(完整版)材料力学必备知识点
(完整word版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3。
材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。
剪切虎克定律:两线段——拉伸或压缩。
拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。
5。
材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。
2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3) 截面法:将内力转化成“外力”。
材料力学基础知识重点

3、绪论
3.1材料力学的研究对象
1、构件
板
壳
中面
2、构件分类
杆
件
横截面 形心
块
轴线
体
3.1材料力学的研究对象
轴线: 中轴线、中心线。 横截面:垂直于梁的轴向的截面形状。 形心:截面图形的几何中心 。
3.1材料力学的研究对象
对构件在荷载作用下正常工作的要求
Ⅰ. 具有足够的强度——荷载作用下不断裂,荷载去除后不产生过大 的永久变形(塑性变形)构件在外载作用下,抵抗破坏的能力。 例如 储气罐不应爆破。(破坏 —— 断裂或变形过量不能恢复)
荷载去除后
3.1材料力学的研究对象
Ⅲ. 满足稳定性要求——对于理想中心压杆是指荷载作用下杆件能 保持原有形态的平衡。 构件在某种外载作用下,保持其原有平衡状 态的能力。例如柱子不能弯等。
偏心受压直杆
3.2材料力学的基本假设
1.连续性假设:认为整个物体体积内毫无空隙地充
满物质 (数学)
2.均匀性假设:认为物体内的任何部分,其力学性
τa= Psina = бsin2a/2 (斜面a=45°,切应力最大)
m 塑性材料拉伸试验,断面呈45°角
бa
a τa
m
4.3拉压杆的应力 圣维南原理
当作用在杆端的轴向外力
当作用在杆端的轴向外力,沿横截面非均匀分布时,外力作用点 附近各截面的应力,也未非均匀分布。但圣维南原理指出,力作 用于杆端的分布方式,只影响杆端局部的应力分布,影响区的轴 向范围离杆端1~2个杆的横向尺寸。此原理已为大量试验与计算 所证实。例如,如图所示,承受集中力F作用的杆,其截面宽度为 h,在x=h/4与h/2的横截面1-1与2-2上,应力虽为非均匀分布,但 在x=h的横截面3-3,应力则趋向均匀。因此,只要外力合力的作 用线沿杆件轴线,在外力作用面稍远处,横截面上的应力分布均 可视为均匀的。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结

0 1
k
1
;
0 1
k
1
影响构件疲劳极限因素:应力集中;尺寸;表面质量。
影响材料疲劳极限因素:循环特性;变形形式;材料。
提高构件疲劳强度的主要措施:减缓应力集中;提高表面光洁度;增强表面强度。
6
dQ q ; dM Q
dx
dx
几 何 应方 面
变形现象: 平面假设: 应变规律:
dl 常数
dx
应 力力
公 式 应 力 分 布 应 用 条 件 应力-应变 关系
N A
等直杆 外力合力作用 线沿杆轴线
E
(单向应力状态)
强
max
N A max
度
u
条
n
件 塑材: u s 脆材: u b
材料力学总结
一、基本变形
轴向拉压
扭转
弯曲
外
外力合力作用线沿杆轴 力偶作用在垂直于轴 外力作用线垂直杆轴,或外力偶作用
力
线
的平面内
在杆轴平面
内
轴力:N
规定:
力
拉为“+”
压为“-”
扭转:T 规定: 矩矢离开截面为“+”
反之为“-”
剪力:Q 规定:左上右下为“+”
弯矩:M 规定:左顺右逆为“+”
微分关系:
Iy
拉(压)弯
M p
弯扭
弯扭拉(压)
PM AW
r3 2 4 2 [ ] r4 2 3 2 [ ]
r3 ( M N )2 4 2 [ ] r4 ( M N )2 3 2 [ ]
强
度 条 件
max
M max
( cos WZ
sin ) Wy
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===n i i ni ci i c A y A y 11 ; ∑∑===ni i ni ci i c A z A z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-”τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min 2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:i ul =λ;ρρσπλE=;ba s σλ-=0, 柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w Icr n P P n ≥=,折减系数法:][σϕσ≤=A P提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学 知识要点

第一章绪论一、基本概念:强度:构件抵抗破环的能力1.构件应满足的三个要求:刚度:构件抵抗变形的能力稳定性:构件保持原有平衡的能力连续性假设:固体物质不留空隙的空满固体所占的空间2.变形固体的三个基本假设均匀性假设:固体内各处有相同的力学性能各向同性假设:在任一方向,固体的力学性能都相同注:各向同性材料:金属等各向异性材料:木材,胶合材料,复合材料3,两个限制条件:线弹性:材料变形处于线弹性阶段。
?小变形:变形及变形引起的位移,都远小于物体的最小尺寸4,原始尺寸原理:小变形条件下,常用变形前构件的尺寸代替变形后的构件尺寸来计算,即不考虑变形带来的影响。
(一处例外:压杆稳定)5,圣维南原理:如用与外力系静力等效的合力来代替原力系,则除在原力系作用区域内有明显,差别外,在离外力作用区域略远处,这种代替带来的误差很小,可以不计。
6,材力中的力:表面力集中力分布载荷作用方式:体积力外力按种类分内力:在外力作用下,构件因反抗或阻止变形而产生于物体内部的相互作用力按作用方式分静载荷交变载荷动载荷冲击载荷1,截(取):用假象面把构件分成两部分7,研究内力的基本方法----截面法2,代(替):用内力代替截去的部分的作用3,平(衡方程):列静力平衡方程,求解未知内力8,应力-----内力的集度(任一应力应指明两个要素:哪一点,哪个方向上)(1)平均应力定义:单位面积上的内力 定义式:A Fp m = ( 注意:m p 是一个矢量,有方向)(2) 应力定义:平均应力的极限定义式:dA dFm p = )0dA (→单位:MPa ,矢量性:是矢量,有大小,方向。
正应力: 定义:应力垂直于截面的分量(F ∆垂直于截面的分量N F ∆在截面上的应力) 定义式: )0(→=dA dA dF N σ切应力: 定义:应力平行于截面的分量(F ∆平行于截面的分量S F ∆在截面上的应力) 定义式: ()0d →=dA AdFs τ9,变形与应变变形:在外力作用下,构件尺寸、形状发生变化的现象。
(完整版)材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
(完整版)材料力学必备知识点

材料力学必备知识点1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料8、 失效:断裂和出现塑性变形统称为失效9、 应变能:弹性固体在外力作用下,因变形而储存的能量10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力13、三种形式的梁:简支梁、外伸梁、悬臂梁14、组合变形:由两种或两种以上基本变形组合的变形15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm •= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += abA I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1max σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r σxσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学知识点总结

p
F A
F cos cos A
将应力 pα 分解为两个分量:
沿截面法线方向的正应力 p cos cos2
2.符号的规定 (1)α 角
沿截面切线方向的切应力
p
sin
2
sin2
(2)正应力: 拉伸为正 压缩为负
(3)切应力 对研究对象任一点取矩
三、强度条件 杆内的最大工作应力不超过材料的许用应力
A ,断口处的最小横截面积为 A1 .
l1 l 100%
伸长率
l
A A1 100%
断面收缩率
A
≧5%的材料,称作塑性材料
<5%的材料,称作脆性材料
§2-5 拉压杆的变形计算
*补充*
一、 纵向变形
1. 纵向变形 Δl l1 l
Δl 2. 纵向应变 l
姚小宝
二、横向变形
1. 横向变形 b b1 b
§1-3 力、应力、应变和位移的基本概念
一、 外力
体积力
1. 按作用方式分
表面力
集中力
分布力 静载荷 2. 按随时间变化分
交变载荷 动载荷
冲击载荷 二、 内力
1. 定义: 指由外力作用所引起的、物体内相邻部分之间相互作用力(附加内力)。 2. 内力的求法 —— 截面法 步骤:
① 截开: 在所求内力的截面处,假想地用截面将杆件一分为二. ②代替: 任取一部分,其弃去部分对留下部分的作用,用作用在截 面上相应的内力(力或力偶)代替. ③平衡: 对留下的部分建立平衡方程,根据其上的已知外力来计算杆在截开面 上的未知内力(此时截开面上的内力对所留部分而言是外力).
§1-2 变形固体的基本假设 一、连续性假设: 物质密实地充满物体所在空间,毫无空隙。 二、均匀性假设: 物体内,各处的力学性质完全相同。 三、各向同性假设: 组成物体的材料沿各方向的力学性质完全相同。 四、小变形假设: 材料力学所研究的构件在载荷作用下的变形与原始尺寸
材料力学笔记整理

a. 数值上等于截面侧所有扭转外力偶矩代数和
分区 第二章 的第 3 页
方向:右手螺旋,外法线方向为正 6) 扭矩图
a. 数值上等于截面侧所有扭转外力偶矩代数和 b. 外力偶矩转向与正扭矩相反为正
3、平面弯曲梁的内力 a. 受力特征:外力垂直于轴线 b. 变形特征:轴线由直线变为曲线 c. 横向荷载 d. 梁:以弯曲变形为主 e. 平面弯曲: i. 对称弯曲 ii. 不对称弯曲 f. 梁的计算简图: i. 梁 ii. 荷载 iii. 支座 1) 滚动铰支座 2) 固定铰支座
分区 第二章 的第 4 页
1) 写平衡方程,求支座约束力 2) 列弯力,弯矩方程 3) 求各控制截面弯力/弯矩值 4) 画图
5、梁的平衡微分方程 1) 导出: 2) 平衡微分方程
q(x):荷载集度
a. 剪力图任一点切线斜率=该点荷载集度 b. 弯矩图任一点切线斜率=该点截面剪力 c. 弯矩图凸向=分布荷载作用方向 3) 推论: a. q(x)=C,剪力图为直线,弯矩图为二次曲线 b. 无载荷,剪力图为水平线,弯矩图为直线 c. 集中力作用点,剪力图突变,(等于集中力的大小),弯矩图有折点 d. 集中力偶,弯矩图突变(等于集中力偶大小),剪力图不变 e. 最大弯矩可能位置:
第一章:材料力学基本概念
一、基本概念 1. 材料力学研究对象是变形杆件,仅研究弹性体的变形 2. 构件 a. 杆件:长度远大于横向尺寸 i. 直杆 ii. 折杆/曲杆 iii. 等截面杆 iv. 变截面杆 b. 板(壳) c. 实体 3. 设计要求 a. 强度:构件抵抗破坏的能力 塑性变形 b. 刚度:构件抵抗变形的能力 弹性变形 c. 稳定性:在荷载作用下保持平衡形式不突然发生转变 4. 可变形固体(变形固体) a. 变形固体的变形: i. 弹性变形 ii. 塑性变形 iii. 只发生弹性变形——弹性体 b. 变形固体的假设 i. 连续性假设:组成固体的物质不留空隙地充满了固体的体积 ii. 均匀性假设:组成固体的物质在物体内均匀分布且在各处具有相同的力学性能 (有助于将小试样测得的力学性能作为材料的力学性能) iii. 各向同性假设:材料沿任何方向力学性能相同 iv. 小变形假设:变形远小于原始 5. 杆件内力与截面法 a. 附加内力(内力):外力引起,与变形同时产生,随外力变化而变化 b. 截面法:一分为二——确定内力——静力平衡 c. 力系的简化理论(内力)——内力主矢,内力主矩 d. 拉力为正,压力为负 6. 杆件变形基本形式 a. 轴向拉伸/压缩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学必备知识点
1、 材料力学的任务:满足强度、刚度和稳定性要求的前提下,为设计既经济又安全的构件,提供必要的理论基础和计算方法。
2、 变形固体的基本假设:连续性假设、均匀性假设、各向同性假设。
3、 杆件变形的基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、 低碳钢:含碳量在0.3%以下的碳素钢。
5、 低碳钢拉伸时的力学性能:弹性阶段、屈服阶段、强化阶段、局部变形阶段 极限:比例极限、弹性极限、屈服极限、强化极限
6、 名义(条件)屈服极限:将产生0.2%塑性应变时的应力作为屈服指标
7、 延伸率δ是衡量材料的塑性指标塑性材料 随外力解除而消失的变形叫弹性变形;外力解除后不能消失的变形叫塑性变形。
>5%的材料称为塑性材料: <5%的材料称为脆性材料
8、 失效:断裂和出现塑性变形统称为失效
9、 应变能:弹性固体在外力作用下,因变形而储存的能量
10、应力集中:因杆件外形突然变化而引起的局部应力急剧增大的现象
11、扭转变形:在杆件的两端各作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动。
12、翘曲:变形后杆的横截面已不再保持为平面;自由扭转:等直杆两端受扭转力偶作用且翘曲不受任何限制;约束扭转:横截面上除切应力外还有正应力
13、三种形式的梁:简支梁、外伸梁、悬臂梁
14、组合变形:由两种或两种以上基本变形组合的变形
15、截面核心:对每一个截面,环绕形心都有一个封闭区域,当压力作用于这一封闭区域内时,截面上只有压应力。
16、根据强度条件 可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
17、低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
18、积分法求梁的挠曲线方程时,通常用到边界条件和连续性条件;因杆件外形突然变化引起的局部应力急剧增大的现象称为应力集中;轴向受压直杆丧失其直线平衡形态的现象称为失稳
19、圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
20、组合图形对某一轴的静矩等于(各组成图形对同一轴静矩)的代数和。
21、图形对于若干相互平行轴的惯性矩中,其中数值最小的是对( 距形心最近的)轴的惯性矩。
22、当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在(集中力作用面的一侧)。
23、应用公式z
My I σ=时,必须满足的两个条件是(各向同性的线弹性材料)和小变形。
24、一点的应力状态是该点(所有截面上的应力情况)。
在平面应力状态下,单元体相互垂直平面上的正应力之和等于(常数)。
25、强度理论是(关于材料破坏原因)的假说。
在复杂应力状态下,应根据(危险点的应力状态和材料性质等因素)选择合适的强度理论。
26、强度是指构件抵抗 破坏 的能力;刚度是指构件抵抗 变形 的能力;稳定性是指构件维持其原有的 平衡状态 的能力。
27、弹性模量E 是衡量材料抵抗弹性变形能力的指标。
28、使材料丧失正常工作能力的应力,称为极限应力
在工程计算中允许材料承受的最大应力,称为许用应力。
29、恰使截面的惯性积为零的正交坐标轴称为截面的主惯性轴,截面对此正交坐标轴的惯性矩,称为主惯性矩。
30、在一般情况下,平面弯曲梁的横截面上存在两种内力,即剪力和弯矩,相应的应力也有两种,即剪应力和正应力。
31、由弯曲正应力强度条件可知,设法降低梁内的最大弯矩,并尽可能提高梁截面的抗弯截面系数,即可提高梁的承能力。
32、横截面的形心在垂直梁轴线方向的线位移称为该截面的挠度,横截面绕中性轴转动的角位移称为该截面的转角;挠曲线上任意一点处切线的斜率,等于该点处横截面的转角。
33、切应力等于零的截面称为主平面,主平面上的正应力称为主应力;各个面上只有主应力的单元体称为主单元体。
34、材料破坏主要有流动破坏和断裂破坏两种类型。
35、影响圆截面压杆的柔度系数(长细比) 的因素有长度、约束形式和截面几何性质。
36、对于相同材料制成的压杆,其临界应力仅与柔度系数有关。