中考数学代数式知识点汇总讲解学习
中考数学知识点总结 代数式 (5大知识点+例题) 新人教版
中考数学知识点总结 代数式 (5大知识点+例题) 新人教版基础知识点:一、代数式1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 二、整式的有关概念及运算1、概念(1)单项式:像x 、7、y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算(1)整式的加减:合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:幂的运算法则:其中m 、n 都是正整数同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:mn n m a a =)(积的乘方:n n n b a ab =)(。
2024年中考数学一轮复习+课件+第2讲 代数式与整式
3a2
.
6.(2023凉山)已知y2-my+1是完全平方式,则m的值是
±2
.
7.(2023凉山)已知x2-2x-1=0,则3x3-10x2+5x+2 027的值等于 2 023 .
8.因式分解:
(1)(2022自贡)m2+m= m(m+1) ;
(2)(2023德阳)ax2-4ay2= a(x+2y)(x-2y) .
ma+mb+mc
ma+mb+na+nb
乘法
公式
常用
公式
变形
平方差
公式
(a+b)(a-b)=
完全平
方公式
(a±b)2=
a2-b2
a2±2ab+b2
(a+b)2-2ab = (a-b)2+2ab
(2)(a-b)2= (a+b)2 -4ab
(1)a2+b2=
因式分解(常考点)
1.概念
积 的形式,像这样的式子变形叫做
A.2ab-2a=b
B.a2·a3=a6
C.3a2b÷a=3a
D.(a+2)(2-a)=4-a2
整式的运算
2
[例 5] (2023 凉山)先化简,再求值:(2x+y) -(2x+y)(2x-y)-2y(x+y),其
中 x=( )
2 023
,y=2
2 022
.
2
解:(2x+y) -(2x+y)(2x-y)-2y(x+y)
这个多项式的因式分解,因式分解与 整式乘法 是方向相反的变形.
中考数学代数知识点总结
中考数学代数知识点总结一、基本代数运算1. 加减乘除加减乘除是代数运算的基本内容,也是中考考查的重点。
在加减乘除的运算中,学生需要掌握整数、分数、小数等相关概念,以及它们在运算中的应用。
2. 整式的加减乘除整式是由字母和数字及其运算符号组成的代数式,整式的加减乘除是中考代数题中的必考内容,需要学生掌握整式的加减乘除法则,例如同类项相加、互化成法等方法。
3. 代数式的计算在代数式的计算中,学生需要掌握二项式和多项式的加减乘除法则,以及含有方程式的复合运算等内容。
二、一元一次方程1. 一元一次方程的概念一元一次方程是解决实际问题中常见的代数问题,学生需要掌握一元一次方程的定义、解法以及应用。
2. 一元一次方程的解法一元一次方程的解法包括整式移项、合并同类项、去括号、去分母、得到等价方程、方程变形、化简、合并同类项、移项、通分、求解等步骤。
3. 一元一次方程的应用一元一次方程是一种常用的数学模型,学生需要学会将实际问题转化为代数方程,并求解出方程的未知数的值。
三、一元一次不等式1. 一元一次不等式的概念一元一次不等式是一元一次方程的推广,学生需要掌握不等式的概念、性质以及解法。
2. 一元一次不等式的解法解一元一次不等式的方法包括整式移项、合并同类项、去括号、去分母、得到等价不等式、不等式变形、化简、合并同类项、移项、通分、求解等步骤。
四、二元一次方程组1. 二元一次方程组的概念二元一次方程组是由两个关于同两个未知数的一次方程组成的代数方程组,解二元一次方程组需要用到方程相加消元的方法。
2. 二元一次方程组的解法解二元一次方程组的方法包括加法、减法、代入法等,学生需要掌握这些解法,并且能够根据实际问题将其转化为方程组进行求解。
五、一元二次方程1. 一元二次方程的概念一元二次方程是一元二次多项式的零点集合,学生需要掌握一元二次方程的定义、性质以及应用。
2. 一元二次方程的解法解一元二次方程的方法包括配方法、因式分解、公式法、求判别式、根的关系、三种情况等。
中考数学专题训练第2讲整式(知识点梳理)
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
2023中考九年级数学分类讲解 - 第二讲 代数式(含答案)(全国通用版)
第二讲代数式专项一列代数式知识清单1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或__________连接起来的式子叫做代数式.单独一个数或一个字母也是代数式.2.列代数式:(1)关键是理解并找出问题中的数量关系及公式;(2)要掌握一些常见的数量关系,如:路程=速度×时间,工作总量=工作效率×工作时间,售价=标价×折扣等;(3)要善于抓住一些关键词语,如:多、少、大、小、增长、下降等.特别地,探索规律列代数式这类考题是近几年中考的热点,这类题通常是通过对数字及图形关系分析,探索规律,并能用代数式反映这个规律.3. 代数式的值:用具体数值代替代数式中的字母,按照代数式给出的运算计算出的结果,叫做代数式的值.这个过程叫做求代数式的值.考点例析例1 将x克含糖10%的糖水与y克含糖30%的糖水混合,混合后的糖水含糖()A.20%B.+100%2x y⨯C.+3100%20x y⨯D.+3100%10+10x yx y⨯分析:根据题意,可知混合后糖水中糖的质量为(10%x+30%y)克,糖水的质量为(x+y)克,则混合后的糖水含糖为混合后的糖的质量除以糖水的质量再乘100%.例2将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为.分析:先根据已知图形中黑色圆点的个数得到第n个图形中黑色圆点的个数为()12n n+;然后判断其中能被3整除的数,得到每3个数中,都有2个能被3整除;再计算出第33个能被3整除的数在原数列中的序数,代入计算即可.归纳:解决数、式或图形规律探索题,通常从给出的一列数、一列式子或一组图形入手去探索研究,通过观察、分析、类比、归纳、猜想,找出其中的变化规律,从而猜想出一般性的结论,并用含字母的代数式进行表示.跟踪训练1.某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%2.(2021·达州)如图是一个运算程序示意图,若开始输入x的值为3,则输出的y值为___________.第2题图3.一组按规律排列的式子:a+2b,a2-2b3,a3+2b5,a4-2b7,…,则第n个式子是___________.4.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形……依此规律,则第n个图形中三角形的个数是_______.第4题图专项二整式知识清单一、整式的加减1.相关概念:表示数或字母的_________的式子叫做单项式;几个单项式的和叫做多项式;________与______统称为整式.所含字母_________,并且相同字母的_________也相同的项叫做同类项.2. 合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的________,且字母连同它的指数________.3. 去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号_______;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号_______.4. 整式的加减:几个整式相加减,如果有括号就_______,然后再____________.二、幂的运算1. 同底数幂的乘法:a m·a n=________(m,n是整数).2. 同底数幂的除法:a m÷a n=________ (a≠0,m,n是整数).3. 幂的乘方:(a m)n=_______ (m,n是整数).4. 积的乘方:(ab)n=_______(n是整数).三、整式的乘法1. 单项式乘单项式:把它们的__________、__________分别相乘,对于只在一个单项式里含有的字母,则连同它的___________作为积的一个因式.2. 单项式乘多项式:p(a+b+c)=pa+pb+pc.3. 多项式乘多项式:(a+b)(p+q)=ap+aq+bp+bq.4. 乘法公式:①平方差公式:(a+b)(a-b)=_________ ;②完全平方公式:(a±b)2 =a2±2ab+b2.四、整式的除法1. 单项式相除,把__________与__________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的__________作为商的一个因式.2. 多项式除以单项式,先把这个多项式的每一项除以___________,再把所得的商相加. 考点例析例1 下列运算正确的是()A.2x2 +3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x2分析:依次根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断.例2已知10a=20,100b=50,则1322a b++的值是()A.2B.52C.3D.92分析:将100b变形为102b,根据同底数幂的乘法,将已知的两个式子相乘可得a+2b=3,整体代入求值.例3已知单项式2a4b-2m+7与3a2m b n+2是同类项,则m+n=__________.分析:根据同类项的定义,分别列出关于m,n的方程,求出m,n的值,再代入代数式计算.例4(2021·金华)已知x=16,求(3x-1)2+(1+3x)(1-3x)的值.分析:直接运用完全平方公式、平方差公式将式子展开,然后合并同类项化简,再将x=16代入求值.解:归纳:整式化简求值的关键是把原式化简,然后代入题目中的已知条件求值,其大致步骤可以简记为:一化,二代,三计算.需注意:①无论题目是否指定解题步骤,都应先化简后代入求值;①代入求值时,若代入的是负数或求分数的乘方时要注意添加括号;①当条件给定字母之间的关系时,代入则需要运用整体代入法.跟踪训练1.下列单项式中,a2b3的同类项是()A.a3b2B.2a2b3C.a2b D.ab32.下列计算中,正确的是( ) A .a 5·a 3=a 15 B .a 5÷a 3=a C .()423812a b a b -=D .()222a b a b +=+3.计算:()23a b -=( )A .621a b B .62a bC .521a b D .32a b -4.下列运算正确的是( )A .3a+2b=5abB .5a 2-2b 2=3C .7a+a=7a 2D .(x -1)2=x 2+1-2x 5.计算:(x+2y )2+(x -2y)(x+2y)+x(x -4y).6.先化简,再求值:(x ﹣3)2+(x +3)(x ﹣3)+2x (2﹣x ),其中x =﹣12.专项三 因式分解知识清单1. 定义:把一个多项式化成几个整式的 的形式,像这样的式子变形叫做这个多项式的因式分解.2. 因式分解的基本方法:(1)提公因式法:ma+mb+mc = _____________.:::⎧⎪⎨⎪⎩系数取各项系数的最大公约数公因式的确定字母取各项相同的字母指数取各项相同字母的最低次数 (2)公式法:①平方差公式:a 2-b 2=_____________; ②完全平方公式:a 2±2ab+b 2 =___________.3. 因式分解的一般步骤:一提(公因式);二套(公式);三检验(是否彻底分解). 考点例析例1 因式分解:1-4y 2=( )A .(1-2y )(1+2y)B . (2-y)(2+y)C . (1-2y)(2+y)D . (2-y)(1+2y) 分析:先将4y 2化为(2y)2,然后用平方差公式分解因式. 例2 已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3= ______.分析:先提取多项式中的公因式2xy ,再对余下的多项式利用完全平方公式继续分解,最后将xy =2,x -3y =3代入其中求值.归纳:若一个多项式有公因式,应先提取公因式,多项式是二项式优先考虑用平方差公式继续分解,多项式是三项式优先考虑用完全平方公式继续分解,直到不能分解为止.跟踪训练1.因式分解:x3﹣4x=()A.x(x2﹣4x)B.x(x+4)(x﹣4)C.x(x+2)(x﹣2)D.x(x2﹣4)2.多项式2x3-4x2+2x因式分解为()A.2x(x-1)2 B.2x(x+1) 2 C.x(2x-1) 2 D.x(2x+1) 23.因式分解:m2﹣2m=________.4.计算:20212-20202=________.5.因式分解:24ax+ax+a= ___________.6.若m+2n=1,则3m2+6mn+6n的值为___________.7.先因式分解,再计算求值:2x3-8x,其中x=3.专项四分式知识清单一、分式的相关概念1. 定义:如果A,B表示两个整式,并且B中含有_________,那么式子AB叫做分式.分式AB中,A叫做分子,B叫做分母.2. 分式有意义和值为0的条件(1)分式AB有意义⇔_________;(2)分式AB的值为0⇔_________.二、分式的基本性质1. 基本性质:分式的分子与分母乘(或除以)同一个_____________,分式的值不变.2. 约分:把一个分式的分子与分母的____________约去,叫做分式的约分. 约分的结果必须是最简分式或整式,最简分式是分子、分母没有公因式的分式.3. 通分:把几个异分母的分式分别化成与原来的分式相等的____________的分式,叫做分式的通分.通分的关键是确定各分式的____________.三、分式的运算1. 分式的加减同分母分式相加减:a bc c±=____________;异分母分式相加减:a c ad bcb d bd bd±=±=____________.2. 分式的乘除乘法法则:a c b d ⋅=___________;除法法则:a c a d b d b c÷=⋅=___________.3. 分式的乘方法则:把分子、分母分别乘方,如na b ⎛⎫ ⎪⎝⎭=___________. 4. 分式的混合运算:先算___________,再算___________,最后算加减,有括号的先算括号里面的. 考点例析例1 不论x 取何值,下列代数式的值不可能为0的是( ) A .x+1 B .x 2-1C .11x + D .(x+1)2分析:选项A ,B ,D 中都能得到代数式的值为0时x 的值,而选项C 中,分式的分子是1,所以11x +不可能为0.归纳:分式值为0要关注两个条件:(1)分子为0;(2)分母不为0.例2 化简221111a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A .a +1 B .1a a+ C .-1a aD .21a a +分析:根据分式的混合运算法则,先将括号内的两项通分合并,同时将除式中多项式因式分解,再将除法转化为乘法约分化简即可.归纳:分式的化简中,应注意以下几点:(1)若分子、分母为多项式,则应先分解因式,能约分的先约分,再计算;(2)化简过程中要特别注意常见的符号变化,如x-y=-(y-x),-x-y=-(x+y)等;ꎻ (3)在分式和整式加减运算中,通常把整式看成分母为“1”的“分式”,再进行计算; (4)分式运算的最终结果应是最简分式或整式.例3 先化简,再求值:22121121x x x x x x ++⎛⎫+-÷ ⎪+++⎝⎭,其中x 满足x 2-x-2=0.分析:先把原式化简,然后求出方程x 2-x-2=0的解,根据分式有意义的条件确定x 的值,代入计算即可. 解:跟踪训练 1.要使分式12x +有意义,则x 的取值应满足( ) A .x≠0B .x≠-2C .x ≥-2D .x >-22.计算24541a a a a a --⎛⎫÷+- ⎪⎝⎭的结果是( ) A .22a a +-B .22a a -+C .()()222a a a-+ D .2a a+3.已知非零实数x ,y 满足1xy x =+,则3x y xy xy -+的值等于_________.4.已知()()261212ABx x x x x --=----,求A ,B 的值.5.先化简22111369a a a a a a ⎛⎫-+--÷ ⎪--+⎝⎭,然后从-1,0,1,3中选一个合适的数作为a 的值代入求值.专项五 二次根式知识清单一、二次根式的有关概念1. 二次根式:一般地,形如 (a≥0)的式子叫做二次根式.2. 最简二次根式:(1)被开方数不含 ;(2)被开方数中不含 的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式. 二、二次根式的性质 (1)2= (a ≥0) ;(2a=(3= (a ≥0,b ≥0); (4= (a ≥0,b >0).三、二次根式的运算1. 二次根式的加减:先将二次根式化成 ,再将被开方数相同的二次根式进行合并.2. 二次根式的乘除:(1= (a≥0,b≥0). (2= (a≥0,b >0). 考点例析 例1 函数()02y x =-的自变量x 的取值范围是( ) A .x ≥-1 B .x >2 C .x >-1且x ≠2 D .x ≠-1且x ≠2分析:根据二次根式有意义的条件、分式有意义的条件以及零指数幂的概念列不等式组求解.(a ≥0), (a <0);归纳:(1)被开方数a≥0;ꎻ(2)观察参数是否在分母位置,分母不能为0;ꎻ (3)观察参数是否有在0次幂的底数位置,底数不能为0. 例2 下列运算正确的是( )A 3B .4=C =D 4=分析:根据二次根式的加、减、乘、除运算法则逐个计算后判断.例3 计算:222122122⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+---.分析:先利用绝对值的性质去掉绝对值符号,同时将后面两个完全平方式展开或利用平方差公式计算,最后再进行加减运算. 解:归纳:进行二次根式的混合运算时,一般先将二次根式转化为最简二次根式,再根据题目的特点确定合适的运算方法,同时要灵活运用乘法公式、因式分解等来简化运算. 跟踪训练1.0x 的取值范围是( )A .x >-1B .x ≥-1且x ≠0C .x >-1且x ≠0D .x ≠02.2,5,m )A .2m-10B .10-2mC .10D .43.设6a ,小数部分为b ,则(2a b +的值是( )A .6B .C .12D .4.计算=____________.5.的结果是 _____.6.这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a b =则ab=1,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b =+++,则1210S S S +++=__________.专项六 代数式中的数学思想1.整体思想整体思想是指用“集成”的眼光,把某些式子或图形看成一个整体,把握已知和所求之间的关联,进行有目的、有意识的整体处理来解决问题的方法.本讲中求代数式的值时,将某一已知代数式的值作为整体代入计算,就运用了整体思想.例1 已知x-y=2,111x y-=,求x2y-xy2的值.11y=变形后得到y-x=xy,再将x2y-xy2因式分解后,整体代入计算.解:2.从特殊到一般的思想从特殊到一般的思想是指在解决问题时,以特殊问题为起点,抓住数学问题的特点,逐步分析、比较、讨论,层层深入,从解决特殊问题的规律中,寻找解决一般问题的方法和规律,又用以指导特殊问题的解决. 例2 观察下列树枝分杈的规律图,若第n个图树枝数用Y n表示,则Y9-Y4=()A.15×24 B.31×24 C.33×24 D.63×24分析:根据前几个图中的树枝数,可发现树枝分杈的规律为Y n=2n-1①从而可求出Y9-Y4.跟踪训练1.已知x2-3x-12=0,则代数式-3x2+9x+5的值是()A.31 B.-31 C.41 D.-412.按一定规律排列的单项式:a2①4a3①9a4①16a5①25a6①…,第n个单项式是()A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n3.若1136xx+=,且0<x<1,则221xx-=_______.4.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有________个交点.第4题图参考答案专项一 列代数式例1 D 例2 1275 1.B 2.2 3.()12112n nn a b +-+-⋅ 4.n 2+n -1专项二 整 式例1 D 例2 C 例3 3例4 解:原式=9x 2-6x+1+1-9x 2=-6x+2.当x=16时,原式=-6×16+2=1.1.B 2.C 3.A 4.D5.解:原式=x 2+4xy+4y 2+x 2-4y 2+x 2-4xy=3x 2.6.解:原式=x 2﹣6x +9+x 2﹣9+4x ﹣2x 2=﹣2x .当x =﹣12时,原式=﹣2×12⎛⎫- ⎪⎝⎭=1. 专项三 因式分解例1 A 例2 361.C 2.A 3.m (m-2) 4.4041 5.()224a x + 6.37. 解:原式=2x(x 2-4)=2x(x+2)(x-2). 当x=3时,原式=2×3×(3+2)(3-2)=30.专项四 分 式例1 C 例2 B例3 解:原式=2221+12121x x x x x x +-+÷+++=()()2+2+112x x x x x ⋅++=x (x +1)=x 2+x . 解方程x 2-x-2=0,得x 1=2,x 2=-1. 因为x+1≠0①所以x≠-1. 当x=2时,原式=22+2=6. 1.B 2.A 3.44.解:因为12A B x x ---=()()()()2112A x B x x x -+---=()()()212A+B x A B x x ----=()()2612x x x ---,所以22 6.A B A B +=⎧⎨--=-⎩,解得42.A B =⎧⎨=-⎩,5.原式=()()()22113331a a a a a a --+--⋅-+=()()()2113331a a a a a a +--+-⋅-+=()()221331a a a a +-⋅-+=2a ﹣6. 因为a =-1或a =3时,原式无意义,所以a 只能取1或0. 当a =1时,原式=2﹣6=﹣4.(当a =0时,原式=﹣6)专项五 二次根式例1 C 例2 C例3 解:原式112-=441.C 2.D 3.A 4.3 5.6.10专项六代数式中的数学思想例11-=,所以y-x=xy.因为x-y=2,所以y-x=xy=-2.y所以原式=xy(x-y)=-2×2=-4.例2 B1.B 2.A 3.-654.19036。
中考数学总复习知识点总结:第二章 代数式
第二章代数式考点一、整式的有关概念(3分)1.代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2.单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
考点二、多项式(11分)1.多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数, 叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母, 按照代数式指明的运算, 计算出结果, 叫做代数式的值。
注意: (1)求代数式的值, 一般是先将代数式化简, 然后再将字母的取值代入。
(2)求代数式的值, 有时求不出其字母的值, 需要利用技巧, “整体”代入。
2.同类项所有字母相同, 并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3.去括号法则(1)括号前是“+”, 把括号和它前面的“+”号一起去掉, 括号里各项都不变号。
(2)括号前是“﹣”, 把括号和它前面的“﹣”号一起去掉, 括号里各项都变号。
4.整式的运算法则整式的加减法: (1)去括号;(2)合并同类项。
整式的乘法:),(都是正整数)(n m a a mn n m = )()(都是正整数n b a ab n n n =22))((b a b a b a -=-+2222)(b ab a b a ++=+2222)(b ab a b a +-=-整式的除法:注意: (1)单项式乘单项式的结果仍然是单项式。
(2)单项式与多项式相乘, 结果是一个多项式, 其项数与因式中多项式的项数相同。
(3)计算时要注意符号问题, 多项式的每一项都包括它前面的符号, 同时还要注意单项式的符号。
(4)多项式与多项式相乘的展开式中, 有同类项的要合并同类项。
初中数学中考必考知识点汇总盘点
初中数学中考必考知识点汇总盘点一、代数部分1 .科学记数法:设N>0,则N=aX10"(比中lWa<10, n 为整数)。
2、有效数字:,个近似数,从左边第•个不是0的数.到精确到的数位为止,所仃的数字.叫做这个数的仃效数 字。
格确度的形式1两种:⑴精确到那字:(2)保印几个有效数字,3、代数式的分类:无理式4、整式的乘除:系的运算法则:其中m 、n 都是正整数 同底数州相乘:代数式有理式整代分式单项式多项式 席的乘方: ST =L 积的乘力:5、乘法公式: 平方差公式:(a + b)(a -b) = a 2 -b 2:完全平方公式:(a + b)2=a 2+2ab+b\ (a-b)2 =a 2-2ab + b 26,因式分解的股步骤:(1)如果多项式的各项有公因式,那么先提公因式:(2)提出公因式或无公因式可提,再号虑可否运用公式或卜字相乘法:7、分式定义:形呜的式门叫分式,其中A 、B 是脍式,II.R 中含勺字明<1)分式无意义:B=”时,分式无意义:BWO 时,分式仃意义. (2)分式的值为0: A=0, BWO 时,分式的值等「00 X 、分式的基本性质:<1)人=土也也是W (购整式):(2)B B • M从二次根式的性质:13(M 是关。
的箱式)(1) (4a)2 =a(a>0);(3) 7ab = & , b ya2O, b 》O); 10、二次根式的运算:(1) .次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根(2)二次根式的乘法:yjTi - \ib = 4ab (a^O, b>0)o(3):次根式的除法:二产= 4h二次根式运算的最终结果如果是根式,要化成坡简二次根式”11、一元一次方程(1)•儿,次方程的标准形式:ax+b=O (其中x)未知数,a、b是已知数,aWO)(2)•元•次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,,壬0)12、一元二次方程(3)•几二次方程的般形式:ax2 + bx + c = 0 ( 11:中x是未知数,a、b、c是已知数,a^O)(4)•元.次力程的解法:■按开平方法、配方法、公式法、因式分解法(5)一元(次方界解法的选择顺序是:先特殊后一般,如没有要求.一般不用配方法。
中考数学专题02 代数式【考点巩固】(解析版)
专题02 代数式考点1:代数式的概念与求值1.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31 B .31-C .41D .41-【答案】B 【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 【详解】解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-. 故选:B .2.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .元【答案】D 【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可. 【详解】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元), 故选:D .3.(2021·浙江嘉兴市·中考真题)观察下列等式:,,,…按此规律,则第个等式为__________________.【答案】.()20 3.6a +22110=-22321=-22532=-n 21n -=()221n n --【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【详解】解:∵,, ,…∴第个等式为:故答案是:.4.(2021·浙江台州市·中考真题)将x 克含糖10的糖水与y 克含糖30的糖水混合,混合后的糖水含糖( ) A .20 B .C .D .【答案】D 【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解. 【详解】解:混合之后糖的含量:, 故选:D .5.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:,…,则第个式子是___________.【答案】【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【详解】解:∵当n 为奇数时,;当n 为偶数时,,∴第n 个式子是:.22110=-22321=-22532=-n ()22211n n n -=--()221n n --%%%+100%2x y⨯+3100%20x y⨯+3100%10+10x yx y⨯10%30%3100%1010x y x yx y x y++=⨯++2335472,2,2,2a b a b a b a b +-+-n ()12112n nn a b +-+-⋅()111n +-=()111n +-=-()1211·2n n n a b +-+-故答案为:考点2:整式相关概念6.多项式 是一个关于x 的三次四项式,它的次数最高项的系数是﹣5,二次项的系数是34,一次项的系数是﹣2,常数项是4.【分析】直接利用多项式的次数与项数确定方法分析得出答案. 【解答】解:由题意可得,此多项式可以为: ﹣5x 3+34x 2﹣2x +4. 故答案为:﹣5x 3+34x 2﹣2x +4.7.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 .【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0. 考点3:整式的运算8.(2021·广西来宾市·中考真题)下列运算正确的是( ) A . B .C .D .【答案】A 【分析】分别根据同底数幂的乘法、同底数幂的除法、幂的乘方、整式的加减法则进行计算,即可求解. 【详解】解:A. ,原选项计算正确,符合题意; B. ,原选项计算错误,不合题意; C. ,原选项计算错误,不合题意;D. ,不是同类项,无法相减,原选项计算错误,不合题意. 故选:A9.(2021·四川达州市·中考真题)已知,满足等式,则___________.【答案】-3()1211·2n n n a b +-+-235a a a ⋅=623a a a ÷=()325a a =2232a a a -=235a a a ⋅=624a a a ÷=()326a a =232a a -ab 2690a a ++=20212020a b =【分析】先将原式变形,求出a 、b ,再根据同底数幂的乘法、积的乘方的逆运算即可求解. 【详解】解:由,变形得, ∴, ∴, ∴.故答案为:-310.(2021·广东中考真题)若且,则_____. 【答案】 【分析】 根据,利用完全平方公式可得,根据x 的取值范围可得的值,利用平方差公式即可得答案. 【详解】 ∵, ∴, ∵, ∴, ∴=, ∴==, 故答案为: 考点4:整式化简求值2690a a ++=()230a +=130,03a b +=-=13,3a b =-=()()()()20202020202020212020202120201113=33=33=3333a b ⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1136x x +=01x <<221x x-=6536-1136x x +=2125(36x x -=1x x-1136x x +=2211125()(436x x x xxx -=+-⋅=01x <<1x x <1x x -56-221x x -=11()(x x x x +-135(66⨯-6536-6536-11.(2021·吉林长春市·中考真题)先化简,再求值:(2)(2)(1)a a a a +-+-,其中4a =+.【答案】a - 【分析】首先利用平方差公式,单项式乘以多项式去括号,再合并同类项,然后将a 的值代入化简后的式子,即可解答本题. 【详解】()()()221a a a a +-+-224a a a =-+-当时,原式.12.(2021·贵州安顺市·中考真题)(1)有三个不等式,请在其中任选两个不等式,组成一个不等式组,并求出它的解集: (2)小红在计算时,解答过程如下:第一步第二步 第三步小红的解答从第_________步开始出错,请写出正确的解答过程. 【答案】(1)x <-3;(2)第一步,正确过程见详解 【分析】(1)先挑选两个不等式组成不等式组,然后分别求出各个不等式的解,再取公共部分,即可;(2)根据完全平方公式、去括号法则以及合并同类项法则,进行化简,即可. 【详解】解:(1)挑选第一和第二个不等式,得,由①得:x <-2, 由②得:x <-3,∴不等式组的解为:x <-3;4a =-4a =44-=()231,515,316x x x +--->()()211a a a +--2(1)(1)a a a +--22(1)a a a =+--221a a a =+--1a =-231515x x +<-⎧⎨->⎩①②(2)小红的解答从第一步开始出错,正确的解答过程如下:.故答案是:第一步 考点5:因式分解13.(2021·四川成都市·中考真题)因式分解:__________. 【答案】 【详解】解:=; 故答案为14.(2021·云南中考真题)分解因式:=______. 【答案】x (x +2)(x ﹣2). 【详解】试题分析:==x (x+2)(x ﹣2). 故答案为x (x+2)(x ﹣2).15.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____. 【答案】(a +1)2 【分析】直接利用完全平方公式分解. 【详解】a 2+2a +1=(a +1)2. 故答案为.考点6:分式有意义及分式为零的条件 16.(2021·浙江宁波市·中考真题)要使分式有意义,x 的取值应满足( ) A . B .C .D .【答案】B 【分析】由分式有意义,分母不为零,再列不等式,解不等式即可得到答案. 【详解】2(1)(1)a a a +--22(21)a a a a =+--+2221a a a a =+-+-31a =-24x -=(x+2)(x-2)24x -=222x -(2)(2)x x +-(2)(2)x x +-34x x -34x x -2(4)x x -()21+a 12x +0x ≠2x ≠-2x ≥-2x >-解: 分式有意义,故选: 考点7:分式性质17.(2021·四川自贡市·中考真题)化简:_________. 【答案】 【分析】利用分式的减法法则,先通分,再进行计算即可求解. 【详解】 解:, 故答案为:. 考点8:分式化简与运算18.(2021·四川南充市·中考真题)下列运算正确的是( )A .B .C .D .【答案】D 【分析】根据分式的加减乘除的运算法则进行计算即可得出答案 【详解】12x +20,x ∴+≠2.x ∴≠-.B 22824a a -=--22a +22824a a ---()()28222a a a =--+-()()()()()2282222a a a a a +=-+-+-()()()2222a a a -=+-22a =+22a +232496b a b a b ⋅=2312332b b ab a ÷=11223a a a +=2112111a a a -=-+-解:A.,计算错误,不符合题意; B. ,计算错误,不符合题意;C.,计算错误,不符合题意; D.,计算正确,符合题意; 故选:D19.(2021·江苏盐城市·中考真题)先化简,再求值:,其中. 【答案】,3 【分析】先通分,再约分,将分式化成最简分式,再代入数值即可. 【详解】 解:原式.∵∴原式.20.(2021·山东威海市·中考真题)先化简,然后从,0,1,3中选一个合适的数作为a 的值代入求值.【答案】2(a -3),当a =0时,原式=-6;当a =1时,原式=-4. 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a 的值,继而代入计算可得答案. 【详解】= 2324916b a a b b⋅=2231213=333221b a ab a ab b b÷=⨯23111=2222a a a a a+=++--=--+---22211112=11111a a a a a a a 21111m m m-⎛⎫+ ⎪-⎝⎭2m =1m +11(1)(1)1m m m m m-+-+=⋅-(1)(1)1m m m m m-+=⋅-1m =+2m =213=+=2211(1)369a a a a a a -+--÷--+1-2211(1)369a a a a a a -+--÷--+()()()221311333a a a a a a a +-⎡⎤-+-÷⎢⎥---⎣⎦= = = =2(a -3), ∵a ≠3且a ≠-1, ∴a =0,a =1,当a =0时,原式=2×(0-3)=-6; 当a =1时,原式=2×(1-3)=-4.21.(2021·内蒙古通辽市·中考真题)先化简,再求值:,其中x 满足. 【答案】x (x +1);6 【分析】先求出方程的解,然后化简分式,最后选择合适的x 代入计算即可. 【详解】解:∵ ∴x =2或x =-1 ∴ = = ==x (x +1)∵x =-1分式无意义,∴x =2当x =2时,x (x +1)=2×(2+1)=6.()2223123331a a a a a a a -⎛⎫----⋅⎪--+⎝⎭()222312331a a a a a a ---++⋅-+()()221331a a a a +-⋅-+2212(1)121x x x x x x +++-÷+++220x x --=220x x --=220x x --=2212(1)121x x x x x x +++-÷+++()221212()111x x x x x x +++÷+++-()2222()11x x x x x ++÷++()()22112x x x x x ++⨯++22.(2021·四川遂宁市·中考真题)先化简,再求值:,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 【答案】; 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解: , ∵m 是已知两边分别为2和3的三角形的第三边长, ∴3-2<m <3+2,即1<m <5, ∵m 为整数, ∴m =2、3、4, 又∵m ≠0、2、3 ∴m =4, ∴原式=. 23.(2021·四川凉山彝族自治州·中考真题)阅读以下材料,苏格兰数学家纳皮尔(J .Npler ,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler .1707-1783年)才发现指数与对数之间的联系. 对数的定义:一般地.若x a N =(且),那么x 叫做以a 为底N 的对数, 记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭32m m --12322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭=2223m m m m ÷--=2232m m m m-⋅-=32m m --=431422-=-0a >1a ≠log a x N =4216=24log 16=32log 9=239=,理由如下:设,则..由对数的定义得又.根据上述材料,结合你所学的知识,解答下列问题:(1)填空:①___________;②_______,③________; (2)求证:; (3)拓展运用:计算.【答案】(1)5,3,0;(2)见解析;(3)2【分析】(1)直接根据定义计算即可;(2)结合题干中的过程,同理根据同底数幂的除法即可证明;(3)根据公式:log a (M •N )=log a M +log a N 和log a=log a M -log a N 的逆用,将所求式子表示为:,计算可得结论. 【详解】解:(1)①∵,∴5,②∵,∴3,③∵,∴0;(2)设log a M =m ,log a N =n ,∴,,∴, ∴, ∴; (3)= log ()log log (0,1,0,0)a a a M N M N a a M N ⋅=+>≠>>log ,log a a M m N n ==,n m M a N a ==m n m n M N a a a +∴⋅=⋅=log ()a m n M N +=⋅log log a a m n M N +=+ log ()log log a a a M N M N ∴⋅=+2log 32=3log 27=7log l =log log log (0,1,0,0)a a a M M N a a M N N=->≠>>555log 125log 6log 30+-M N 5125630log ⨯5232=2log 32=3327=3log 27=071=7log 1=m a M =n a N =m n m n M a a a N-÷==log aM m n N =-log log log a a a M M N N=-555log 125log 6log 30+-5125630log ⨯==2.25.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加 块;(2)若一条这样的人行道一共有n (n 为正整数)块正方形地砖,则等腰直角三角形地砖的块数为 (用含n 的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?【答案】(1)2 ;(2);(3)1008块【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;(3)利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【详解】解:(1)由图可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 故答案为:2 ;(2)由(1)可知,每增加一块正方形地砖,即增加2块等腰直角三角形地砖; 当正方形地砖只有1块时,等腰直角三角形地砖有6块,即2+4;所以当地砖有n 块时,等腰直角三角形地砖有()块;故答案为:;(3)令 则5log25 24n +24n +24n +242021n +=1008.5n =当时,此时,剩下一块等腰直角三角形地砖 需要正方形地砖1008块1008n =242020n +=∴。
中考数学 第一章 课时2 代数式与整式(知识清单重难点讲解中考真题演练)
中考数学一轮复习·学与练第一章数与式课时2 代数式与整式知识清单考点一代数式1.代数式的概念用加、减、乘、除、乘方、开方等运算符号把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.2.列代数式把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来.3.代数式的求值(1)直接代入法:把已知字母的值代入代数式,并按原来的运算顺序计算求值.(2)整体代入法:①观察已知条件和所求代数式的关系;②将所求代数式变形后与已知代数式成倍分关系,一般会用到提公因式法、平方差公式法、完全平方公式法;③把已知代数式看成一个整体代入所求代数式中求值.考点二整式及其运算法则1.整式的概念与统称为整式.2.同类项(1)同类项:多项式中,所含相同,并且相同字母的指数也相同的项,叫做同类项.常数项与常数项是同类项.(2)合并同类项:把多项式中的合并成一项,叫做合并同类项.合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的不变.3.整式的加减(1)整式加减的实质是合并同类项.(2)去括号法则:括号前是“+”号,括号内各项都不变号,如a+(b+c)=a+b+c;括号前是“-”号,括号内每一项都,如a-(b+c)=a-b-c.(3)添加括号法则:括号前是“+”号,括到括号内的各项都不改变符号;括号前是“-”号,括到括号内的各项都改变符号.4.整式的乘除运 算 字母表示 单项式乘以单项式 2a ·3ab =6a 2b 单项式乘以多项式 m (a +b )=ma +mb多项式乘以多项式 (m +n )(a +b )=ma +mb +na +nb单项式除以单项式 ma 2÷na =man (n ≠0,a ≠0)多项式除以单项式(ma +mb )÷m =a +b (m ≠0)运 算 符号表示(ab ≠0,m ,n ,p 为正整数)举 例 同底数幂的乘法 a m ·a n = . x 2·x 3=x 5 同底数幂的除法 a m ÷a n = . x 3÷x 2=x 幂的乘方 (a m )n = . (x 2)3=x 6 积的乘方 (a m b n )p = .(x 2y 3)2=x 4y 6商的乘方(ba)n = . (x y)2=x 2y 26.乘法公式(1)完全平方公式:(a ±b )2= . (2)平方差公式:(a +b )(a -b )= .考点三 因式分解把一个多项式化为 的形式叫做把这个多项式因式分解. 1.因式分解的方法 (1)提公因式法 ①公因式的确定:系数:取各项系数的最大公约数; 字母:取各项相同的字母; 指数:取各项相同字母的最低次数. ②公式:ma +mb +mc = . (2)公式法①平方差公式:a 2-b 2 = ;②完全平方公式:a 2±2ab +b 2 = ; ③十字相乘法:x 2+(p +q )x +pq = . 2.因式分解的步骤(1)若有公因式,要先提公因式,首项含有负号的,连同负号一起提出; (2)若多项式是二项式,考虑是否具备平方差公式的特点; (3)若多项式是三项式,考虑是否具备完全平方公式的特点;(4)若多项式是四项及以上,考虑局部提因式或使用分组分解法,然后再继续分解.重 难 点 讲 解命题点1 求代数式的值的方法求代数式的值的一般方法是先用数值代替代数式中的每个字母,然后计算求得结果.对于特殊的代数式,也可以采用如下方法来解:(1)给出代数式中所有字母的值.该类题一般是先化简代数式,再代入字母的值,然后进行计算. (2)给出代数式中所含几个字母之间的关系,不直接给出字母的值.该类题一般是把所要求的代数式通过恒等变形转化为用已知关系表示的形式,再代入计算.经典例题1 已知x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值是 .【解析】∵x +y =0.2①,x +3y =1②,∴①+②得2x +4y =1.2,即x +2y =0.6.又∵x 2+4xy +4y 2=(x +2y )2,∴原式=(0.6)2=0.36.【答案】 0.36命题点2 不完全归纳法——探索规律中的应用方法根据一系列数式关系或一组图形的变化规律,从中总结其所反映的规律.猜想这种规律,需要把图形中的有关数量关系列式表达出来,再对所列式进行对照,从而得到最终结论.经典例题2 已知整数a 1,a 2,a 3,a 4,…,满足下列条件:a 1=0,a 2=-|a 1+1|,a 3=-|a 2+2|,a 4=-|a 3+3|,…,依次类推,a 2018的值为( )A .-1008B .-1009C .-1007D .-2018【解析】由于a 1=0,a 2=-|a 1+1|=-1,a 3=-|a 2+2|=-1,a 4=-|a 3+3|=-2,a 5=-2,a 6=-3,a 7=-3,a 8=-4,a 9=-4,a 10=-5,a 11=-5,a 12=-6,…,所以a 2018=-20182=-1009.【答案】 B命题点3 转化法——复杂的多项式加减运算的方法先化简再求值,就是将复杂的多项式通过去括号、合并同类项转化为简单的多项式或单项式,再代入求值.经典例题3 化简:x -{-5x -[-y +(-x +3y )+x ]}. 解: 解法一:原式=x -[-5x -(-y -x +3y +x )] =x -(-5x -2y ) =x +5x +2y =6x +2y .解法二:原式=x +5x +[-y +(-x +3y )+x ] =6x -y +(-x +3y )+x =6x -y -x +3y +x =6x +2y .解法三:原式=x +5x +(-y -x +3y +x )=6x +2y .命题点4 综合法——分解因式的一般步骤 (1)首先要熟练掌握公式的结构特征并牢记公式.(2)看项数选公式,“二项”考虑平方差公式,“三项”考虑完全平方公式.(3)分解因式的试题中一般采用“一提取”“二公式”的方法进行综合分解,即如果整式中含有公因式,要先提取公因式,再看余下的式子能否用公式法继续分解,直至不能再分解为止.经典例题4 因式分解:x 3-9x = .【解析】先提取公因式x ,再利用平方差公式求解.即x 3-9x =x (x 2-9)=x (x +3)(x -3). 【答案】 x (x +3)(x -3)中 考 真 题 演 练一、选择题1. 用代数式表示:a 的2倍与3的和,下列表示正确的是( ) A .2a -3 B .2a +3 C .2(a -3) D .2(a +3)2. 用一根长为a (单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(a +4)cmD .(a +8)cm 3. 按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =-4,y =-2C .x =2,y =4D .x =4,y =2 4. 已知2x 2-3x -2=0,则x 2-32x +3的值为( )A .12 B .1 C .2 D .45. 计算(-mn 2)3的结果是( )A .-m 3n 6B .-m 4n 5C .m 3n 6D .m 4n 5 6. 下列各式正确的是( )A .x 3+x 2=x 5B .x 3-x 2=xC .x 3· x 2=x 6D .x 3÷x =x 2 7. 下列计算正确的是( )A .-a 4b ÷a 2b =-a 2bB .(a -b )2=a 2-b 2C .a 2·a 3=a 6D .-3a 2+2a 2=-a 2 8. 计算(a 2)3÷(a 2·a 3)的结果是( )A .0B .1C .aD .a 3 9. 下列各式分解因式正确的是( )A .x 2+6xy +9y 2=(x +3y )2B .2x 2-4xy +9y 2=(2x -3y )2C .2x 2-8y 2=2(x +4y )(x -4y )D .x (x -y )+y (y -x )=(x -y )(x +y ) 10. 多项式4a -a 3分解因式的结果是( )A .a (4-a 2)B .a (2-a )(2+a )C .a (a -2)(a +2)D .a (2-a )2 11. 下列运算正确的是( )A .a 2·a 5=a 10B .(3a 3)2=6a 8C .(a +b )2=a 2+b 2D .(a +2)(a -3)=a 2-a -6 12. 某商品打七折后价格为a 元,则原价为( )A .a 元B .107a 元C .30%a 元D .710a 元二、填空题13. 某商品原价为a 元,如果按原价的八折销售,那么售价是 元.(用含字母a 的代数式表示)14. 若2x =5,2y=3,则22x +y =.15. 一组“ 数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .16. 因式分解:2a 2-8b 2= .三、解答题17. 如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长; (2)m =7,n =4,求拼成矩形的面积.18. 先化简,再求值:2x 2-[3(-13x 2+23xy )-2y 2]-2(x 2-xy +2y 2),其中x =12,y =-1.19. 先化简,再求值:-(4a 2-2ab +12)+2(2a 2-3ab )+12,其中|a -12|+b +1=0.20. 先化简,再求值:a (a +2b )-(a +1)2+2a ,其中a =2+1,b =2-1.21. 已知长方形和直角梯形相应边长(单位:cm),如图所示,且它们的面积相差3cm 2,试求x 的值.。
代数式知识点总结精编版
第一章 有理数1、有理数(1) 有理数的定义:能写成)0p q ,p (pq ≠为整数且形式的数。
(2) 有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;(不是有理数。
2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3、相反数(1) 只有符号不同的两个数;0的相反数还是0;(2) 相反数的和为0 ( a+b=0 ( a 、b 互为相反数;(3) 数a 的相反数是-a ,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是04、绝对值(1) 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数; 注意:绝对值的意义是数轴上表示某数的点离原点的距离。
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 。
5、倒数:乘积为1的两个数互为倒数;注意:0没有倒数。
若 a ≠0,那么a 的倒数是a1;若ab=1( a 、b 互为倒数;若ab=-1( a 、b 互为负倒数)。
6、有理数比大小(1) 正数的绝对值越大,这个数越大;(2) 正数永远比0大,负数永远比0小;(3) 正数大于一切负数;(4) 两个负数比大小,绝对值大的反而小;(5) 数轴上的两个数,右边的数总比左边的数大。
7、有理数加法法则(1) 同号两数相加,取相同的符号,并把绝对值相加;(2) 异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3) 一个数与0相加,仍得这个数。
8、有理数加法的运算律(1) 加法的交换律:a+b=b+a ;(2) 加法的结合律:(a+b)+c=a+(b+c)。
9、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
人教版中考数学复习:第1章课时3 代数式、整式与因式分解
按照这种规律摆下去,第n个图形用的棋子个数为
( D)
A. 3n
B. 6n
C. 3n+6
D. 3n+3
考点巩固训练
4. 如图1-1-3-6所示的图形都是由同样大小的小圆圈按
一定规律组成的,其中第①个图形中一共有1个空心小圆
圈,第②个图形中一共有6个空心小圆圈,第③个图形中
中考考题精练
考点1 代数(5年未考) 1. (2017自贡)如图1-1-3-1,填在各正方形中四个数之 间都有相同的规律,根据这种规律,m的值为( ) C
A. 180 C. 184
B. 182 D. 186
中考考题精练
2. (2017扬州)在一列数:a1,a2,a3,…,an中,a1=3,a2=7, 从第三个数开始,每一个数都等于它前两个数之积的个
A. 1
B. 2
C. 3
D. 5
考点巩固训练
7. 计算(-xy3)2的结果是( A ) A. x2y6 C. x2y9 8. 下列运算正确的是( C ) A. 3a+4a=12a B. (ab3)2=ab6 C. (5a2-ab)-(4a2+2ab)=a2-3ab D. x12÷x6=x2
B. -x2y6 D. -x2y9
17. 把式子:-6x2+12x-6因式分解,正确的是( )A
A. -6(x-1)2 B. -6(x+1)2 C. -6x(x-2) D. -6x(x+2)
考点巩固训练
18. 把多项式4x2y-4xy2-x3分解因式的结果是( B ) A. 4xy(x-y)-x3 B. -x(x-2y)2 C. x(4xy-4y2-x2) D. -x(-4xy+4y2+x2) 19. 分解因式:ax2-ay2=___a_(x_+_y_)_(_x_-y_)____. 20. 分解因式:4x2-6x=____2_x_(_2_x_-3_)____.
2022年最新中考数学知识点梳理 考点02 整式与因式分解(教师版)
2022年最新中考数学知识点梳理考点总结+真题演练涵盖近年来的中考真题和中考模拟考点02 整式与因式分解考点总结一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等. 二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.注:○1单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2143a b -,这种表示就是错误的,应写成2133a b -;○2一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如325a b c -是6次单项式。
2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项. 3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项. 5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 6.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -.7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. (2)单项式与多项式相乘:m (a +b +c )=ma +mb +mc . (3)多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nb . 8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-. (2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加.三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算.2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++.(2)公式法:运用平方差公式:²²()()a b a b a b -=+-. 运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法: 为两项时,考虑平方差公式; 为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.真题演练一.选择题(共10小题)1.(2021•河北模拟)若(9m)2=312,则m的值为()A.3 B.4 C.5 D.6【分析】化为同底数的幂的形式,列方程即可得到答案.【解答】解:∵(9m)2=312,∴34m=312,∴4m=12,∴m=3,故选:A.2.(2021•开平区一模)如果()•m=m6,那么()=()A.m7B.m6C.m5D.5m【分析】根据同底数幂的乘法法则解决此题.【解答】解:根据同底数幂的乘法,得m5•m=m6.故选:C.3.(2021•桥东区二模)关于﹣a﹣b进行的变形或运算:①﹣a﹣b=﹣(a+b);②(﹣a﹣b)2=(a+b)2;③|﹣a﹣b|=a﹣b;④(﹣a﹣b)3=﹣(a﹣b)3.其中不正确的是()A.①②B.③④C.①③D.②④【分析】利用完全平方公式,绝对值的定义,去括号和添括号法则逐一判断即可.【解答】解:①﹣a﹣b=﹣(a+b),正确;②(﹣a﹣b)2=(a+b)2,正确;③|﹣a﹣b|=a+b,故原说法错误;④(﹣a﹣b)3=﹣(a+b)3,故原说法错误.其中不正确的有③④,故选:B.4.(2021•河北模拟)若k为正整数,则(k3)2表示的是()A.2个k3相加B.3个k2相加C.2个k3相乘D.5个k相乘【分析】根据幂的定义判断即可. 【解答】解:(k 3)2表示的是2个k 3相乘. 故选:C .5.(2021•安次区一模)计算a 6×(﹣a 2)的结果是( ) A .a 4B .﹣a 8C .a 8D .﹣a 4【分析】利用同底数的幂相乘,底数不变,指数相加,即可得到答案. 【解答】解:a 6×(﹣a 2)=﹣a 8, 故选:B .6.(2021•开平区一模)古希腊著名的毕达哥拉斯学派把1,3,6,10......这样的数称为“三角形数”,而把1,4,9,16.......这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,根据上面的规律,用含有n (n 为大于等于1的整数)的等式表示上面关系正确的是( )A .n +n +2=n 2B .n (n +3)=n 2C .(n +1)(n ﹣1)=n 2﹣1 D .n(n+1)2+(n+1)(n+1+1)2=(n +1)2【分析】根据特殊到一般的数学思想解决此题. 【解答】解:第1个图形,(1+1)2=4=1+(1+2); 第2个图形,(2+1)2=9=1+2+(1+2+3); 第3个图形,(3+1)2=16=1+2+3+(1+2+3+4); 第4个图形,(4+1)2=25=1+2+3+4+(1+2+3+4+5); …第n ﹣1个图形,(n ﹣1+1)2=n 2=1+2+3+…+n ﹣1+(1+2+3+…+n ); 第n 个图形,(n +1)2=1+2+3+…+n +(1+2+3+…+n +n +1). ∴(n +1)2=n(n+1)2+(n+1)(n+2)2. 故选:D .7.(2021•桥东区二模)若33+33+33+⋯+33︸k 个33=3m (k >1,k ,m 都是正整数),则m 的最小值为( ) A .3B .4C .6D .9【分析】提取公因式33,原式化为:33⋅(1+1+1+⋯+1)︷k=3m,根据k >1,k ,m 都是正整数,求出k 的最小值,进而求出m 的最小值.【解答】解:原式化为:33⋅(1+1+1+⋯+1)︷k=3m, ∴k =3m÷33=3m ﹣3,∵k >1,k ,m 都是正整数, ∴k 的最小值为3, ∴m ﹣3=1, ∴m 的最小值为4, 故选:B .8.(2021•唐山一模)若1052﹣210×5+52=k +992﹣1,则k 的值是( ) A .100B .105C .200D .205【分析】由1052﹣210×5+52=(105﹣5)2=1002=k +992﹣1=k +100×98,可得k 的值. 【解答】解:∵1052﹣210×5+52=(105﹣5)2=1002,k +992﹣1=k +(99+1)×(99﹣1)=k +100×98,∴k +100×98=1002, ∴k =200. 故选:C .9.(2021•鸡泽县模拟)我国古代数学的许多创新和发展都位居世界前列,如南宋数宁家杨辉(约13世纪)所著的《详解九章算术》一书中,用下图的三角形解释二项和(a +b )n的展开式的各项系数,此三角形称为“杨辉三角”. (a +b )0…① (a +b )1…①①(a+b)2…①②①(a+b)3…①③③①(a+b)4…①④⑥④①(a+b)5…①⑤⑩⑩⑤①…根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017 B.2016 C.191 D.190 【分析】根据图形中的规律即可求出(a+b)20的展开式中第三项的系数.【解答】解:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+19=190,故选:D.10.(2021•平泉市一模)下列运算正确的是()A.x3+x3=2x6B.(2x)3=6x3C.2x2•3x=6x3D.(2x﹣y)2=4x2﹣y2【分析】根据整式的加减运算以及乘法运算法则即可求出答案.【解答】解:A、原式=2x3,故A不符合题意.B、原式=8x3,故B不符合题意.C、原式=6x3,故C符合题意.D、原式=4x2﹣4xy+y2,故D不符合题意.故选:C.二.填空题(共5小题)11.(2021•河北模拟)已知a2+ab=0,b2﹣3ab=4.(1)3ab﹣b2=﹣4 ;(2)a﹣b=±2 .【分析】(1)加上一个负括号,然后整体代入;(2)已知两式相加,构成完全平方式,利用直接开平方法求解.【解答】解:(1)3ab ﹣b 2=﹣(b 2﹣3ab ) =﹣4; 故答案为:﹣4;(2)∵a 2+ab =0,b 2﹣3ab =4, ∴a 2+ab +b 2﹣3ab =4. 即a 2﹣2ab +b 2=4. ∴(a ﹣b )2=4. ∴a ﹣b =±2. 故答案为:±2.12.(2021•顺平县二模)如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“跟斗数”,定义新运算:将一个“跟斗数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a ),例如:a =13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题: (1)计算:ω(23)= 5 .(2)若一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且ω(b )=8,则“跟斗数”b = 26 .(3)若m ,n 都是“跟斗数”,且m +n =100,则ω(m )+ω(n )= 19 . 【分析】(1)根据题目中“跟斗数”的定义,可以计算出f (23)的值;(2)根据题意,可以得到关于k 的方程,从而可以求得k 的值,然后即可得到b 的值; (3)根据题意,可以表示出m 、n ,然后即可计算出f (m )+f (n )的值. 【解答】解:(1)ω(23)=23+3211=5. 故答案为:5;(2)∵一个“跟斗数”b 的十位数字是k ,个位数字是2(k +1),且ω(b )=8, ∴[10k+2(k+1)]+[10×2(k+1)+k]11=8,解得k =2, ∴2(k +1)=6,∴b=26.故答案为:26;(3)∵m,n都是“跟斗数”,且m+n=100,设m=10x+y,则n=10(9﹣x)+(10﹣y),∴ω(m)+ω(n)=(10x+y)+(10y+x)11+[10(9−x)+(10−y)]+[10(10−y)+(9−x)]11=10x+y+10y+x11+90−10x+10−y+100−10y+9−x11=11x+11y11+209−11x−11y11=x+y+19﹣x﹣y=19.故答案为:19.13.(2021•河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为a2+b2;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 4 块.【分析】(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,即可求解;(2)利用完全平方公式可求解.【解答】解:(1)由图可知:一块甲种纸片的面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,(x≥0)∴a2+4b2+xab是一个完全平方式,∴x为4,故答案为:4.14.(2021•丰润区一模)计算:(﹣a)6÷a3=a3.【分析】同底数幂相除,底数不变,指数相减.据此计算即可.【解答】解:(﹣a)6÷a3=a6÷a3=a3.故答案为:a3.15.(2021•衡水模拟)若(2x+4y)2=4x2﹣2(m﹣1)xy+16y2,则m的值为﹣7 .【分析】利用完全平方公式的结构特征判断即可求出m的值.【解答】解:∵(2x+4y)2=4x2+16xy+16y2=4x2﹣2(m﹣1)xy+16y2,∴﹣2(m﹣1)=16,∴m=﹣7.故答案为:﹣7.三.解答题(共3小题)16.(2021•河北模拟)在数学课上,王老师出示了这样一道题目:“当a=12,b=﹣3时,求多项式2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)的值.”解完这道题后,小明指出:“a=12,b=﹣3是多余的条件.”师生讨论后,一致认为小明的说法是正确的.(1)请你说明正确的理由;(2)受此启发,王老师又出示了一道题目:“已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,求m+n的值.”请你解决这个问题.【分析】(1)去括号合并同类项可得代数式的值与a、b无关,即可得结论;(2)先求出m、n的值,再代入计算即可.【解答】解:(1)2a2+4ab+2b2﹣2(a2+2ab+b2﹣1)=2a2+4ab+2b2﹣2a2﹣4ab﹣2b2+2=2,∴该多项式的值为常数.与a和b的取值无关,小明的说法是正确的;(2)2x2﹣my+12﹣(nx2+3y﹣6)=2x2﹣my+12﹣nx2﹣3y+6=(2﹣n)x2+(﹣m﹣3)y+18,∵已知无论x,y取什么值,多项式2x2﹣my+12﹣(nx2+3y﹣6)的值都等于定值18,∴2﹣n=0,﹣m﹣3=0,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1.17.(2021•南皮县一模)已知:整式A=2x+1,B=2x﹣1.(1)化简A﹣2B;(2)若无论x为何值,A•B+k(k为常数)的值都是正数,求k的取值范围.【分析】(1)把相应的整式代入,再利用单项式乘多项式的法则,以及合并同类项的法则进行运算即可;(2)利用多项式乘多项式的法则进行运算,并结合条件进行分析即可.【解答】解:(1)A﹣2B=(2x+1)﹣2(2x﹣1)=2x+1﹣4x+2=﹣2x+3;(2)A•B+k=(2x+1)(2x﹣1)+k=4x2﹣1+k,∵无论x为何值时,4x2≥0,若A•B+k的值是正数,则﹣1+k>0,解得:k>1.18.(2021•开平区一模)(1)化简求值:(﹣m2+3+2m)﹣(5m﹣4+3m2),其中m=﹣2.(2)老师出了一道整式计算题化简求值题:(5x2﹣9)+(2+ax2),其中的字母a为常数;小明计算后说这个题的最后结果与x的取值无关,请你通过计算找到a的值.【分析】(1)先化简,再把给定字母的值代入计算,得出整式的值;(2)先化简,再根据计算后说这个题的最后结果与x的取值无关这个条件,列等式求出a.【解答】解:(1)(﹣m2+3+2m)﹣(5m﹣4+3m2)=﹣m2+3+2m﹣5m+4﹣3m2=﹣4m2﹣3m+7;把m=﹣2代入原式得,﹣4×(﹣2)2﹣3×(﹣2)+7=﹣3.(2)(5x2﹣9)+(2+ax2)=5x2﹣9+2+ax2=﹣7+(5+a)x2,∵计算后说这个题的最后结果与x的取值无关,∴5+a=0,∴a=﹣5.。
中考数学专题02 代数式【考点精讲】(解析版)
考点1:代数式的概念与求值1.代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式.2.代数式的值:用具体数代替代数式中的字母,按运算顺序计算出的结果叫做代数式的值。
求代数式的值分两步:第一步,代数;第二步,计算.要充分利用“整体”思想求代数式的值。
【例1】(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8nm (元) B .8nm(元) C .8mn(元) D .8mn(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可; 【详解】∵m 千克的售价为n 元, ∴1千克商品售价为n m, ∴8千克商品的售价为8nm(元); 故选A .【例2】(2021·内蒙古中考真题)若1x =,则代数式222x x -+的值为( )A .7B .4C .3D .3-【答案】C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解. 【详解】解:())22222=111113x x x -+-+=+-+=.故选:C【例3】(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.专题02 代数式【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果. 【详解】解:根据题意可知: 第一项:1111122=+, 第二项:2112242=+, 第三项:3113382=+, 第四项:41144162=+, …则第n 项是12n n +; 故答案为:12n n +.有关代数式的常见题型为用代数式表示数字或图形的变化规律. 数与图形的规律探索问题,关键要能够通过观察、分析、联想与归纳找出数或图形的变化规律,并用代数式表示出来.1.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价50%,再打六折C .先提价30%,再降价30%D .先提价25%,再降价25%【答案】B【分析】设原件为x 元,根据调价方案逐一计算后,比较大小判断即可. 【详解】设原件为x 元,∵先打九五折,再打九五折,∴调价后的价格为0.95x ×0.95=0.9025x 元, ∵先提价50%,再打六折,∴调价后的价格为1.5x ×0.6=0.90x 元, ∵先提价30%,再降价30%, ∴调价后的价格为1.3x ×0.7=0.91x 元, ∵先提价25%,再降价25%,∴调价后的价格为1.25x ×0.75=0.9375x 元, ∵0.90x <0.9025x <0.91x <0.9375x 故选B2.(2021·四川达州市·中考真题)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为___________.【答案】2【分析】根据运算程序的要求,将x=3代入计算可求解. 【详解】 解:∵x =3<4∴把x =3代入1(4)y x x =-≤, 解得:312y =-=, ∴y 值为2, 故答案为:2.3.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n +2n ×(n -1),得出结论即可. 【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯ 第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯ 第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯ 第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯ …由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+故答案为:2n 2+2n .考点2:整式相关概念1.单项式:只含有数字与字母的积的代数式叫做单项式.单独的一个数或一个字母也是单项式.2.多项式:几个单项式的和叫做多项式. 多项式中次数最高的项的次数,叫做这个多项式的次数.3.整式:单项式与多项式统称整式.4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.【例4】(2021·青海中考真题)已知单项式4272m a b -+与223m n a b +是同类项,则m n +=______. 【答案】3【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出m ,n 的值,再代入代数式计算即可. 【详解】解:∵单项式4272m a b -+与223m n a b +是同类项, ∴2m =4,n +2=-2m +7, 解得:m =2,n =1, 则m +n =2+1=3.故答案是:3.【例5】(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( ) A .21n n a + B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决. 【详解】解:∵一列单项式:23456,4,9,16,25a a a a a ,..., ∴第n 个单项式为21n n a +, 故选:A .【例6】已知(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式,求m 2﹣2m +2= . 【答案】17【分析】直接利用单项式的次数确定方法分析得出答案. 【详解】解:∵(m ﹣3)x 3y |m |+1是关于x ,y 的七次单项式, ∴3+|m |+1=7且m ﹣3≠0, 解得:m =﹣3,∴m 2﹣2m +2=9+6+2=17. 故答案为:17.1.①单项式中的数字因数称为这个单项式的系数;②一个单项式中,所有字母的指数的和叫做这个单项式的 次数2.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数1.(2021·上海中考真题)下列单项式中,23ab 的同类项是( ) A .32a b B .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项 【详解】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致, ∴32a b 不是23a b 的同类项,不符合题意;∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致, ∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致, ∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致, ∴3ab 不是23a b 的同类项,不符合题意; 故选B2.关于多项式5x 4y ﹣3x 2y +4xy ﹣2,下列说法正确的是( ) A .三次项系数为3B .常数项是﹣2C .多项式的项是5x 4y ,3x 2y ,4xy ,﹣2D .这个多项式是四次四项式【答案】B【分析】根据多项式的项、次数的定义逐个判断即可.【详解】解:A 、多项式5x 4y ﹣3x 2y +4xy ﹣2的三次项的系数为﹣3,错误,故本选项不符合题意;B 、多项式5x 4y ﹣3x 2y +4xy ﹣2的常数项是﹣2,正确,故本选项符合题意;C 、多项式5x 4y ﹣3x 2y +4xy ﹣2的项为5x 4y ,﹣3x 2y ,4xy ,﹣2,错误,故本选项不符合题意;D 、多项式5x 4y ﹣3x 2y +4xy ﹣2是5次四项式,错误,故本选项不符合题意; 故选:B .3.若单项式﹣x 3y n +5的系数是m ,次数是9,则m +n 的值为 . 【答案】0【分析】先依据单项式的系数和次数的定义确定出m 、n 的值,然后求解即可. 【解答】解:根据题意得:m =﹣1,3+n +5=9, 解得:m =﹣1,n =1, 则m +n =﹣1+1=0. 故答案为:0.考点3:整式的运算 1.幂的运算性质:(1)同底数幂相乘底数不变,指数相加. 即:a m ·a n =a m +n (m ,n 都是整数). (2)幂的乘方底数不变,指数相乘. 即:(a m )n =a mn (m ,n 都是整数).(3)积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘. 即:(ab )n =a n b n (n 为整数).(4)同底数幂相除底数不变,指数相减. 即:a m ÷a n =a m -n (a ≠0,m,n 都为整数). (5)a 0=1(a ≠0), a -n =a1(a ≠0). 2.整式的运算:(1)整式的加减:几个整式相加减,如果有括号就先去括号,再合并同类项.(2)整式的乘法:单项式与单项式相乘,把它们的系数、相同字母分别相乘;单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,即m (a +b +c )=ma +mb +mc ;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,即(m +n )(a +b )=ma +mb +na +nb .(3)整式的除法:单项式除以单项式,把系数与同底数幂分别相除,作为商的因式;多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加. 3.乘法公式:(1)平方差公式:(a +b )(a -b )=a 2-b 2. (2)完全平方公式:(a ±b )2=a 2±2ab +b 2.(3)常用恒等变换:a 2+b 2=(a +b )2-2ab=(a -b )2+2ab ;(a -b )2=(a +b )2-4ab.【例7】(2021·河南中考真题)下列运算正确的是( )A .22()a a -=-B .2222a a -=C .23a a a ⋅=D .22(1)1a a -=-【答案】C【分析】直接利用幂的运算性质和完全平方公式分别判断得出答案. 【详解】解:A 、22()a a -=,原计算错误,不符合题意; B 、2222a a a -=,原计算错误,不符合题意; C 、23a a a ⋅=,正确,符合题意;D 、22(1)21a a a -=-+,原计算错误,不符合题意; 故选:C .【例8】(2021·福建中考真题)下列运算正确的是( )A .22a a -=B .()2211a a -=- C .632a a a ÷=D .326(2)4a a =【答案】D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案. 【详解】解:A :()221a a a a -=-=,故 A 错误; B :()22121a a a -=-+,故 B 错误; C :63633a a a a -÷==,故C 错误; D :()()2232332622·44a a a a ⨯===.故选:D【例9】(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案. 【详解】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意; B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意; C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意; 故选:D .1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( ) A .8a B .6aC .8a -D .6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可. 【详解】解:原式24246a a a a +=⋅==. 故选B .2.(2021·四川宜宾市·中考真题)下列运算正确的是( ) A .23a a a += B .()32622a a =C .623a a a ÷=D .325a a a ⋅=【答案】D【分析】根据同底数幂相乘底数不变指数相加、同底数幂相除底数不变指数相减、乘积的幂等于各部分幂的乘积运算法则求解即可.【详解】解:选项A :a 与2a 不是同类项,不能相加,故选项A 错误; 选项B :()32628aa =,故选项B 错误;选项C :62624a a a a -÷==,故选项C 错误; 选项D :33522a a a a +⋅==,故选项D 正确; 故选:D .3.(2021·黑龙江齐齐哈尔市·中考真题)下列计算正确的是( )A .B .C .D .【答案】A【分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案. 【详解】A 、,正确,故该选项符合题意;B 、,错误,故该选项不合题意;C 、,错误,故该选项不合题意;D 、与不是同类项,不能合并,故该选项不合题意; 故选:A .考点4:整式化简求值【例10】(2021·湖南永州市·中考真题)先化简,再求值:,其中.【分析】先计算完全平方公式、平方差公式,再计算整式的加减法,然后将代入求值即可得. 【详解】解:原式,,将代入得:原式.1.(2021·四川南充市·中考真题)先化简,再求值:,其中.【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.4=±()2234636m n m n =24833a a a ⋅=33xy x y -=4=±()2234639m n m n =24633a a a ⋅=3xy 3x ()()212(2)x x x +++-1x =1x =22214x x x =+++-25x =+1x =2157=⨯+=2(21)(21)(23)x x x +---1x =-【详解】解:原式= = =,当x =-1时,原式==-22.2.(2020•凉山州)化简求值:(2x +3)(2x ﹣3)﹣(x +2)2+4(x +3),其中x =2. 【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x 的值代入计算可得答案. 【详解】原式=4x 2﹣9﹣(x 2+4x +4)+4x +12 =4x 2﹣9﹣x 2﹣4x ﹣4+4x +12 =3x 2﹣1, 当x =2时, 原式=3×(2)2﹣1 =3×2﹣1 =6﹣1 =5. 考点5:因式分解因式分解的步骤:(概括为“一提,二套,三检查”) (1)先运用提公因式法:ma +mb +mc =m (a +b +c ).(2)再套公式:a 2-b 2=(a +b )(a -b ),a 2±2ab +b 2=(a ±b )2(乘法公式的逆运算).(3)最后检查:分解因式是否彻底,要求必须分解到每一个多项式都不能再分解为止.【例11】(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x - B .()221x x +C .()221x x -D .()221x x +【答案】A 【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可 【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【例12】(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+2241(4129)x x x ---+22414129x x x --+-1210x -()12110⨯--C .()()122y y -+D .()()212y y -+【答案】A 【分析】利用平方差公式因式分解即可. 【详解】解:214y -=()()1212y y -+,故选:A .【例13】(2020•成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2的值为 . 【答案】49【分析】先根据完全平方公式变形,再代入,即可求出答案. 【详解】∵a =7﹣3b , ∴a +3b =7, ∴a 2+6ab +9b 2 =(a +3b )2 =72 =49, 故答案为:49.本考点是中考的高频考点,其题型一般为填空题,难度中等。
中考数学总复习——2.代数式和整式
7.【2019·厦门集美区二模·4 分】下列计算正确的是( C )
A.a8+a2=a10
B.a8·a2=a16
C.(a8)2=a16
D.a8÷a2=a4
8.【2019·福建·4 分】分解因式:x2-9=_(_x_-__3_)(_x_+__3_)__.
9.【2020·福州质检·4 分】若 m(m-2)=3,则(m-1)2 的值是 ____4______.
考点1 求代数式的值
例1【2020·漳州质检·4分】若a是方程x2+x-1=0的根, 则代数式2 020-a2-a的值是__2__0_1_9____.
考点2 整式的化简求值
例 2【2019·宁德质检·8 分】先化简,再求值:(x-3)2+x(2-x) -9,其中 x=- 3. 解:原式=x2-6x+9+2x-x2-9=-4x. ∵x=- 3, ∴原式=-4×(- 3)=4 3.
考点3整式的概念
例3【2020·厦门质检·4分】将单项式3m与m合并同类项, 结果是( B ) A.4 B.4m C.3m2 D.4m2
例 4【2020·厦门质检·4 分】若多项式 x2+2x+n 是完全平方式,
则常数 n 是( D )
A.-1
B.14
1 C.2
D.1
【点拨】本题考查完全平方式的概念,完全平方式必须满 足“a2+2ab+b2”或“a2-2ab+b2”的结构特征,解答 时容易出错.
考点4 整式的运算
例5【2020·三明质检·4分】下列运算正确的是( C )
A.(a2)3=a5
B.3a2+a=3a3
C.a5÷ a2=a3(a≠0) D.a(a+1)=a2+1
考点5 因式分解
例6【2020·宁德质检·4分】下列多项式能用完全平方公式
2024河南中考数学一轮知识点复习专题 代数式与整式 课件
考点1 代数式及其求值
用运算符号连接数和字母组成的式子叫做代数式,单独一个数或
代数式
一个字母也是代数式.
列代数 把问题中的数量关系用代数式表示出来,就是列代数式.如:某件
式
.
上衣的原价是 元,降价 20% 后的售价为①______元.
只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.如 2 ⋅
32 = 2 × 3 ⋅ 2 ⋅ = 63 .
(2)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加,
+ +
即 + + = ⑮_______________.
(3)多项式乘多项式:用一个多项式的每一项乘另一个多项式的每一项,
考点6 因式分解
积
1.定义:把一个多项式化为几个整式的⑲____的形式,这种变形叫做把这个
多项式因式分解.
2.因式分解的基本方法
++
(1)提公因式法: + + = ⑳_____________.
最大公约数
系数:取各项整数系数的㉑____________
公因式的确定 字母:取各项相同的字母
5 ÷ 2 =
3
= ⑫_____(
, 为正整数)
2
3
= 6
= ⑬_______(
为正整数)
23 2 =
46
考点5 整式的运算
合并同类项
1.整式的加减运算:先去括号,再 ⑭____________.
2.整式的乘法运算
(1)单项式乘单项式:把系数、同底数幂分别相乘,作为积的因式,对于
中考数学复习讲义课件 第1单元 第3讲 代数式与整式(含因式分解)
命 题 点 4 因式分解(10年5考)
考情分析:2019年第7题,2016年第8题,2013年第7题, 2011年第10题,2010年第9题均考查因式分解,涉及提公因 式和平方差公式. 14.(2019·江西,3分)因式分解: x2-1= (x+1)(x-1). 15.(2016·江西,3分)分解因式: ax2-ay2=a(x+y)(x-y).
完全平方公式:(a±b)2= a2±2ab+b2 .
先用这个多项式的每一项除以这个单项式,再把所 得的商相加.
把系数与同底数幂分别相除作为商的因式, 单项式
对于只在被除式里含有的字母,则连同它的 除以单项式
指数作为商的一个因式.
多项式 先用这个多项式的每一项除以这个单项式,
除以单项式 再把所得的商相加.
①系数相加减作为新的系数.
②字母和字母的指数不变.
(3)去括号规律 ①括号前是“+”号时,括号内各项不变号.如 a+(b+c)=a+b+c. ②括号前是“-”号时,括号内每一项都变号.如a-(b+c)=ab-c.
(ab)n=anbn(n是整数)
同底数幂相乘 am·an= am+n (m,n都是整数)
巩固训练
巩固训练
10.(2020·天津)计算x+7x-5x的结果等于3x. 11.计算6a9÷(-2a3)3的结果为-3/4. 12.计算:(6x4-8x3)÷(-2x2)=-3x2+4x.
考点4
因式分解
1.因式分解:把一个多项式化为几个整式的积的形式,叫做
这个多项式的因式分解,也叫做把这个多项式分解因式.
8.(2012·江西,3分)下列运算正确的是(D) A.a3+a3=2a6B.a6÷a-3=a3 C.a3·a3=2a3D.(-2a2)3=-8a6 9.(2011·江西,3分)下列运算正确的是(B) A.a+b=abB.a2·a3=a5 C.a2+2ab+b2=(a-b)2D.3a-2a=1
初中数学知识点总结:代数式的相关概念
初中数学知识点总结:代数式的相关概念 知识点总结 【一】代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号; (3)代数式可按运算关系和运算结果两种情况理解。
【三】整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
【四】升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
【五】代数式书写要求: 1.代数式中出现的乘号通常用〝·〞表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用〝×〞号; 2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b) ·2·a 应写成2a(a+b); 3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘; 4.在代数式中出现除法运算时,按分数的写法来写; 5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,那么单位直接写在式子后面;如果代数式是和或差的形式,那么必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数 单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
初三数学知识点总结:代数式的相关概念
初三数学知识点总结:代数式的相关概念知识点总结一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是\\\\\\\"1”或-1“时,\\\\\\\"1\\\\\\\"通常省略不写,但“-”号不能省略。
中考数学 第2讲 代数式及整式的运算(解析版)
第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数) 幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1 B .0 C .1 D .2【答案】C .【分析】将m =﹣1代入代数式即可求值;【解答】解:将m =﹣1代入2m +3=2×(﹣1)+3=1; 故选:C .【一领三通1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1 D .(﹣1)n x 2n +1【答案】C .【分析】观察指数规律与符号规律,进行解答便可. 【解答】解:∵x 3=(﹣1)1﹣1x 2×1+1, ﹣x 5=(﹣1)2﹣1x 2×2+1, x 7=(﹣1)3﹣1x 2×3+1, ﹣x 9=(﹣1)4﹣1x 2×4+1, x 11=(﹣1)5﹣1x 2×5+1, ……由上可知,第n 个单项式是:(﹣1)n ﹣1x 2n +1, 故选:C .【一领三通1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【答案】C .【分析】根据已知条件即可得到结论.【解答】解:∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b,故选:C.【一领三通1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x杯饮料,y份沙拉,则他们点了几份A餐?()A.10﹣x B.10﹣y C.10﹣x+y D.10﹣x﹣y【答案】A.【分析】根据点的饮料能确定在B和C餐中点了x份意大利面,由题意可得点A餐10﹣x;【解答】解:x杯饮料则在B和C餐中点了x份意大利面,y份沙拉则在C餐中点了y份意大利面,∴点A餐为10﹣x;故选:A.【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x﹣y)2与(x﹣y)3等;②a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】解:A、b6+b3,无法计算,故此选项错误;B、b3•b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.故选:B.【一领三通2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【答案】C.【分析】直接利用积的乘方运算法则化简,再利用同底数幂的乘法运算法则计算得出答案.【解答】解:(﹣2a)2•a4=4a2•a4=4a6.故选:B.【一领三通2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2 D.(3a2)2=6a4【答案】A.【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【解答】解:a•a2=a1+2=a3,A准确;a6÷a2=a6﹣2=a4,B错误;2a2﹣a2=a2,C错误;(3a2)2=9a4,D错误;故选:A.【一领三通2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【答案】D.【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【一领三通2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是______.【答案】(﹣1,8).【分析】根据新运算公式列出关于c、d的方程组,解方程组即可得c、d的值;进一步得到点B的坐标.【解答】解:根据题意,得,解得:.则点B的坐标为(﹣1,8).故答案为:(﹣1,8).【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【答案】2.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【解答】解:原式=4a2+4a+1﹣4a2+4a=8a+1,当a=时,原式=8a+1=2.【一领三通3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【答案】C.【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故本选项错误;B、3a2+a,不是同类项,不能合并,故本选项错误;C、a5÷a2=a3(a≠0),正确;D、a(a+1)=a2+a,故本选项错误.故选:C.【一领三通3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【答案】B.【分析】根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;B.m3÷m2=m,正确;C.m•(m2)3=m7,故错误;D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.故选:B.【一领三通3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【分析】首先去括号,合并同类项,将两代数式化简,然后代入数值求解即可.【解答】解:∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;【一领三通3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x2+ax﹣y+6与整式2bx2﹣3x+5y﹣1的差不含x和x2项,试求4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)的值.【分析】根据两整式的差不含x和x2项,可得差式中x与x2的系数为0,列式求出a、b的值,然后将代数式化简再代值计算.【解答】解:2x2+ax﹣y+6﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵两个整式的差不含x和x2项,∴2﹣2b=0,a+3=0,解得a=﹣3,b=1,4(a2+2b3﹣a2b)+3a2﹣2(4b3+2a2b)=4a2+8b3﹣4a2b+3a2﹣8b3﹣4a2b=7a2﹣8a2b,当a=﹣3,b=1时,原式=7a2﹣8a2b=7×(﹣3)2﹣8×(﹣3)2×1=7×9﹣8×9×1=63﹣72=﹣9.【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学代数式知识点汇总
一、代数式
1、代数式:用运算符号把数或表示数的字母连结而成的式子,叫代数式。
单独一个数或者一个字母也是代数式。
2、代数式的值:用数值代替代数里的字母,计算后得到的结果叫做代数式的值。
3、代数式的分类:
⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式
多项式单项式整式有理式代数式
二、整式的有关概念及运算 1、概念
(1)单项式:像x 、7、
y x 22,这种数与字母的积叫做单项式。
单独一个数或字母也是单项式。
单项式的次数:一个单项式中,所有字母的指数叫做这个单项式的次数。
单项式的系数:单项式中的数字因数叫单项式的系数。
(2)多项式:几个单项式的和叫做多项式。
多项式的项:多项式中每一个单项式都叫多项式的项。
一个多项式含有几项,就叫几项式。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。
不含字母的项叫
常数项。
升(降)幂排列:把一个多项式按某一个字母的指数从小(大)到大(小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
(3)同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
2、运算
(1)整式的加减:
合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变。
去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变;括号前面是“–”号,把括号和它前面的“–”号去掉,括号里的各项都变号。
添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“–”号,括到括号里的各项都变号。
整式的加减实际上就是合并同类项,在运算时,如果遇到括号,先去括号,再合并同类项。
(2)整式的乘除:
幂的运算法则:其中m 、n 都是正整数
同底数幂相乘:n m n m a a a +=⋅;同底数幂相除:n m n m a a a -=÷;幂的乘方:
mn n m a a =)(积的乘方:n n n b a ab =)(。
单项式乘以单项式:用它们系数的积作为积的系数,对于相同的字母,用它们的指数的
和作为这个字母的指数;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘以多项式:就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式乘以多项式:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
单项除单项式:把系数,同底数幂分别相除,作为商的因式,对于只在被除式里含有字母,则连同它的指数作为商的一个因式。
多项式除以单项式:把这个多项式的每一项除以这个单项,再把所得的商相加。
乘法公式:
平方差公式:22))((b a b a b a -=-+;
完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-
三、因式分解
1、因式分解概念:把一个多项式化成几个整式的积的形式,叫因式分解。
2、常用的因式分解方法:
(1)提取公因式法:)(c b a m mc mb ma ++=++
(2)运用公式法:
平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±
(3)十字相乘法:
))(()(2b x a x ab x b a x ++=+++ (4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若
)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有: ))((212x x x x a c bx ax --=++
3、因式分解的一般步骤:
(1)如果多项式的各项有公因式,那么先提公因式;
(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;
(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
四、分式
1、分式定义:形如B A
的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质:
(1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M M B M A B A
(3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:
(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
五、二次根式
1、二次根式的概念:式子)0(≥a a 叫做二次根式。
(1)最简二次根式:被开方数的因数是整数,因式是整式,被开方数中不含能开得尽
方的因式的二次根式叫最简二次根式。
(2)同类二次根式:化为最简二次根式之后,被开方数相同的二次根式,叫做同类二次根式。
(3)分母有理化:把分母中的根号化去叫做分母有理化。
(4)有理化因式:把两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式(常用的有理化因式有:a 与a ;d c b a +与d c b a -)
2、二次根式的性质:
(1) )0()(2≥=a a a ;(2)
⎩⎨⎧<-≥==)0()0(2a a a a a a ;(3)b a ab ⋅=(a
≥0,b ≥0);(4))0,0(≥≥=b a b a b a
3、运算: (1)二次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根式。
(2)二次根式的乘法:ab b a =⋅(a ≥0,b ≥0)。
(3)二次根式的除法:)0,0(≥≥=b a b a b a
二次根式运算的最终结果如果是根式,要化成最简二次根式。
例题:
一、因式分解:
1、提公因式法:
例1、
)(6)(2422x y b y x a -+- 分析:先提公因式,后用平方差公式
解:略
[规律总结]因式分解本着先提取,后公式等,但应把第一个因式都分解到不能再分解为止,往往需要对分解后的每一个因式进行最后的审查,如果还能分解,应继续分解。
2、十字相乘法:
例2、(1)36524--x x ;(2)
12)(4)(2-+-+y x y x 分析:可看成是2
x 和(x+y)的二次三项式,先用十字相乘法,初步分解。
解:略
[规律总结]应用十字相乘法时,注意某一项可是单项的一字母,也可是某个多项式或整式,有时还需要连续用十字相乘法。
3、分组分解法:
例3、2223--+x x x
分析:先分组,第一项和第二项一组,第三、第四项一组,后提取,再公式。
解:略
[规律总结]对多项式适当分组转化成基本方法因式分组,分组的目的是为了用提公因式,十字相乘法或公式法解题。
4、求根公式法:
例4、552++x x
解:略
二、式的运算
巧用公式
例5、计算:22)11()11(b a b a -+---
分析:运用平方差公式因式分解,使分式运算简单化。
解:略
[规律总结]抓住三个乘法公式的特征,灵活运用,特别要掌握公式的几种变形,公式的逆用,掌握运用公式的技巧,使运算简便准确。
2、化简求值:
例6、先化简,再求值:
)74()53(52222xy y x x x +++-,其中x= – 1 y =21- 解:略
[规律总结]一定要先化到最简再代入求值,注意去括号的法则。
3、分式的计算:
例7、化简)3316(625---÷--a a a a
分析:– 3-a 可看成392---a a
解:略
[规律总结]分式计算过程中:(1)除法转化为乘法时,要倒转分子、分母;(2)注意负号
4、根式计算
例8、已知最简二次根式12+b 和b -7是同类二次根式,求b 的值。
分析:根据同类二次根式定义可得:2b+1=7–b 。
解:略
[规律总结]二次根式的性质和运算是中考必考内容,特别是二次根式的化简、求值及性质的运用是中考的主要考查内容。