分式方程及其解法

合集下载

分式方程及其解法说课稿

分式方程及其解法说课稿

分式方程及其解法说课稿一、说教材本文是高中数学课程中关于分式方程及其解法的重要内容。

在数学教育中,分式方程不仅是代数基础的重要组成部分,也是解决实际问题时常用的一种数学工具。

它既承接了初中阶段一元一次方程、不等式等内容,又为后续学习更高级的数学知识,如函数、导数等打下基础。

(1)作用与地位分式方程在数学课程中的作用至关重要。

它既是代数知识体系中的桥梁,也是培养学生抽象思维能力、逻辑推理能力的关键。

通过学习分式方程,学生能够更好地理解数学概念之间的内在联系,提高解决问题的能力。

(2)主要内容本文主要内容包括分式方程的定义、性质、解法及其应用。

具体分为以下几部分:1. 分式方程的定义:介绍分式方程的概念,让学生理解分式方程的基本形式及其特点。

2. 分式方程的性质:分析分式方程的性质,如对称性、奇偶性等,帮助学生更好地把握分式方程的内在规律。

3. 分式方程的解法:详细讲解解分式方程的步骤,包括去分母、化简、求解等,使学生在实际操作中掌握解法。

4. 分式方程的应用:通过实际例题,展示分式方程在解决实际问题中的应用,提高学生的实际操作能力。

二、说教学目标学习本课需要达到以下教学目标:(1)理解分式方程的概念,掌握分式方程的基本形式及其特点;(2)掌握分式方程的性质,如对称性、奇偶性等;(3)学会解分式方程的步骤,能熟练地解决各类分式方程问题;(4)能将分式方程应用于解决实际问题,提高数学应用能力。

三、说教学重难点(1)重点:分式方程的定义、性质、解法;(2)难点:分式方程的解法,特别是去分母、化简的步骤。

在教学过程中,要注重对重点知识的讲解,同时针对难点问题进行详细剖析,使学生能够扎实掌握分式方程的相关知识。

四、说教法在教学分式方程及其解法的过程中,我将采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色。

1. 启发法:- 通过提出引导性问题,激发学生的思考,如“分式方程与之前学过的一元一次方程有何不同?”或“为什么我们要去分母?”,让学生在探索中理解分式方程的本质。

分式方程的概念及解法

分式方程的概念及解法

分式方程的概念,解法知识要点梳理要点一:分式方程的定义分母里含有未知数的方程叫分式方程。

要点诠释:1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。

2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。

要点二:分式方程的解法 1. 解分式方程的其本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。

2.解分式方程的一般方法和步调 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。

(2)解这个整式方程。

(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。

注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。

3. 增根的发生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程自己就隐含着分母不为零的条件。

当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。

规律方法指导1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解.经典例题透析:类型一:分式方程的定义1、下列各式中,是分式方程的是()A.B.C.D.举一反三:【变式】方程中,x为未知量,a,b为已知数,且,则这个方程是()A.分式方程B.一元一次方程 C.二元一次方程D.三元一次方程类型二:分式方程解的概念2、请选择一组的值,写出一个关于的形如的分式方程,使它的解是x=0这样的分式方程可以是______________. 举一反三:【变式】在中,哪个是分式方程的解,为什么?宇文皓月类型三:分式方程的解法3、解方程举一反三:【变式】解方程:(1)=; (2)+=2.类型四:增根的应用4、当m为何值时,方程会发生增根( ) A. 2 B. -1 C. 3 D.-3举一反三:【变式】.若方程=无解,则m=。

分式方程的几种解法

分式方程的几种解法

分式方程的几种解法分式方程是初中数学教材重点内容之一,它是一元二次方程的应用和深化,同时又是列分式方程解应用题及解分式方程组的基础,所以分式方程有承上启下的作用,至关重要,它的解法很多,这里略谈一二。

一、 去分母法方法导析:它是分式方程的基本解法,即:方程两边同乘以各分母的最简公分母,化分式方程为整式方程,解出这个整式方程,最后把所得结果代入最简公分母中检验,便得分式方程的根。

例1:解方程:4121235222---=++-x x x x x 解:方程两边同乘以)2)(2)(1(-++x x x 去分母得:)1(4)2)(1()2)(52(+-++=--x x x x x整理得:01282=+-x x 解之得:6,221==x x检验:把2=x 代入)2)(2)(1(-++x x x ,它等于0,所以2=x 不是原方程的根。

把6=x 代入)2)(2)(1(-++x x x ,它不等于0,所以6=x 是原方程的根。

∴原方程的根为6=x 。

二、 换元法方法导析:根据方程特点用另一字母代替方程中的未知项式,得到一个关于这一字母的新方程,再进行解方程,其宗旨是换得的方程较原方程简单。

例2:解方程:21333322=-+-x x x x 解,设a x x =-32,则ax x 13332⨯=-,原方程变形为: 2133=+a a 去分母,得:061322=+-a a 解之得:61=a 212=a当6=a ,即632=-x x ,去分母,整理得0362=--x x 323±=∴x 当21=a ,即2132=-x x ,去分母,整理得0622=--x x 23,221-==∴x x 检验,把323+=x ,323-=x ,2=x , 23-=x 分别代入原方程分母中其计算结果都不为0,所以他们都是原方程的根。

∴原方程的根是323±=∴x ,2=x , 23-=x 三、 通分法方法导析:根据方程特点,原方程式适当变形后,两边进行通分,再结合分式性质解题。

分式方程及其解法课件

分式方程及其解法课件

高阶分式方程的解法实例
总结词
通过降阶、变量代换等方法,将高阶分式方 程转化为低阶或可直接求解的分式方程。
详细描述
高阶分式方程可以通过降阶、变量代换等方 法,将其转化为低阶或可直接求解的分式方
程。例如,对于形如 "a1x1+a2x2+...+anxn/b1x1+b2x2+...+b nxn=c" 的高阶分式方程,可以先将高阶项 进行降阶或变量代换,将其转化为可直接求
分式方程及其解法课件

CONTENCT

• 分式方程的基本概念 • 分式方程的解法 • 分式方程的解法技巧 • 分式方程的解法实例 • 分式方程的解法总结与反思
01
分式方程的基本概念
分式方程的定义
总结词
分式方程是数学中一类带有分式的等式,用于描述某些特定情况 下的数量关系。
详细描述
分式方程是数学中一类带有分式的等式,通常用来描述两个或多 个量之间的关系。分式方程中的分母不能为零,因为分母代表一 个量所占的比例或份额。
适用范围
分式方程的解法适用于解决涉及分数 、比例、百分数等实际问题的数学问 题,同时也可以用于解决一些代数和 几何问题。
不适用范围
对于一些过于复杂或抽象的分式方程 ,分式方程的解法可能无法解决,或 者解决起来非常困难。
解法的改进与展望
改进
在解分式方程时,可以尝试引入更多的数学工具和方法,例Байду номын сангаас使用分数运算规则、因式 分解、变量替换等技巧,以提高解题效率和准确性。
通过约分、通分、消去分母等方法,将 分式方程转化为整式方程进行求解。
VS
详细描述
一元分式方程通常可以通过约分、通分和 消去分母的方法,将方程转化为整式方程 ,然后利用整式方程的解法求解。例如, 对于形如 "ax+b/cx+d=e" 的分式方程, 可以先通分,然后移项、合并同类项,最 后求解整式方程。

15.3.1分式方程及其解法

15.3.1分式方程及其解法

求a的取值范围. 【思路点拨】解关于 x 的分式方程→根据解是正数 (即大于零)列出关于字母a的不等式→解不等式,确定 a的(x-2),得2x+a=2-x,
2a . 解得 x= 3 2a 2a >0,且 2. 由题意,得 3 3 2a 2a >0, 由 解得a<2;由 得a≠-4. 2, 3 3
解得:x=50经检验x=50是原方程的解
则甲工程队每天能完成绿化的面积是
50×2=100(m2) 答:甲,乙两工程队每天能完成绿化的面积分别是 100m2,50m2.
过程展示
解:(2)设至少应安排甲队工作x天,根据题意得:
1800 100x 0.4x+ ∙0.25≤8, 50
解得:x≥10 答:至少应安排甲队工作10天.
× √
√) (×)
知识运用
一.分式方程的定义及解法 例1.(2013·资阳中考)解方程: 【教你解题】
x 2 1 + = . 2 x -4 x 2 x-2
解:
去分母
方程两边都乘以(x+2)(x-2), 得:x+2(x-2)=x+2. 解这个方程,得:x=3. 经检验,x=3是原方程的解
解整式方程
方法提示
分式方程无解的“两种情况”: 分式方程无解时分式方程化为整式方程后有 以下两种情况: (1)整式方程有解但这个解不是原分式方程的解; (2)分式方程化为整式方程后整式方程无解.
中考链接
(2014年∙广东汕尾)某校为美化校园,计划对面积为 1800m2的区域进行绿化,安排甲,乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿 化的面积的2倍,并且在独立完成面积为400m2区域的 绿化时,甲队比乙队少用4天. (1)求甲,乙两工程队每天能完成绿化的面积分别是多 少 m2 ? (2)若学校每天需付给甲队的绿化费用为0.4万元,乙队 为0.25万元,要使这次的绿化总费用不超过8万元,至少 应安排甲队工作多少天?

分式方程及其解法 公开课教案

 分式方程及其解法 公开课教案

9.3 分式方程第1课时 分式方程及其解法1.了解分式方程的概念;(重点)2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用;(重点)3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)一、情境导入1.什么是方程?2.什么是一元一次方程?3.解一元一次方程的一般步骤是什么?我们今天将学习另外一种方程——分式方程.二、合作探究探究点一:分式方程的概念下列方程是分式方程的是( )A.2x +1=3x -1B.23x -1=32x +2 C.12x 2-x =1 D.2x -3解析:根据分式方程的定义,分母含有未知数的方程是分式方程,B ,C 选项是整式方程,D 选项是分式,只有A 选项分母含有未知数,并且是方程.故选A.方法总结:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数,如果分母中含有未知数就是分式方程,分母中不含未知数就不是分式方程.探究点二:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2; (2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5.检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2.检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】 由分式方程的解确定字母的取值范围关于x 的方程2x +ax -1=1的解是正数,则a 的取值范围是____________. 解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点三:分式方程的增根【类型一】 求分式方程的增根若方程3x -2=a x +4x (x -2)有增根,则增根可能为( ) A .0 B .2 C .0或2 D .1解析:∵最简公分母是x (x -2),方程有增根,则x (x -2)=0,∴x =0或x =2.去分母得3x =a (x -2)+4,当x =0时,2a =4,a =2;当x =2时,6=4不成立,∴增根只能为x =0.故选A.方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.【类型二】 分式方程有增根,求字母的值如果关于x 的分式方程2x -3=1-m x -3有增根,则m 的值为( ) A .-3 B .-2C .-1D .3解析:方程两边同乘以x -3,得2=x -3-m ①.∵原方程有增根,∴x -3=0,即x =3.把x =3代入①,得m =-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】 分式方程无解,求字母的值若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x +2)(x -2)得2(x +2)+mx =3(x -2),即(m -1)x =-10.①当m -1=0时,此方程无解,此时m =1;②方程有增根,则x =2或x =-2,当x =2时,代入(m -1)x =-10得(m -1)×2=-10,m =-4;当x =-2时,代入(m -1)x =-10得(m -1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的概念2.分式方程的解法3.分式方程的增根这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错。

第6讲分式方程(讲义)解析版

第6讲分式方程(讲义)解析版

第6讲分式方程模块一:分式方程及其解法知识精讲1、分式方程的概念分母中含有未知数的方程叫做分式方程.2、解分式方程的方法通过去分母把分式方程转化为整式方程,再求解.3、增根的概念分式方程在化整式方程求解过程中,整式方程的解如果使得分式方程中的分母为0,那么这个解就是方程的增根.4、解分式方程的一般步骤(1)方程两边都乘以最简公分母,去分母,化成整式方程;(2)解这个整式方程,求出整式方程的根;(3)检验.有两种方法:①将求得的整式方程的根代入最简公分母,如果最简公分母等于0,则这个根为增根,方程无解;如果最简公分母不等于0,则这个根为原方程的根,从而解出原方程的解;②直接代入原方程中,看其是否成立.如果成立,则这个根为原方程的根,从而解出原方程的解;如果不成立,则这个根为增根,方程无解.5、分式方程组的概念由两个或两个以上的分式方程构成的方程组叫做分式方程组.6、解分式方程组的方法找出分式方程组中相同的分式进行换元,将分式方程组转化为整式方程组,解方程组,然后进行检验.例题解析例1.(1)下列方程中,是分式方程的为( )A .12x -=B 1=C 10-=D 1=【答案】C【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】A. 是整式方程,故选项错误;B. 是整式方程,故选项错误;分母中含有未知数x ,所以是分式方程,故选项正确;D. 是整式方程,故选项错误.故选C.【点睛】此题考查分式方程的判定,掌握分式方程的定义是解题的关键.(2)在3253x +=;11(1)(1)432x x ++-=;21x -=;2371x x x ++=-;1(37)x x-中,分式方程有().A .1个B .2个C .3个D .4个【难度】★【答案】B【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)(2)两个方程分 母中不含未知数,(5)不是方程,(3)(4)满足定义,故选B .【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.例2.(1)用换元法解分式方程251x x +21x x+-+1=0,如果设21x x +=y ,那么原方程可以化为( )A .2+y y -5=0B .2y -5y+1=0C .25y y 10++=D .25y 10y +-=【答案】D【分析】直接把21xx +换成y ,整理即可.【详解】解:设21xy x =+,则原方程化为1510y y -+=,去分母得,25y 10y +-=,故选:D .【点睛】本题考查的是换元法解分式方程,换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.(2).用换元法解方程221165380x x x x æöæö+++-=ç÷ç÷èøèø,设1y x x =+,则方程变为()A .265380y y +-=B .265400y y +-=C .265260y y +-=D .265500y y +-=【难度】★【答案】D【解析】1y x x =+,则有22221122x x y x x æö+=+-=-ç÷èø,原方程即为()2625380y y -+-=,展开整理即为265500y y +-=,故选D .【总结】考查分式方程中换元法的应用,注意含有未知数部分的恒等变形转化.例3.分式方程2227381x x x x x +=+--的最简公分母是____________.【难度】★【答案】3x x -.【解析】分式方程中三个分母位置上分别为2x x +,2x x -,21x -,分解因式的结果分别为()1x x +,()1x x -,()()11x x +-,由此可得方程的最简公分母为()()311x x x x x +-=-.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.例4.直接写出下列分式方程的根:(1)11211x x x -=---:_________________;(2)11111x x x -=---:_________________;(3)2121x x -=-:_________________;(4)2111x x -=-:_________________.【难度】★【答案】(1)2x =;(2)无解;(3)无解;(4)0x =.【解析】(1)根据等式性质,两边同时加上分式部分,即得2x =, 检验得2x =是原分式方程的根;(2)根据等式性质,两边同时加上分式部分,即得1x =,检验得1x =为方程的增根, 即方程无解;(3)约分得12x +=,解得1x =,检验得1x =为方程的增根,即方程无解;(4)约分得11x +=,解得0x =,检验得0x =是原分式方程的根.【总结】考查根据等式的性质求解简单的分式方程,注意求解结果是否是增根.例5.解方程:(1)3363142x x -=-+;(2)43252x xx x =++;(3)23312222x x x x x ++=--+-.【难度】★★【答案】(1)123x =,29x =-;(2)10x =,267x =-;(3)无解.【解析】(1)方程两边同乘()()43123x x -+,得()()()()42312831x x x x +--+=-,整理得2325180x x +-=,解得123x =,29x =-,经检验,123x =,29x =-都是原方程的根;(2)方程两边同乘()()3252x x ++,得()()52432x x x x +=+,整理得2760x x +=,解得:10x =,267x =-,经检验,10x =,267x =-都是原方程的根;(3)方程两边同乘()()212x x +-,得()()()63221x x x ++-=+,整理得220x x --=,解得:11x =-,22x =,经检验,11x =-,22x =都是原方程的增根,即原方程无解.例6.解方程:(1)2213211x x x x -=+--; (2)24221422x x x x =++--+;(3)23211214124x x x x++=+--.【难度】★★【答案】(1)13x =-;(2)6x =;(3)54x =.【解析】(1)方程两边同乘21x -,得()221213x x x x +=-+-,整理得23210x x --=, 解得:113x =-,21x =,经检验,21x =是原方程的增根,即原方程的根为13x =-;(2)方程两边同乘24x -,得()()2442222x x x x =--++-,整理得24120x x --=,解得:16x =,22x =-,经检验,22x =-是原方程的增根,即原方程的根为6x =;(3)两边同乘()2241x -,得()()()2621421241x x x x -+-+=-,整理得281450x x -+=,解得:112x =,254x =,经检验,112x =是原方程的增根,即原方程的根为54x =.【总结】考查分式方程的解法,注意检验所求是否为增根.例7.已知关于x 的方程22312x m x x x +-=-+-有增根,求m 的值.【难度】★★【答案】12m =或3m =.【解析】分式方程两边同乘22x x +-,得()223x m +=-,分式方程有增根,由220x x +-=,解得:11x =,22x =-,即为原分式方程的增根,代入相应整式方程得39m -=或30m -=,解得12m =或3m =.【总结】考查分式方程的增根,代入相应的整式方程可使得方程成立且使得分式分母为0的未知数的值.例8.已知关于x 的方程7155x m xx x--=---无解,求m 的值.【难度】★★【答案】3m =.【解析】分式方程两边同乘5x -,得()75x x m x -=---,整理解得:2x m =+,因为原分式方程无解,则相应解应为分式方程的增根,即得25x m =+=,解得3m =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根.例9.已知关于x 的方程301a xx +-=+的根是负数,求a 的取值范围.【难度】★★【答案】3a <且1a ≠.【解析】分式方程两边同乘1x +,得()310a x x +-+=,整理解得:32a x -=,方程的根是 负数,则有302a x -=<,得3a <,同时分式方程的根不能为相应增根,即312a x -=≠-, 得1a ≠,由此即得3a <且1a ≠.【总结】考查分式方程的解满足条件的求解,注意方程的解不能为相应的增根.例10.解方程:(1)2220383x x x x+-=+;(2)2191502x x x x æöæö+-++=ç÷ç÷èøèø.【难度】★★【答案】(1)15x =-,22x =,31x =-,42x =-;(2)11x =,22x =,312x =.【解析】(1)令23x x a +=,原方程即为208a a-=,两边同乘a 整理得28200a a --=,解得:110a =,22a =-;由2310x x +=,解得:15x =-,22x =;由232x x +=-,解得:11x =-,22x =-;经检验,15x =-,22x =,31x =-,42x =-都是原方程的根;(2)令1x a x +=,原方程即为29502a a -+=,解得12a =,252a =;由12x x+=,整理得2210x x -+=,解得:121x x ==;由152x x +=,整理得22520x x -+=,解得12x =,212x =;经检验,11x =,22x =,312x =都是原方程的根.【总结】考查用换元法求解具有特殊形式的分式方程,注意对方法的总结.例11.解方程:(1)225(16(1)1711x x x x +++=++);(2)2216104()933x x x x+=-.【难度】★★【答案】(1)1x =2x =(2)13x =,23x =,32x =-,46x =.【解析】(1)令211x a x +=+,原方程即为6517a a +=,两边同乘a 整理得251760a a -+=,解得:125a =,23a =;由21215x x +=+,整理得25230x x -+=,方程无解;由2131x x +=+,整理得2320x x --=,解得:1x 2x =经检验,1x =2x = (2)令43x a x -=,则有2222164889333x x a x x æö+=-+=+ç÷èø,原方程即为281033a a +=,整理得231080a a -+=,解得:12a =,243a =;由423x x-=,整理得26120x x --=,解得:13x =,23x =;由4433x x -=,整理得24120x x --=,解得:12x =-,26x =;经检验,13x =+23x =-,32x =-,46x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例12.解方程组:(1)413538x y x y x y x y ì+=ï+-ïíï-=ï+-î;(2)132013251x y x y ì+=ï-ïíï-=-ï-î.【难度】★★【答案】(1)01x y =ìí=î;(2)565x y =ìïí=ïî.【解析】(1)令1a x y =+,1b x y =-,原方程组即为43538a b a b +=ìí-=î,解得:11a b =ìí=-î,由此可得11x y =+,11x y =--,由此得11x y x y +=ìí-=-î,解得:01x y =ìí=î,经检验,01x y =ìí=î是原分式方程的根;(2)令11a y =-,原方程组即为320235x a x a +=ìí-=-î,解得:55x a =ìí=î,由此可得:151y =-, 解得:65y =, ∴565x y =ìïí=ïî, 经检验,565x y =ìïí=ïî是原分式方程的根.【总结】考查利用换元法求分式方程组的解,注意解完之后要检验.例13.解方程组:(1)253489156x x x x +=+++++;(2)11212736x x x x x x ++-=-++++.【难度】★★【答案】(1)16x =,2334x =-;(2)92x =-.【解析】(1)对分式方程移项通分得()()()()()()()()21538495681569x x x x x x x x +-++-+=++++,展开即得2266231201554x x x x x x -+-+=++++,由此即得60x -+=或22231201554x x x x ++=++,解得:16x =,2334x =-, 经检验,16x =,2334x =-都是原分式方程的根; (2)对分式方程变形得1111112736x x x x --=--++++,由此得11112736x x x x +=+++++,两边分别通分即得222929914918x x x x x x ++=++++, 两边分母不同,则必有290x +=,解得92x =-,经检验,92x =-是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.例14.解方程:226205x x +-=+.【难度】★★【答案】11x =,21x =-.【解析】令25x a +=,则有25x a =-,原方程即为6520a a+--=,两边同乘a 整理,得2760a a -+=,解得:11a =,26a =;由251x +=,方程无解; 由256x +=,解得:11x =,21x =-;经检验,11x =,21x =-都是原方程的根.【总结】考查用换元法解分式方程,注意取值范围和增根.例15.a 为何值时,关于x 的方程211a a x +=+无解?【难度】★★【答案】12a =-或0a =.【解析】分式方程两边同乘1x +,得:()211a a x +=+,展开移项得1ax a =+,当0a =时,方程无解; 当0a ≠时,1a x a +=,方程无解,即得11a x a+==-,解得12a =-;综上,12a =-或0a =.【总结】考查分式方程的无解,即由相应整式方程求得的解是分式方程的增根,注意考虑未知项系数为0的情况.例16.已知关于x 的方程222022x x x k x x x x-+++=--只有一个解,求k 的值及这个解.【难度】★★★【答案】72k =-时,1212x x ==或4k =-时,1x =或8k =-时,1x =-.【解析】方程两边同乘22x x -,得()22220x x x k +-++=,展开整理得:22240x x k -++=,分式方程可能产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行 分类讨论:①当整式方程有两相等实数根时,()()224240k ∆=--⨯+=,解得:72k =-,此时方程为212202x x -+=,解得:1212x x ==,此时分式方程只有一个解,符合题意;②当整式方程有一根为分式方程增根0x =时,此时有40k +=,解得:4k =-,此时方程为2220x x -=,解得:10x =,21x =,此时分式方程只有一个解1x =,符合题意;③当整式方程有一根为分式方程增根2x =时,此时有2222240k ⨯-⨯++=,解得:8k =-,此时方程为22240x x --=,解得:12x =,21x =-,此时分式方程只有一个解1x =-,符合题意; 综上,72k =-或4k =-或8k =-.【总结】考查分式方程只有一个解的情况,方程为二次方程时,注意包含方程有一个根为分式方程的增根的情形.例17.解关于x 的方程:22112(3()1x x x x+-+= 【难度】★★★【答案】12x =,212x =.【解析】令1x a x +=,则有22221122x x a x x æö+=+-=-ç÷èø,原方程即为()22231a a --=,展开整理得22350a a --=,解得:11a =-,252a =;由11x x+=-,整理得210x x ++=,方程无解;由152x x +=,整理得22520x x -+=,解得:12x =,212x =; 经检验,12x =,212x =都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程,注意解完之后进行检验.例18.解关于x 的方程()()450b x a xa b b x a x+-=-+≠+-.【难度】★★★【答案】12a b x -=,245a bx -=.【解析】令a x kb x -=+,原方程即为45k k=-,两边同乘k 整理,得2540k k -+=,解得:11k =,24k =; 由1a x b x -=+,又0a b +≠,可解得:2a bx -=;由4a x b x -=+,又0a b +≠,可解得:45a bx -=;经检验,12a b x -=,245a bx -=都是原方程的根.【总结】考查用换元法求解有特殊形式的分式方程.例19.已知方程22222(1)21()x ax a a x a +-++=+有实数根,求实数a 的取值范围.【难度】★★★【答案】1122a -≤≤且0a ≠.【解析】展开得()()22222222121x ax a ax a a x a +--+++=+,根据等式性质移项得()()222220x ax a ax x a +-+=+,即为()20x a x a x a ⎡⎤+-=⎢⎥+⎣⎦,由此得()0xa x a x a+-=+, 移项得()2a x a x +=,展开整理得()223210ax a x a +-+=,当0a =时,方程有实数根0x =是分式方程的增根,应舍去;当0a ≠时,方程为一元二次方程,此时根据韦达定理可得2122112a x x a a a-+=-=-,可知1x 、2x 不可能同时为a -,分式方程有实数根,则相应的整式方程应满足()2232214410a a a a ∆=--⋅=-+≥,得1122a -≤≤;综上,实数a 的取值范围为:1122a -≤≤且0a ≠.【总结】考查分式方程有实数根的情形,对分式方程整理变形满足相应的条件即可.模块二分式方程应用题知识精讲1、列方程(组)解应用题时,如何找“相等关系”(1)利用题目中的关键语句寻找相等关系;(2)利用公式、定理寻找相等关系;(3)从生活、生产实际经验中寻找相等关系.例题解析例1.要在规定日期内完成一项工程,如甲队单独做,刚好按期完成;如乙队单独做,则要超过规定时间3天才能完成;甲、乙两队合作2天,剩下的工程由乙队单独做,则刚好按期完成.那么求规定日期为x天的方程是().A.2213xx x-+=+B.233x x=+C.2213xx x++=+D.213xx x+=+【难度】★【答案】D【解析】设工作总量为“1”,则甲工作量+乙工作量=1,根据工作总量=工作效率×工作天数,乙工作天数为x天,由此可知选D.【总结】考查工程问题中的单位“1”,注意分清对应的工作效率和工作时间.例2.某车间加工300个零件,在加工80个以后,改进了操作方法,每天能多加工15个,一共用6天完成了任务.如果设改进操作后每天加工x个零件,那么下列根据题意列出的方程中,错误的是()A.8030080615x x-+=-B.30080615x-=-C.80(6)8030015xx-+=-D.8015300806xx-=--【难度】★【答案】B 【解析】略【总结】考查根据题意列方程的应用,根据工作量和工作效率、工作时间之间的相互关系进行列方程的应用.例3.甲、乙两个工程队合做一项工程,6天可以完成.如果单独工作,甲队比乙队少用5天完成.两队单独工作各需多少天完成?【难度】★★【答案】甲单独需10天完成,乙单独需15天完成.【解析】设甲单独需用x天完成,则乙单独需用()5x+天完成,依题意可得11615x xæö+=ç÷+èø,整理得27300x x--=,解得:13x=-,210x=,经检验,13x=-,210x=都是原方程的根,但13x=-不合题意应舍去,即得10x=,即甲单独需10天完成,乙单独需10515+=天完成.【总结】考查工程问题中的列方程解应用题,把工作总量当作单位“1”解题.例4.登山比赛时,小明上山时的速度为a米/分,下山的速度是b米/分,已知上山和下山的路径是一样的,求小明在全程中的平均速度?【难度】★★【答案】2aba b+.【解析】设小明上山的路程为sm,则整个过程中小明总行程为2sm,根据平均速度=总行程÷总时间,即得平均速度22s abvs s a ba b==++.【总结】考查平均速度的求取,平均速度==总行程÷总时间,与行程远近无关,注意平均速度的求法.例5.甲、乙两人分别从相距9千米的A、B两地同时出发,相向而行,1小时后相遇.相遇后,各自继续以原有的速度前进,已知甲到B地比乙到A地早27分钟,求两人的速度各是多少?【难度】★★★【答案】甲速度为5/km h,乙速度为4/km h.【解析】设甲速度为/xkm h,则乙速度为()9/x km h-,927min20h=,依题意可得999920x x-=-,整理得2311800x x+-=,解得:136x=-,25x=,经检验,136x=-,25x=都是原方程的根,但136x=-不合题意应舍去,即得5x=,即甲速度为5/km h,乙速度为954/km h-=.【总结】考查行程问题中的列方程解应用题,根据相遇问题的基本关系一个条件作设一个条件列式进行求解.例6.甲、乙两辆车同时从A地出发开往距A地240千米的B地,结果甲车比乙车早到了60分钟;第二次,乙车提速30千米/时,结果比甲车早到了20分钟,求第一次甲、乙两车的速度各是多少?【难度】★★★【答案】甲速度为80/km h,乙速度为60/km h.【解析】设甲车xh到达B地,60min1h=,120min3h=,依题意可得24024030113xx-=+-,整理得232330x x+-=,解得1113x=-,23x=,经检验,111 3x=-,23x=都是原方程的根,但111 3x=-不合题意应舍去,即得3x=,可得甲速度为24080/3km h=,乙速度为24060/31km h=+.【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解,注意本题中用时间作设速度列式解题更方便.例7.某服装厂接到一宗生产13万套衣服的业务,在生产了4万套后,接到了买方急需货物的通知,为满足买方的要求,该厂改进了操作方法,每月能多生产1万套,一共5个月完成了这宗业务.求改进操作方案后每月能生产多少万套衣服?【难度】★★★【答案】3万套.【解析】设改进操作方案后每月能生产x 万套衣服,则改进之前每月生产()1x -万套,依题意可得413451x x -+=-,整理得251890x x -+=,解得:135x =,23x =,经检验,135x =,23x =都是原方程的根,但135x =不合题意应舍去,即得:3x =,即改进操作方案后每月能生产3万套衣服.【总结】考查工作总量问题,一个条件作设一个条件列式进行求解.随堂检测1.已知方程:(1)2412x x -=-;(2)221x x =-;(3)11x x x æö-=ç÷èø;(43x -=,其中是分式方程的有_____________.【难度】★【答案】(1)、(2)、(3).【解析】根据分式方程的定义,分母中含有未知数的方程是分式方程,(1)、(2)、(3)满足 条件,(4)方程中不含有分式,故答案为(1)、(2)、(3).【总结】考查分式方程的定义,注意前提是方程,且方程分母中必含有字母.2.当x 取何值时,分式方程1112x x x +=--的最简公分母的值等于0?【难度】★【答案】1x =或2x =.【解析】分式方程的最简公分母为()()12x x --,最简公分母值为0,即()()120x x --=,解得:1x =或2x =.【总结】考查分式方程的最简公分母,将每个分母因式分解,取相同因式的最高次数乘积即为分式方程的最简公分母.3.分式方程22228(2)331112x x x x x x +-+=-+,如果设2221x xy x +=-,那么原方程可以化为关于y 的整式方程为 .【难度】★【答案】281130y y -+=.【解析】2221x x y x +=-,则有22112x x x y-=+,原方程即为3811y y +=,整理化作关于y 的整式方 程即为281130y y -+=.【总结】考查利用换元法对复杂形式的分式方程进行转化,注意最终要化成整式方程的形式.4.解方程:(1)26531111x x x x =++--+;(2)22161242x x x x +-=--+; (3)243455121760x x x x x x --+=---+.【难度】★★【答案】(1)9x =;(2)5x =-;(3)12x =,29x =.【解析】(1)方程两边同乘21x -,得()()2615131x x x x =--++-,整理得2890x x --=,解得:11x =-,29x =,经检验,11x =-是原方程的增根,即原方程的根为9x =;(2)方程两边同乘24x -,得()22162x x +-=-,整理得23100x x +-=,解得:12x =,25x =-,经检验,12x =是原方程的增根,即原方程的根为5x =-;(3)两边同乘21760x x -+,得()()()4123545x x x x ----=-,整理得211180x x -+=,解得“”12x =,29x =,经检验,12x =,29x =都是原方程的根.【总结】考查分式方程的解法,注意检验所求是否为增根.5.解方程:221313x x x x ++=+.【难度】★★【答案】11x =,21x =+.【解析】令1x a x =+,原方程即为2133a a +=,整理即为231060a a -+=,解得:1a =2a =由1x x =+,解得:1x =;由1x x =+,解得:1x =+经检验11x =,21x =【总结】考查利用换元法解分式方程.6.解方程组311332412463324x y x y x y y x ì+=ï+-ïíï-=ï+-î【难度】★★【答案】1011711x y ì=ïïíï=ïî.【解析】令132a x y =+,14b x y =-,原方程组即为13312463a b a b ì+=ïíï+=î,解得:1413a b ì=ïïíï=ïî,由此可得113241143x y x y ì=ï+ïíï=ï-î, 去分母得32443x y x y +=ìí-=î,解得:1011711x y ì=ïïíï=ïî,经检验,1011711x y ì=ïïíï=ïî是原分式方程的根.【总结】考查用换元法解有特殊形式的分式方程组,注意验根.7.若分式方程22111x m x x x x x++-=++产生增根,求m 的值.【难度】★★【答案】2m =-或1m =.【解析】方程两边同乘2x x +,得()()22211x m x -+=+,展开整理得2220x x m ---=,分式方程产生增根,即当相应整式方程有两解时,分式方程仅有一解,由此需进行分类 讨论:①整式方程有一根为分式方程增根0x =时,此时有20m --=,解得:2m =-;②整式方程有一根为分式方程增根1x =-时,此时有()()212120m --⨯---=,解得:1m =;综上,2m =-或1m =.【总结】考查分式方程有增根的情况,即对应的整式方程有一个根为分式方程的增根.8.甲、乙两地间铁路长400千米,现将火车的行驶速度每小时比原来提高了45千米,因此,火车由甲地到乙地的行驶时间缩短了2小时.求火车原来的速度.【难度】★★【答案】75/km h .【解析】设火车原来的速度为/xkm h ,依题意可得400400245x x -=+,整理得24590000x x +-=,解得:1120x =-,275x =,经检验,1120x =-,275x =都是原方程的根,但1120x =-不合题意应舍去,即得75x =,即可得火车原来速度为75/km h .【总结】考查行程问题中的列方程解应用题,根据行程问题的基本等量关系一个条件作设一个条件列式进行求解.9.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加20%,而且要提前1年完成任务.经测算,要完成新的计划,平均每年的绿化面积必须比原计划多20万亩,求原计划平均每年的绿化面积.【难度】★★★【答案】原计划平均每年绿化面积40万亩.【解析】设原计划平均每年的绿化面积为x 万亩,则新计划每年()20x +万亩,依题意可得()200120%200120x x ⨯+-=+,整理得26040000x x +-=,解得:1100x =-,240x =,经检验,1100x =-,240x =都是原方程的根,但1100x =-不合题意应舍去,即得40x =,即原计划平均每年的绿化面积为40万亩.【总结】考查工作量的问题,根据相应的等量关系式列方程求解.10.解方程:221114(4)12()12433x x x -=-++.【难度】★★★【答案】11x =+,21x =,33x =+,43x =【解析】方程两边同乘12展开得22364881616x x x x-+=--+,根据等式的性质移项变形得2668120x x x x æöæö---+=ç÷ç÷èøèø,因式分解得:66260x x x x æöæö----=ç÷ç÷èøèø,由此可得620x x --=或660x x --=;由620x x--=,整理得2260x x --=,解得:11x =+21x =-;由660x x --=,整理得2660x x --=,解得:13x =+23x =经检验,11x =21x =-33x =43x =-都是原方程的根.【总结】考查用整体思想先对分式方程变形,然后求解分式方程的根,注意对方法的总结.11.解方程:596841922119968x x x x x x x x ----+=+----.【难度】★★★【答案】12314x =.【解析】对分式方程变形得1155514219968x x x x -++=++-----,根据等式的性质可变形得115519986x x x x -=-----,两边分别通分即得221010281711448x x x x =-+-+,由此可得22281711448x x x x -+=-+, 解得:12314x =,经检验,12314x =是原分式方程的根.【总结】考查特殊形式分式方程的解法,注意相应分母的关系,分组两边分别通分计算.12.已知关于x 的方程21221232a a x x x x ++=---+有增根,求a .【难度】★★★【答案】32a =-或2a =-.【解析】方程两边同乘232x x -+,得()2122x a x a -+-=+,展开整理得()134a x a +=+,当10a +≠,即1a ≠-时,得341a x a +=+,分式方程可能产生增根,由此进行分类讨论:①整式方程根为分式方程增根1x =时,此时有3411a a +=+,解得32a =-;②整式方程有一根为分式方程增根2x =时,此时有3421a a +=+,解得2a =-;综上,32a =-或2a =-.【总结】考查分式方程有增根的情况,即对应的整式方程根为分式方程的增根.13.已知:关于x 的方程227()72120a a x x a x x+--++=只有一个实数根,求a .【难度】★★★【答案】94a =或4a =.【解析】整理原方程得27120a a x x x x æöæö+-++=ç÷ç÷èøèø,因式分解得340a a x x x x æöæö+-+-=ç÷ç÷èøèø,由此可得30a x x +-=或40a x x +-=,分别整理得:230x x a -+=和240x x a -+=,两方程根的判别式分别为194a ∆=-,2164a ∆=-.因为方程仅有一实数根,所以940a -=或1640a -=,解得:94a =或4a =.【总结】考查分式方程的根与对应整式方程的根相结合的问题,根据实际题目进行问题的分析转化,解决问题.。

分式方程及其解法教学案

分式方程及其解法教学案

《分式方程及其解法》教学案班级 姓名学习目标1. 进一步巩固分式方程的概念。

2.会解分式方程, 掌握其基本思想是把分式方程转化为整式方程。

3.能根据具体问题的实际意义, 列分式方程解决实际问题。

一、 课前预习导学 (先考考你)1. 你能正确识别分式方程吗? 在① =1, ② =2, ③ = , ④ + =5中是分式方程的有( )A. ①② B. ②③ C. ③④ D. ②③④2 .把分式方程 = 化为整式方程, 方程两边需同时乘以( )A. 2xB. 2x-4C. 2x (x-2)D. 2x (2x-4)3.在解方程 + =•1•时,•需要去分母时,•可以把方程两边都乘以_______,•根据是______. 4 .如果解分式方程 - =-2出现增根, 则增根为( )A. 0或2B. 0C. 2D. 1二. 课堂学习探究1): 你会解分式方程吗?(2010绍兴市)3511x x =-+。

(2008南京)22011x x x -=+-2): (讨论方程无解的问题): 1.下面分式方程的解法是否正确? 谈谈你的想法.解分式方程1412112-=-++x x x . 解: 去分母, 方程两边同乘以最简公分母 , 得4)1(2)1(=++-x x解这个整式方程得,∴1=x 是原方程的解讨论: 我们做哪一步时已经埋下了隐患? 有弥补的办法吗?2.灵活应用:当m 为何值时, 解方程: =0会产生增根?3): 学以致用(你能完成下面的任务吗):(2009年长春市)某服装厂装备加工300套演出服, 在加工60套后, 采用了新技术, 使每天的工作效率是原来的2倍, 结果共用9天完成任务, •求该厂原来每天加工多少套演出服.三. 课堂练习巩..1.方程的解.....2.若关于的方程无解, 求的值.3.解方程:(1)4.某工程队承接了3000米的修路任务, 在修好600米后, 引进了新设备, 工作效率是原来的2倍, 一共用30天完成了任务, 求引进新设备前平均每天修路多少米?四、课后拓展延伸: 开放创新点击: 先阅读下列一段文字, 然后解答问题.已知:方程x- =1 的解是x1=2, x2=- ;方程x- =2 的解是x1=3, x2=- ;方程x- =3 的解是x1=4, x2=- ;方程x- =4 的解是x1=5, x2=- .问题:观察上述方程及其解, 再猜想出方程x- =10 的解, 并写出检验.。

分式方程与分式不等式的解法

分式方程与分式不等式的解法

分式方程与分式不等式的解法分式方程和分式不等式是涉及分数的方程和不等式,其解法与一般的代数方程和不等式有一些不同之处。

本文将介绍分式方程和分式不等式的解法,并给出一些实例说明。

一、分式方程的解法分式方程是包含有分数的方程,一般形式为:$\frac{a}{x}+\frac{b}{y}=c$解分式方程的一般步骤如下:1. 将方程的两边通分,以消去分母。

2. 将分子相加,将方程转化为一个整式方程。

3. 解得整式方程的解。

4. 检验解,将解代入原方程验证是否成立。

例如,解方程$\frac{3}{x}-\frac{2}{y}=5$:解:首先将方程的两边通分,得到$3y-2x=5xy$。

接着整理方程,得到$5xy+2x-3y=0$。

将该方程转化为整式方程:$5xy+2x-3y=0$。

解得整式方程$5xy+2x-3y=0$的解。

程$5xy+2x-3y=0$的解。

二、分式不等式的解法分式不等式是包含有分数的不等式,一般形式为:$\frac{a}{x}>\frac{b}{y}$解分式不等式的一般步骤如下:1. 将不等式的两边通分,以消去分母。

2. 根据分数的正负和大小关系确定不等式符号。

3. 将分子相减,得到一个整式不等式。

4. 解得整式不等式的解。

5. 检验解,将解代入原不等式验证是否成立。

例如,解不等式$\frac{5}{x}>\frac{2}{y}$:解:首先将不等式的两边通分,得到$5y>2x$。

根据分数的正负和大小关系,确定不等式符号为>。

接着整理不等式,得到$2x-5y<0$。

将该不等式转化为整式不等式:$2x-5y<0$。

解得整式不等式$2x-5y<0$的解。

等式$2x-5y<0$的解。

结论本文简要介绍了分式方程和分式不等式的解法。

对于分式方程,我们通过通分和整理方程,将其转化为整式方程来求解。

对于分式不等式,我们通过通分和整理不等式,将其转化为整式不等式来求解。

第1课时分式方程及其解法

第1课时分式方程及其解法

15.3 分式方程第1课时 分式方程及其解法【学习目标】1.进一步了解分式方程的概念, 和产生增根的原因.2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.3.理解“增根”和“无解”不是一回事.【学习重点】:会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的根.【学习难点】:掌握“增根”和“无解”不是一回事【知识准备】:【自主探究文】【探究一】解分式方程 .⑴ 11122x x =-- ⑵ 214111x x x +-=-- 【探究二】X 为何值时,代数式xx x x 231392---++的值等于2? 【探究三】利用增根的性质解题。

若分式方程424-+=-x a x x 有增根,求a 的值 【探究四】理解“增根”和“无解”. (一)已知分式方程有增根,确定字母系数的值。

例1.当a 为何值时,关于x 的方式方程349332+=-+-x x ax x 有增根? 归纳:解决此类问题的一般步骤是:(1)把分式方程化为 方程;(2)求出使最简公分母为 的x 的值;(3)把x 的值分别代入整式方程,求出字母系数的值。

(二)已知分式方程无解,确定字母系数的值。

例2 若关于X 的分式方程132323-=-++--xmx x x 无解,求出m 的值。

【自测自结】1、方程2332x x =--的解是 , 2、若x =2是关于x 的分式方程2372a x x +=的解,则a 的值为 3、解方程①2373226x x +=++ ②2512552x x x +=+-③ 3233x x x =--- ④ 2211566x x x x =+-++ x 的方程7766x m x x--=--有增根,则增根为 , ()2933x x x x x =+--出现增根,那么增根一定是( ) A .0 B .3 C .0或3 D .1通过本节课的学习,你有哪些收获?还有哪些困惑呢?。

高中数学解分式方程的方法及相关题目解析

高中数学解分式方程的方法及相关题目解析

高中数学解分式方程的方法及相关题目解析分式方程是高中数学中的重要内容之一,解分式方程需要掌握一定的方法和技巧。

本文将介绍解分式方程的常用方法,并通过具体题目的解析来说明考点和解题技巧,帮助高中学生和家长更好地理解和应用。

一、解分式方程的基本方法解分式方程的基本方法主要包括以下几个步骤:1. 化简分式:首先将分式进行化简,将分子和分母的多项式进行因式分解或者通分,使方程变为更简单的形式。

2. 求解分子方程和分母方程:将化简后的分式方程分别看作分子方程和分母方程,分别解出两个方程的未知数。

3. 检验解的合理性:将求得的解代入原方程,检验是否满足原方程,确保解的正确性。

二、一次分式方程的解法一次分式方程是指分式的分子和分母都是一次多项式的方程。

下面通过一个具体的例子来说明一次分式方程的解法。

例题:求解方程 $\frac{2x+1}{3x-4} = \frac{3x+2}{2x-3}$解析:首先,我们可以将方程进行通分,得到 $(2x+1)(2x-3) = (3x+2)(3x-4)$展开并整理得到 $4x^2 - 6x + 2x - 3 = 9x^2 - 12x + 6x - 8$化简后得到 $4x^2 - 4x - 3 = 9x^2 - 2x - 8$移项整理得到 $5x^2 - 2x - 5 = 0$解这个二次方程,可以使用求根公式或者配方法。

假设方程的解为 $x_1$ 和$x_2$,则有 $x_1 + x_2 = -\frac{b}{a}$ 和 $x_1 \cdot x_2 = \frac{c}{a}$带入系数得到 $x_1 + x_2 = \frac{2}{5}$ 和 $x_1 \cdot x_2 = -1$因此,方程的解为 $x_1 = -1$ 和 $x_2 = \frac{5}{2}$将解代入原方程进行检验,可以发现两个解都满足原方程,因此解的合理。

三、二次分式方程的解法二次分式方程是指分式的分子和分母至少有一个是二次多项式的方程。

分式方程的解法及应用

分式方程的解法及应用

分式方程的解法及应用分式方程是数学中常见的一类方程,其特点是方程中含有分式表达式。

解决分式方程的关键是找到合适的方法,以求得方程的解。

本文将介绍几种常见的分式方程解法,并探讨其在实际应用中的一些案例。

一、通分法通分法是解决分式方程的基本方法之一。

当方程中含有多个分式时,我们可以通过通分的方式,将其转化为一个分子为0的分式方程。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$,我们可以通过通分得到$yz+xz=xy$,进而得到$xy-xz-yz=0$。

这样,我们就将原方程转化为了一个分子为0的分式方程,可以更方便地求解。

二、代换法代换法是解决分式方程的另一种常用方法。

通过合理的代换,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{1}{x}+\frac{1}{y}=2$,我们可以令$u=\frac{1}{x}$,$v=\frac{1}{y}$,则原方程可以转化为$u+v=2$。

这样,我们就将原方程转化为了一个线性方程,可以通过求解线性方程的方法得到解。

三、消元法消元法是解决分式方程的另一种常见方法。

通过巧妙地选择消元的方式,可以将方程转化为一个更简单的形式。

例如,对于方程$\frac{x}{y}+\frac{y}{x}=3$,我们可以通过乘以$x$和$y$的方式,得到$x^2+y^2=3xy$。

这样,我们就将原方程转化为了一个二次方程,可以通过求解二次方程的方法得到解。

在实际应用中,分式方程的解法有着广泛的应用。

以下是几个具体的案例:案例一:物体的速度假设一个物体以速度$v$匀速运动,经过时间$t$后的位移为$s$。

根据运动学公式,位移与速度和时间的关系可以表示为$s=vt$。

现在假设物体的速度是变化的,速度与时间的关系可以表示为$v=\frac{a}{t}$,其中$a$是一个常数。

我们可以通过求解分式方程$\frac{s}{t}=\frac{a}{t}$,得到物体的位移与时间的关系。

分式方程及解法

分式方程及解法
回忆一下
1.请写出 1 与 x x2 4 4 2x
的最简公分母.
最简公分母是:2(x 2)(x 2)
2.解一元一次方程 2x 1 x 1
3
4
例1.解分式方程:
1 3
ቤተ መጻሕፍቲ ባይዱ
x2 x
例2.解方程 480 600 45 x 2x
下面哪种解法正确?
例3: 解方程 1 x 1 2
x2 2x
解法一: 将原方程变形为 1 x 1 2
x2 x2
方程两边都乘以 x 2 ,得: 1 x 1 2
注:给方程两边 各项都乘以最简 公分母。
解这个方程,得: x 4
1 x 1 2 x2 2x
解法二: 将原方程变形为
1 x 1 2 x2 x2
方程两边都乘以 x 2 ,得:1 x 1 2(x 2)
解这个方程,得: x 2
你认为 x= 2是原方程的根?与同伴交 流。
在这里,x = 2 不是原方程的根,因为它使得原分 式方程的分母为零,我们称它为原方程的增根。
产生增根的原因是,我们在方程两边同乘了一 个可能使分母为零的整式。
注意:因此解分式方程可能产生增根,所以解 分式方程必须检验。
验根的方法:
想一想,议一议
解分式方程的步骤 1、化: 2、解:
3、检验:
4、写:
随堂练习 解方程:
(1) 3 4 x 1 x
(2)
x 2x
3
3
5 2x
4
1.当m为何值时,方程
x 2 m
x3
x3
会产生增根
小结
1、解分式方程的基本思路是什么? 2、解分式方程有哪几个步骤? 3、什么是分式方程的增根? 4、验根有哪几种方法?

分式方程意义及解法

分式方程意义及解法

分式方程意义及解法一、内容综述:1.解分式方程的基本思想在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即分式方程整式方程2.解分式方程的基本方法(1)去分母法去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根。

所以,必须验根。

产生增根的原因:当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.检验根的方法:(1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。

(2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。

必须舍去.注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.1.解分式方程:。

2解方程:一元二次方程知识点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.知识点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.总之,用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方;求出方程的解;如果右边是一个负数,则判定此方程无实数解.3.公式法解一元二次方程:(1)一元二次方程求根公式:对于一元二次方程,当时,,这个式子叫做一元二次方程的求根公式.注意:△≥0是公式使用的前提条件,是公式的重要组成部分.公式法是解一元二次方程的一般方法;由公式法可知,一元二次方程最多有两个实数根.(2)归纳一元二次方程根的情况:对于一元二次方程,其中,称为一元二次方程根的判别式.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.(3)用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值;③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.4.因式分解法解一元二次方程:(1)因式分解法解一元二次方程:将一元二次方程的一边化为0,另一边分解成两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种方法叫做因式分解法.(2)因式分解法算理:(A、B至少一个为0)(3)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(4)常用因式分解法:提取公因式法,平方差公式、完全平方公式.1.判定下列方程是不是一元二次方程:(1);(2)2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x2-4x+2=0;(2).5.解方程(x-3)2=49.6.用配方法解方程1).x2-7x-1=0.2)x2-4x-2=0;7.利用公式法求解方程5(x+1)-3x2=x(x+3).8用因式分解法解方程.(1)2x2+3x=0;(2)5(3-2x)=2x(3-2x);(3)4(x+2)2-9(x-3)2=0.。

分式方程的认识与解法

分式方程的认识与解法

分式方程的认识与解法一、分式方程的定义分式方程是指在方程中含有未知数的分式表达式的方程。

其一般形式可以表示为:分子和分母都含有未知数的代数式的方程。

二、分式方程的解法1. 清除分母当分式方程中存在分母时,我们首先要通过求通分的方式将分母消去,以便更方便地求解方程。

举例说明:解方程:$\frac{1}{x}+\frac{2}{x-1}=1$首先,我们可以将方程两边的分式的分母进行通分,得到:$\frac{x-1}{x(x-1)}+\frac{2x}{x(x-1)}=\frac{x(x-1)}{x(x-1)}$化简后得到:$x-1+2x=x(x-1)$接着,按照一般方程的求解方法,将方程化简为一般的多项式方程:$3x-1=x^2-x$整理后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$2. 分式方程的整理和化简有时,分式方程可能非常复杂,我们需要对方程进行整理和化简,以便更方便地进行后续的求解。

举例说明:解方程:$\frac{x^2+1}{x-2}-1=\frac{3x+4}{x-2}$首先,我们可以对方程进行整理和化简,得到:$\frac{x^2+1-x+2}{x-2}=\frac{3x+4}{x-2}$化简后得到:$\frac{x^2-x+3}{x-2}=\frac{3x+4}{x-2}$接着,我们可以将方程两边的分式进行合并,得到:$x^2-x+3=3x+4$化简后得到:$x^2-4x+1=0$然后,我们可以使用因式分解、配方法、求根公式等方法求解多项式方程,得到方程的解:$x_1=2+\sqrt{3}$$x_2=2-\sqrt{3}$3. 分式方程的检验在求得分式方程的解后,我们还需要将解代入方程进行验证,以确认解的可行性。

举例说明:解方程:$\frac{x-2}{2x+3}=\frac{x+1}{3x-1}$假设解为$x=1$,我们将解代入方程中进行检验:$\frac{1-2}{2(1)+3}=\frac{1+1}{3(1)-1}$计算结果为:$\frac{-1}{5}=\frac{2}{2}$显然,左右两边不相等,所以$x=1$不是方程的解。

分式方程及其应用

分式方程及其应用

分式方程及其应用一、分式方程的基本解法:1.分式方程的概念:分母中含有未知数的方程叫作分式方程.2.可化为一元一次方程的分式方程的解法:(1)解分式方程的基本思想是:把分式方程转化为整式方程.(2)解可化为一元一次方程的分式方程的一般方法和步骤:①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;②解这个整式方程;③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:(1)增根能使最简公分母等于0;(2)增根是去分母后所得整式方程的根.3.解分式方程产生增根的原因:增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的方程是原方程的同解方程,如果方程的两边都乘以的数是0 ,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根.【例1】解下列分式方程:(1)131x x+=-(2)31244xx x-+=--(3)21122xx x=---(4)11222xx x-=---(5)212xx x+=+(6)2216124xx x--=+-【例2】(1)若关于x 的方程1233mx x=+--有增根,则m =________.(2)解关于x 的方程2224222x a a x x+-=--会产生增根,则a 的值是________.(3)若关于x 的分式方程11044a xx x---=--无解,则a 的值为________.(4)若关于x 的分式方程2111m x x+=--的解为整数,则m 的取值范围是________.(5)若关于x 的分式方程311x a x x--=-无解,则a =________.二、巧解分式方程: 【例3】(1)111141086x x x x +=+---- (2)2263503x x x x-++=-(3)()()()()()1111111220212022x x x x x x x +++=------…(4)方程222313x x x x-+=-中,如设23y x x =-,原方程可化为整式方程:________.【拓1】观察下列方程及其解的特征:①12x x+=的解为121x x ==; ②152x x +=的解为12x =,212x =;③1103x x +=的解为13x =,213x =;…… 解答下列问题: ①请猜想:方程1265x x +=的解为________; ②请猜想:关于x 的方程1x x +=________的解为1x a =,21x a=(0a ≠); ③上题中的结论可以证明是正确的,请用该结论来解方程:315132x x x x -+=-.【拓2】24111181111x x x x +++=-+++.三、分式方程的应用:【例4】(20宝应模拟)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .600060001520x x -=+ B .600060001520x x -=+ C .600060002015x x -=- D .600060002015x x-=-【拓3】某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问原计划每天加工服装多少套?在这个问题中,设原计划每天加工x 套,则根据题意可得方程为( ) A .()16040018120%x x +=+ B .()16040016018120%x x -+=+ C .1604001601820%x x -+= D .()40040016018120%x x-+=+【例5】一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度行驶,一小时后加速为原来的1.5倍,并比原计划提前40分钟到达目的地,求前一小 时的平均速度.【拓4】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独 完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队 先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超 过79000元,则两工程队最多可以合作施工多少天?四、真题演练:1.(21扬州三模)若关于x 的分式方程21mx x=-有正整数解,则整数m 的值是( ) A .3 B .5 C .3或5 D .3或42.(19仪征期中)定义:如果一个关于x 的分式方程a b x=的解等于1a b -,我们就说这个方程叫差解方程.比如:243x =就是个差解方程.如果关于x 的分式方程2mm x =-是一个差解方程,那么m 的值是( ) A .2 B .12 C .12- D .2-3.(20邗江月考)扬州轨道交通线网规划2020年由4条线路组成,其中1号线一期工程全长30千米,预计运行后的平均速度是原来乘公交车的1.5倍,行驶时间则缩短半小时.设原来公交车的平均速度为x 千米/时,则下列方程正确的是( ) A .30301.50.5x x +=B .30301.50.5x x -= C .30300.5 1.5x x +=D .30300.5 1.5x x-=4.(21高邮期末)如果关于x 的不等式组521113()22m x x x -≥⎧⎪⎨-<+⎪⎩有且仅有四个整数解,且关于y的分式方程28122my y y --=--有非负数解,则符合条件的所有整数m 的和是( ) A .13 B .15 C .20 D .225.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(21邗江期末)关于x 的方程1122m x x-=--有增根,则m 的值为________.7.(19宝应月考)若关于x 的分式方程21011m x x -=-+无解,则m =________.8.(18高邮期中)已知关于x 的分式方程111x k kx x +-=+-的解为负数,则k 的取值范围是________.9.(19江都期中)若关于x 的方程4122ax x x =+--无解,则a 的值是________.10.(20广陵期中)要使方程121x x a=--有正数解,则a 的取值范围是________.11.(21仪征期末)若关于x 的分式方程12221(2)(1)x x x ax x x x --+-=-+-+的解为负数,则a 的取值范围是________.12.(19邗江月考)对于非零实数a 、b ,规定21a ab b a⊗=-.若(21)1x x ⊗-=,则x 的值为________.13.(20仪征期中)对于两个不相等的实数a 、b ,我们规定{in }m h a b 、表示a 、b 中较小的数的一半,如min 2{}31h =、,那么方程22{i }m n h x x xx=-+、的解为________.14.(20仪征期中)定义运算“※”: , , aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若52x =※,则x 的值为________.15.(20仪征期中)若32248168224816321111111a x x x x x x x =+++++--+++++,则a 的值是________.16.(2021·扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问:原先每天生产多少万剂疫苗?17.(20邗江月考)疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题: (1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?18.(21邗江期末)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为0,则x a =或x b =.因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程abx a b x+=+的两个解分别为1x a =,2x b =.利用上面建构的模型,解决下列问题: (1)若方程px q x+=的两个解分别为11x =-,24x =.则p =________,q =________;(2)已知关于x 的方程222221n n x n x +-+=+两个解分别为1x ,2x (12x x <).求12223x x -的值.19.(21高邮期末)八年级学生去距学校12km 的珠湖小镇游玩,一部分学生骑自行车先走,其余学生20min 后乘汽车出发,结果他们同时到达、已知汽车的速度是骑车学生速度的3倍.(1)求骑车学生的速度;(2)游玩中八(4)班班主任为增强班级凝聚力决定让全班学生在户外拓展区参加一次户外拓展活动,班主任根据该项目收费标准支付了1575元,请根据该项目收费信息确定全班人数.户外拓展收费标准:人数 收费 不超过30人 人均收费50元超过30人每增加1人,人均收费降低1元,但人均收费不低于40元20.(2020·扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染. 进货单:商品 进价(元/件)数量(件)总金额(元)甲7200 乙3200李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.。

分式方程及其解法优秀教案

分式方程及其解法优秀教案

9.3分式方程(1)一、内容和内容解析1.内容分式方程的概念和解法2.内容解析分式方程是分母中含有未知数的方程,它是整式方程的延伸与发展,它是初中阶段是要学的又一类方程.解分式方程的基本思路是通过去分母将分式方程转化为整式方程.在去分母时方程两边所乘的最简公分母可能为零,因而所解整式方程的解不一定是分式方程的解,所以,检验整式方程的解是不是分式方程的解是解分式方程中必不可少的一步.基于以上分析,可以确定本课的教学重点是:分式方程的解法.二、目标和目标解析1.目标(1)理解分式方程的概念.(2)理解并掌握解分式方程的一般步骤,并学会用去分母的方法解可化为一元一次方程的简单分式方程.(3)了解检验在解分式方程中的必要性.2.目标解析目标(1)是让学生理解分式方程的概念,掌握分式方程的特征——分母中含有未知数,并学会判断一个方程是否为分式方程.目标(2)是让学生知道解分式方程的一般步骤是去分母、解整式方程、检验、写出分式方程的解;熟悉解分式方程的基本思路是通过去分母将分式方程转化为整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想;让学生知道去分母的关键是找各分母的最简公分母;目前只要求学生掌握去分母后能转化为一元一次方程的分式方程的解法.目标(3)是让学生知道在解分式方程去分母时两边同乘了最简公分母可能会等于零,会使原分式方程无意义,因而需要检验.三、教学问题诊断分析学生在只学习一元一次方程及二元一次方程等简单整式方程的基础上学习分式方程,在用去分母将分式方程转化为整式方程,通过先求出整式方程的解进而检验是否为分式方程的解,为什么有些整式方程的解是原分式方程的解,而有一些不是原分式方程的解,学生一时难以接受,更不明白为什么会出现有些分式方程无解的情况.基于以上分析,本课的教学难点是:了解去分母解分式方程检验的必要性.四、教学过程设计(一)复习与回顾1.什么是一元一次房?2.解一元一次方程的步骤?(二)创设情境,引入新课问题1 (前言)一艘轮船在静水中的最大航速为30 km/h ,它以最大航速沿江顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?师生活动:先一起回顾行程问题中几个基本量之间的关系,然后,学生可以通过小组讨论用列方程的方法求出江水的流速,老师适当地引导并告诉学生暂只列方程不解,最后教师多媒体课件显示.设计意图:让学生感受生活中到处存在数学,激发学生的学习热情.问题2观察所列方程vv -=+30603090与以前学过的方程有什么不同的特征? 师生活动:老师再在黑板上写几个与刚才具有同样特征的方程及几个整式方程,让学生讨论分组,再让他们说说分组的依据.教师追问:能否将分组后的方程命名呢?师生活动:老师板书课题,让学生试着说出分式方程概念 .设计意图:引导学生独立思考,通过学生的分类活动,可以进一步巩固已学整式方程的概念,并让学生了解分式方程与整式方程的区别,使学生体会到数学知识之间的联系.(三)自主学习,感知新知问题3 你能否完整地说出分式方程的概念,并说出与整式方程的区别.师生活动:让学生试着说出概念,及与整式方程的区别.老师作补充后再在黑板上板书并要求学生将区别记在书本中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怎样检验这个整式方程的解是不是原分式的解?
解分式方程的思路是:
分式
去分母
整式
方程
方程
解分式方程的一般步骤
1、 在方程的两边都乘以最简公分母,约去分母, 化成整式方程.
2、解这个整式方程.
3、 把整式方程的解代入最简公分母,如果最简 公分母的值不为0,则整式方程的解是原分式方程的 解;否则,这个解不是原分式方程的解,必须舍去.
当x=4时,(20+x)(20-x)≠0
分式两边同乘了不为0的式子,所得整式方程的解与
分式方程的解相同.
= 1
x-5
10 x2-25
两边同乘(x+5)(x-5) 当x=5时, (x+5)(x-5)=0
x+5=10
分式两边同乘了等于0的式子,所得整式方程的解使
分母为0,这个整式方程的解就不是原分式方程的解
2、解方程时一定要验根。
【分式方程的解】
上面两个分式方程中,为什么
120 20+x
=
80 20-x
x1-去5 分= 母x1后20-2得5 去到分的母整式后方得程到的的解整就式是方它程的的解解,却而不
是原分式方程的解呢? 我们来观察去分母的过程
= 120
20+x
80 20-x
两边同乘(20+x)(20-x)120(20-x)=80(20+x)
120(20-x)=80(20+x) 解这个整式方程,得x=4 检验:把x= 4 代入原方程中,左边=右边 因此x=4是原方程的解
解分式分式方程的一般思路 分式方程 去分母 整式方程
两边都乘以最简公分母
【解分式方程】
解分式方程
1 x-5
=
10 x2-25
解:在方程两边都乘以最简公分母(x+5)(x-5)得,
x+5=10 解这个整式方程,得x=5
检验:把x = 5 代入原方程中,发现x-5和x2-25的
值都为0,相应的分式无意义,因此x=5虽是方
程x+5=10的解,但不是原分式方程 1 x-5
=
10 x2-25
的解.实际上,这个分式方程无解
例2
解方程 2 x 1 2
x 3 3x
1、当分式方程含有若干个分式时,通常 可用各个分式的最简公分母同乘方程两边 进行去分母。
(1) x 3 2 x 1 2x 2
(2) x 3 1 3 x2 2 x
(3) 2x 1 2 2x 1 x 2
拓展延伸
1、求分式方程 x 2 m2 产生增根时
m的值。
x-3 x-3
2、当K为何值时,方程 x 4 k
无解?
x2
x2
小结
本节课你有什么收获
❖ 1、解分式方程的一般步骤? ❖ 2、解分式方程最后应注意什么?
4、写出原方程的根. 一化二解三检验
【例题】
解分式方程
x x-1
-1 =
3 (x-1)(x+2)
解 :方程两边同乘以最简公分母(x-1) (x+2),得
X(x+2)-(x-1)(x+2)=3
解整式方程,得 x = 1 检验:当x = 1 时,(x-1) (x+2)=0,1不是 原分式方程的解,原分式方程无解.
整式x-方5 程的x解2-2是5原当分x=式5时方, 程(x+5的)(x解-5)=,0
x+5=10
否分则式这两个边解同就乘不了是等原于分0的式式方子程,所的得整式方程的解使
分母为0,这个整解式.方程的解就不是原分式方程的解
解分式方程时,去分母后所得整式方程的解有可能 使原方程的分母为0,所以分式方程的解必须检验.
整式方程
(2) 1 3 (4) x(x 1) 1
x2 x
x
(3) 3 x x(6)2x x 1 10
2
5
(5)x 1 2 2x 1 3x 1
x
x
分式方程
下面我们一起研究下怎么样来解分式方程:
120 80
解:在方程两边都20乘 以x 最20简 x公分母(20+x)(20-x)得,
【分式方程解的检验】
= 120
20+x
2800-x当两x边=4同时乘,((2200++xx))((2200--xx))≠1020(20-x)=80(20+x)
分式两边同乘了不为0的式子,所得整式方程的解与
将分整式式方方程程的的解解相代同入. 最简公分母,
= 如果1最简公1分0母的两值边不同乘为(x0+5),(x-5则)
分式方程及其解法
大高二中 宋洪军
学习目标: 了解分式方程定义,理解
解分式方程的一般解法和分式 方程可能产生增根的原因,掌 握解分式方程验根的方法。
一艘轮船在静水中的最大航速为20千米/时,
它沿江航速逆流航行80千米所用时间相等,江水
的流速为多少? 分析:设江水的流速为x千米/时,填空: 轮船顺流航行速度为_20_+_x 千米/时,逆流航行 速度为_2_0-_x 千米/时,顺流航行120千米所用
解分式方程
(1)
2 x-1
=
4 x2-1
1 (2) x2-x
=
5 X2+x
【小结】
通过例题的讲解和练习的操作,你能总结出解分式 方程的一般步骤吗? 解分式方程的一般步骤的框架图:
分式方程 去分母 整式方程
解整式方程
目标
a是分式 方程的解
X=a
检验
最简公分
最简公分
母不为0
母为0
a不是分式 方程的解
解方程分式方程
120
的时间为_20_ x_小时,逆流航行80千米所用时间
80
为_20__x 小时。
120 80 20 x 20 x
像这样,分母里含有未知数的方程叫做 分式方程。
以前学过的分母里不含有未知数的方程 叫做整式方程。
【分式方程的定义】
分母中含未知数的方程叫做 分式方程.
整式方程的未知数不在分母中
分式方程的分母中含有未知数
判断下列说法是否正确:
(1) 2x 3 5是分式方程
(×)
(2)
23 4 是分式方程 44x x 3
(√)
(3) x2 1是分式方程 x
( √)
(4)
1 1 是分式方程 x1 y1
( √)
下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 7 xy
作业
相关文档
最新文档