人教版高中数学选修1-1第一章单元测试(一)- Word版含答案

合集下载

人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(有答案解析)(1)

人教版高中数学选修一第一单元《空间向量与立体几何》测试卷(有答案解析)(1)

一、选择题1.三棱锥O ABC -中,M ,N 分别是AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示NM ,则NM 等于( )A .1()2a b c -++ B .1()2a b c +- C .1()2a b c -+D .1()2a b c --+2.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .133.如图,平面ABCD ⊥平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为( )A 6B 3C 6D .234.如图,三棱锥S ﹣ABC 中,SA =SB =SC ,∠ABC =90°,AB >BC ,E ,F ,G 分别是AB ,BC ,CA 的中点,记直线SE 与SF 所成的角为α,直线SG 与平面SAB 所成的角为β,平面SEG 与平面SBC 所成的锐二面角为γ,则( )A .α>γ>βB .α>β>γC .γ>α>βD .γ>β>α5.在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( ) A .52B .2C .32D .1166.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>7.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,13AA =,2AB AC BC ===,则1AA 与平面11AB C 所成角的大小为A .30B .45︒C .60︒D .90︒8.四棱锥P ABCD -中,底面ABCD 为直角梯形,AB AD ⊥,//BC AD ,且2AB BC ==,3AD =,PA ⊥平面ABCD 且2PA =,则PB 与平面PCD 所成角的正弦值为( )A .427B .33C .77D .639.已知1e ,2e 是夹角为60的两个单位向量,则12a e e =+与122b e e =-的夹角是( ) A .60B .120C .30D .9010.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .211.我国古代数学名著《九章算术》中记载的“刍甍”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍甍,其中四边形ABCD 为矩形,其中8AB =,23AD =,ADE 与BCF △都是等边三角形,且二面角E AD B --与F BC A --相等,则EF 长度的取值范围为( )A .(2,14)B .(2,8)C .(0,12)D .(2,12)12.如图,在菱形ABCD 中,23ABC π∠=,线段AD 、BD 的中点分别为E 、F .现将ABD ∆沿对角线BD 翻折,当二面角A BD C --的余弦值为13时,异面直线BE 与CF 所成角的正弦值是( )A 35B .16C 26D .1513.有下列四个命题:①已知1e 和2e 是两个互相垂直的单位向量,a =21e +32e ,1b ke =-42e ,且a ⊥b ,则实数k =6;②已知正四面体O ﹣ABC 的棱长为1,则(OA OB +)•(CA CB +)=1;③已知A (1,1,0),B (0,3,0),C (2,2,3),则向量AC 在AB 上正投影的数量是55④已知1a e =-223e e +,1b e =-+32e +23e ,c =-31e +72e ({1e ,2e ,3e }为空间向量的一个基底),则向量a ,b ,c 不可能共面. 其中正确命题的个数为( ) A .1个B .2个C .3个D .4个二、填空题14.正四面体ABCD 的棱长为a ,点E 、F 分别是BC 、AD 的中点,则AE AF ⋅的值为_____________.15.a ,b 为空间两条互相垂直的直线,直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以AC 为旋转轴旋转,30ABC ∠=︒,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成45°角; ⑤直线AB 与a 所成角的最大值为60°; ④直线AB 与a 所成角的最小值为30°;其中正确的是___________.(填写所有正确结论的编号)16.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22__________.(将你认为正确的命题序号都填上)17.已知空间向量(0,1,1),(1,0,1)a b ==,则向量a 与b 的夹角为_____________. 18.在空间直角坐标系中, ()()()2,1,1,3,4,,2,7,1,A B C AB CB 若λ-⊥,则λ=____ 19.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.20.如图,在棱长为2的正方体中,点P 在正方体的对角线AB 上,点Q 在正方体的棱CD 上,若P 为动点,Q 为动点,则PQ 的最小值为_____.21.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.22.如图,在空间四边形ABCD 中,AC 和BD 为对角线,G 为ABC ∆的重心E 是BD 上一点,3,BE ED =以,,AB AC AD 为基底,则GE =__________.23.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.24.如图,平行六面体1111ABCD A B C D -的所有棱长均为1,113BAD A AD A AB π∠=∠=∠=,E 为1CC 的中点,则AE 的长度是________.25.已知直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,且//l α,则实数t =______.26.已知向量a =(4,﹣5,12),b =(3,t ,23),若a 与b 的夹角为锐角,则实数t 的取值范围为_____.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用向量的平行四边形法则、三角形法则可得:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,代入化简即可得出.【详解】 解:1()2NM NA NB =+,1()2AN AO AC =+,1()2BN BO BC =+,AC OC OA =-,BC OC OB =-,∴1111()2222MN AN BN OA OB OC =+=--+111222a b c =--+, ∴111222NM a b c =+-,故选:B . 【点睛】本题考查了向量的平行四边形法则、三角形法则,考查了数形结合方法、推理能力与计算能力,属于中档题.2.A解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥, 所以,M 为BCD ∆的中心,N 为AC 的中点,此时,242sin 603MC ==,23MC ∴=AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,22222326233MA AC MC ⎛⎫∴=-=-= ⎪ ⎪⎝⎭. 又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.3.C解析:C 【解析】如图,以A 为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a ,a,0),F(a,0,0),AG =(a ,a,0),AC =(0,2a,2a),BG =(a ,-a ,0),BC =(0,0,2a),设平面AGC 的法向量为n 1=(x 1,y 1,1), 由110{AG n AC n ⋅=⋅=⇒⇒111{1x y ==-⇒n 1=(1,-1,1).sinθ=11BG n BG n ⋅⋅=23a ⨯6. 4.A解析:A 【分析】根据题意可知,G 作SE 的垂线l ,显然l 垂直平面SAB ,故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,利用三角函数结合几何性质,得出结论.因为AB ⊥BC ,SA =SB =SC ,所以AB ⊥SE ,所以AB ⊥平面SGE ,AB ⊥SG , 又SG ⊥AC ,所以SG ⊥平面ABC , 过G 作SE 的垂线l ,显然l 垂直平面SAB , 故直线SG 与平面SAB 所成的角为β=∠GSE ,同理,平面SEG 与平面SBC 所成的锐二面角为γ=∠FSG ,由tanγ=tan FG EGSG SGβ>=,得γ>β,γ也是直线SF 与平面SEG 所成的角, 由cosα=cosβ•cosγ<cosγ,则α>γ,所以α>γ>β, 故选:A .【点睛】本题考查了异面直线夹角,线面夹角,二面角,意在考查学生的空间想象能力和计算能力.5.A解析:A 【分析】根据空间向量的线性运算,得出AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝,结合题意,即可求出11,2y z ==,从而得出x y z ++的值. 【详解】解:由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++, 则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.【点睛】本题考查空间向量的基本定理的应用,以及空间向量的线性运算,属于基础题.6.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,02D ⎫⎪⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||25θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B D n B D n ,222cos 155θ⎛⎫∴=-= ⎪⎝⎭,设平面11A B D 的法向量(,,)m a b c =,则11130312022m A Ba b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取3a =,得33,3,2m ⎛⎫=--⎪⎝⎭, 因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||2cos ||575749m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.7.A解析:A 【分析】建立空间坐标系,计算1AA 坐标,计算平面11AB C 的法向量,运用空间向量数量积公式,计算夹角即可. 【详解】取AB 的中点D ,连接CD ,以AD 为x 轴,以CD 为y 轴,以1BB 为z 轴,建立空间直角坐标系,可得()1,0,0A ,()11,0,3A ,故()()()11,0,31,0,00,0,3AA =-=,而()()111,0,3,0,3,3B C -,设平面11AB C 的法向量为()=,,m a b c ,根据110,0m AB m AC ⋅=⋅=,解得()3,3,2m =-,111 1,?2|?|m AA cos m AA m AA ==.故1AA 与平面11AB C 所成角的大小为030,故选A . 【点睛】考查了空间向量数量积坐标运算,关键构造空间直角坐标系,难度偏难.8.C解析:C 【分析】以A 为坐标原点建立空间坐标系,进而求得PB 和平面PCD 的法向量,再由向量的数量积即可求得PB 与平面PCD 所成角的正弦值. 【详解】依题意,以A 为坐标原点,分别以,,AB AD AP 为,,x y z 轴建立空间直角坐标系O xyz -,2,3,2AB BC AD PA ====,则()()()()0,0,2,2,0,0,2,2,0,0,3,0P B C D , 从而()()()2,0,2,2,2,2,0,3,2PB PC PD =-=-=- 设平面PCD 的法向量为(),,n a b c =,00n PC n PD ⎧⋅=⎨⋅=⎩,即2220320a b c b c +-=⎧⎨-=⎩,不妨取3c =c=3,则1,2a b ==,所以平面PCD 的一个法向量为()1,2,3n =, 所以PB 与平面PCD 所成角的正弦值 ()22222267sin cos ,22123PB n θ-===+-++, 故选C.【点睛】本题主要考查了线面所成的角, 其中求解平面的法向量是解题的关键,着重考查了推理与计算能力,属于中档试题.9.B解析:B 【分析】利用平面向量的数量积公式先求解a b ⋅,再计算a 与b ,根据数量积夹角公式,即可求解. 【详解】由题意得:()()12122a b e e e e ⋅=+⋅-221122132111222e e e e =-⋅-=-⨯⨯-=-,2222121122()21a e e e e e e a ==+=++==⋅2222112122(2)4?41b b e e e e e e ==-=+-=-=设,a b 夹角为312,cos ,018032a b a bθθθ-⋅===-︒≤≤︒⋅,∴120θ=.故选:B. 【点睛】本题考查利用平面向量的数量积计算向量的夹角问题,难度一般,准确运用向量的数量积公式即可.10.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC =++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =,故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.11.A解析:A 【分析】求得EF 长度的两个临界位置的长度,由此求得EF 的取值范围. 【详解】由于ADE ∆与BCF ∆都是等边三角形,且边长为23,故高为3.当E AD B --和F BC A --趋向于0时,8332EF →--=,如下图所示.当E AD B --和F BC A --趋向于π时,83314EF →++=,如下图所示.所以EF 的取值范围是()2,14. 故选:A 【点睛】本小题主要考查空间线段长度范围的判断,考查空间想象能力,属于基础题.12.A解析:A 【分析】过E 作EH BD ⊥,交BD 于H 点,设二面角A BD C --的大小为α,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦,由向量数量积的运算律得出CF BE CF HE ⋅=⋅,由题意可得出12HE BE =,利用数量积的定义可求出cos ,CF BE <>的值,即可求出cos θ的值,进而利用同角三角函数的平方关系可求出sin θ的值. 【详解】如下图所示,过E 作EH BD ⊥,交BD 于H 点,设BE 与CF 的夹角为θ,则0,2π⎡⎤θ∈⎢⎥⎣⎦, 记二面角A BD C --的大小为α,()CF BE CF BH HE CF HE ⋅=⋅+=⋅, 即()cos CF BE CF HE πα⋅=⋅-,即11cos ,23CF BE CF BE CF BE ⎛⎫⋅<>=⋅⋅- ⎪⎝⎭, 1cos ,6CF BE ∴<>=-,所以1cos 6θ=,即35sin 6θ=,故选:A .【点睛】本题考查异面直线所成角的计算,同时也考查了二面角的定义,涉及利用空间向量数量积的计算,考查计算能力,属于中等题.13.C解析:C 【分析】利用向量的基本概念逐一进行判断,即可得出结论. 【详解】解:①a =21e +32e ,1b ke =-42e ,且a b ⊥,2212121122(23)(4)2()(38)12()2120a b e e ke e k e k e e e k ∴=+-=+--=-=,解得6k =,所以①正确.②()()OA OB CA CB OA CA OA CB OB CA OB CB ++=+++11cos6011cos9011cos9011cos60001=⨯⨯︒+⨯⨯︒+⨯⨯︒+⨯⨯︒++=,所以②正确.③(1,1,3)AC =,(1,2,0)AB =-,向量AC 在AB 上正投影1||(1)20AC AB AB ⨯===-++③正确. ④假设向量a ,b ,c 共面,则a xb yc =+, 所以123123122(32)(37)e e e x e e e y e e -+=-+++-+, 1231232(3)(37)2e e e x y e x y e xe -+=--+++,所以13x y =--,237x y -=+,12x =, 得12x =,12y , 所以向量a ,b ,c 共面,所以④不正确. 即正确的有3个, 故选:C . 【点睛】本题考查向量的基本概念,向量垂直,共面,正投影等,属于中档题.二、填空题14.【分析】结合由数量积定义计算【详解】正四面体中点EF 分别是BCAD 的中点连接则而所以平面又平面所以即所以故答案为:【点睛】关键点点睛:本题考查向量的数量积运算解题时选择用向量的加减数乘运算表示出要计解析:24a【分析】AE AB BE =+,结合AD BC ⊥,由数量积定义计算. 【详解】正四面体ABCD 中,点E 、F 分别是BC 、AD 的中点,连接,AE DE ,则,BC AE BC DE ⊥⊥,而AEDE E =,所以BC ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BC ⊥,即AF BE ⊥,所以21()cos 6024a AE AF AB BE AF AB AF BE AF a a ⋅=+⋅=⋅+⋅=⨯⨯︒=.故答案为:24a.【点睛】关键点点睛:本题考查向量的数量积运算,解题时选择用向量的加减数乘运算表示出要计算的向量,然后由数量积定义计算,是基本方法,实质上也可以应用空间向量基本定理表示向量,把向量的运算转化为空间向量的基底进行运算.15.②④【分析】由题意知abAC三条直线两两相互垂直构建如图所示的长方体|AC|=1|AB|=2斜边AB以直线AC为旋转轴则A点保持不变B点的运动轨迹是以C为圆心为半径的圆以C坐标原点以CD为x轴CB为解析:②④【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的长方体,|AC|=1,|AB|=2,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,3为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法求出结果.【详解】由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示的长方体高为13故|AC |=1,|AB |=2,斜边AB 以直线AC 为旋转轴,则A 点保持不变, B 点的运动轨迹是以C为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系,则D,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′θθ,0),其中θ为B ′C 与CD 的夹角,[02θπ∈,),∴AB ′在运动过程中的向量,'AB =θθ,﹣1),|'AB |=2, 设'AB 与a 所成夹角为α∈[0,2π], 则)(10cos 23,,θα-⋅=='⋅sin a AB |sin θ|∈[0, ∴α∈[6π,2π],∴③错误,④正确. 设'AB 与b 所成夹角为β∈[0,2π], ()(1100c 323os ,-,,,θθβ-⋅'⋅===''⋅⋅cos sin AB b AB bb AB |cos θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos β=|cos θ|=,∵β∈[0,2π],∴4πβ=,此时'AB 与b 的夹角为45°,∴②正确,①错误. 故答案为:②④. 【点睛】本题考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,涉及空间向量的知识点,属于中档题.16.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--, 2||2cos ,2||||21(2)BP CE BP CE BP CE y ⋅〈〉==≤⋅⋅+-,当2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题17.【分析】根据两向量的夹角余弦公式即可求出两向量的夹角【详解】解:10向量与的夹角为故答案为:【点睛】本题考查空间两向量的夹角大小的应用问题是基础题目 解析:3π【分析】根据两向量的夹角余弦公式,即可求出两向量的夹角. 【详解】 解:(0a =,1,1),(1b =,0,1),∴·1a b =,||2a =,||2b =,cos a ∴<,12||||2a b b a b >===⨯⨯,向量a 与b 的夹角为3π. 故答案为:3π. 【点睛】本题考查空间两向量的夹角大小的应用问题,是基础题目.18.【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题然后利用向量的数量积坐标运算计算的值即可【详解】又即解得故答案为【点睛】本题主要考查空间向量的应用向量垂直的充分必要条件等知识意在考 解析:3±【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题,然后利用向量的数量积坐标运算计算λ的值即可. 【详解】()()()2,1,1,3,4,,2,7,1A B C λ-, ∴AB ()1,3,1,λ=+CB ()1,3,1λ=--,又,AB CB ⊥0AB CB ∴⋅=,即()()()1133110λλ⨯+⨯-++-=,解得3λ=±, 故答案为3±. 【点睛】本题主要考查空间向量的应用,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0),(1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-, AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解. 20.【分析】建立空间直角坐标系利用三点共线设出点P(λλ2﹣λ)0≤λ≤2以及Q(02μ)0≤μ≤2根据两点间的距离公式以及配方法即可求解【详解】建立如图所示空间直角坐标系设P(λλ2﹣λ)Q(02μ)【分析】建立空间直角坐标系,利用,,A B P 三点共线设出点P (λ,λ,2﹣λ),0≤λ≤2,以及Q (0,2,μ),0≤μ≤2,根据两点间的距离公式,以及配方法,即可求解.【详解】建立如图所示空间直角坐标系,设P (λ,λ,2﹣λ),Q (0,2,μ)(0≤λ≤2且0≤μ≤2),可得PQ =∵2(λ﹣1)2≥0,(2﹣λ﹣μ)2≥0,∴2(λ﹣1)2+(2﹣λ﹣μ)2+2≥2,当且仅当λ﹣1=2﹣λ﹣μ=0时,等号成立,此时λ=μ=1,∴当且仅当P 、Q 分别为AB 、CD 的中点时,PQ .故答案为.【点睛】本题考查空间向量法求两点间的距离,将动点用坐标表示是解题的关键,考查配方法求最值,属于中档题.21.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平 解析:23【解析】分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n = (,,)m x y z =为平面1D EC 的法向量,∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=- 二面角1D EC D --的大小为4π ∴cos 4m n m n π⋅=⋅,即 2222(2)12λ=-++ 解得 23λ=23λ=+ ∴23AE =-故答案为23点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).22.【解析】由题意连接则故答案为 解析:1131234AB AC AD --+ 【解析】 由题意,连接AE ,则32 43GE AE AG AB BD AM =-=+- 321432AB AD AB AB AC =+--⨯+()(). 1131234AB AC AD =--+ . 故答案为1131234AB AC AD --+. 23.【分析】利用向量的加法公式得出再由得出的值即可得出的和【详解】即故答案为:【点睛】本题主要考查了用空间基底表示向量属于中档题解析:78【分析】 利用向量的加法公式得出111222MN OA OB OC =-++,再由1324OG OM MG OA MN =+=+,得出,,x y z 的值,即可得出,,x y z 的和.【详解】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++ 13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++ 133,,888x y z ∴=== 即78x y z ++=故答案为:78【点睛】本题主要考查了用空间基底表示向量,属于中档题. 24.【分析】根据向量的线性运算得出根据向量的数量积运算即可求出结果【详解】解:由题可知所以得故答案为:【点睛】本题考查向量的运算涉及到线性运算和向量的数量积同时考查学生的化归和转化思想【分析】 根据向量的线性运算,得出112AE AB BC CC =++,根据向量的数量积运算,即可求出结果.【详解】 解:由题可知,112AE AB BC CC =++, 所以2211()2AE AB BC CC =++ 222111124AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 22211112cos60cos60cos604AB BC CC AB BC AB CC BC CC =+++⋅+⋅+⋅ 11111711242224=+++⨯++= 得17AE =.. 【点睛】 本题考查向量的运算,涉及到线性运算和向量的数量积,同时考查学生的化归和转化思想. 25.-1【解析】【分析】由直线的一个方向向量为平面的一个法向量为得到由此能求出的值【详解】∵直线的一个方向向量为平面的一个法向量为∴解得故答案为:【点睛】本题考查实数值的求法考查直线的方向向量平面的法向 解析:-1【解析】【分析】由直线l 的一个方向向量为m ,平面α的一个法向量为n ,//l α,得到 0m n ⋅=,由此能求出t 的值.【详解】∵直线l 的一个方向向量为()2,8,1m =--,平面α的一个法向量为1,,22n t ⎛⎫= ⎪⎝⎭,//l α,∴2420m n t ⋅=--+=,解得1t =-,故答案为:1-.【点睛】本题考查实数值的求法,考查直线的方向向量、平面的法向量等基础知识,考查运算与求解能力,考查化归与转化思想,是基础题.26.(﹣∞4)【分析】由题意利用两个向量的夹角的定义两个向量共线的性质求得实数的取值范围【详解】解:向量若与的夹角为锐角且与不共线即且不成立解得则实数的取值范为故答案为:【点睛】本题主要考查两个向量的夹 解析:(﹣∞,4)【分析】由题意利用两个向量的夹角的定义,两个向量共线的性质,求得实数t 的取值范围.【详解】 解:向量(4a =,5-,12),(3b =,t ,2)3,若a 与b 的夹角为锐角, ∴·0a b >,且a 与b 不共线, 即24351203t ⨯-+⨯>,且2334512t ==- 不成立,解得4t <, 则实数t 的取值范为(,4)-∞,故答案为:(,4)-∞.【点睛】本题主要考查两个向量的夹角,两个向量共线的性质,属于基础题.。

新课标人教版高二数学选修1-1综合测试卷(word文档有答案)

新课标人教版高二数学选修1-1综合测试卷(word文档有答案)

新课标人教版高二数学选修1-1综合测试卷一.选择题(本大题共12小题,每小题3分,共36分)1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. “0<mn ”是“方程122=+ny mx 表示焦点在y 轴上的双曲线”的( ) A .充分而不必要条件 B . 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .34 5. 设x x x f ln )(=,若2)(0='x f ,则=0x ( ) A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .2B .3C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x 9.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.已知对任意实数x ,有()(),()()f x f x g x g x -=--=,且0>x 时'()0,'()0f x g x >>,则0<x 时( )A .'()0,'()0f x g x >>B .'()0,'()0f x g x ><C .'()0,'()0f x g x <>D .'()0,'()0f x g x <<二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16.命题p :若10<<a ,则不等式0122>+-ax ax 在R 上恒成立,命题q :1≥a 是函数xax x f 1)(-=在),0(+∞上单调递增的充要条件;在命题①“p 且q ”、②“p 或q ”、③“非p ”、④“非q ”中,假命题是 ,真命题是 . 三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1)求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19(本小题满分10分) 已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上. (1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF 的面积为求直线l 的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABCB二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④. 三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根 故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f 当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。

高二人教版数学选修1-1练习:1章试卷 Word版含答案

高二人教版数学选修1-1练习:1章试卷 Word版含答案

一、选择题(本大题共10小题,每小题5分,共50分)1.命题“若a=0, 则ab=0”的逆否命题是(D)A.若ab=0,则a=0 B.若a≠0,则ab≠0C.若ab=0,则a≠0 D.若ab≠0,则a≠0解析:“若a=0,则ab=0”的逆否命题为“若ab≠0,则a≠0”.2.(·广州海珠综测)“a=-1”是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-1时,可得直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直;当直,故“a=-1”线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直时,可得a=-1或a=34是“直线a2x-y+6=0与直线4x-(a-3)y+9=0互相垂直”的充分不必要条件,故选A.3.(·湛江调研)“x>2”是“(x-1)2>1”的(B)A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:由“x>2”可得“(x-1)2>1”由“(x-1)2>1”可得“x>2或x<0”,则“x>2”是“(x-1)2>1”的充分不必要条件,故选B.4.(·广州二模)命题“∃x∈R,x2+4x+5≤0”的否定是(C)A.∃x∈R,x2+4x+5>0B.∃x∈R,x2+4x+5≤0C.∀x∈R,x2+4x+5>0D.∀x∈R,x2+4x+5≤05.命题“若a<0时,则一元二次方程x2+x+a=0有实根”与其逆命题、否命题、逆否命题中真命题的个数是(B)A.0 B.2 C.4 D.不确定解析:当a<0时,Δ=1 -4a>0,所以方程x2+x+a=0有实根,故原命题为真;根据原命题与逆否命题真假一致,可知其逆否命题为真;逆命题为:“若方程x2+x+a=0有实根,,显然a<0不一定成立,则a<0”,因为方程有实根,所以判别式Δ=1 -4a≥0,所以a≤14故逆命题为假;根据否命题与逆命题真假一致,可知否命题为假.故正确的命题有2个.6.已知命题p:∀b∈[0,+∞),f(x)=x2+bx+c在[0,+∞)上为增函数,命题q:∃x0∈{x|x∈Z},使log2x0>0,则下列结论判断为真的是(C)A.綈p∨綈q B.綈p∧綈qC.p∨綈q D.p∧綈q7.命题“2x 2-5x -3<0”的一个必要不充分条件是(B )A .-12<x <3 B .-3<x <3C .-12<x <2 D .0<x <68.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(B )A .m ∥β且l 1∥αB .m ∥l 1且n ∥l 2C .m ∥β且n ∥βD .m ∥β且n ∥l 2 9.(·佛山质检)下列说法中正确的有(C )(1)命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; (2)“x >2”是“x 2-3x +2>0”的充分不必要条件; (3)若p ∧q 为假命题,则p 、q 均为假命题;(4)对于命题p :∃x ∈R ,x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0. A .1个 B .2个 C .3个 D .4个解析:对于(3),若p ∧q 为假命题,则p 、q 中至少有一个为假命题,(3)错误.(1)(2)(4)正确,故选C.10.(·东北三省二模)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,那么k的取值范围是(B )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:q :3x +1<1⇒3x +1-1<0⇒2-x x +1<0⇒(x -2)·(x +1)>0⇒x <-1或x >2.因为p 是q 的充分不必要条件,所以k >2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.集合A ={x |x >1},B ={x |x <2};则“x ∈A 或x ∈B ”是“x ∈A ∩B ”的__________条件.答案:必要不充分12.已知命题p :∃x 0∈R ,x 20+2ax 0+a ≤0.若命题p 是假命题,则实数a 的取值范围是________.解析:因为p 是假命题,所以綈p 是真命题,即对任意的x 都有x 2+2ax +a >0,所以有(2a )2-4a <0,解之得a ∈()0,1.答案:()0,1 13.“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”的充要条件是________. 解析:“直线x -y -k =0与圆(x -1)2+y 2=2有两个不同的交点”等价于|1-0-k |2<2,解得k ∈(-1,3).答案:-1<k <3 14.下列四种说法:①命题“∀x ∈R ,都有x 2-2<3x ”的否定是“∃x ∈R ,使得x 2-2≥3x ”;②若a ,b ∈R ,则2a <2b是log 12a >log 12b 的必要不充分条件;③把函数y =sin(-3x )(x ∈R )的图象上所有的点向右平移π4个单位即可得到函数y =sin ⎝⎛⎭⎫-3x -π4(x ∈R )的图象;④若向量a ,b 满足|a |=1,|b|=2,且a 与b 的夹角为2π3,则|a +b |= 3. 其中正确的说法是______. 解析:①正确.②若2a <2b ,则a <b ,当a 或b 为负数时,log 12a >log 12b 不成立,若log 12a >log 12b ,∴0<a<b ,∴2a <2b .故②正确.③把y =sin(-3x )的图象上所有点向右平移π4,得到y =sin ⎣⎢⎡⎦⎥⎤-1⎝ ⎛⎭⎪⎫x -π4=sin ⎝ ⎛⎭⎪⎫-3x +3π4,故③不正确.④由题可知,a·b =1×2 cos 2π3=-1,∴|a +b|2=a 2+2a·b +b 2=3,∴|a +b|=3,故④正确.答案:①②④三、解答题(本大题共6小题,共80分)15.(12分)写出下列命题的否定,并判断真假: (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x ∈R ,|x |>0.解析:(1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.16.(12分)判断下列命题是全称命题还是特称命题,并判断其真假. (1)平面内,凸多边形的外角和等于360°; (2)有一些奇函数的图象过原点; (3)∃x 0∈R ,2x 20+x 0+1<0; (4)∀x ∈R ,sin x +cos x ≤ 2.解析:(1)可以改写为“平面内,所有凸多边形的外角和等于360°”,故是全称命题,且为真命题.(2)“有一些”是存在量词,故该命题为特称命题,显然是真命题.(3)是特称命题.∵2x 20+x 0+1=2⎝⎛⎭⎫x 0+142+78>0,∴不存在x 0∈R ,使2x 20+x 0+1<0,故该命题为假命题.(4)是全称命题.∵sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2恒成立,∴对任意的实数x ,sin x +cos x≤2都成立,故该命题是真命题.17.(14分)已知集合A ={x |x 2+mx =5mx -2m -6},B ={x |x <0},若“∃x ∈R ,使得x ∈A ∩B ”成立,求实数m 的取值范围.解析:A ={x |x 2+mx =5mx -2m -6}={x |x 2-4mx +2m +6=0}“∃x ∈R ,使得x ∈A ∩B ”成立,所以A ∩B ≠∅.设全集∪={m |Δ=(-4m )2-4(2m +6)≥0},则∪=⎩⎨⎧⎭⎬⎫m ⎪⎪m ≤-1或m ≥32.假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有 ⎩⎨⎧m ∈∪,x 1+x 2≥0,x 1x 2≥0⇒⎩⎪⎨⎪⎧m ∈∪,4m ≥0,2m +6≥0⇒m ≥32. 又集合⎩⎨⎧⎭⎬⎫m ⎪⎪m ≥32关于全集∪的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}. 18.(14分)已知p :-2≤x ≤10;q :x 2-2x +1-m 2≤0(m >0).若綈p 是綈q 的必要非充分条件,求实数m 的取值范围.解析:綈p :x <-2,或x >10, A ={x |x <-2,或x >10}.綈q :x 2-2x +1-m 2>0,x <1-m ,或x >1+m , B ={x |x <1-m ,或x >1+m }. ∵綈p 是綈q 的必要非充分条件,∴B ?A ,即⎩⎨⎧1-m ≤-2,1+m ≥10,m >0⇒m ≥9.∴实数m 的取值范围是[9,+∞).19.(14分)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不同时大于14.证明:假设(1-a )b ,(1-b )c ,(1-c )a 都大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,而1-a +b2≥(1-a )b >12,1-b +c2≥(1-b )c >12,1-c +a2≥(1-c )a >12,得1-a +b 2+1-b +c 2+1-c +a 2>32, 即32>32,属于自相矛盾,所以假设不成立,原命题成立. 20.(14分)已知命题p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立;q :函数f (x )=-(5-2a )x 是减函数,若p ∨q 为真,p ∧q 为假,求实数a 的取值范围.解析:设g (x )=x 2+2ax +4.由于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,∴函数g (x )的图象开口向上,且与x 的轴没有交点,故Δ=4a 2-16<0.∴-2<a <2,∴命题p :-2<a <2. ∵函数f (x )=-(5-2a )2是减函数, 则有5-2a >1,即a <2.∴命题q :a <2.又由于p ∨q 为真p ∧q 为假,可知p 和q 一真一假.(1)若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥2,此不等式组无解.(2)若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a <2,∴a ≤-2.综上可知,所求实数a 的取值范围为{a |a ≤-2}.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列语句中是命题的是(B )A .周期函数的和是周期函数吗?B .sin 45°=1C .x 2+2x -1>0D .梯形是不是平面图形呢?解析:可以判断真假的陈述句.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是(D )A .都真B .都假C .否命题真D .逆否命题真解析:原命题是真命题,所以其逆否命题也为真命题.3.有下述说法:①a >b >0是a 2>b 2的充要条件;②a >b >0是1a <1b的充要条件;③a >b >0是a 3>b 3的充要条件.则其中正确的说法有(A)A .0个B .1个C .2个D .3个解析:①a >b >0⇒a 2>b 2,仅仅是充分条件;②a >b >0⇒1a <1b ,仅仅是充分条件;③a >b >0⇒a 3>b 3,仅仅是充分条件.4.下列说法中正确的是(D )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0, 则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真解析:否命题和逆命题是互为逆否命题,有着一致的真假性.5.(·广州一模)“m <2”是“一元二次不等式x 2+mx +1>0的解集为R ”的(B ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:一元二次不等式x 2+mx +1>0的解为m ∈(-2,2),则m <2只是其必要不充分条件. 6.已知条件p :|x +1|>2,条件q :5x -6>x 2,则綈p 是綈q 的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:綈p :|x +1|≤2,-3≤x ≤1,綈q :5x -6≤x 2,x 2-5x +6≥0,x ≥3或x ≤2,綈p ⇒綈q ,充分不必要条件. 7.有下列四个命题:①“若x +y =0, 则x ,y 互为相反数”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题. 其中真命题为(C)A .①②B .②③C .①③D .③④解析:若x +y =0,则x ,y 互为相反数,为真命题,则逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等” 为假命题;若q ≤1⇒4-4q ≥0,即Δ=4-4q ≥0,则x 2+2x +q =0有实根,为真命题.“不等边三角形的三个内角相等”逆命题为“三个内角相等的三角形是不等边三角形”,为假命题.8.已知命题p :若x ∈N *,则x ∈z .命题q :∃x 0∈R ,⎝⎛⎭⎫12x 0-1=0.则下列命题为真命题的是(D )A .綈pB .p ∧qC .綈p ∨qD .綈p ∨綈q 解析: 显然命题p 为真;因为对∀x ∈R ,都有⎝⎛⎭⎫12x -1>0,所以命题q 为假,所以綈q 为真,由“或”“且”“非”命题的真值表知D 正确.9.(·江西卷)下列叙述中正确的是(D )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0”B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,a ,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β解析:由于“若b 2-4ac ≤0,则ax 2+bx +c ≥0”是假命题,所以“ax 2+bx +c ≥0”的充分条件不是“b 2-4ac ≤0”,A 错;∵ab 2>cb 2,且b 2>0,∴a >c .而a >c 时,若b 2=0,则ab 2>cb 2不成立,由此知“ab 2>cb 2”是“a >c ”的充分不必要条件,B 错;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,C 错;由l ⊥α,l ⊥β,则a ∥β,可得α∥β,理由是:垂直于同一条直线的两个平面平行,D 正确.10.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是(A )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根, ∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2或a ≥1.∴a ≤-2或a =1.11.下列命题中的假命题是(C ) A .∀x >0且x ≠1,都有x +1x>2B .∀a ∈R ,直线ax +y =a 恒过定点(1,0)C .∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∀m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减解析:当x >0时,x +1x ≥2x ·1x =2,∵x ≠1,∴x +1x>2,故A 为真命题;将(1,0)代入直线ax +y =a 成立,B 为真命题;当φ=π2时,函数y =sin ⎝ ⎛⎭⎪⎫x +π2是偶函数,C 为假命题;当m=2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是(A )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根, ∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,a ≥1.∴a ≤-2,或a =1.二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.命题:“若a ·b 不为零,则a ,b 都不为零”的逆否命题是________________________________________________________________________.答案:若a ,b 至少有一个为零,则a ·b 为零 14.用“充分、必要、充要”填空:①p ∨q 为真命题是p ∧q 为真命题的__________条件;②綈p 为假命题是p ∨q 为真命题的__________条件;③A :|x -2|<3,B :x 2-4x -15<0,则A 是B 的________条件. 答案:①必要 ②充分 ③充分15.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是__________. 解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,得-3≤a <0.∴-3≤a ≤0.答案:[-3,0]16.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为______.解析:由x 2>1得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-1三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)对于下述命题p ,写出“綈p ”形式的命题,并判断“p ”与“綈p ”的真假: (1)p :91∈(A ∩B )(其中全集U =N *,A ={x |x 是质数},B ={x |x 是正奇数}); (2)p :有一个素数是偶数;(3)p :任意正整数都是质数或合数; (4)p :三角形有且仅有一个外接圆.解析:(1)綈p :91∉A ,或91∉B ;p 真,綈p 假. (2)綈p :每一个素数都不是偶数;p 真,綈p 假.(3)綈p :存在一个正整数不是质数且不是合数;p 假,綈p 真.(4)綈p :存在一个三角形有两个及其以上的外接圆或没有外接圆;p 真,綈p 假. 18.(12分)写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题,并判断其真假.解析:逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19.(12分)已知方程x 2+(2k -1)x +k 2=0,求使方程有两个大于1的实数根的充要条件.解析:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎨⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2,所以其充要条件为k <-2.20.(12分)若a 2+b 2=c 2,求证a ,b ,c 不可能都是奇数.证明:假设a ,b ,c 都是奇数,则a 2,b 2,c 2都是奇数,得a 2+b 2为偶数,而c 2为奇数,即a 2+b 2≠c 2,与a 2+b 2=c 2矛盾,所以假设不成立,原命题成立.21.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.解析:对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点, 那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.∴a 的取值范围是⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.22.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围. 解析:(1)由x 2-4ax +3a 2<0,的(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)∵綈p 是綈q 的充分不必要条件,∴q 是p 的充分不必要条件,则有(2,3]?(a ,3a ).于是满足⎩⎪⎨⎪⎧a ≤2,3a >3,解得1<a ≤2,故所求a 的取值范围是(1,2].。

高中数学人教A版选修1-1 模块综合测评 Word版含答案

高中数学人教A版选修1-1 模块综合测评 Word版含答案

模块综合测评(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).(·北京高考)设,是实数,则“>”是“>”的( ).充分而不必要条件.必要而不充分条件.既不充分也不必要条件.充要条件【解析】设=,=-,则有>,但<,故>⇒>;设=-,=,显然>,但<,即>⇒>.故“>”是“>”的既不充分也不必要条件.【答案】.过点(,-)的抛物线的标准方程为( ).=或=-.=.=-或=.=-或=【解析】(,-)在第四象限,所以抛物线只能开口向右或向下,设方程为=(>)或=-(>),代入(,-)得=或=-.故选.【答案】.(·南阳高二检测)下列命题中,正确命题的个数是( )①命题“若-+=,则=”的逆否命题为“若≠,则-+≠”;②“∨为真”是“∧为真”的充分不必要条件;③若∧为假命题,则,均为假命题;④对命题:∃∈,使得++<,则¬:∀∈,均有++≥.....【解析】①正确;②由∨为真可知,,至少有一个是真命题即可,所以∧不一定是真命题;反之,∧是真命题,,均为真命题,所以∨一定是真命题,②不正确;③若∧为假命题,则,至少有一个假命题,③不正确;④正确.【答案】.函数()=+′(),则(-)与()的大小关系为( ).(-)<().(-)=().无法确定.(-)>()【解析】′()=+′(),令=,得′()=+′(),∴′()=-.∴()=+·′()=-,()=-,(-)=.∴(-)>().【答案】.(·福建高考)命题“∀∈[,+∞),+≥”的否定是( ).∀∈(-∞,),+<.∀∈(-∞,),+≥.∃∈[,+∞),+<.∃∈[,+∞),+≥【解析】故原命题的否定为:∃∈[,+∞),+<.故选.【答案】.已知双曲线的离心率=,且与椭圆+=有相同的焦点,则该双曲线的渐近线方程为( ).=±.=±.=±.=±【解析】双曲线的焦点为(±),==,∴=,==,∴渐近线方程。

高中数学人教A版选修1-1习题:第一章1.1-1.1.1命题 Word版含答案

高中数学人教A版选修1-1习题:第一章1.1-1.1.1命题 Word版含答案

第一章常用逻辑用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,在这4句诗中,可作为命题的是( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思解析:“红豆生南国”是陈述句,意思是“红豆生长在南方”,故本句是命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题.答案:A2.下列命题为真命题的是( )A.若1x=1y,则x=yB.若x2=1,则x=1C.若x=y,则x=yD.若x<y,则x2<y2解析:很明显A正确;B中,由x2=1,得x=±1,所以B是假命题;C中,当x=y<0时,结论不成立,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.答案:A3.给出下列命题:①若直线l⊥平面α,直线m⊥平面α,则l⊥m;②若a、b都是正实数,则a+b≥2ab;③若x2>x,则x>1;④函数y=x3是指数函数.其中假命题为( )A.①③B.①②③C.①③④D.①④解析:①显然错误,所以①是假命题;由基本不等式,知②是真命题;③中,由x2>x,得x<0或x>1,所以③是假命题;④中函数y=x3是幂函数,不是指数函数,④是假命题.答案:C4.命题“垂直于同一条直线的两个平面平行”的条件是( )A .两个平面B .一条直线C .垂直D .两个平面垂直于同一条直线解析:把命题改为“若p 则q ”的形式为若两个平面垂直于同一条直线,则这两个平面平行,则条件为“两个平面垂直于同一条直线”.答案:D5.下列语句中命题的个数为( )①若a ,G ,b 成等比数列,则G 2=ab .②4-x 2≥0.③梯形是中心对称图形.④π>2吗?⑤2016年是我人生中最难忘的一年!A .2B .3C .4D .5解析:依据命题的概念知④和⑤不是陈述句,故④⑤不是命题;再从“能否判断真假”的角度分析:②不是命题.只有①③为命题,故选A.答案:A二、填空题6.下列语句:①2是无限循环小数;②x 2-3x +2=0;③当x =4时,2x >0;④把门关上!其中不是命题的是________.解析:①是命题;②不是命题,因为语句中含有变量x ,在没给变量x 赋值的情况下,无法判断语句的真假;③是命题;④是祈使句,不是命题.答案:②④7.已知命题“f (x )=cos 2ωx -sin 2ωx 的最小正周期是π”是真命题,则实数ω的值为________. 解析:f (x )=cos 2ωx -sin 2ωx =cos 2ωx ,所以⎪⎪⎪⎪⎪⎪2π2ω=π,解得ω=±1. 答案:±18.下列命题:①若xy =1,则x ,y 互为倒数;②二次函数的图象与x 轴有公共点;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题是________(写出所有真命题的编号).解析:对于②,二次函数图象与x 轴不一定有公共点;对于③,平行四边形不是梯形. 答案:①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断其真假.(1)末位数字是0的整数能被5整除;(2)偶函数的图象关于y 轴对称;(3)菱形的对角线互相垂直.解:(1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题.(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称,为真命题.(3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.10.已知:A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A 、B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”.由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”.由命题为真命题可知1+a 5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x>1,则x >25”. B 级 能力提升1.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .1D .-3解析:C 中,当a =1时,Δ=12-4×1×1=-3<0,方程无实根,其余3项中,a 的值使方程均有实根.答案:C2.①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a//b ,则k =-3;③非零向量a 和b 满足|a|=|b|=|a -b|,则a 与a +b 的夹角为60°.其中真命题的序号为________(写出所有真命题的序号).解析:取a =0,满足a·b =a·c ,但不一定有b =c ,故①不正确;当a=(1,k),b=(-2,6),a//b时,6+2k=0,所以k=-3,则②正确;非零向量a和b满足|a|=|b|=|a-b|时,|a|,|b|,|a-b|构成等边三角形,所以a 与a+b的夹角为30°,因此③错误.答案:②3.把下列命题改写成“若p,则q”的形式,并判断真假.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.。

高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

高中数学选修1-1第一章《常用逻辑用语》单元测试(一)

105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数2.(2019 ·北京清华附中高一期中)“ x> 1”是“ < 1”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D. 既不充分又不必要条件3.(2019 ·天津静海一中高一月考)命题“ V x> 0,x2 一1 > 一1”的否定是( )A. V x> 0,x2 一1 < 一1B. V x< 0,x2 一1 < 一1C. 3x> 0,x2 一1 < 一1D. 3x< 0,x2 一1 < 一14.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 05.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤06.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= -2D. m= -2 或m= 18.(2019 ·天津静海一中高一月考)已知p :log2 (x- 1) < 1 ,q : x2 - 2x- 3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________.13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________15.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 - x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是_______________________,该命题的否命题是___________________________.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.21.(2019·青冈县第一中学校高二月考( 文)) 已知,:关于的方程有实数根.( 1)若为真命题,求实数的取值范围;(2)若为真命题,为真命题,求实数的取值范围.22.(2019·湖南高二期中( 理)) 已知命题p : x2 + mx+ 1 = 0 有两个不相等的负根,命题q : 4x2 + 4(m一2)x+ 1 = 0 无实根,若p^ p为假,p八q为真,求实数m的取值范围.105051.(2019 ·宝鸡中学高二期中(文))下列语句不是命题的是( ).A. 3 > 4B. 0.3是整数C. a> 3D.4 是3 的约数【答案】C2.(2019 ·北京清华附中高一期中)“ x> 1”是“< 1”的( )A.充分而不必要条件C.充分必要条件B.必要而不充分条件D. 既不充分又不必要条件【答案】A3.(2019 ·天津静海一中高一月考)命题“ V x> 0, x2 一1 > 一1”的否定是( )A. V x> 0, x2 一1 < 一1B. V x< 0, x2 一1 < 一1C. 3x> 0, x2 一1 < 一 1D. 3x< 0, x2 一1 < 一1【答案】C4.(2019 ·内蒙古集宁一中高二月考(文))命题“ 3x= R, x2 + 2x+ 2 共0 ”的否定是( )A. V x= R, x2 + 2x+ 2 > 0B. V x= R, x2 + 2x+ 2 共0C. 3x= R, x2 + 2x+ 2 > 0D. 3x= R, x2 + 2x+ 2 > 0【答案】A5.(2019 ·洛阳市第一高级中学高二月考)已知命题p :V x ∈R ,x2>0 ,则一p是( )A. V x ∈R ,x2<0B. 3 x ∈R ,x2<0C. V x ∈R ,x2≤0D. 3 x ∈R ,x2≤0【答案】D6.(2018 ·上海市西南位育中学高二期中)“ a= 1 ” 是“ 直线l1:ax+ 2y一1 = 0 与l2:x+ (a+ 1)y+ 6 = 0 平行”的( )条件A.充分非必要B.必要非充分C.充要D. 既非充分又非必要【答案】A7.(2019 ·辽宁高三月考(文))已知直线l1 :x+ (m+ 1)y+ m= 0 ,l2 :mx+ 2y+ 1 = 0 ,则“ l1//l2 ”的必要不充分条件是( )A. m= 2 或m= 1B. m= 1C. m= 一2D. m= 一2 或m= 1 【答案】D8.(2019 ·天津静海一中高一月考)已知p :log2 (x一1) < 1 ,q : x2 一2x一3 < 0 ,则p是q的( )条件A.充分非必要B.必要非充分C.充分必要D. 既非充分又非必要【答案】A9.(2019 ·内蒙古集宁一中高二月考(文))已知命题“若p,则q”,假设其逆命题为真,则p是q 的( )A.充分条件B.必要条件C. 既不充分又不必要条件D.充要条件【答案】B10.(2019·上海师大附中高一期中)A,B,C三个学生参加了一次考试,已知命题p:若及格分高于70 分,则A,B,C都没有及格.则下列四个命题中为p的逆否命题的是( )A.若及格分不高于70 分,则A,B,C都及格B.若A,B,C都及格,则及格分不高于70 分C.若A,B,C至少有一人及格,则及格分不高于70 分D.若A,B,C至少有一人及格,则及格分高于70 分【答案】C7463611.(2019·上海师大附中高一期中)“ x> 4 ”是“ x> 2 ”的___________条件.【答案】充分非必要12.(2018·上海市澄衷高级中学高一期中)“ x> 5 ”的一个充分非必要条件是__________. 【答案】x> 6 (答案不唯一)13.(2018·上海市杨思高级中学高一期中)写出命题“若a> 0 且b> 0 ,则ab>0 ”的否命题:________【答案】若a< 0 或b< 0 ,则ab< 015.(2019·北京市十一学校高一单元测试)命题“ 3x=Q, x2 一x+ 1= Z”为__________命题(填“真”或“假”) ,其否定为__________【答案】真假15.(2018·江西高二期末( 理)) 若a2 + b2 = 0 , 则a= 0 _____ b= 0 ( 用适当的逻辑联结词“且”“或”“非”)【答案】且16.(2011·浙江高二期中(理))已知命题“面积相等的三角形是全等三角形” ,该命题的否定是________________________________,该命题的否命题是___________________________. 【答案】面积相等的三角形不一定是全等三角形;若两个三角形的面积不相等,则这两个三角形不是全等三角形.17.(2018·海林市朝鲜族中学高二单元测试)设命题p:若e x> 1 ,则x>0 ,命题q:若a>b,则 < ,则命题p∧q为____命题.(填“真”或“假”)【答案】假56418--201221,221418.(2019·邵阳市第十一中学高二期中)已知p:实数x,满足x一a< 0 ,q : 实数x,满足x2 一4x+ 3 共0 ,若a= 2时,p^ q为真,求实数x的取值范围.【答案】恳x1共x<2}19.(2019·辽宁高一月考)设p: x> a, q : x> 3 .( 1)若p是q的必要不充分条件,求a的取值范围;(2)若p是q的充分不必要条件,求a的取值范围;(3)若a是方程x2 一6x+ 9 = 0 的根,判断p是q的什么条件.【答案】( 1) a< 3 ;(2) a> 3 ;(3)充要条件} ,20.(2019·上海市行知中学高一月考) 设集合A= 恳x | x2 + 3x+ 2 = 0B=恳x | x2+ (m+ 1)x+ m= 0};( 1)用列举法表示集合A;(2)若x= B是x= A的充分条件,求实数m的值.【答案】( 1) A 1, 2 ;(2) m 1或 m 2【解析】( 1) x 23x 2 0 x 1 x 2 0即 x1或x 2 ,A 1, 2 ;(2)若x B 是x A 的充分条件,则 B A ,x 2 m 1 x m 0 x 1 x m 0解得 x 1 或 x m ,当 m1时, B 1 ,满足 B A ,当 m 2 时, B 1, 2 ,同样满足B A ,所以 m1或 m 2 .21.(2019· 青 冈 县 第 一 中 学 校 高 二 月考 ( 文 )) 已 知有实数根.( 1)若为真命题,求实数的取值范围; (2)若为真命题,为真命题,求实数的取值范围.【答案】( 1);(2)【解析】( 1) 方程有实数根,得:(2)为真命题,为真命题为真命题,为假命题,即得 .22.(2019· 湖南 高 二期 中( 理)) 已 知命题 p : x2mx 1 0 有两个 不相等 的 负根 , 命题q : 4x 2 4(m 2)x 1 0 无实根,若p p 为假, p q 为真,求实数 m 的取值范围.【答案】 (1, 2]得;, : 关 于 的 方 程【解析】因为p⊥ p假,并且p q为真,故p假,而q真即x2 + mx+ 1 = 0不存在两个不等的负根,且4x2 +4(m 2)x+1= 0无实根.所以= 16(m 2)2 16 < 0 ,即1< m< 3,当1< m 2 时,x2 + mx+ 1 = 0不存在两个不等的负根,当2< m< 3时,x2 + mx+ 1 = 0存在两个不等的负根.所以m的取值范围是(1, 2]。

高中数学(人教B版 选修1-1)第一章 章末综合测评 Word版含答案

高中数学(人教B版 选修1-1)第一章 章末综合测评 Word版含答案

章末综合测评(一) 常用逻辑用语(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).“经过两条相交直线有且只有一个平面”是( ).存在性命题.全称命题.∧形式.∨形式【解析】此命题暗含了“任意”两字,即经过任意两条相交直线有且只有一个平面.【答案】.设∈,则“>”是“>”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件【解析】由于函数()=在上为增函数,所以当>时,>成立,反过来,当>时,>也成立.因此“>”是“>”的充要条件,故选.【答案】.命题“∀∈,≠”的否定是( ).∀∈,=.∀∉,≠.∃∈,=.∃∉,≠【解析】全称命题的否定,需要把全称量词改为特称量词,并否定结论.【答案】.全称命题“∀∈+是整数”的逆命题是( )【导学号:】.若+是整数,则∈.若+是奇数,则∈.若+是偶数,则∈.若+能被整除,则∈【解析】易知逆命题为:若+是整数,则∈.【答案】.已知命题:对任意∈,总有≥;:=是方程+=的根.则下列命题为真命题的是( ) .∧綈.綈∧.綈∧綈.∧【解析】命题为真命题,命题为假命题,所以命题綈为真命题,所以∧綈为真命题,故选.【答案】.命题“全等三角形的面积一定都相等”的否定是( ) .全等三角形的面积不一定都相等.不全等三角形的面积不一定都相等.存在两个不全等三角形的面积相等.存在两个全等三角形的面积不相等【解析】命题是省略量词的全称命题.易知选.【答案】.原命题为“若<,∈,则{}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次+如下,正确的是( ).真,真,真.假,假,真.真,真,假.假,假,假<⇔{}为递减数列,即原命题和【解析】从原命题的真假入手,由于<⇔+逆命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选.【答案】.给定两个命题,.若綈是的必要而不充分条件,则是綈的( ).充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件【解析】⇒綈等价于⇒綈,綈等价于綈.故是綈的充分而不必要条件.【答案】。

高中数学人教a版高二选修1-1章末综合测评第一章_word版含解析

高中数学人教a版高二选修1-1章末综合测评第一章_word版含解析

高中数学人教a版高二选修1-1章末综合测评第一章_word版含解析章末综合测评(一) 常用逻辑用语 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“经过两条相交直线有且只有一个平面”是( ) A.全称命题 C.p∨q形式B.特称命题 D.p∧q形式【解析】此命题暗含了“任意”两字,即经过任意两条相交直线有且只有一个平面.【答案】 A2.设x∈R,则“x>1”是“x3>1”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由于函数f(x)=x3在R上为增函数,所以当x>1时,x3>1成立,反过来,当x3>1时,x>1也成立.因此“x>1”是“x3>1”的充要条件,故选C.【答案】 C3.命题“?x∈R,x2≠x”的否定是( ) A.?x?R,x2≠x C.?x?R,x2≠xB.?x∈R,x2=x D.?x∈R,x2=x【解析】全称命题的否定,需要把全称量词改为特称量词,并否定结论.【答案】D4.全称命题“?x∈Z,2x+1是整数”的逆命题是( ) A.若2x+1是整数,则x∈Z B.若2x+1是奇数,则x∈Z C.若2x+1是偶数,则x∈Z D.若2x+1能被3整除,则x∈Z第1页共8页【解析】易知逆命题为:若2x+1是整数,则x∈Z. 【答案】 A5.已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧?q C.?p∧?qB.?p∧q D.p∧q【解析】命题p为真命题,命题q为假命题,所以命题?q为真命题,所以p∧?q为真命题,故选A.【答案】 A6.南八校联考)命题“全等三角形的面积一定都相等”的否定是( ) A.全等三角形的面积不一定都相等 B.不全等三角形的面积不一定都相等 C.存在两个不全等三角形的面积相等 D.存在两个全等三角形的面积不相等【解析】命题是省略量词的全称命题.易知选D. 【答案】 Dan+an+17.原命题为“若<an,n∈N+,则{an}为递减数列”,关于其逆命题,否2命题,逆否命题真假性的判断依次如下,正确的是( )A.真,真,真 C.真,真,假B.假,假,真 D.假,假,假an+an+1【解析】从原命题的真假入手,由于<an?an+1<an?{an}为递减数列,2即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,则逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p,q.若?p是q的必要而不充分条件,则p是?q的( ) A.充分而不必要条件 C.充要条件B.必要而不充分条件 D.既不充分也不必要条件第2页共8页【解析】 q??p等价于p??q,?pD?/ q等价于?qD?/ p.故p是?q的充分而不必要条件.【答案】 A9.一元二次方程ax2+4x+3=0(a≠0)有一个正根和一个负根的充分不必要条件是( )A.a<0 C.a<-12B.a>0 D.a>13【解析】一元二次方程ax+4x+3=0(a≠0)有一个正根和一个负根?<0,解a得a<0,故a<-1是它的一个充分不必要条件.【答案】 C10.设集合U={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y -n≤0},那么点P(2,3)∈A∩(?UB)的充要条件是( )A.m>-1,n<5 C.m>-1,n>5B.m<-1,n<5 D.m<-1,n>5【解析】∵P(2,3)∈A∩(?UB),?2×2-3+m>0,?m>-1,∴满足?故??2+3-n>0,?n<5.【答案】 A11.下列命题中为真命题的是( ) A.?x0∈R,ex0≤0 B.?x∈R,2x>x2aC.a+b=0的充要条件是=-1bD.a>1,b>1是ab>1的充分条件【解析】对于?x∈R,都有ex>0,故选项A是假命题;当x=2时,2x=x2,故aa选项B是假命题;当=-1时,有a+b=0,但当a+b=0时,如a=0,b=0时,无bb意义,故选项C是假命题;当a>1,b>1时,必有ab>1,但当ab>1时,未必有a>1,b>1,如当a=-1,b=-2时,ab>1,但a不大于1,b不大于1,故a>1,b>1是ab>1第3页共8页的充分条件,选项D是真命题.【答案】 D12.下列命题中真命题的个数为( )①命题“若x=y,则sin x=sin y”的逆否命题为真命题;?ππ?②设α,β∈?-2,2?,则“α??③命题“自然数是整数”是真命题;④命题“?x∈R,x2+x+1<0”的否定是“?x0∈R,x20+x0+1<0.” A.1 C.3B.2 D.4【解析】①命题“若x=y,则sin x=sin y”为真命题,所以其逆否命题为真命?ππ??ππ?题;②因为x∈?-2,2? 时,正切函数y=tan x是增函数,所以当α,β∈?-2,2?时,????α2x2+x+1<0”的否定是“?x0∈R,x0+x0+1≥0”,故④是假命题.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 213.设p:x>2或x<;q:x>2或x<-1,则?p是?q的________条件.32【解析】 ?p:≤x≤2.3?q:-1≤x≤2.?p??q,但?qD?/ ?p. ∴?p是?q的充分不必要条件.【答案】充分不必要14.若命题“对于任意实数x,都有x2+ax-4a>0且x2-2ax+1>0”是假命题,则实数a的取值范围是________.【解析】若对于任意实数x,都有x2+ax-4a>0,则Δ=a2+16a<0,即-160,则Δ=4a2-4<0,即-10且x2-2ax+1>0”是真命题时,有a∈(-1,0).而命题第4页共8页“对于任意实数 x,都有x2+ax-4a>0且x2-2ax+1>0”是假命题,故a∈(-∞,-1]∪[0,+∞).【答案】 (-∞,-1]∪[0,+∞) 15.给出下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实数根”的逆否命题;④若sin α+cos α>1,则α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等”的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】①③16.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若?p是?q的充分条件,则实数a 的取值范围是________.【解析】 p:a-4<x<a+4,q:2<x<3,∵?p是?q的充分条件(即?p??q),∴q?p,?a-4≤2,∴?∴-1≤a≤6. ?a+4≥3,【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)指出下列命题的构成形式,并写出构成它的命题: (1)36是6与18的倍数;(2)方程x2+3x-4=0的根是x=±1;(3)不等式x2-x-12>0的解集是{x|x>4或x【解】 (1)这个命题是p∧q的形式,其中p:36是6的倍数;q:36是18的倍数. (2)这个命题是p∨q的形式,其中p:方程x2+3x-4=0的根是x=1;q:方程x2+3x-4=0的根是x=-1.(3)这个命题是p∨q的形式,其中p:不等式x2-x-12>0的解集是{x|x>4};q:不第5页共8页感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题:"若0x ≥,0y ≥,则0xy ≥",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( ) A .1B .2C .3D .42.命题“若A B ⊆,则A B =”与其逆命题、否命题、逆否命题这四个命题中, 真命题的个数是( ) A .0B .2C .3D .43.给定空间中的直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件4.已知p :若a A ∈,则b B ∈,那么命题p ⌝是( ) A .若a A ∈,则b B ∉ B .若a A ∉,则b B ∉ C .若b B ∉,则a A ∉D .若b B ∈,则a A ∈5.命题“p 且q ”与命题“p 或q ”都是假命题,则下列判断正确的是( )A .命题“非p ”与“非q ”真假不同B .命题“非p ”与“非q ”至多有一个是假命题C .命题“非p ”与“q ”真假相同D .命题“非p 且非q ”是真命题6.已知a ,b 为任意非零向量,有下列命题:①|a |=|b |;②()()22=a b ;③()2⋅=a a b ,其中可以作为=a b 的必要非充分条件的命题是( ) A .①B .①②C .②③D .①②③7.已知A 和B 两个命题,如果A 是B 的充分不必要条件,那么“A ⌝”是“B ⌝”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若向量()(),3x x =∈R a ,则“4x =”是“5=a ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件9.下列全称命题中,正确的是( ) A .{},x y ∀∈锐角,sin sin s )n (i x y x y +>+ B .{},x y ∀∈锐角,sin cos c )s (o x y x y +>+ C .{},x y ∀∈锐角,cos sin c )s (o x y x y +<+ D .{},x y ∀∈锐角,cos cos s )n (i x y x y -<+10.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“x ∀∈Z ,32x x >”的否定是“x ∃∈Z ,32x x >”C .“=2ϕπ”是“函数()sin y x ϕ=+为偶函数”的充要条件D .“0b =”是“关于x 的二次函数()2f x ax bx c ++=是偶函数”的充要条件此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.已知命题p :函数()log 05()3f x x =-.的定义域为(-∞,3);命题q :若k <0,则函数()kh x x=在(0,)+∞上是减函数,对以上两个命题,下列结论中正确的是( )A .命题“p 且q ”为真B .命题“p 或q ⌝”为假C .命题“p 或q ”为假D .命题“p ⌝”且“q ⌝”为假12.已知向量),(x y =a ,co ()s ,sin αα=b ,其中x y α∈R ,,,若4=a b , 则2λ⋅<a b 成立的一个必要不充分条件是( ) A .λ>3或λ<-3 B .λ>1或λ<-1 C .-3<λ<3D .-1<λ<1二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.“对顶角相等”的否定为________,否命题为________.14.令()221:0p x ax x ++>,如果对x ∀∈R ,()p x 是真命题,则a 的取值范围是________.15.试写出一个能成为2()(0)21a a -->的必要不充分条件________. 16.给定下列结论:①已知命题p :∃x ∈R ,t a n x =1;命题q :∀x ∈R ,210x x -+>.则命题“p q ⌝∧”是假命题;②已知直线1l :ax +3y -1=0,2l :x +b y +1=0,则12l l ⊥的充要条件是3ab =-;③若()1sin 2αβ+=,()1sin 3αβ-=,则t a nα=5t a nβ;④圆224210x y x y ++-+=与直线12y x =,所得弦长为2. 其中正确命题的序号为________(把你认为正确的命题序号都填上).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知命题p :∀非零向量a 、b 、c ,若()0⋅-=a b c ,则=b c .写出其否定和否命题,并说明真假.18.(12分)给定两个命题P :对任意实数x 都有210ax ax ++>恒成立;Q :关于x 的方程20x x a -+=有实数根.如果P ∧Q 为假命题,P ∨Q 为真命题,求实数a 的取值范围.19.(12分)求证:一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充分不必要条件是a <-1.20.(12分)已知p :2290x x a -+<,q :22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,且p ⌝是q ⌝的充分条件,求实数a 的取值范围.21.(12分)给出命题p:“在平面直角坐标系xOy中,已知点P(2cos x+1,2cos2x +2)和Q(cos x,-1),∀x∈[0,π],向量OP与OQ不垂直.”试判断该命题的真假并证明.22.(12分)已知ab≠0,求证:a+b=1的充要条件是33220a b ab a b++--=.2018-2019学年选修1-1第一章训练卷常用逻辑用语(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】由题得原命题“若0x ≥,0y ≥,则0xy ≥”是真命题,所以其逆否命题也是真命题.逆命题为:“若0xy ≥,则0x ≥,0y ≥”,是假命题,所以否命题也是假命题, 所以四个命题中,真命题的个数为2.故答案为B . 2.【答案】B【解析】可设{}1,2A =,{}1,2,3B =,满足A B ⊆,但A B ≠,故原命题为假命题,从而逆否命题为假命题.易知否命题、逆命题为真. 3.【答案】C【解析】直线l 与平面α内两相交直线垂直⇔直线l 与平面α垂直,故选C . 4.【答案】A【解析】命题“若p ,则q ”的否定形式是“若p ,则q ⌝”.故选A . 5.【答案】D【解析】p 且q 是假命题⇒p 和q 中至少有一个为假,则非p 和非q 至少有一个是真命题.p 或q 是假命题⇒p 和q 都是假命题,则非p 和非q 都是真命题.故选D . 6.【答案】D【解析】由向量的运算即可判断. 7.【答案】B【解析】由于“A ⇒B ,A /⇐B ”等价于“A B ⌝⌝⇐,A ⌝/⇒B ⌝”,故“A ⌝”是“B ⌝”的必要不充分条件.故选B . 8.【答案】A【解析】由“4x =”,得)3(4,=a ,故5=a ;反之,由5=a ,得4x =±.所以“4x =”是“5=a ”的充分而不必要条件.故选A . 9.【答案】D【解析】由于cos cos c (os sin sin )x y x y x y -+=,而当{},x y ∈锐角时,0cos 1y <<,0sin 1x <<,所以cos cos cos sin sin cos s (in )x y x y x y x y -<+=+,故选项D 正确. 10.【答案】D【解析】A 为全称命题;B 中否定应为0x ∃∈Z ,3200x x ≤;C 中应为充分不必要条件.D 选项正确. 11.【答案】D【解析】由题意知p 真,q 假.再进行判断. 12.【答案】B【解析】由已知1=b ,∴44==a b,4.又∵()()cos sin 4sin 4x y αααϕαϕ⋅=++=+≤a b ,由于2λ⋅<a b 成立,则24λ>,解得λ>2或λ<-2,这是2λ⋅<a b 成立的充要条件,因此2λ⋅<a b 成立的一个必要不充分的条件是λ>1或λ<-1.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】对顶角不相等 若两个角不是对顶角,则它们不相等【解析】“对顶角相等”的否定为“对顶角不相等”,否命题为“若两个角不是对顶角,则它们不相等”. 14.【答案】1a >【解析】由已知x ∀∈R ,2210ax x ++>恒成立.显然0a =不合题意, 所以0440a a ∆>⎧⎨=-<⎩⇒1a >.15.【答案】1a > (不惟一)【解析】2()(0)21a a -->的解集记为B ={1|a a >且a ≠2},所找的记为集合{}1A a a =>,则B ⇒A ,B /⇐A .16.【答案】①③【解析】对于①易知p 真,q 真,故命题p q ⌝∧假,①正确; 对于②1l 与2l 垂直的充要条件应为a +3b =0; 对于③利用两角和与差的正弦公式展开整理即得;,④错.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】见解析.【解析】p ⌝:∃非零向量a 、b 、c ,若()0⋅-=a b c ,使≠b c .p ⌝为真命题. 否命题:∀非零向量a 、b 、c ,若()0⋅-≠a b c ,则≠b c .否命题为真命题. 18.【答案】()1,0,44⎛⎫-∞ ⎪⎝⎭. 【解析】命题P :对任意实数x 都有210ax ax ++>恒成立,则“a =0”,或“a >0且240a a -<”.解得0≤a <4.命题Q :关于x 的方程20x x a -+=有实数根,则140a ∆=-≥,得14a ≤. 因为P ∧Q 为假命题,P ∨Q 为真命题,则P ,Q 有且仅有一个为真命题, 故P Q ⌝∧为真命题,或P Q ⌝∧为真命题,则0414a a a <≥⎧⎪⎨≤⎪⎩或或0414a a ≤<⎧⎪⎨>⎪⎩, 解得a <0或144a <<.所以实数a 的取值范围是()1,0,44⎛⎫-∞ ⎪⎝⎭.19.【答案】见解析.【解析】一元二次方程()22100ax x a ++=≠有一个正根和一个负根的充要条件是:4401a a ∆=->⇔<,并且10a<,从而a <0.有一个正根和一个负根的充分不必要条件应该是{a |a <0}的真子集,a <-1符合题意.所以结论得证. 20.【答案】a ≤9.【解析】由22430680x x x x ⎧-+<⎪⎨-+<⎪⎩,得1324x x <<⎧⎨<<⎩,即2<x <3.∴q :2<x <3.设{}290|2A x x x a =-+<,B ={x |2<x <3},∵p q ⌝⌝⇒,∴q ⇒p .∴B ⊆A .∴2<x <3包含于集合A ,即2<x <3满足不等式2290x x a -+<.∴2<x <3满足不等式292a x x <-.∵当2<x <3时,222981819818192229,21616488x x x x x ⎛⎫⎛⎫⎛⎤-=--+-=--+∈ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎦,即2819928x x <-≤,∴a ≤9. 21.【答案】见解析.【解析】命题p 是假命题,证明如下:由OP 和OQ 不垂直, 得cos x (2cos x +1)-(2cos2x +2)≠0,变形得:22cos cos 0x x -≠, 所以cos x ≠0或1cos 2x ≠. 而当[]0,x ∈π时,cos2π=0,1cos 32π=, 故存在2x π=或3x π=,使向量OP OQ ⊥成立,因而p 是假命题. 22.【答案】见解析.【解析】必要性:∵a +b =1,∴b =1-a ,∴()()()32332232111a b ab a b a a a a a a ++--=+--+--- 323222133120a a a a a a a a a =+-+-+---+-=.充分性:∵33220a b ab a b ++--=,即()()()22220a b a ab b a ab b --+-+=+, ∴()()2210a ab b a b -+-=+,又ab≠0,即a≠0且b≠0,∴2222324b ba ab b a⎛⎫-+=-+≠⎪⎝⎭,只有1a b+=.综上可知,当ab≠0时,a+b=1的充要条件是33220a b ab a b++--=.。

相关文档
最新文档