积增加了1.6m2,这段长方体木料原来的体积是( )m3。
10.一条环形小路,外圆半径是18米,内圆半径是16米,这条环形小路的面积是( )平方米。
要在这条小路的外围栽树,两棵树之间的距离是1.57米,要栽( )棵树。
11.把2米长的绳子剪6次,剪成相等的长度。
每段占全长的( ),每段长度相当于1米的( )。
12.在周长为40米的圆形水池边每隔2米摆一盆花,需要摆( )盆花;每两盆花之间站3个学生,共需要( )个学生。
13.把一根2米长的木料平均锯成4段,每锯断一次的时间相等,每段长( )米,每锯断一段的时间是全部时间的( )。