概率论与数理统计_第1章3节资料

合集下载

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121Y ΛY Y…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P Y 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P Y的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

概率论与数理统计 第一章 1.3等可能概型

概率论与数理统计 第一章  1.3等可能概型
C1C1 + C1C1 = 9⋅ 3 + 3⋅ 9 = 54 . 9 3 3 9
概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为

概率论与数理统计

概率论与数理统计

一、事件的频率与概率
次数, µ n ( A ) : 事件 A 在 n 次可重复试验中出现的 次数,
称为 A 在 n 次试验中出现的频数
频率—— f n ( A) = 频率
µ n ( A)
n
.
频率有如下性质: 频率有如下性质:
1. 非负性:对任何事件 A,有 0 ≤ f n ( A) ≤ 1 非负性:
掷一骰子, 如: A =“掷一骰子,点数小于 4”, B =“掷一骰子,点数小于 5”, 掷一骰子, 则A ⊂ B.
显然对任何事件 A,有 Φ ⊂ A ⊂ Ω⊂ A,则称事件 A与事件 B相等,记作 A = B .
2.事件的和(并) 事件的和(
两个事件 A, B 中至少有一个发生 (属于A或属于 B的样本点 构成的集合 ),称为事件 A 与 B 的和(并 ), 记作 A + B 或 A ∪ B .
显然, 显然,事件 A 与 A 可以构成一个完备事件 组
类似地,称可列个事件 A1 , A2 , L , An, 构成一个 L 类似地, 完备事件组, 完备事件组,如果满足 :
(1)
( 2)
Ai A j = Φ
(i ≠ j )
∑A
i
i
=Ω
律 事件运算满足下列运算 :
(1) 交换律 A + B = B + A AB = BA
设袋中有红, 黄各一球, 例: 设袋中有红,白,黄各一球,有放回抽取三 取出球后仍把球放回原袋中),每次取一球, ),每次取一球 次(取出球后仍把球放回原袋中),每次取一球,试 说明下列各组事件是否相容?若不相容, 说明下列各组事件是否相容?若不相容,说明是否 对立? 对立? 三次抽取, 三次抽取, (1) A=“三次抽取,颜色全不同”,B=“三次抽取, = 三次抽取 颜色全不同” = 三次抽取 相容 颜色不全同” 颜色不全同” (2) A=“三次抽取,颜色全同”,B=“三次抽取, 三次抽取, 三次抽取, = 三次抽取 颜色全同” = 三次抽取 颜色不全同” 颜色不全同” 不相容, 不相容,对立 三次抽取, 三次抽取, (3) A=“三次抽取,无红色球”,B=“三次抽取, = 三次抽取 无红色球” = 三次抽取 无黄色球” 无黄色球” 相容 三次抽取, (4) A=“三次抽取,无红色球也无黄色”, = 三次抽取 无红色球也无黄色” B=“三次抽取, 无白色球” 不相容,不对立 三次抽取, = 三次抽取 无白色球” 不相容,

概率论与数理统计复习汇总

概率论与数理统计复习汇总
3 个患者的治疗中,至少有一个是有效的概率. 设对各个患者的治疗效果是相 互独立的.
第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)

概率论与数理统计学习知识资料心得与分享与分享之第一章

概率论与数理统计学习知识资料心得与分享与分享之第一章

第一章概率论的基本概念确定性现象:在一定条件下必然发生的现象随机现象:在个别试验中其结果呈现出不确定性,有统计规律性的现象随机试验:具有下述三个在大量重复试验中其结果又具特点的试验:1. 可以在相同的条件下重复地进行2. 每次试验的可能结果不止一个,且能事先明确试验的所有可能结果3. 进行一次试验之前不能确定哪一个结果会出现样本空间:将随机试验E 的所有可能出现的结果组成的集合称为E 的样本空间,记为S 样本点:样本空间的元素,即E 的每个结果,称为样本点样本空间的元素是由试验的目的所确定的。

随机事件:一般,我们称试验E的样本空间S的子集为E的随机事件,简称事件在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生。

基本事件:由一个样本点组成的单点集,称为基本事件。

必然事件:样本空间S包含所有的样本点,它是S自身的子集,在每次试验中它总是发生的,称为必然事件。

不可能事件:空集不包含任何样本点,它也作为样本空间的子集,在每次试验中,称为不可能事件。

事件间的关系与运算:设试验E的样本空间为S,而A,B, A k(k=1,2,…)是S的子集。

1. 若A B ,则称事件B包含事件A,这指的是事件A发生必然导致事件B发生。

若A B且B A,即A=B则称事件A与事件B相等。

2. 事件A B x | x A或x B称为事件A与事件B的和事件。

当且仅当A,B 中至少有一个发生时,事件A B 发生。

类似地,称U A k为事件几小2,…,A n的和事件;称U A k为可列个事件A,A,… k 1 k 1的和事件。

3. 事件A B={x | x A且x B}称为事件A与事件B的积事件。

当且仅当A,B同时发生时,事件A B 发生。

A B 记作AB。

类似地,称| A k为n个事件AiA,…,A n的积事件;称| A k为可列个事件k 1 k 1AA,…的积事件。

4. 事件A B {x I x A且x B}称为事件A与事件B的差事件。

概率第一章

概率第一章

第1章 随机事件1.1 随机事件1.1.1 随机现象与随机试验概率论与数理统计是研究随机现象统计规律的一门数学分科.什么是随机现象呢?下面让我们先做两个简单的试验:试验一:一个盒子中有10个完全相同的白球,搅匀后从中任意摸取一球;试验二:一个盒子中有10个相同的球,其中5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球.分析上述两个试验结果给出下述两个基本概念:确定性现象:在一定条件下必然发生的现象称为确定性现象.试验一所代表的类型即是确定性现象.试验二所代表的类型,有多于一种可能的试验结果,而且在一次试验之前不能确定会出现哪一个结果,这一类试验称为随机试验.在客观世界中随机现象也是极为普遍的,例如:某地区的年降雨量;检查流水生产线上的一件产品,是合格品还是不合格;打靶射击时,弹着点离靶心的距离,等等.在条件相同的一系列重复观察中,会时而出现时而不出现,呈现出不确定性,并且在每次观察之前不能准确预料其是否出现,这类现象称之为随机现象.在相同条件下多次重复某一试验或观察时,虽然结果具有不确定性,但会表现出一定的规律性,这种规律性称之为统计规律性.那么如何来研究随机现象的统计规律呢?对随机现象进行的实验与观察统称为试验.具有下列特征的试验称为随机试验:1.可在相同的条件下重复进行;2.试验结果不止一个,但在试验之前能明确试验所有可能的结果;3.试验前不能确定到底会出现哪一个结果.随机试验一般用大写英文字母E 表示.如:1E :抛一枚硬币,观察出现正面还是反面(分别用“H ” 和“T ” 表示出现正面和反面);2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数;4E :记录某网站一分钟内被点击的次数;5E :对一目标进行射击,直到命中为止,观察其结果;6E :在一批灯泡中任取一只,测其寿命.1.1.2 样本空间与随机事件对于随机试验,虽然在我们试验之前不能预知试验的结果,但可以确定试验的所有可能的结果.定义1.1.1 样本空间:随机试验所有可能的结果组成的集合称为样本空间,通常用字母Ω表示.定义1.1.2 样本点:随机试验每一个可能的结果称为样本点,通常用字母ω表示样本点,即为Ω中的元素.例1.1.1 一盒子中有黑球、白球,从中任取一球,观察其颜色,记1ω={取得白球},2ω={取得黑球},则12{,}ωωΩ=.例 1.1.2 一个盒子中有十个完全相同球,分别标以号码1210,,,,从中任取一球,令 i ={取得球的号码为i },则{1,210}Ω=.例1.1.3 写出16~E E 的样本空间.解 16~E E 的样本空间分别为:(1) 1{,}H T Ω=;(2) 2{,,,}HH HT TH TT Ω=;(3) 3{1,2,3,4,5,6}Ω=;(4) 4{0,1,2}Ω=;(5) 5{(,)|0,0}x y x y Ω=>>;(6) 6{|0}t t Ω=≥.在实际中,我们通常并不关心所有的样本点,而是只关注一些满足一定条件的样本点,如在随机试验6E 中,若规定这种灯泡的寿命超过1000小时为一级品,那么我们只关心{|1000}t t >中的样本点,所以我们有如下定义:定义1.1.3 随机事件:样本空间Ω的子集,称为随机事件,用大写字母,,,,A B C D 表示,即随机事件为满足一定条件的样本点组成的集合.特别的,仅由一个样本点的事件称为基本事件,它是随机试验的直接结果,每次试验必定发生且只可能发生一个基本事件;全体样本点组成的事件称为必然事件,记为Ω,每次试验必然事件必定发生;不包含任何样本点的事件称为不可能事件,记为∅,每次试验不可能事件必定不发生.在每次试验中,当且仅当事件A 中的一个样本点出现时,称事件A 发生.例如在3E 中,如果用A 表示事件“掷出奇点数”,那么A 是一个随机事件.由于在一次投掷中,当且仅当掷出的点数是1,3,5中的任何一个时才称事件A 发生了,所以我们把事件A 表示为{}1,3,5A =;“掷出的点数不超过6”就是必然事件,用集合表示这一事件就是3E 的样本空间{}1,2,3,4,5,6Ω=.而事件“掷出的点数大于6”是不可能事件,这个事件不包括3E 的任何一个可能结果,所以用空集∅表示.一个样本空间Ω中,可以有很多的随机事件.概率论的任务之一,是研究随机事件的规律,通过对较简单事件规律的研究去掌握更复杂事件的规律.下面我们来介绍事件之间的关系和事件之间的运算规律.1.1.3 事件的关系及运算因为事件是一个集合,因而事件间的关系和运算是按集合间的关系和运算来处理的.下面给出这些关系和运算在概率中的提法,并根据“事件发生”的含义,给出它们在概率中的含义.设随机试验E 的样本空间为Ω,,,(1,2,)k A B A k =是Ω的子集.1. 事件的关系(1) 事件的包含与相等:若事件A 发生必然导致事件B 发生,则称事件A 包含于事件 B ,记为A B ⊃或者B A ⊂.:{}A B A,B ⊂∈∈ωω则.见文氏(Venn )图1.1.若B A ⊂且A B ⊂,即B A =,则称事件A 与事件B 相等.(2) 事件的和:事件A 与事件B 至少有一个发生的事件称为事件A 与事件B 的和事件, 记为A B .事件A B 发生意味着:或事件A 发生,或事件B 发生,或事件A 与事件B 都发生.{}A B A,B =∈∈ωω或.见文氏(Venn )图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 至少有一个发生, 121i i A A A ∞==,表示12,,A A 至少有一个发生.(3) 事件的积:事件A 与事件B 都发生的事件称为事件A 与事件B 的积事件,记为A B ,也简记为AB .事件A B (或AB )发生意味着事件A 发生且事件B 也发生,即A 与B 都发生.{}A B A,B =∈∈ωω且.见文氏图1.1.推广121ni n i A A A A ==,表示12,,,n A A A 同时发生, 121i i A A A ∞==,表示12,,A A 同时发生.(4) 事件的差:事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差事件,记为B A -,}A B {A,B -=ω∈ω∉且.见文氏图1.1.注:A B A AB -=-.(5) 互不相容事件(互斥): 若事件A 与事件B 不能同时发生,即AB =∅,则称事件A 与事件B 是互斥的,或称它们是互不相容的.见文氏图1.1.若事件12,,,n A A A 中的任意两个都互斥,则称这些事件是两两互斥的. (6) 对立事件:“A 不发生”的事件称为事件A 的对立事件,记为A .A 和A 满足:A A =Ω,AA =∅.见文氏图1.1:注:① __A A =Ω-;②在一次随机试验中A 和A 有一个发生而且只有一个发生.图1.1事件的关系图 由上述可见概率论中事件间的关系与集合论中集合之间的关系是一致的,于是事件之间的运算规律与集合之间的运算规律也是一致的.2.事件的运算规律设C B A ,,为事件,则事件之间的运算满足:(1) 交换律:A B B A =,BA AB =.(2) 结合律:()()A B C A B C =,)()(BC A C AB =.(3) 分配律:()()()A B C AC BC =,()()()AB C A C B C =. (4) 对偶律:A B AB =;___AB A B =.例1.1.4 甲,乙,丙三人各射一次靶,记事件A ={甲中靶},事件B ={乙中靶},事件C ={丙中靶},用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”;(2)“甲中靶而乙未中靶”;(3)“三人中只有丙未中靶”;(4)“三人中恰好有一人中靶”;(5)“ 三人中至少有一人中靶”;(6)“三人中至少有一人未中靶”;(7)“三人中恰有两人中靶”;(8)“三人中至少两人中靶”;(9)“三人均未中靶”;(10)“三人中至多一人中靶”;(11)“三人中至多两人中靶”.解(1)“甲未中靶”=A;=;(2)“甲中靶而乙未中靶”AB=;(3)“三人中只有丙未中靶”ABC=;(4)“三人中恰好有一人中靶”ABC ABC ABC=;(5)“三人中至少有一人中靶”A B C==ABC;(6)“三人中至少有一人未中靶”A B C=;(7)“三人中恰有两人中靶”ABC ABC ABC=;(8)“三人中至少两人中靶”AB AC BC=;(9)“三人均未中靶”ABC=;(10)“三人中至多一人中靶”ABC ABC ABC ABC==A B C.(11)“三人中至多两人中靶”ABC注:用其它事件的运算来表示一个事件,方法往往不唯一,如上例1.1.4中的(6)和(11)所表示的事件实际上是同一事件.1.2 随机事件的概率在一次随机试验中,除必然事件一定发生,不可能事件不发生外,一般的随机事件可能发生,也可能不发生,于是需要知道它发生的可能性到底有多大.概率是用来描述随机事件发生的可能性的大小的一种数量指标,它是逐步形成和完善起来的.下面我们就先引入频率的概念,然后研究频率的性质,进而引出概率的定义.1.2.1事件的频率定义 1.2.1 对于一个随机事件A 来说,在n 次重复试验中,记A n 为随机事件A 出现的次数,又A n 称为事件A 的频数,称()n f A = A n n为事件的频率. 由上述定义,对于事件的频率,我们很容易得到如下性质:(1)0()1n f A ≤≤;(2)()1n f Ω=;(3)对于k 个两两互斥的事件12,,,k A A A ,有11()k kn i n i i i f A f A ==⎛⎫= ⎪⎝⎭∑.根据上述定义可知频率反应了一个随机事件发生的频繁程度,人们经过长期的实践发现,虽然个别随机事件在某次试验或观察中可能出现也可能不出现,但在大量试验中它却呈现出明显的规律性——频率稳定性.在掷一枚均匀的硬币时,既可能出现正面,也可能出现反面,在大量试验中出现正面和反面的频率,都应接近于50%,为了验证这点,历史上曾有不少数学家做过这个试验,其结果如下:又如,在英语中某些字母出现的频率远远高于另外一些字母.而且各个字母被使用的频率相当稳定.例如,下面就是英文字母使用频率的一份统计表.对一随机事件来说,如果它发生的频率越大,自然这个事件在一次试验中发生的可能性就越大,所以频率在一定程度上反映了事件发生可能性的大小.如上述两个试验,尽管每做n 次试验,所得到的频率()n f A 各不相同,但随着试验次数n 的增加,事件A 的频率()n f A 与会逐渐稳定在一个常数附近,而实际上这一常数即为事件A 的概率.下面给出概率的一个严密的定义.20世纪30年代中期,柯尔莫哥洛夫给出了概率的严密的公理化定义.定义1.2.2 设Ω是随机试验E 的样本空间,对于E 的每一个随机事件A ,定义一个实数()P A 与之对应.若实值集合函数()P ⋅满足下列条件:(1)非负性:对于每个随机事件A ,都有()0;P A ≥(2)规范性:()1P Ω=;(3)可列可加性:若事件12,,,A A 两两互斥,则有 11()i i i i P A P A ∞∞==⎛⎫= ⎪⎝⎭∑, (1.2.1)则称()P ⋅为概率,()P A 为事件A 的概率.由概率的定义,可得到概率的以下性质:性质1 ()0P ∅=.性质2 (有限可加性) 设12,,,n A A A 是两两互斥的事件,则 121()()nn k k P A A A P A ==∑ (1.2.2)性质3 对任意事件A ,有()1()P A P A =-.性质4 对任意事件,A B ,若,A B ⊂则()()()P B A P B P A -=-. (1.2.3)性质5 若,B A ⊂则有()()P B P A ≥.性质6 对于任一事件A ,有0()1P A ≤≤.性质7(减法公式) 对任意事件,A B ,有()()()P B A P B P AB -=-. (1.2.4) 证 因为B A B AB -=-,且AB B ⊂,由(1.2.3),()()()()P B A P B AB P B P AB -=-=-.性质8 (加法公式) 对任意事件,A B ,有()()()() P P AB A P B P AB =+-.(1.2.5) 证 由于 ()A B A B AB =-,且(),A B AB -=∅于是有()()()()()()P A B P A P B AB P A P B P AB =+-=+-.推广 ,,A B C 是任意三个事件,则有()()()()()()()().P A B C P A P B P C P AB P AC P BC P ABC =++---+一般,对于任意n 个事件12,,,n A A A 有1121111()()()()...(1)()n n n i i i j i j k n i i j n i j k n i P A P A P A A P A A A P A A A -=≤<≤≤<<≤==-+++-∑∑∑.1.3 古典概率模型古典概型是人们最初讨论的一种随机试验,本节即要讨论古典概型中随机事件的概率.下面先看第1节的三个例子:1E : 抛一枚硬币,观察出现正面还是反面.(分别用“H ” 和“T ” 表示出正面和反面); 2E :抛两枚硬币,观察出现的结果;3E :掷一颗骰子,观察出现的点数.上述三个例子即为古典概型随机试验,它们有共同的特点:(1)样本空间只包含有限个样本点;(2)每个样本点在每次随机试验中等可能出现.凡是具有上述两个特点的随机试验就称为是古典概型,那么在古典概型中随机事件的概率应该如何计算?定义1.3.1 随机试验E 是古典概型,样本空间Ω共含有n 个样本点,随机事件A 含有r 个样本点,则定义事件A 的概率为: () A r P A n==Ω中本中本样点个数 样点个数. (1.3.1) 古典概型中许多概率的计算相当困难而富有技巧,按照上述概率的计算公式,计算的要点是给定样本点,并计算它的总数,而后再计算所求事件中含的样本点的数目.下面我们看一些典型的古典概率计算的例子.例1.3.1 将一枚硬币抛掷两次,设事件1A ={恰有一次出现正面};事件2A ={至少有一次出现正面},求1()P A 和2()P A .解 正面记为“H ”,反面记为“T ”,则随机试验的样本空间为{,,,}HH HT TH TT Ω=, 而 {}1,A HT TH =,{},,2A HH HT TH =,于是121()42P A ==,23()4P A =. 例1.3.2 有10个电阻,其电阻值分别为1210ΩΩ⋯Ω,,,,从中取出三个,求取出的三个电阻,一个小于5Ω,一个等于5Ω,另一个大于5Ω的概率.解 把从10个电阻中取出3个的各种可能取法作为样本点全体,这是古典概型,样本空间的样本点数为103⎛⎫ ⎪⎝⎭,所求事件含样本点数为⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛151114.故所求概率为 41511111063P ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==⎛⎫ ⎪⎝⎭. 例1.3.3 30名学生中有3名运动员,将这30名学生平均分成3组,求:(1)每组有一名运动员的概率;(2)3名运动员集中在一个组的概率.解 设事件A={每组有一名运动员},B={3名运动员集中在一组},30名学生平均分成3组共有30201030!10101010!10!10!⎛⎫⎛⎫⎛⎫= ⎪⎪⎪⎝⎭⎝⎭⎝⎭种分法. (1)保证每组有一名运动员则有27!3!9!9!9!分法,所以50()30!20310!10!10!P A =27!3!9!9!9!=; (2)让3名运动员集中在一个组,则有272010371010⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭分法,所以27201037101018()30!20310!10!10!P B ⎛⎫⎛⎫⎛⎫⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭==. 例1.3.4(摸球模型)(1) (无放回地摸球)设袋中有M 个白球和N 个黑球,现从袋中无放回地依次摸出m n +个球,求所取球恰好含m 个白球,n 个黑球的概率.解 样本空间所含样本点总数为,M N m n +⎛⎫⎪+⎝⎭所求事件含的样本点数为,M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭所以所求概率为 M N m n P M N m n ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=+⎛⎫ ⎪+⎝⎭. (2) 有放回地摸球设袋中有4只红球和6只黑球,现从袋中有放回地摸球3次,求前2 次摸到黑球、第3 次摸到红球的概率.解 样本空间点总数为310101010⨯⨯=,所求事件所含样本点数为664⨯⨯,故 366410P ⨯⨯= 0.144=. 例1.3.5(盒子模型)设有n 个球,每个都能以相同的概率被放到N 个盒子()N n ≥的每一个盒子中,试求:(1)某指定的n 个盒子中各有一个球的概率;(2)恰好有n 个盒子中各有一个球的概率.解 设事件A={某指定的n 个盒子中各有一个球},B={任意n 个盒子中各有一个球}. 由于每个球可落入N 个盒子中的任一个,所以n 个球在N 个盒子中的分布相当于从N 个元素中选取n 个进行有重复的排列,故共有nN 种可能分布.对于事件A ,相当于n 个球在那指定的n 个盒子中全排列,总数为!n ,所以 !()n n P A N=. 对于事件B ,n 个盒子可以任意,即可以从N 个盒子中任意选出n 个来,这种选法共有⎪⎪⎭⎫ ⎝⎛n N 种,对于每种选定的n 个盒子,再全排列,所以事件B 放法共有!N n n ⎛⎫ ⎪⎝⎭种,所以!()n N n n P B N⎛⎫ ⎪⎝⎭=. 上述例子是古典概型中一个比较典型的问题,不少问题都可以归结为它.例如概率论历史上有一个颇为有名的问题:要求参加某次集会的n 个人中没有两个人生日相同的概率.若把n个人看作上面问题中的n 个球,而把一年的365天作为盒子,则365N =,这时按照上述事件B 概率的求法就给出所求的概率.例如当40n =时,0109P =.,即40人中至少有两个人生日相同的概率为0891.,这个概率已经相当大了.例1.3.6 袋中有a 只黑球,b 只白球,它们除颜色不同外,其他方面没有差别,把球均匀混合,然后随机取出来,一次取一个,求第k 次取出的球是黑球的概率()1k a b ≤≤+. 解 设事件A ={第k 次取出的球是黑球}.法1 把a 只黑球及b 只白球都看作是不同的(例如设想把它们进行编号),若把取出的球依次放在排列成一行的a b +个位置上,则可能的排列法相当于把a b +个元素进行全排列,总数为()!a b +,把它们作为样本点全体.A 事件所含样本点数为(1)!a a b ⨯+-,这是因为第k 次取得黑球有a 种取法,而另外1a b +-次取球相当于1a b +-只球进行全排列,有(1)!a b +-种取法,故所求概率为(1)!()()!a a b a P A a b a b⨯+-==++, 结果与k 无关.实际上本例就是一抽签模型,例如在体育比赛中进行抽签,对各队机会均等,与抽签的先后次序无关.法2 把a 只黑球看作是没有区别的,把b 只白球也看作是没有区别的.仍把取出的球依次放在排列成一行的a b +位置上,因若把a 只黑球的位置固定下来则其他位置必然是放白球,而黑球的位置可以有⎪⎪⎭⎫⎝⎛+b b a 种放法,以这种放法作为样本点.对于事件A ,由于第k 次取得黑球,这个位置必须放黑球,剩下的黑球可以在1a b +-个位置上任取1a -个位置,因此共有⎪⎪⎭⎫ ⎝⎛--+11a b a 种放法.所以所求概率为b a a a b a a b a P k +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+=11. 两种不同的解法答案相同,两种解法的区别在于,选取的样本空间不同.在[法一]中把球看作是“有区别的”,而在[法二]中则对同色球不加区别,因此在第一种解法中要顾及各黑球及各白球间的顺序而用排列,第二种解法则不注意顺序而用组合,但最后还是得出了相同的答案.由本例,我们必须注意,在计算样本点总数及所求事件含的样本点数时,必须对同一个确定的样本空间考虑,因此其中一个考虑顺序,另一个也必须考虑顺序,否则结果一定不正确.1.4 条件概率在许多实际问题中,除了考虑()P B 外,有时还需要考虑在一定条件下事件B 发生的概率,比如,已知事件A 发生的条件下,事件B 发生的概率,我们称这种概率为事件A 发生的条件下事件B 发生的条件概率,记为(|)P B A .1.4.1 条件概率的定义引例 盒中有4个外形相同的球,分别标有1,2,3,4,现在从盒中有放回的取两次球,每次取一球.则该试验的所有可能的结果为(1,1) (1,2) (1,3) (1,4)(2,1) (2,2) (2,3) (2,4)(3,1) (3,2) (3,3) (3,4)(4,1) (4,2) (4,3) (4,4)其中(,)i j 表示第一次取i 号球,第二次取j 号球,设A ={ 第一次取出球的标号为2},B ={ 取出的两球标号之和为4}, 则事件{(13),(2,2),(3,1)}B =,,因此事件B 的概率为 ()316P B =. 下面我们考虑在事件A 发生的条件下,事件B 发生的概率(|)P B A .由于已知事件A 已经发生,{(21),(2,2),(2,3),(2,4)}A =,,这时,事件B 在事件A 已经发生的条件下发生,那么只可能出现样本点(2,2),因此A 发生的条件下B 发生的概率为14,即 1(|)4P B A =. 由引例可以看出,事件B 在“条件A 已发生”这附加条件下的概率与不附加这个条件的概率是不同的.那么如何计算条件概率(|)P B A 呢?定义1.4.1 设A 、B 是两个随机事件,()0P A >,称()(|)()P AB P B A P A = (1.4.1) 为在事件A 已发生的条件下事件B 发生的条件概率. 在上述引例中,41(),()1616P A P AB ==,显然有()(|)()P AB P B A P A ==14. 例1.4.1 10个产品中有7个正品,3个次品,按照不放回抽样,每次一个,抽取两次,求(1) 两次都抽到次品的概率;(2 ) 第二次才取到次品的概率;(3)已知第一次取到次品,第二次又取到次品的概率.解 设A ,B 分别表示第一次和第二次抽到的是次品.(1) ()P AB =32110915⨯⨯=; (2) 737()10930P AB ⨯==⨯;(3) 12()215(|)39()1510P AB P B A P A ====.例 1.4.2 某种动物由出生算起活20岁以上的概率为0.8,活到25岁以上的概率为0.4, 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少?解 设事件A ={能活20岁以上},事件B ={能活25岁以上},即要求条件概率P(B A),由题()0.8P A =,()0.4P B =,()()P AB P B =,于是()(|)()P AB P B A P A =0.410.82==. 1.4.2 条件概率)|(A P ⋅的性质容易验证条件概率|P A ⋅()也有非负性、规范性和可列可加性三条性质: (1) 非负性:对任意的B ,(|)P B A ≥0; (2) 规范性: (|)1P A Ω=;(3) 可列可加性:对任意的一列两两互斥的事件,(1,2,)i B i ⋯=,有 11(|)(|)i i i i P B A P B A ∞∞===∑.因此,条件概率仍然是概率,所以条件概率也具有有限可加性、减法公式、加法公式等无条件概率所具有的一些性质.如对任意的12,B B ,有:(1) 121212(|)(|)(|)(|)P B B A P B A P B A P B B A =+-;(2)12112(|)(|)(|)P B B A P B A P B B A -=-; (3)若()(|)1()P B A B P B A P A ⊂==,则. 例1.4.3 一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.解 设事件A ={任意按最后一位数字,不超过2次就按对},事件i A ={第i 次按对密码}(1,2i =),则__112()A A A A =,(1)因为事件1A 与事件12A A 互斥,由概率的加法公式得__1121911()()()101095P A P A P A A ⨯=+=+=⨯;(2)事件B ={最后一位按偶数},则____112112(|)(()|)(|)(|)P A B P A A A B P A B P A A B ==+14125545⨯=+=⨯. 1.4.3 乘法公式由条件概率定义的(1.4.1)可得,当()0P A >时,有()(|)P AB P A P B A =(), (1.4.2) 及()0P B >时,()(|)P AB P B P A B =(). (1.4.3) 推广 12,,,n A A A 为n 个事件,且12n-1()0P A A A >,则有 12n 121321n 121()()(|)(|)(|)n P A A A P A P A A P A A A P A A A A -=. (1.4.4)特别的,当3n =时,有()(|)(|)P ABC P A P B A P C AB =().乘法公式一般用于计算多个事件同时发生的概率.例1.4.4设袋中装有r 只红球,t 只白球.每次取一只观察其颜色并放回,并同时再放入a 只同色球,连续取四次,试求第一次、第二次取到红球且第三、四次取到白球的概率.解 以i A 表示事件“第i 次取到红球”1,2,3,4i =,则43,A A 分别表示第三次、第四次取到白球,即要求事件1234A A A A 的概率,由乘法公式(1.4.4)得12341213124123()()(|)(|)(|)P A A A A P A P A A P A A A P A A A A =r r a t t ar t r t a r t a a r t a a a ++=⋅⋅⋅++++++++++ ()()()()(2)(3)rt r a t a r t r t a r t a r t a ++=+++++++.1.4.4全概率公式和贝叶斯公式全概率公式和贝叶斯公式是概率论中两个比较重要的公式,它们将一个比较复杂事件的概率转化为不同条件下发生的比较简单的条件概率来计算.下面首先介绍一下样本空间划分的概念.定义 1.4.2 设Ω是随机试验E 的样本空间,12,,,n B B B 是E 的一列随机事件,若 (1),,,1,2,,i j B B i j i j n =∅≠=;(2)12n B B B =Ω,则称12,,,n B B B 为样本空间Ω的一个有限划分.定理 1.4.1 (全概率公式)设12,,,n B B B 是样本空间Ω的一个有限划分,且()0,1,2,i P B i n >=,则对任一事件A ,有()1()(|)iii P A P B P A B ∞==∑. (1.4.5)证1()()[()]ni i P A P A P A B ==Ω=1(())ni i P AB ==,对任意i j i j,B B ≠=∅,得()i AB ()()=Φi j AB AB ,由概率的有限可加性得11(())()nn i i i i P AB P AB ===∑=1()(|)ni i i P B P A B =∑.例1.4.5 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,取到次品的概率是多少?解 设事件A 为“任取一件为次品”,事件123,,B B B 分别为产品由甲、乙、丙厂生产,显然123,B B B =Ω且,,1,2,3i j B B i j =∅=,即123B ,B ,B 构成样本空间的划分.所以由(1.4.5)112233()()()()()()()P A P A B P B P A B P B P A B P B =++,123()0.02()0.01()0.01P A B P A B P A B ===,,,故112233()()()()()()()P A P A B P B P A B P B P A B P B =++0020300105001020013.......=⨯+⨯+⨯=.定理 1.4.2 (贝叶斯公式)设12,,,n B B B 是样本空间Ω的一个划分,()i P B 0>,1,2,3,,i n =,对任意事件A ,有1()(|)(|),1,2,...()(|)i i i njjj P B P A B P B A i n P B P A B ===∑. (1.4.6)证 i i P(B A )P(B A )P(A )=1i i njj j P(A B )P(B ),P(A B)P(B )==∑ 1,2,,i n =.例1.4.6 (续例1.4.5) 有一批同一型号的产品,其中由甲厂生产的占30%,乙厂生产的占50%,丙厂生产的占20%,又知这甲、乙、丙三个厂的产品次品率分别为2%,1%,1%,问从这批产品中任取一件,发现是次品,那么它分别由甲、乙、丙厂生产的概率是多少?解 123(),(),()P B A P B A P B A 即为所要求的条件概率,由贝叶斯公式(1.4.6),11131()(|)0.020.3(|)0.460.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;22231()(|)0.010.5(|)0.380.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑;33331()(|)0.010.2(|)0.150.020.30.010.50.010.2()(|)jjj P B P A B P B A P B P A B =⨯===⨯+⨯+⨯∑.例1.4.7袋中有4个红球,6个白球,作不放回的摸球两次,求(1)第二次摸到红球的概率;(2)已知第二次摸到红球,求第一次摸到的也是红球的概率.解 设A ={第一次摸到红球},A ={第一次摸到白球},B ={第二次摸到红球}.显然11114634(),(),(|),(|)101099P A P A P B A P B A ====; (1)由全概率公式(1.4.5)111143642()()(|)()(|)1091095P B P A P B A P A P B A =+=⨯+⨯=; (2)由贝叶斯公式(1.4.5)1111111()(|)1(|)()(|)()(|)3P A P B A P A B P A P B A P A P B A ==+.例1.4.8 某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04,现抽查了一个人,试验反应是阳性,问此人是癌症患者的概率有多大?解 设A ={抽查的人患有癌症},B ={试验结果是阳性},则__A ={抽查的人没有患癌症}.()0.005, ()0.995 ,(|)0.95, (|)0.04P A P A P B A P B A ====.由贝叶斯公式(1.4.5),得()(|)(|)0.1066 ()(|)()(|)P A P B A P A B P A P B A P A P B A ==+.这表明某人的试验结果为阳性,但此人确患癌症的概率却非常小,只有0.1066,即平均来说,1000个检查结果呈阳性的人中大约只有107人确患癌症.那是否说明该试验对于诊断一个人是否患有癌症没有意义?我们来分析一下.如果不做试验,随机抽取一人,那么他是癌症患者的概率为()0.005P A =,若进行试验,试验后呈阳性反应,则根据试验得到的信息:此人是癌症患者的概率为P (|)0.1066A B =.概率从0.005增加到0.1066,约增加了21倍,说明试验对于诊断一个人是否患癌症有意义.至于试验结果呈阳性患癌症的概率还如此低,是由癌症的患病率非常低0.005导致的.1.5 事件的独立性条件概率(|)P B A 通常来说与()P B 不相等,这反映了事件A 的发生与否对事件B 有影响;若(|)P B A 与()P B 相等,则反映了事件A 的发生与否对事件B 无影响.如:抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上}.1()(|)2P B P B A ==. 所以两个事件A 、B 其中一个发生与否,不影响另一件事件发生的可能性大小,此时 (|)()P B A P B =,即:()(|)()()P AB P B A P B P A ==, 于是得到()()()P AB P A P B =,我们称A 与B 相互独立.定义 1.5.1 对事件A 和B ,如果()()()P AB P A P B =,则称事件A 与事件B 相互独立.定理1.5.1 设A ,B 是两个事件, 且0)(>A P ,若A ,B 相互独立,则)()|(A P B A P =. 定理1.5.2 设事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 各对事件也相互独立. 证 因为____()A A A BB ABA B =Ω==,显然__,AB A B 互斥,故______()()()()()()()P A P ABAB P AB P AB P A P B P AB ==+=+,于是____()()()()()(1())()()P A B P A P A P B P A P B P A P B =-=-=,所以A 与B 相互独立.由A ,B 相互独立可以推出A 与B 相互独立,于是,A 与B 相互独立可推出A 与B 相互独立,再由B =B ,又可推出A 与B 相互独立.定理1.5.3 若事件A ,B 相互独立,且0()1P A <<,则__(|)(|)()P B A P B A P B ==.证()()()(|)()()()P AB P A P B P B A P B P A P A ===,__________()()()(|)()()()P A B P A P B P B A P B P A P A ===. 定义1.5.2 (三个事件相互独立) 设C B A ,,为三个事件,若等式),()()()(),()()(),()()(),()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ====同时满足,则称事件C B A ,,相互独立.类似的可以定义n 个事件相互独立.定义1.5.3 设12,,,n A A A 是n 个事件,若对其中任意k 个事件12,,,k i i i A A A(2)k n ≤≤有1212()()()()k k i i i i i i P A A A P A P A P A =,则称这n 个事件是相互独立的.定义 1.5.4 设有n 个事件12,,,n A A A (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有)()()(j i j i A P A P A A P =则称这n 个事件是两两相互独立的.显然,若n 个事件12,,,n A A A 相互独立,则n 个事件一定是两两相互独立,但反之不一定成立.在实际应用中,独立性的判断一般不会采用定义判断,而是根据问题的实际意义去判断,如抛硬币两次,事件A ={第一次正面向上},B ={第二次正面向上},第一次出现哪一面并不影响第二次出现正面的概率,所以事件,A B 相互独立.例1.5.1甲、乙两射手独立地向同一目标射击一次,其中命中率分别为0.9和0.8, (1) 求目标被击中的概率;(2) 现已知目标被击中,求它是由甲击中的概率. 解 设A ={甲命中},B ={乙命中},C ={目标被击中},(1) () () ()()()()0.90.80.90.80.98P C P A B P A P B P A P B ==+-=+-⨯=; (2) ()()(|)()[()()()()]P AC P A P A C P C P A P B P A P B ==+-0.90.920.98==. 例1.5.2 设高射炮每次击中飞机的概率为0.2,问至少需要多少门这种高射炮同时独立发射(每门射一次)才能使击中飞机的概率达到95%以上?解 设需要n 门高射炮,A ={飞机被击中},A i ={第i 门高射炮击中飞机},12)i n =⋯(,,,,则12()()n P A P A A A =⋯=_____________________121()n P A A A -______121()n P A A A =-,由相互独立的性质____________1212()()()()n n P A A A P A P A P A =,于是______12()1()()()1(10.2)n n P A P A P A P A =-=--,令1(10.2)0.95n--≥,得08005n≤..,即得14n ≥.即至少需要14门高射炮才能有95%以上的把握击中飞机.例 1.5.3 一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性.设一个系统由四个元件按图示方式(图1.2)组成,各个元件相互独立,且每个元件的可靠性都等于)10(<<p p ,求这个系统的可靠性.。

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

概率论与数理统计(经管类)复习要点 第1章 随机事件与概率

第一章随机事件与概率1. 从发生的必然性角度区分,现象分为确定性现象和随机现象。

随机现象:在一定条件下,可能出现这样的结果,也可能出现那样的结果,预先无法断言。

统计规律性:在大量重复试验或观察中所呈现的固有规律性。

概率论与数理统计就是研究和揭示随机现象统计规律的一门数学学科,随机现象是概率论与数理统计的主要对象。

(1)概率论:从数量上研究随机现象的统计规律性的科学。

(2)数理统计:从应用角度研究处理随机性数据,建立有效的统计方法,进行统计推理。

2. (1)试验的可重复性——可在相同条件下重复进行;(2)一次试验结果的随机性——一次试验之前无法确定具体是哪种结果出现,但能确定所有的可能结果;(3)全部试验结果的可知性——所有可能的结果是预先可知的。

在概率论中,将具有上述三个特点的试验成为随机试验,简称试验,记作E。

样本点:试验的每一个可能出现的结果称为一个样本点,记为ω。

样本空间:试验的所有可能结果所组成的集合称为试验E的样本空间,记为Ω。

3. 在一次试验中可能出现也可能不出现的事件,统称为随机事件,记作A,B,C或A1,A2,…随机事件:样本空间Ω的任意一个子集称, 简称“事件”,记作A、B、C等。

事件发生:在一次试验中,当这一子集中的一个样本点出现时。

基本事件:样本空间Ω仅包含一个样本点ω的单点子集{ω}。

两个特殊事件:必然事件Ω、不可能事件φ样本空间Ω包含所有的样本点,它是Ω自身的子集,在每次试验中它总是发生,称为必然事件。

空集φ不包含任何样本点,它也作为样本空间Ω的子集,在每次试验中都不发生,称为不可能事件。

4. 随机事件的关系与运算(1)事件的包含与相等设A,B为两个事件,若A发生必然导致B发生,则称事件B包含A,或称事件A包含在B中,记作B⊃A,A⊂B。

①φ⊂A⊂Ω②若A⊂B且B⊂A,则称A与B相等,记作A=B。

事实上,A和B在意义上表示同一事件,或者说A和B 是同一事件的不同表述。

(2)和事件称事件“A,B中至少有一个发生”为事件A与事件B的和事件,也称为A与B的并,记作A∪B或A+B。

概率论与数理统计 1-3

概率论与数理统计 1-3

3
1. 条件概率的定义
设A、B是两个事件,且P(A)>0,则称 P(B | A) P( AB) (1) P( A)
为在事件A发生的条件下,事件B的条件概率.
1.3条件概率
B ABA
S
若事件A已发生, 则为使 B也发 生 , 试验结果必须是既在 B 中又在 A中的样本点 , 即此点必属于AB. 由于我们已经知道A已发生, 故A变 成了新的样本空间 , 于是 有(1).
3
P( Ai ) P(A1)P(A2 / A1)P(A3 / A1A2 )
i 1
※想一想: ①应如何推导此式? ② n个事件的公式如何写呢?
7
1.3条件概率
例2 一批零件共100个,其中有10个是次品。今从这批零
件中随机抽取,每次一件,1)若不放回地抽取3次,求3次都 取得合格品的概率;2)若有放回地抽取2次,求2次都取得合 格品的概率。
注 通常, P(B|A) ≠ P(B)
4
2. 条件概率P(.|A)的性质
1.3条件概率
(1)非负性 对每一个事件B, P(B|A) ≧0 概
(2)规范性 对必然事件S, P(S|A) =1


(3)可列可加性 若B1, B2 ,是两两互不相容的事件,则有


P Bi | A P(Bi | A)
解 记 Ai=“第i次取得合格品”,i=1,2,3;
1) 若不放回地抽,则
P
(
A1
)

90 100
,
P(
A2
|
A1 )

89 99
,
P(
A3
|
A1
A2
)

概率论与数理统计(完整版)

概率论与数理统计(完整版)
ABC 反之 不成 立
例. 甲、乙、丙三人各射击一次,事件A1,A2,A3分别表示 甲、乙、丙射中,试说明下列事件所表示的结果:
A 2,A 2 A 3, A 1A 2, A 1 A 2, A 1A 2A 3, A 1A 2 A 2A 3 A 1A 3.
14
§3. 概率的概念 一. 古典定义:
等可能概型的两个特点:
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式:
由条件概 ,立率 即P 定 可 (A 义 0 得 )则 , 有 P(AP B()A)|A P)(.B
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称为 A与B的和事 . 件
即AB ,中至少有一 ,称个 为 A与 发 B的 生和 ,记AB.
可列个A事 1, A2件 ,的和事件记 Ak.为
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB). 一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式: P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质: 性1质 . P()0.

01第一章 数理统计的基础知识

01第一章 数理统计的基础知识

为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。
2
第一章 数理统计的基础知识
第一节 总体与样本
一 . 总体与样本
定义1:研究的对象称为总体,总体往往以某一项数量指标为其特征。实 际上总体就是一个随机变量 X 。
为推断总体分布及其各种特征,一般方法是按一定规则从总体中抽取若干 个体进行观察,称为抽样。 定义2:从总体中抽取的 n 个个体 (X1,X2,…,Xn) 称为样本,实际上样本就 是一个 n 维随机变量(或向量)。
简单随机样本: (X1,X2,…,Xn) 是相互独立的随机变量(独立性);且 Xi ~ X (同分布) 。 样本容量 n:样本中所含个体数目,为已知的一个自然数。 样本观察值: (X1,X2,…,Xn) = (x1,x2,…,xn)
上例中,若某次抽样得: (X1,X2,X3,X4,X5) = (0,0,1,0,1)
P(Y 15) f ( y)dy
15
10 0 15 20 y y 1 3 7 dy dy 10 100 100 2 8 8
例3:设总体 X ~ b(1,p)。现从中抽取容量为 2 的样本,得到样本 (X1, X2),求样本的函数 Y = X12 + X22 的概率分布,并求出事件 P(Y < 15) 的概率。
i 1 n
如上例:总体 X ~ b(1,p),概率分布为:P(X = x) = (1 – p)1 – x p x (x = 0,1) 则样本 (X1,X2,…,Xn) 的联合分布为:
P( X 1 x1 , X n xn ) p x1 (1 p)1 x1 p xn (1 p)1 xn p i1 (1 p)

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

例1 设甲、乙、丙三 人的命中率分别为0.3,
P(Ai)—— 先验概率
0.2,0.1。现三人独立地 向目标各射击一次,结果
A1
A2 ........ An
有两次命中目标,试求丙
P(B/Ai)
P(Ai /B ) 后验概率
没有命中目标的概率。
B P(B )
解 记A、B、C分别为甲、乙、丙命中目标,D 为
P(ABC ) P(D )
0.30.20.90.587 0.092
法二 用Bayes公式:
0.1
0.9
P (C) = 0.1, P(C)0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D/C)0.3*0.2.
C 0.3*0.8+0.7*0.2
C
0.3*0.2
于是有
D
P (C /D )
第二、三章 随机变量及其分布
1.常用分布 B(n,p),P( ),U[a,b],E( ),N(, 2 );
二维均匀、二维正态
2.联合分布和边缘分布
pi• pij,fX(x)f(x,y)dy
j
3.概率的计算 (一维或二维C.R.V.:一重或二重积分)
4.随机变量函数的分布 作图、定限再计算、验证
5 随机变量的独立性
•正态分布的线性组合性质(含正态分布可加性)
若Xi ~ N( i,i 2), i=1,2,...n, 相互独立,则对任
何实数a1, a2, …, an, 有
n
n
n
a X 1 b~ N (a? 1 b,,a 2? 12 ),
aiXi ~N(
a?i i ,,
?a i2
① 分布函数法(C.R.V.):

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计(第3版)(谢永钦)第1章 概率论的基本概念

概率论与数理统计(第3版)(谢永钦)第1章  概率论的基本概念
(3)分配律:A ∩ (B∪C)= (A∩B)∪( A ∩ C )
(4)
A∪(B ∩ C)=(A∪B)∩(A∪C)
(5)
概率论与数理统计
02
第2节 概率、古典概率
概率论与数理统计
1. 概率 定义1.1
在相同条件下,进行了n次试验.若随机事件A在这n次试验中发 生了k次,则比值 称为事件A在n次实验中发生的频率,记为
并按其出现的先后排成一行.试求下列事件的概率
概率论与数理统计
P(A2 )
C19 103 104

0.9
P(A3 )
C24 92 104
0.0486
概率论与数理统计
例题
(一个古老的问题)一对骰子连掷25次.问出现双 6与不出现双6的概率哪个大?
概率论与数理统计
4. 几何概型
若试验具有如下特征:
频率具有下列性质:
(1)对于任一事件A,有 (2)
概率论与数理统计
概率论与数理统计
定义1.2 设事件A在n次重复试验中发生了k次, n很大时,频率 k/n稳定在某一数值p的附近波动,而随着试验次数n的增 加,波动的幅度越来越小,则称p为事件A发生的概率, 记为:P(A)=p.
概率论与数理统计
历史上著名的统计学家德·摩根(De Morgan)蒲丰(Buffon)和皮尔逊
对于任意的事件A,B只有如下分解:
概率论与数理统计
AB

A B
AB

AB
A B

AB
A B

AB
A B

概率论与数理统计
A
AB
B

A
A

概率论与数理统计

概率论与数理统计第1-3章复习资料

概率论与数理统计第1-3章复习资料

其中λ = n P 例2:在例1的试验中,求: (1)A=“点数和为奇数的概率”; (2)B=“点数不同的概率” 例3:某产品40件,其中有次品3件。现从其中任取3件, 求下列事件的概率: (1)A=“3件中恰有2件次品”;(111/9880) (2)B=“ 3件中至少有1件次品”(633/2964)
xi R , i 1 , , n , n 元函数
F ( x1 ,, xn ) P( X 1 x1 ,, X n xn ) ( 是 X 1 ,, X n ) 的分布函数。
(1)’
注:r, v 取值的规律称 r, v 的分布,分布函数是描 述 r, v 的概分布的主要方法之一。 (二)分布函数的性质: 一维:1、有界性:0 F ( X ) 1
m 4、由公式 P( A) 进行计算 n
(二)几何概型 所求概率为: P(A)=[A所包含的区域度量] / [样本空间的度量] (三)条件概率及其全概率公式 1、条件概率:若P(B) >0,则
P( A B) P( AB) P( B)
2、全概率公式 如果B1,…,Bn为一完备事件组,即满足: (1) B1,…,Bn两两不相容i=1, …,n;
例4:一盒装有10只晶体管,其中有4只次品,6只正品,随 机地抽取 1只测试,直到4只次品晶体管都找到。求最后 一只次品晶体管在下列情况发现的概率: (1)A=“在第 5 次测试发现”。(2/105) (2)B=“在第10次测试发现”。(2/5) 例5:将编号1,2,3的三本书任意地排列在书架上,求事件 A=“至少有一本书自左到右的排列顺序号与它的编号相同” 的概率。 例6:五个乒乓球,其中三个旧球,二个新球,每次取一个, 共取两次,以有放回和无放回两种方式求下列事件的概率: (1)A=“两次都取到新球”; (2)B=“第一次取到新球,第二次取到旧球”; (3)C=“至少有一次取到新球”。

概率论与数理统计第1章

概率论与数理统计第1章
17
例5:某人连续三次购买体育彩票,每次一张, 令A、B、C分别表示其第一、二、三次所买的 彩票中奖事件,试用A、B、C表示下列事件: (1) 第三次未中奖; (2) 只有第三次中了奖; (3) 恰有一次中奖; (4) 至少有一次中奖; (5) 不止一次中奖; (6) 至多中奖两次。
18
§1.3 概率的古典意义
例2: A1 =“2个样品中有一个次品”; A2 =“2个样品全是次品”; B =“2个样品中至少有一个次品”, 求 A2 , B。
16
例3:p.11,第3题。
例4:掷骰子,A=“掷出奇数点”;B=“点数 不
超过3”;C=“点数大于2”;A D=“A C掷出5点”。
求 A∪B;B∪C;AB;BD; ; ; A-B;B-A。
26
2、具体例子 ⑴ 设有20个某种零件,其中16个为一级品, 4个为二级品,现从中任取三个,求: ① 只有一个一级品的概率; ② 至少有一个一级品的概率。
⑵ 从0、1、2、3这4个数字中任取3个进行排 列,求“取得的3个数字排成的数是三位数且 是偶数”的概率。
27
⑶ 一口袋中有5红2白7个球,从袋中任取一
2
例1:判断下列现象为随机现象还是决定性现 象? (1) 扔一枚分币; (2) 从93个产品(其中90正3次)中抽取一个 产品; (3) 在标准大气压下将水加热至100℃必沸腾;
(4) 火箭速度超过第一宇宙速度就会摆脱地球 引力而飞出地球。
3
二、随机试验与样本空间 定义:概率论中将对随机现象的观察或为观察 随机现象而进行的试验称为随机试验,它应具 备以下三个特征: ⑴ 每次试验的可能结果不止一个,且事先明确 知道试验的所有可能性结果。 ⑵ 进行试验之前不能确定哪一个结果会发生。 ⑶ 试验可以在相同条件下重复进行。 随机试验简称试验,用英文字母E表示。 4

概率论与数理统计第1.3节

概率论与数理统计第1.3节
(365)r
美国数学家伯格米尼曾经做过 一个别开生面的实验,在一个盛况 空前、人山人海的世界杯足球赛赛场上, 他随机地在某号看台上召唤了22个球迷, 请他们分别写下自己的生日,结果竟发现 其中有两人同生日.
用上面的公式可以计算此事出现的概率为
P(A)=1-0.524=0.476
即22个球迷中至少有两人同生日的概率为 0.476.
解 方法1 把a+b个球编上1至a+b号,将球一只一只 取出后排成一排,考虑取球的先后顺序,因此共有 (a+b)!种取法,由球的均匀性知每种取法机会都相 同,故属于古典概型,A发生可以先从a个红球中 任取一个放在第k个位置上,然后将剩下的a+b+1 个球随意排在另外a+b+1个位置上,
共有 Ca1(a b 1)! 种排法,故
(1)不放回地从中任取一件,共取3次,求取到3 件次品的概率;
(2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率;
(3)从中任取3件,求至少取得1件次品的概率。
例2 已知10件产品中有7件正品,3件次品。 (1)不放回地从中任取一件,共取3次,求取到3 件次品的概率; 解 (1)设A={取到3件次品}
由于此试验是不放回抽取3次,所以由乘法原理 3次取产品共有10×9×8=720种不同取法,
而3次取3件次品共有3×2×1=6种不同取法,所以
P( A) 6 1 0.0083 720 120
例2 已知10件产品中有7件正品,3件次品。 (2)每次从中任取一件,有放回地取3次,求取到 3件次品的概率; 解 (2)设B={取到3件次品}
(1)事件A包含的基本事件个数是3!个,所以
P( A)
3! 33
2 9

概率统计(新课本) 第一章

概率统计(新课本) 第一章

四、 概率的古典定义
1. 古典概型-有限等概模型 设随机试验E 具有下列特点: 基本事件的个数有限 每个基本事件等可能性发生 则称 E 为 古典概型。 2. 概率的古典定义(P16 ,Laplace,1812年提出)
nA A中包含基本事件数 A中包含的样本点数 P ( A) = = = n 基本事件总数 样本点总数
(1)掷硬币试验
实验者 德•摩根 蒲 丰
n 2048 4040
nH 1061 2048 6019 12012 14994
fn(H) 0.5181 0.5069 0.5016 0.5005 0.4998
K •皮尔逊 12000 K •皮尔逊 24000 维尼 30000
返回主目录
第一章
随机事件及其概率
一、概率这一概念的基本共识
§1.2 随 机 事 件 的 概 率
随机事件A发生的可能性大小的“量”,称为 随机事件的概率, 记为P(A). 直观上, 这个“量”用一个 数来刻划比较符合人们的认识规律。 显然: P(Ω)=1; P(Φ)=0. 0≤P(A)≤1, A为任意事件。
二、历史上概率的四次定义
①统计定义 ②古典定义 ③几何定义 ④公理化定义 基于频率的定义 概率的最初定义(1812,Laplace) 古典定义的扩展 1933年(柯尔莫哥洛夫)
(2) B = A1 B + ... + A5 B .
B
A
Ω
A 1
A Ω 5 A4
A1 B
2
A
BA B AB
A3 B
4
A5 B
A2
A 3
第一章
随机事件及其概率
例2 设A,B,C表示三个随机事件,试将下列事件 利用事件的关系和运算,用A,B,C表示出来。 (1)三个事件都发生 (2)A发生, 但B、C都不发生 (3)三个事件中至少有一个发生

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。

概率论与数理统计第一章

概率论与数理统计第一章

可见,既可以用文字表示事件,也可以将事件表 示为样本空间的子集,后者反映了事件的实质, 且更便于今后计算概率。 还应注意,同一样本空间中,不同的事件之间有 一定的关系,如试验E2 ,当试验的结果是HHH 时,可以说事件A和B同时发生了;但事件B和C 在任何情况下均不可能同时发生。 易见,事件之间的关系是由他们所包含的样本点 所决定的,这种关系可以用集合之间的关系来描 述。
帕斯卡和费马(P. de Fermat)在通信中讨论了 点数问题及其他问题。他们把这些日常赌博问题 变成了真正的数学问题,用排列组合理论得出正 确解答,并提出了数学期望的这一核心概念。现 在,大家公认他们二人是概率论的共同创立者。
随着18、19世纪科学的发展,人们注意到在某些 生物、物理和社会现象与机会游戏之间有某种相 似性,从而由机会游戏起源的概率论被应用到这 些领域中;同时这也大大推动了概率论本身的发 展。


概率论是研究偶然、随机现象的规律性的数学理 论,产生于17世纪中叶。 概率论发展初期,主要是从讨论赌博问题开始的。 16世纪的意大利学者吉罗拉莫· 卡尔达诺 (Girolamo Cardano)研究了掷骰子等赌博中的 一些简单问题。
到了17世纪中叶,法国宫廷贵族中间盛行掷骰子 游戏。 据说,1654年左右,爱好赌博的法国人梅雷写信 向帕斯卡(B.Paseal)请教了著名的“点数问题” 或“赌金分配问题” 。
集合A与集合 B的和或并
A
A B
B
n个事件A1,A2,…,An的和 C Ai
例1.1
E1: 抛一枚硬币, 观察出现正面H和反面T的情况;
E2: 将一枚硬币连抛三次,观察出现正反面的情况; E3: 将一枚硬币连抛三次,观察出现正面的次数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

到 的映射:
,且它满足
(i)
(ii)
(iii)完全可加性:
称这样的P为可测空间 (, F ) 上的一个概率测度 , 简称为概率,(, F , P) 称为概率空间.
性质(iii)也称为可列可加性.
数学上所说的“公理”,就是一些不加证明而承认的前提, 这些前提规定了所讨论的对象的一些基本关系和所满足的 条件,然后以之为基础,推演出所讨论的对象的进一步的 内容.几何学就是一个典型例子.成功地将概率论实现公理化 的是现代苏联大数学家柯莫哥洛夫.值得赞赏的不止在于他 实现了概率论的公理化,还在于他提出的公理为数很少且 极为简单,而在这么一个基础上建立起了概率论的宏伟大厦.
它具有可列可加性的充要条件为: (i) 它是有限可加的;
(ii) 它是下连续的. 分析 即要证明
其中 Ai 互不相容,{Sn}为单调不减的集序列,即 Sn ­ . n
U 提示 因为 Sn ­ , 故 Sn = (Si - Si- 1), 其中S0 = ? ,
某些子集构成的集合族,并且还应满足下面的条件:
(i) F ;
(ii) 如果 A F ,那么 A F ;;
(iii) 如果 Ai F ,i 1, 2, ,那么 Ai F ;;
i 1
称满足上述条件的集合族为 域,也称 -代数.
F 中的元素称为事件,也称 F 为事件域.称为必
然事件, 称为不可能事件.
2) P(B A) P(B) P( AB)
第一章 随机事件和概率
加法公式的推广(多除少补原理)
对任意n 个事件 A1, A2 , , An , 有
P n
Ai
n
Pቤተ መጻሕፍቲ ባይዱi
i1 i1
PAi Aj PAi Aj Ak
1 i jn
1 i jk n
1 n1 PA1 A2 An
我们把事件A定义为 的一个子集,它包含若干
样本点,事件A发生当且仅当A 所包含的样本点中有 一个发生.
一般并不把 的一切子集都作为事件,因为这将
对给定概率带来困难.同时,又必须把问题中感兴趣 的事件都包括进来,因为事件的交、余、并等也应该 为事件,也应该有相应的概率.
于是,我们把事件的全体记为 F ,它是由 的
提示:可用归纳法证明
推论 (次可加性)
对任意 n 个事件 A1, A2 , L ,
U P
n
Ai
n
P Ai
i1 i1
An , 有
利用多除少补原理来作概率的计算,常能使解题思路 清晰,计算便捷.
例5(匹配问题) 某人写好 n 封信,又写好 n 只信封,
然后在黑暗中把每封信放入一只信封中,试求至少
有一封信放对的概率.(1708年为Montmort所解决,后
由Laplace等人推广)
解 若以 Ai 记第i 封信与信封符合,则所求的事件为
A1 A2
An 不难求得
P( Ai
)
(n 1)!, n!
(n 2)!
P( Ai Aj )
, n!
P( Ai
Aj
Ak
)
(n
3)!, n!
1 , P( A1A2 An ) n!
性质 4 P(A) 1
第一章 随机事件和概率
性质 5 P( A) 1 P( A) ;
性质 (6 一般加法公式) P(A B) P(A) P(B) P(AB)
重要推广
1) P( A B C) P( A) P(B) P(C) P( AB) P( AC) P(BC ) P( ABC )
因此 P( A1 A2
An
)
Cn1
1 n
Cn2
n
2!
n!
Cn3
n
3!
n!
(1)n1 1 n!
1 1 1 (1)n1 1
2! 3!
n!
二、概率的可列可加性与连续性
定义1 若 An F , n 1, 2, 且 An An1 ,则An是F
中的一个单调不减的集序列.
若 An F , n 1, 2, 且 An An1,则 An是F
中的一个单调不增的集序列.
定义2 对于 F 上的集合函数 P(),若它对 F 中任何一 个单调不减的集序列 {An}均有:
lim
n
P( An )
P(lim n
An )
成立,则我们称它是下连续的.
(1)
若(1)式对 F 中任何一个单调不增的集序 列 {An} 均成立,则我们称它是上连续的.
定理 若 P 为 F 上满足 P() 1的非负集合函数,则
很显然,根据定义,必然事件和不可能事件都在事 件域中,事件的有限及可列交、并以及差也都在事件 域中.
例1 F {, } 为一 -代数.
例2
为一 -代数.
例3 {1, ,n}, F 是由 的一切子集构成.
这时,F 是一个有限的集合,共有元素2n 个.
F 为一 -代数.
例4 对于一般的 ,若 F 由 的一切子集构成,
第一章 随机事件和概率
前面讲到:事件就是某些样本点组成的集合,事件 之间的运算也就是集合运算.
但是,并没有对事件的集合进行限制. 对于事件,一 个很明显的要求就是所有事件组成的集合对于并、交 、余这三种运算封闭.
前苏联学者柯尔莫哥洛夫于1933年在《概率论基 础概念》一书中,用公理化的方法与集合论的观点 成功地解决了这一问题,提出了概率空间的概念.
第一章 随机事件和概率
概率测度P的性质与推广:
性质 1 P() 0 ;反之不然!
性质 (2 有限可加性)若A1, A2, , An是两两互不相容事件,则 P( A1 A2 An) P( A1) P( A2) P( An)
性质( 3 减法公式)若A B ,则有 P(B A) P(B) P( A), 且P(B) P( A)
第一章 随机事件和概率
§1.3 概率的公理化定义 概率空间
一、概率空间及其三要素 1、样本空间
2、 F 与可测空间
3、概率P与概率空间
二、概率的可列可加性与连续性
三、概率空间的实际例子
一、概率空间及其三要素
1、样本空间
是一非空集合,称为样本空间;其中的元素称
为样本点,相应于随机试验的结果.
2、 F 与可测空间
可以验证 F 为一 -代数.
注 事件域可以很简单,也可以十分复杂,要根 据问题的不同要求来选择适当的事件域.
把任一样本空间,以及由的子集所组成的一个
-代数F x写在一起,记为 ,F ,称为具有 -代数
结构的样本空间,简称为 可测空间
3、概率P与概率空间
概率P 为定义在事件域 上的函数,即它是一个从
相关文档
最新文档