七年级数学上册 1.4 有理数的乘除法 1.4.1 有理数的乘法导学案3新人教版

合集下载

有理数的乘法教案(精选多篇)

有理数的乘法教案(精选多篇)

有理数的乘法教案(精选多篇)第一篇:有理数的乘法1教案1.4.1有理数的乘法一、教学内容人教版七年级数学〔上〕第一章第四节《有理数的乘除法》,见课本p28.二、学情分析^p在此之前,本班学生已有探究有理数加法法那么的经历,多数学生能在老师指导下探究问题。

由于学生已理解利用数轴表示加法运算过程,我们仍用数轴表示乘法运算过程。

三、教学目的1、知识与技能目的掌握有理数乘法法那么,能利用乘法法那么正确进展有理数乘法运算。

2、才能与过程目的经历探究、归纳有理数乘法法那么的过程,开展学生观察、归纳、猜测、验证等才能。

3、情感与态度目的通过学生自己探究出法那么,让学生获得成功的喜悦。

四、教学重点、难点重点:运用有理数乘法法那么正确进展计算。

难点:有理数乘法法那么的探究过程,符号法那么及对法那么的理解。

五、教学手段制作幻灯片,采用多媒体的现代课堂教学手段.六、教学方法注意创设问题情景,选择“情景---探究---发现”的教学形式,通过直观教学,借助多媒体吸引学生的注意力,激发学习兴趣。

在整个学习过程中,以“自主参与,勇于探究,合作交流”的探究式学法为主,从而到达进步学习才能的目的。

七、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题〔出示蜗牛爬的动画幻灯片〕老师:这涉及有理数乘法运算法那么,正是我们今天需要讨论的问题.2、学生探究、归纳法那么学生分为四个小组活动,进展乘法法那么的探究。

〔1〕老师出示蜗牛在数轴上运动的问题,让学生理解。

蜗牛如今的位置在点o,规定向右的方向为正,向左的方向为负;如今时间后为正,如今时间前为负.a.+ 2 ×〔+3〕+2看作向右运动的速度,×〔+3〕看作运动3分钟后。

结果:3分钟后的位置+2 ×〔+3〕=b. -2 ×〔+3〕-2看作向左运动的速度,×(+3)看作运动3分钟后。

七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题新版新人教版2

七年级数学上册1、4有理数的乘除法1有理数的乘法第3课时有理数乘法的运算律习题新版新人教版2

(2)上面的解法对你有何启发,你认为还有更好的解法吗?如果有,请把它 写出来;
(2)还有更好的解法,解法如下:
24
4925
×(-5)= 50
1
25
×(-5)
1
=50×(-5)-25 ×(-5)
1
=-2504+5
5
=-249 .
(3)用你认为合适的方法计算:1915 ×(-8).
16
(3)1915
25
(-5),看谁算得又快又对.有两位同学的解法如下:
1249
1249
4
小明:原式=-25 ×5=- 5 =-2495 ;
24
24
24
4
小军:原式=(49+25 )×(-5)=49×(-5)+25 ×(-5)=-245-5 =-2495 .
(1)对于以上两种解法,你认为谁的解法较好?
解:(1)小军的解法较好.
易错点 利用分配律计算时,漏乘或弄错符号
9.计算:|-12|×
1 3
1
3 4
1 12
1
6
.
1
解:原式=12×3
3
+12×(-1)+12×4
+12×
1 12
1
+12×6
=4-12+9-1+2
=2.
10.下列计算(-55)×99+(-44)×99-99正确的是( C ) A.原式=99×(-55-44)=-9801 B.原式=99×(-55-44+1)=-9702 C.原式=99×(-55-44-1)=-9900 D.原式=99×(-55-44-99)=-19 602
16
×(-8)= 20
1 16
1
=20×(-8)-16 ×(-8)

1.4.1 第3课时 有理数的乘法运算律

1.4.1 第3课时 有理数的乘法运算律

1.4 有理数的乘除法
4 5 解:(1)(-7)×- × 3 14 5 4 =(-7)× ×- 14 3 5 4 - - = × 2 3
7 5 3 7 (2) - + - ×36 9 6 4 18
am+bm+cm 解法二: 乘法的分配律是(a+b+c)m=________________ . 根
据乘法的分配律先做三个乘法,后做加减法.具体步骤如下: 1 1 1 12 12 12 原式= ×______+ ×______- ×______( 乘法分配律的应 4 6 2 用)
3+2-6 =______________( 计算三个乘法)
1.4 有理数的乘除法
3.分配律:有理数乘法中,一个数同两个数的和相乘,等于 把这个数分别同这两个数相乘,再把积________ 相加 ,即a(b+c)
ab+ac . =__________
[点拨] 分配律是乘法对加法的分配律,加数的个数可以不限 于两个.一个数除以多个数的和不能用分配律.
1.4 有理数的乘除法
2 2 1 5 (2)(-13)× -0.34× + ×(-13)- ×0.34. 3 7 3 7
[解析] (1)直接计算比较麻烦,观察发现三个乘积式中都有 2 - 这个因数,因此可反用乘法分配律简化计算.(2)观察式 3 子可发现第一、三个乘积式中都有-13 这个因数,第二、四 个乘积式中都有 0.34 这个因数, 所以可分别反用乘法分配律 简化计算.
1.4 有理数的乘除法
2 解:(1)原式=- ×(15-16-20) 3 2 =- ×(-21)=14. 3 2 1 2 5 (2)原式=(-13)× + ×(-13)-0.34× - ×0.34 3 3 7 7 2 1 2 5 =(-13)×( + )-0.34×( + ) 3 3 7 7 =-13-0.34 =-13.34.

有理数的乘除法导学案1-5

有理数的乘除法导学案1-5

课题:1.4.1有理数的乘法(1)班级:________姓名:__________ 小组:_______ 编号:_________执笔:_________ 审核:____________【学习目标】:1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算;2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力;【重点难点】:有理数乘法法则一、温故知新1.有理数加法法则内容是什么?2.计算:(1)2+2+2=________ (2)(-2)+(-2)+(-2)=_______3.你能将上面两个算式写成乘法算式吗?(1)_____________ (2)______________二、合作探究,分组展示1、自学课本28-29页回答下列问题(为区分方向,规定:向左为负,向右为正;为区分时间,规定:现在前为负,现在后为正)(1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 . (2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置?可以表示为(3)如果它以每分2cm的速度向右爬行,3分钟前它在什么位置?可以表示为(4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置?可以表示为由上可知:①(+2)×(+3)= ;②(-2)×(+3)= ;③(+2)×(-3)= ;④(-2)×(-3)= ;(5)两个数相乘,一个数是0时,结果为0观察上面的式子,根据你对有理数乘法的思考,填空:①正数×正数积为______数,②负数×正数积为______数,③正数×负数积为数,④负数×负数积为______数;⑤乘积的绝对值等于各乘数绝对值的________。

请你归纳有理数乘法法则:两数相乘,同号,异号,并把相乘;任何数与0相乘,都得。

2、 请同学们自己完成例1 计算:(1)(-3)×9; (2)(-21)×(-2); 解:原式= 解:原式=注意:有理数相乘,先确定积得_______,再确定积得___________.归纳: 的两个数互为倒数。

新人教版七上1.4《有理数的乘除法》教案

新人教版七上1.4《有理数的乘除法》教案

1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。

最新人教版初中七年级上册数学《有理数的乘法》导学案

最新人教版初中七年级上册数学《有理数的乘法》导学案

1.4 有理数的乘除法1.4.1 有理数的乘法第1课时有理数的乘法一、新课导入1.课题导入:我们已经熟悉正数及0的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?(板书课题)2.三维目标:(1)知识与技能①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.②会进行有理数的乘法运算.(2)过程与方法通过对问题的变式探索,培养观察、分析、抽象的能力.(3)情感态度通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.3.学习重、难点:重点:有理数乘法法则及应用.难点:探索有理数乘法法则.二、分层学习1.自学指导:(1)自学内容:探究有理数乘法的法则.(2)自学时间:10分钟.(3)自学方法:在探究提纲的引导下进行自主探究,有困难的学生可以相互交流总结归纳出有理数乘法法则.(4)探究提纲:①观察下面的乘法算式:3×3=93×2=63×1=33×0=0a.四个算式有一个共同点:前一个乘数都是3.b.四个算式中其他两个数有什么变化规律?(后一个乘数逐次递减1,积逐次递减3.)②要使①中得出的规律在引入负数后仍然成立,那么下面的一些积应该是什么?3×(-1)=-33×(-2)=-63×(-3)=-9从符号和绝对值两个角度观察这三个算式,你能说说它们的共性吗?(正数乘负数,积都是负数,积的绝对值等于各乘数绝对值的积.)③再观察下面的算式:3×3=92×3=61×3=30×3=0a.类比上述过程,你又能发现什么规律?(前一个乘数逐次递减1,后一个乘数不变,积逐次递减3.)b.要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?(-1)×3=-3(-2)×3=-6(-3)×3=-9c.类比正数乘负数规律的归纳过程,同样从符号和绝对值两个角度观察这三个算式,说说它们的共性.(负数乘正数,积都是负数,积的绝对值等于各乘数绝对值的积.)d.综合正数乘负数,负数乘正数两种情况下的结论,你能用一句话把它们概括出来吗?(异号两数相乘,积的符号为负号,积的绝对值等于各乘数绝对值的积.)④a.利用③中归纳的结论计算下面的算式:(-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0观察这四个算式,你能发现其中的规律吗?(后一个乘数逐次递减1,积逐次增加3.)b.按照上述规律,完成下面填空:(-3)×(-1)=3 (-3)×(-2)=6 (-3)×(-3)=9观察这三个算式,说说其中有什么规律?(负数乘负数,积为正数,积的绝对值等于各乘数绝对值的积.)⑤总结上面所有的情况,你能试着自己给出有理数乘法的法则吗?两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.2.自学:同学们结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:了解学生对探究提纲中的问题的回答情况,尤其要关注第①题的b小题及第②、⑤题的解答情况.②差异指导:指导帮助那些不能顺利完成探究提纲中问题的学生进行有效学习.(2)生助生:学生通过互助交流帮助解决一些自学中的疑难问题.4.强化:有理数乘法法则.1.自学指导:(1)自学内容:教材第29页倒数第四行至教材第30页的内容.(2)自学时间:4分钟.(3)自学要求:认真阅读课文,仔细领会有理数乘法法则的运用步骤.(4)自学参考提纲:①有理数相乘,先看是怎样的两数相乘(同号还是异号),再确定积的符号,最后确定积的绝对值.②例1中,8×(-1)=-8,8和-8互为相反数,由此启示:要得到一个数的相反数,只要将它乘-1.③有理数中仍然有:乘积是1的两个数互为倒数.数a(a≠0)的倒数是1a;0没有倒数.④写出下列各数的倒数:1,-1,13,-13,5,-5,23,-231,-1,3,-3, 15,-15,32,-32⑤你能说说互为倒数与互为相反数有哪些区别吗?和为0,互为相反数;积为1,互为倒数.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生中了解学生运用法则进行计算的步骤是否掌握,了解学生对互为倒数的理解及能否掌握求一个数的倒数的方法.②差异指导:指导在法则运用中计算不当或不正确的学生.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)总结交流.①如何正确运用法则计算.②互为倒数与互为相反数的区别.(2)练习:①计算:②商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?解:-5×60=-300,销售额下降300元.三、评价1.学生的自我评价(围绕学习目标):自我评价本节课学习的感受和收获.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中的积极表现及不到之处进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.1.(20分)下列运算结果为负值的是(B )A.(-7)×(-6)B.(-4)+(-6)C.0×(-2)D.(-7)-(-10)2.(20分)计算题.(1)(-8)×(-7) (2)12×(-5) (3)2.9×(-0.4)(4)-30.5×0.2(5)100×(-0.001)(6)-4.8×(-1.25) (7)14×-89(8)(-56)×(-310)(9)-3415×25(10)(-0.3)×(-107)解:(1)56;(2)-60;(3)-1.16;(4)-6.1;(5)-0.1;(6)6;(7)-2 9;(8)14;(9)-1703;(10)37.3.(30分)写出下列各数的倒数.(1)-15(2)-59(3)-0.25(4)0.17(5)414(6)-525解:(1)-115;(2)-95;(3)-4;(5)10017;(6)417;(6)-527.二、综合应用(20分)4.(10分)若a、b互为相反数,若x、y互为倒数,则a-xy+b=-1.5.(10分)相反数等于它本身的数是0;倒数等于它本身的数是1,-1;绝对值等于它本身的数是非负数.三、拓展延伸(10分)6.(10分)计算:2×1,2×12,2×(-1),2×(-12)联系这类具体的数的乘法,你认为一个非0有理数一定小于它的2倍吗?为什么?解:2×1=2,2×12=1,2×(-1)=-2,2×-12=-1不一定,一个负数大于它的2倍.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。

1.4.1 第2课时 有理数的乘法运算律 习题精讲 课件(新人教版七年级上)

1.4.1 第2课时 有理数的乘法运算律 习题精讲 课件(新人教版七年级上)
解:原式=(6+8-1)⊕(3×5-1)=13⊕14=13+14
(2)[4⊗(-2)]⊗[(-5)⊕(-3)].
解:原式=(-8-1)⊗(-8-1)=-9×(-9)-1=80
-1=26
谢谢观看!
【例】计算:(-48) ( 1 1 1 ) 3 4 6
1 1 1 【错解】 原式= -48 3 -48 4 -48 6
=-36 【错因分析】用乘法分配律时符号处理错.
【正解】
一、选择题(每小题4分,共8分) 6.下面的运算正确的是( C ) A.-8×(-4)(-3)(-125)=-(8×125)×(4×3)=-12 000
把__________ a(bc) . 后两个数 相乘,积相等,即(ab)c=_________ 3.分配律:一个数与两个数的和相乘,等于把 _________________________ 相乘,再把_________ 这个数分别同这两个数 积相加 .即a(b +c)=_____________ ,有时也可以逆用:a· b+a· c= ab+ac
1 1 (-12) ( - -1)=-4+3+1=0 B. 3 4
C. -9
16 1 51=(10+ ) 51=-510+3=-507 17 17
D.-2×5-2×(-1)-(-2)×2=-2(5+1-2)=-8
7.若四个互不相等的整数a,b,c,d,它们的积 abcd=25,则a+b+c+d等于( D ) A.-8 B.12 C.-8或12 D.0 二、填空题(每小题4分,共12分) 8.计算:(1-2)(2-3)……(2 011-2 012)(2 013- 2 014)=____ 1 . 9.已知abc>0,a>c,ac<0,则a____0 > , < b____0 填“>”“<”或“=”) < ,c____0.( 10.绝对值小于4的所有负整数的积是____ -6 .

1.4.1 有理数的乘法 习题课件 2021--2022学年人教版七年级数学上册

1.4.1 有理数的乘法  习题课件  2021--2022学年人教版七年级数学上册

答案 C 由 1 =-4,得x的倒数是-4,所以x=- 1 ,故选C.
x
4
32. 已知两个有理数a,b,如果ab<0且a+b>0,那么 ( ) A.a>0,b>0 B.a<0,b>0 C.a、b同号 D.a、b异号,且正数的绝对值较大
答案 D 因为ab<0,所以a,b异号,因为a+b>0,所以正数的绝对值较大,故 选D.
5.有理数的乘法运算,除了用乘法口诀外,现有一种“划线乘法”,如图1-4 -1-1所示.
图1-4-1-1
请你用“划线乘法”计算13×32,下列计算正确的是 ( )
答案 D 根据题图可知,用“划线乘法”计算13×32时,左上方是1条向 左撇的直线,右下方是3条向左撇的直线,左下方是3条向右撇的直线,右上 方是2条向右撇的直线,故选D.
23.学了有理数的运算后,老师给同学们出了一道题.
计算:1917 ×(-9),下面是两位同学的解法:
18
小方:原式=- 359 ×9=-3 231=-179 1 ;
18
18
2
小杨:原式=19
17 18
×(-9)=-19×9-17
18
×9=-179
1 2
.
(1)两位同学的解法中,谁的解法较好?
(2)请你写出另一种更好的解法.
5
5
答案 B 5的倒数是 1 ,故选B.
5
30.(2020贵州贵阳中考,1,★☆☆)计算(-3)×2的结果是 ( )
A.-6
B.-1
C.1
D.6
答案 A (-3)×2=-6.故选A.
31.(2020四川南充中考,1,★☆☆)若 1 =-4,则x的值是 ( )

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

七年级数学上册第1章有理数1-4有理数的乘除法1-4-1有理数的乘法教学课件新版新人教版

探究新知 知识点 1 有理数的乘法法则
探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的 点O.
O
l
1. 如果一只蜗牛向右爬行2cm记为+2cm,那么向左爬行2cm
应该记为 –2cm . 2.如果3分钟以后记为+3分钟,那么3分钟以前应该记
为 –3分钟 .
探究新知 【思考】
1.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟后它在什么位置? 2.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟后它在什么位置? 3.如果蜗牛一直以每分钟2cm的速度向右爬行,3分钟前它在什么位置? 4.如果蜗牛一直以每分钟2cm的速度向左爬行,3分钟前它在什么位置? 5.原地不动或运动了零次,结果是什么?
1. 2×3×4×(–5)

2. 2×3×(–4)×(–5)

3. 2×(–3)×(–4)×(–5)

4. (–2)×(–3)×(–4)×(–5)

5. 7.8×(–8.1)×0×(–19.6)

【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
(
3 5
)
(
5 6
)
(2).
(2)
(
3 5
)
(
5 6
)
(2)
[( 3 5)] (2) 56
1 (2) = −1 . 2
解题后的反思:连续两次使用乘法法则,计算起来比较麻烦. 如果我们把乘法法则推广到三个以上有理数相乘,
只“一次性地”先定号,再绝对值相乘即可.
探究新知
知识点 3 倒数
【想一想】计算并观察结果有何特点?

新人教七年级上册第一单元第1课时 有理数的乘法教案

新人教七年级上册第一单元第1课时 有理数的乘法教案

新人教七年级上册第一单元1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法【知识与技能】1.经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.2.会进行有理数的乘法运算.【过程与方法】通过对问题的变式探索,培养观察、分析、抽象的能力.【情感态度】通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.【教学重点】能按有理数乘法法则进行有理数乘法运算.【教学难点】含有负因数的乘法.一、情境导入,初步认识做一做 1.出示一组算式,让学生算出结果.(1)2.5×4=;(2)31×61=; (3)7.7×1.5=;(4)92×27=. 【教学说明】教师出示上面的算式,让学生通过口算和计算器计算的方式算出结果,从而使学生回顾小学时学过的正数的乘法.2.再出示一组算式,让学生思考.(1)5×(-3)=;(2)(-5)×3=;(3)(-5)×(-3)=;(4)(-5)×0=.【教学说明】上面的算式只要求学生通过思考产生疑问,不要求写出结果.教师适时引出新内容.二、思考探究,获取新知【教学说明】让学生阅读教材第28~30页的内容,让学生进行小组交流与讨论,然后教师与学生一起进行探讨.师:刚刚同学们阅读了一下教材的内容,现在让我们先看看教材第28页第一个思考题;先观察上面正数部分的乘法算式,每个算式的后一乘数再逐次递减1,它们的积有什么变化?学生:它们的积逐次递减3.师:那么要使这规律在引入负数后仍然成立,下面的空应填什么?【教学说明】此处学生可能有点疑问,教师可让学生回顾前几个课时学的有理数的加减法内容再填.学生:应填-6和-9.师:现在我们交换一下乘法算式因数的位置,再看第二个思考题,你觉得应该怎样填?学生:应填-3、-6和-9.【教学说明】师生共同探讨此两个思考题后,教师可向学生提问:比较3×(-1)=-3和(-1)×3=-3两个等式,你能总结出正数与负数相乘的法则吗?(教师可提示让学生从符号和绝对值的方面去考虑.)学生可能会有以下答案:①正数与负数相乘或负数与正数相乘的结果都是负数.②积的绝对值和各乘数绝对值的积相等.教师再对学生的回答予以补充,形成以下结论.【归纳结论】正数乘正数,积为正数;正数乘负数,积为负数;负数乘正数,积也是负数,积的绝对值等于各乘数绝对值的积.【教学说明】在完成以上结论后,师生共同探究第三个思考题,用同样的方法和学生一起归纳,最后得到有理数乘法法则.【归纳结论】有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.回到栏目一“做一做”第2题,教师让学生算出结果,并结合教材第29~30页的内容,师生一起总结应注意的问题:①有理数相乘,可以先确定积的符号,再确定积的绝对值.②在有理数中,乘积是1的两个数互为倒数.这个结论仍然成立.③负数乘0仍得0.试一试 教材第30页练习.三、典例精析,掌握新知例1 判断题.(1)两数相乘,若积为正数,则这两个因数都是正数.( )(2)两数相乘,若积为负数,则这两个数异号.( )(3)两个数的积为0,则两个数都是0.( )(4)互为相反数的数之积一定是负数.( )(5)正数的倒数是正数,负数的倒数是负数.( )【答案】(1)X 2)√(3)X 4)X 5)√【教学说明】根据有理数和乘法运算法则来作出判断.例2 填空题.(1)-141×-54=________; (2)(+3)×(-2)=________;(3)0×(-4)=_________;(4)132×-151=________; (5)(-15)×(-31)=________; (6)-|-3|×(-2)=________;(7)输入值a=-4,b=43,输出结果:①ab=_______,②-a ·b=________,③a ·a=________,④b ·(-b )=________.【答案】(1)1 (2)-6 (3)0 (4)-2 (5)5 (6)6(7)①-3 ②3 ③16 ④-169 【教学说明】乘号“×”也可用“·”代替,或省略不写,但要以不引起误会为原则,如a ×b 可表示成a ·b 或ab ,而(-2)×(-5)可表示成(-2)(-5)或(-2)·(-5),凡数字相乘,如果不用括号,用“×”为好,例如2×5不宜写成2·5或25.例3 计算下列各题:(1)35×(-4);(2)(-8.125)×(-8);(3)-174×114;(4)1592×(-1); (5)(-132.64)×0;(6)(-6.1)×(+6.1).【分析】按有理数乘法法则进行计算.第(6)题是两个相反数的积,注意与相反数的和进行区别.解:(1)35×(-4)=-140;(2)(-8.125)×(-8)=65;(3)(-174)×114=-711×114=-74; (4)1592×(-1)=-1592; (5)(-132.64)×0=0;(6)(-6.1)×(+6.1)=-37.21.【教学说明】通过例2和例3的训练和讲解(例3和例2类似,教师可根据教学实际进行选讲),教师向学生进一步强调在进行有理数运算时应注意的问题:①当乘数中有负数时要用括号括起来;②一个数乘1等于它本身,一个数乘-1等于它的相反数.例4 求下列各数的倒数:3,-2,32,-411,0.2,-5.4. 【分析】不等于0的数a 的倒数是a1,再化为最简形式. 解:3的倒数是31,-2的倒数是-21,32的倒数是23,-411的倒数是-114,0.2的倒数是5,-5.4的倒数是-275.【教学说明】负数求倒数与正数求倒数的原理是一样的,教师讲解此例应引导学生回顾小学时学过的求倒数方法:若a ≠0,则a 的倒数为a1.求一个整数的倒数,直接按这个数分之一即可;求分数的倒数,把分数的分子、分母颠倒位置即可;求小数的倒数,先将小数转化成分数,再求其倒数;求一个带分数的倒数,先将带分数化为假分数,再求其倒数.例5 用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km 气温的变化量为-6℃.攀登3km 后,气温有什么变化?(教材第30页例2)【答案】(-6)×3=-18,即下降了18℃.例6 在整数-5,-3,-1,2,4,6中任取二个数相乘,所得的积的最大值是多少?任取两个数相加,所得的和的最小值又是多少?【答案】6×4=24,为最大的积;-5+(-3)=-8,是最小的两数之和.例7 以下是一个简单的数值运算程序:输入x →×(-3)→-2→输出.当输入的x 值为-1时,则输出的数值为.【分析】程序运算式是有理数运算的新形式,该程序所反映的运算过程是-3x-2.当输入x 为-1时,运算式为(-3)×(-1)-2=1.四、运用新知,深化理解1.(-2)×(-3)=_______,(-32)·(-121)=_______. 2.(1)若ab>0,则必有( )A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a ,b 同号(2)若ab=0,则必有( )A.a=b=0B.a=0C.a 、b 中至少有一个为0D.a 、b 中最多有一个为0(3)一个有理数和它的相反数的积( )A.符号必为正B.符号必为负C.一定不大于0D.一定大于0(4)有奇数个负因数相乘,其积为( )A.正B.负C.非正数D.非负数(5)-2的倒数是( ) A.21 B.- 21 C.2D.-23.计算题.(1)(-321)×(-4); (2)-732×3. 4.观察按下列顺序排列的等式.9×0+1=1 9×1+2=119×2+3=21 9×3+4=319×4+5=41 ……猜想,第n 个等式(n 为正整数)用n 表示,可以表示成______.5.现定义两种运算“*”和“”:对于任意两个整数a 、b ,有a*b=a+b-1,a b=ab-1,求4[(6*8)*(35)]的值. 6.若有理数a 与它的倒数相等,有理数b 与它的相反数相等,则2012a+2013b 的值是多少?【教学说明】以上几题先由学生独立思考,然后教师再让学生举手回答1~2题,第3题让4位学生上台板演,教师评讲.【答案】1.6 12.(1)D (2)C (3)C (4)B (5)B3.(1)14 (2)-234.9(n-1)+n=10(n-1)+15.1036.根据已知可求出a=±1,b=0,所以2012a+2013b的值为2012或-2012.五、师生互动,课堂小结1.引导学生理解本节课所学内容:有理数的乘法法则.2.自己操作实践如何应用计算器来计算有理数的乘法.阅读课本第37页内容,并练习用计算器来计算:(1)74×59=4366;(2)(-98)×(-63)=6174;(3)(-49)×(+204)=-9996;(4)37×(-73)=-2701.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.本课时是学生在小学学习的数的乘法及刚接受有理数加减法的基础上,进一步学习有理数的基本运算,它既是对前面知识的延续,又是后面有理数除法的铺垫,所以,教学时强调学生自主探索,在互相交流的过程中理解和掌握有理数乘法法则的本质;另外,要求学生在探索有理数乘法法则的过程中,初步体验分类讨论的数学思想,鼓励学生归纳和总结,形成良好的数学心理品质.。

人教版七年级数学上册导学案-有理数的乘法法则

人教版七年级数学上册导学案-有理数的乘法法则

第一章 有理数1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.2.掌握多个有理数相乘的积的符号法则.重点:有理数的乘法法则,多个数相乘的符号法则. 难点:积的符号的确定.一、知识链接1.计算:(1)777++= ;(2)1212121212++++= .2.将以上两个加法运算用乘法运算表示出来:3.计算:(1)3×2;(2)3×112;(3)3126⨯;(4)320.4⨯二、新知预习 1.计算:(1)222++=(-)(-)(-) ; (2)99999++++=(-)(-)(-)(-)(-) . 2.你能将上面两个算式写成乘法算式吗?3.怎样计算?(1)6×(-5);(2)(-4)×(-5);(3)0×(-5).【自主归纳】 有理数的乘法:正数乘正数,积为 数;负数乘负数,积为 数; 负数乘正数,积为 数;正数乘负数,积为 数;零与任何数相乘或任何数与零相乘结果是 . 三、自学自测1.计算 (1)53⨯-() (2)46⨯(-) (3)79-⨯-()() (4)0.98⨯2.填空(1)-3的倒数是___________;34的倒数是_____________. (2)______的倒数是6;___________的倒数23-.四、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分一、要点探究探究点1:有理数的乘法运算1.如图,一只蜗牛沿直线 l 爬行,它现在的位置在l 上的点O.填一填:(1)如果一只蜗牛向右爬行2cm 记为+2cm ,那么向左爬行 2cm 应记为________; (2)如果3分钟以后记为+3分钟,那么3分钟以前应记为___________.想一想:(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O_________ cm 处.可以表示为: .(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O_________ cm 处.可以表示为: .(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分前它在什么位置? 结果:3分钟前蜗牛在l 上点O_________ cm 处.可以表示为: .(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分前它在什么位置?结果:3分钟前蜗牛在l 上点O___________ cm 处.可以表示为: .(5)原地不动或运动了零次,结果是什么?结果:仍在原处,即结果都是___________,可以表示为: . 根据上面结果可知:1.正数乘正数积为______数;负数乘负数积为______数;(同号得正)2.负数乘正数积为______数;正数乘负数积为______数;(异号得负)3.乘积的绝对值等于各乘数绝对值的______.4.零与任何数相乘或任何数与零相乘结果是______. 有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 讨论:(1)若a <0,b >0,则ab 0 ; (2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件? (4)若ab <0,则a 、b 应满足什么条件?例1 计算:(1)3×(-4); (2)(-3)×(-4).归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-16)例2 计算: (1)(-3)×65×(-59)×(-41);(2)(-5)×6×(-54)×41归纳:(1)几个不等于零的数相乘,积的符号由_____________决定.(2)当负因数有_____个时,积为负;当负因数有_____个时,积为正. (3)几个数相乘,如果其中有因数为0,_________探究点2:倒数 例3 计算: (1)21×2; (2)(-21)×(-2)要点归纳:有理数中仍然有:乘积是1的两个数互为倒数. 思考:数a(a ≠0)的倒数是什么?探究点3:有理数的乘法的应用 例4 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km ,气温的变化量为-6℃,攀登3km 后,气温有什么变化?例5 一种水笔,甲商店每支售价2元,乙商店搞促销,每支只售1.8元.小明在甲商店买这种水笔10支,小华在乙商店也买这种水笔10支.两人所付的钱数哪个少?少多少?针对训练1.计算:(1)566⨯-(-)(); (2)8×(-1.25). 2.填空:-0.5的倒数是 ,一个数的倒数等于这个数本身,则这个数是 .3.已知a 与b 互为倒数,c 与d 互为相反数,m 的绝对值是4,求m ×(c +d )+a ×b -3×m 的值.4.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片4-16)3.探究点2新知讲授 (见幻灯片17-18)4.探究点3新知讲授 (见幻灯片19-20)二、课堂小结1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 2.几个不是零的数相乘,负因数的个数为奇数时积为负数,偶数时积为正数. 3.几个数相乘若有因数为零则积为零.4.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.5.乘积是1的两个数互为倒数.1.填表: 被乘数 乘数 积的符号 积的绝对值 结果 -5 7 - 35 -35 15 6 -30 -6 4 -252.计算:(1)221×(-4); (2)(-107)×(-215);(3)(-10.8)×(-275); (4)(-321)×0.3.计算:(1)(-125)×2×(-8)(2)(-32)×(-57)×(-146)×(-23) (3)78×(-32)×(-3.4)×04.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?当堂检测教学备注 配套PPT 讲授5.课堂小结6.当堂检测 (见幻灯片21-24)。

七年级数学上册 1.4 有理数的乘除法教学设计 新人教版(2021学年)

七年级数学上册 1.4 有理数的乘除法教学设计 新人教版(2021学年)

七年级数学上册 1.4 有理数的乘除法教学设计(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册1.4 有理数的乘除法教学设计(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册1.4有理数的乘除法教学设计(新版)新人教版的全部内容。

1.4 有理数的乘除法第1课时有理数的乘法(一)错误!1.经历探索有理数乘法法则的过程,掌握有理数的乘法法则.2.能够运用有理数乘法法则计算两个数的乘法.3.能说出有理数乘法的符号法则,能用例子说明法则的合理性.错误!两个有理数相乘的符号法则.错误!从不同角度概括算式的规律.错误!(设计者:)错误!错误!错误!错误!错误!错误!一、创设情景明确目标1.计算(1)2+2+2+2=(2)(-2)+(-2)+(-2)+(-2)+(-2)=2.你能将上面两个算式写成乘法算式吗?二、自主学习指向目标自学教材第28至30页,完成下列问题:1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0.2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.三、合作探究达成目标错误!有理数的乘法法则活动一:阅读教材第28至29页,思考:1.说一说三个“思考”中各有什么规律?2.从符号和绝对值两个角度观察教材中的算式,可以得出什么结论?3.有理数乘法法则分几种情况进行归纳的?例1 计算:(1)(-3)×9;(2)8×(-1);(3)(-\f(1,2))×(-2); (4)(-5)×(-7).【展示点评】要得到一个数的相反数,只要将它乘以-1即可.题(3)中两个因数互为倒数.【小组讨论】计算两个有理数相乘的一般步骤有哪些?法则是怎样的?【反思小结】两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0。

七年级数学上册1.4有理数的乘除法1.4.1有理数的乘法2教案新版新人教版

七年级数学上册1.4有理数的乘除法1.4.1有理数的乘法2教案新版新人教版

课题:1.4.1有理数的乘法(2)教学目标:1.掌握多个有理数连续相乘的运算方法.2.正确理解乘法交换律、结合律和分配律,能用字母表示运算律的内容.3.能运用运算律较熟练地进行乘法运算.重点:了解多个有理数连续相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算.难点:运用运算律简化乘法运算.教学流程:一、知识回顾问题1:有理数乘法法则:答案:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.问题2:填空:2×(-3)=______(-6) ×(-4)=______24×(-5)=______答案:-6;24;-120问题引入:想一想:2×(-3)×(-4)×(-5)该如何计算呢?二、探究1问题1:观察下面各式,它们的积是正的还是负的?2×3×4×(-5)2×3×(-4)×(-5)2×(-3)×(-4)×(-5)(-2)×(-3)×(-4)×(-5)答案:依次为正数;负数;负数;正数追问:几个不等于0的数相乘,积的符号与负因数的个数之间有什么关系?归纳:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.例:计算591(1)(3)()()654-⨯⨯-⨯-;41(2)(5)6()54-⨯⨯-⨯解:591(1)(3)()()654591365498-⨯⨯-⨯-⨯⨯⨯=--=41(2)(5)6()544156546-⨯⨯-⨯=⨯⨯⨯=追问:多个不是0的数相乘,先做哪一步,再做哪一步?强调:先确定积的符号,再把各个乘数的绝对值相乘,作为积的绝对值. 练习1:1.若五个有理数的积为负数,那么这五个数中负因数的个数是( )A.1B.3C.5D.1或3或5答案:D 2.计算:(1)(5)8(7)(0.25)-⨯⨯-⨯-;5812(2)()()121523-⨯⨯⨯- 解:(1)(5)8(7)(0.25)1587470-⨯⨯-⨯-=-⨯⨯⨯=-5812(2)()()1215235812121523227-⨯⨯⨯-=⨯⨯⨯= 三、探究2问题2:你能看出下式的结果吗?如果能,请说明理由.7.8(8.1)0(19.6)⨯-⨯⨯-归纳:几个数相乘,如果其中有因数为0,积等于0.练习2:判断下列各式乘积的符号:①(-3)×(-4)×(+5.5);②4×(-2)×(-3.1)×(-7);③(-201)×0×7×(-2);④(-3.7)×(-6)×10×(-5.3)×(-1),其中积为正数的有________,积为负数的有____________,积为0的是_______________.(只填写序号)答案:①④;②;③四、探究3问题3:计算:5×(-6) (-6)×5(-4)×(-3) (-3)×(-4)(-2)×7 7×(-2)追问:两次所得的积相同吗?答案:相等归纳:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.乘法交换律:ab=ba强调:a×b也可以写成a·b或ab,当用字母表示乘数时,“×”可以写为“·”或省略.问题4:计算:[3×(-4)]×(-5) 3×[(-4)×(-5)]解:[3×(-4)]×(-5) 3×[(-4)×(-5)]=(-12)×(-5) =3×20=60 =60追问:你能得出什么结论呢?归纳:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法结合律:(ab )c =a (bc )问题5:计算:5×[3+(-7)] 5×3+5×(-7) 解:5×[3+(-7)] 5×3+5×(-7) =5×(-4) =15+(-35) =-20=-20追问:你能得出什么结论呢?归纳:一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.分配律:a (b +c )=ab +ac 练习3:1.运用运算律填空:(1)[(-4)×5]×(-15)=(-4)×[ ____ ×( ________ )];(2)(-0.25)×21×(-8)×(-17)=[(-0.25)×( ____ )]×[ ____ ×(-17)].答案:5,-15;-8,212.观察下面的计算过程:(13-315+25)×3×5=(13-315+25)×15=5-3+6=8 在上面的计算过程中运用的运算律是( )A.乘法交换律及结合律B.乘法交换律及分配律C.加法结合律及分配律D.乘法结合律及分配律答案:D 五、应用提高例:用两种方法计算:111()12462+-⨯ 解法1:解法2:111()12462326()12121212112121+-⨯=+-⨯=-⨯=-111()124621111212124623261+-⨯=⨯+⨯-⨯=+-=- 练习3: 计算:(1)(85)(25)(4);-⨯-⨯-91(2)()30;1015-⨯71(3)()15(1);87-⨯⨯-62617(4)()()()()5353-⨯-+-⨯+解:(1)(85)(25)(4)85(254)851008500-⨯-⨯-=-⨯⨯=-⨯=-91(2)()301015913030101527225-⨯=⨯-⨯=-= 71(3)()15(1)8771()(1)158711515-⨯⨯-=-⨯-⨯=⨯=62617(4)()()()()53536217()[()()]5336()556-⨯-+-⨯+=-⨯-++=-⨯=-六、体验收获今天我们学习了哪些知识? 1.我们学习了哪些乘法运算律?2.进行有理数的乘法运算时,哪些情况下考虑使用乘法运算律呢? 七、达标测评1.下列计算正确的是( )A.(-9)×5×(-4)×0=9×5×4=180B.-5×(-4)×(-2)×(-2)=5×4×2×2=80C.(-12)×(23-14-1)=-8-3-1=-12D.-2×5-2×(-1)-(-2)×2=-2×(5+1-2)=-8答案:B2.用简便方法计算:(-23)×25-6×25+18×25+25,逆用分配律正确的是( )A.25×(-23-6+18)B.25×(-23-6+18+1)C.-25×(23+6+18)D.-25×(23+6-18+1)答案:B3. 计算1357×316,最简便的方法是( )A.(13+57)×316B.(14-27)×316C.(10+357)×316D.(16-227)×316答案:D4. 在等式4×□-2×□=30的两个方格中分别填入一个数,使这两个数互为相反数,且等式成立,则第一个方格内的数是________.答案:55.计算:(1) (-4)×(-72)×(-0.25)×(-136 );(2)(-712-56+1)×(-36);(3) 9992425×(-5).解:(1) (-4)×(-72)×(-0.25)×(-1 36)=[(-4)×(-0.25)]×[(-72)×(-136 )]=1×2 =2(2)(-712-56+1)×(-36)=(-712)×(-36)-56×(-36)+1×(-36)=21+30-36 =1524(3)999(5)251(1000)(5)2511000(5)(5)25150005449995⨯-=-⨯-=⨯--⨯-=-+=-八、布置作业教材38页习题1.4第7(1)(2)(3)题.。

七年级上册数学1.4.1有理数的乘法法则

七年级上册数学1.4.1有理数的乘法法则

第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
讲授新课
一 有理数的乘法运算
合作探究
如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点O.

l
1.如果一只蜗牛向右爬行2cm记为+2cm,那么向
左爬行2cm应该记为 -2cm .
2.如果3分钟以后记为+3分钟,那么3分钟以
前应该记为 -3分钟 .
(3)(-10.8)(- 5 )= 54 5 2; 27 5 27
(125)3.2计算((8)1) ( 2) ( 7) ((2)6 ) 3
3 5 14 2 8 ( 2) (3(.43)) 0 73
2000 3 5
0
4.气象观测统计资料表明,在一般情况下,高 度每上升1km,气温下降6℃.已知甲地现在地面 气温为21℃,求甲地上空9km处的气温大约是多 少?
行,3分钟后它在什么位置? 2
l
-6
-4
-2
0
结果:3分钟后在l上点O 左 边 6 cm处
表示: (-2)×(+3)=-6 .(2)
探究3
(3)如果蜗牛一直以每分钟2 cm的速度向右爬
行,3分钟前它在什么位置?
2
-6
-4
-2
结果:3分钟前在l上点O 左
0
2l
边 6 cm处
表示: (+2)×(-3)= -6 (.3)
再确定 积的绝对值
(4)(-3)×(-4)
= +(3×4)
= 12;
议一议
判断下列各式的积是正的还是负的?
2×3×4×(-5)

2×3×(-4)×(-5)

1.4有理数的乘除法第一课时教案-人教版数学七年级上第一章

1.4有理数的乘除法第一课时教案-人教版数学七年级上第一章

1.4 有理数的乘除法-第一课时1教学目标:1.1知识与技能①体会有理数乘法的实际意义;②掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算;③理解有理数乘法交换律、结合律和分配律;④能够根据不同的情况运用不同定律来简化运算。

1.2过程与方法①用实例引出有理数乘法的推导过程,用分类讨论的思想归纳出两数及多个数相乘的运算规律,感悟中、小学数学中的乘法运算的重要区别。

②通过体验有理数的乘法运算,感悟和归纳出进行乘法运算的一般步骤。

1.3情感、态度与价值观通过用实例让学生自己探究出有理数乘法法则,及多个数连续相乘的运算方法,使学生感到获得成功的喜悦。

2教学重点、难点、易考点2.1教学重点:①应用法则正确地进行有理数乘法运算;②了解多个有理数相乘的运算方法以及乘法运算律的内容,运用运算律进行乘法运算。

2.2教学难点:①乘法法则的探索过程及对法则的理解;②运用有理数的乘法解决问题。

3专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,介绍了有理数的乘法法则和乘法运算律,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4教学方法问题引入---------探究乘法法则--------有理数乘法的运算律--------交流讨论--------巩固练习5教学用具无6教学过程:6.1问题引入问题1:甲水库的水每天升高3cm,乙水库的水每天下降3cm,4 天后,甲、乙水库水位的总变化量是多少?【教师说明】如果用正号表示水位的上升、用负号表示水位的下降。

那么4 天后,甲水库水位的总变化量是:3+3+3+3 = 3×4 = 12 (cm)乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4= -12(cm)问题二:(−3)×4 = −12(−3)×3 =(−3)×2 =(−3)×1=(−3)×0=(−3)×(−1) =(−3)×(−2) =(−3)×(−3) =(−3)×(−4) =【教师说明】第二个因数从4开始到1,第二个因数每减少1,积增加3,第二个因数从0减少到—4,每减少1,积就增加3.6.2交流讨论由上述所列各式,你能看出两有理数相乘与它们的积之间的规律吗?【教师说明】通过对问题二的探究,不难得出,负数乘正数,得负数,并把绝对值相乘,负数乘0,得0,负数乘负数,得正数,并把绝对值相乘。

七年级数学上册人教版1.4有理数的乘除法教学设计

七年级数学上册人教版1.4有理数的乘除法教学设计
3.创设悬念:教师提出一个与乘除法相关的问题,如“为什么负数乘以负数会得到正数?”激发学生的好奇心和求知欲,为讲授新知做好铺垫。
(二)讲授新知
1.讲解有理数乘法法则:教师以具体例子讲解有理数乘法的运算规律,强调同号得正、异号得负的原则。通过举例说明,让学生理解并掌握乘法运算的规律。
2.讲解有理数除法法则:教师引导学生理解除以一个数等于乘以这个数的倒数,讲解有理数除法的运算规律。同时,强调除数为零的情况,让学生避免在运算中犯错。
-利用直观教具和实际例题,帮助学生形象地理解有理数乘除法的运算规律。
-设计互动式教学活动,如小组合作、角色扮演等,增强学生的参与感和合作意识。
2.教学步骤:
-引入新课:通过生活实例,让学生感受乘除法在实际生活中的应用,激发学习兴趣。
-基本概念:讲解有理数乘除法的定义和性质,让学生通过例题和练习加深理解。
-解题技巧:教授有理数乘除法的运算技巧,如交叉相乘法、倒数法等,提高学生的运算速度和准确性。
-应用拓展:结合实际问题,让学生运用所学乘除法知识解决具体问题,提升学生的数学应用能力。
-归纳总结:引导学生总结有理数乘除法的学习要点,巩固所学知识。
3.教学策略:
-针对不同学生的学习需求,提供分层次的练习题,使每个学生都能在适合自己的难度上得到锻炼和提高。
七年级的学生在数学学习上已经具备了一定的基础,掌握了有理数的加法和减法运算,但对于乘除法运算还相对陌生。在此基础上,学生对于有理数乘除法的概念和运算规律可能存在理解上的困难。此外,学生在解决实际问题时,可能难以将乘除法运算与实际问题结合起来,缺乏运用乘除法解决问题的能力。因此,在教学过程中,应注重以下几点:
3.教师点评:教师针对学生的总结和分享进行点评,鼓励优秀表现,对不足之处给予指导和鼓励。

人教版七年级上册数学教学案:1.4 有理数的乘除法

人教版七年级上册数学教学案:1.4 有理数的乘除法

1.4.1 有理数的乘法(1)第一课时三维目标一、知识与技能经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法.二、过程与方法经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力.三、情感态度与价值观培养学生积极探索精神,感受数学与实际生活的联系.教学重、难点与关键1.重点:应用法则正确地进行有理数乘法运算.2.难点:两负数相乘,•积的符号为正与两负数相加和的符号为负号容易混淆. 3.关键:积的符号的确定.教具准备投影仪.四、教学过程一、引入新课在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?五、新授课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O.l(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中“2cm”记作“+2cm”,“3分后”记作“+3分”.(1)3分后..6cm处.(如课本图1.4-2)..蜗牛应在L上点O右边这可以表示为(+2)×(+3)=+6 ①(2)3分后..6cm处.(如课本图1.4-3)..蜗牛应在L上点O左边这可以表示为(-2)×(+3)=-6 ②(3)3分前..6cm处.(如课本图1.4-4)..蜗牛应在L上点O左边[讲问题(3)时可采用提问式:已知现在蜗牛在点O处,•而蜗牛是一直向右爬行的,那么3分前蜗牛应在什么位置?]这可以表示为(+2)×(-3)=-6 ③(4)蜗牛是向左爬行的,现在在O点,所以3分前..6cm处(•..蜗牛应在L上点O右边如课本图1.4-5).这可以表示为(-2)×(-3)=+6 ④观察①~④,根据你对有理数乘法的思考,完成课本第39页填空.归纳:两个有理数相乘,积仍然由符号和绝对值两部分组成,①、④式都是同号两数相乘,积为正,②、③式是异号两数相乘,积为负,①~④式中的积的绝对值都是这两个因数绝对值的积.也就是两数相乘,同号得正,异号得负,并把绝对值相乘.此外,我们知道2×0=0,那么(-2)×0=?显然(-2)×0=0.这就是说:任何数同0相乘,都得0.综上所述,得有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.进行有理数的乘法运算,关键是积的符号的确定,计算时分为两步进行:•第一步是确定积的符号,在确定积的符号时要准确运用法则;第二步是求绝对值的积.如:(-5)×(-3),……(同号两数相乘)(-5)×(-3)=+(),……得正5×3=15,……把绝对值相乘所以(-5)×(-3)=15又如:(-7)×4……________(-7)×4=-(),……_________7×4=28,……__________所以(-7)×4=-28例1:计算:(1)(-3)×9;(2)(-12)×(-2);(3)0×(-5317)×(+25.3);(4)123×(-115).例1可以由学生自己完成,计算时,按判定类型、确定积的符号,•求积的绝对值.(3)题直接得0.(4)题化带分数为假分数,以便约分.小学里,两数乘积为1,这两个数叫互为倒数.在有理数中仍然有:乘积是1的两数互为倒数.例如:-12与-2是互为倒数,-35与-53是互为倒数.注意倒数与相反数的区别:两数互为倒数,积为1,它们一定同号;•两数互为相反数,和为零,它们是异号(0除外),另外0没有倒数,而0的相反数为0.数a(a≠0)的倒数是什么?1除以一个数(0除外)得这个数的倒数,所以a(a≠0)的倒数为1a.例2:用正负数表示气温的变化量,上升为正,下降为负,•登山队攀登一座山峰,每登高1km气温的变化量为-6℃,攀登3km后,气温有什么变化?解:本题是关于有理数的乘法问题,根据题意,(-6)×3=-18由于规定下降为负,所以气温下降18℃.六、巩固练习课本第30页练习.1.第2题:降5元记为-5元,那么-5×60=-300(元)与按原价销售的60件商品相比,销售额减少了300元.2.第3题:1和-1的倒数分别是它们的本身;13,-13的倒数分别为3,-3;5,-5•的倒数分别为15,-15;23,-23的倒数分别是32,-32;此外,1与-1,13与-13,5与-5,2 3与-23是互为相反数.七、课堂小结1.强调运用法则进行有理数乘法的步骤.2.比较有理数乘法的符号法则与有理数加法的符号法则的区别,•以达到进一步巩固有理数乘法法则的目的.八、作业布置1.课本第38页习题1.4第1、2、3题.九、板书设计:1.4.1 有理数的乘法(1)第一课时1、两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0.2、随堂练习。

有理数的乘除教案

有理数的乘除教案

有理数的乘除教案篇一:有理数的乘法教案1.4.1 有理数的乘法教学任务分析教学流程安排教学过程设计一、创设情景,引入本节课要研究的问题――有理数的乘法前面学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:1.等于多少?表示什么?答案是:,表示3个2相加,即:.2.请将写成乘法算式?它怎么计算呢?这就是我们今天要研究的有理数的乘法.二、探索新知,归纳法则以下各个问题由学生自主进行探索研究,发现有理数乘法的合理性,进而归纳出有理数的乘法法则,注意其中的关键――对含有负因数的两个有理数相乘的含义的理解要让学生进行解释.在数轴上,向东运动2米,记作2米,向西运动2米应记作什么?(-2米)看下面的例子:(1)其中2看作向东运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样呢?(向东运动了6米),所以有:.(2)其中-2看作向西运动2米,看作沿此方向运动3次.用数轴表示如下:结果怎样?(向西运动了6米),所以有:.(3)其中2看作向东运动2米,向西运动了6米.所以有:看作沿与此相反的方向运动3次,即向西运动了3次,共.(4)请同学们说出对此式的理解,并说出结论.其中-2看作向西运动2米,×(-3)看作沿与此方向相反的方向运动了3次,即向东运动了3次,共向东运动了6米.(5),,,请同学们说说对这四个式子的理解,并得出结论.(都等于0)从上面一组题中,同学们觉得两个有理数得相乘的结果有没有规律可循?建议大家从两个方面进行思考:①积的符号与两个因数的符号有什么关系?②积的绝对值与两个因数的绝对值又有什么样的关系?(学生活动时间2分钟)学生回答,老师完善,得出有理数乘法的法则:有理数乘法法则同号两数相乘得正,异号两数相乘得负,并把绝对值相乘;0与任何有理数相乘仍得0.三、应用法则、巩固法则我们已经探索出了有理数的乘法法则,下面我们来应用其解决一些问题1.尝试训练,巩固练习(出示投影)(1)确定下列两个有理数积的符号:① ② ③ ④(学生口答,解释原因)(2)计算:① ② ③ ④ ⑤ ⑥ ⑦ ⑧(学生自主完成,查漏补缺)2.例题1 计算:① ②(由学生口述,教师板书,共同归纳出有理数乘法得解题步骤:(1)确定积的符号;(2)计算积的绝对值)巩固练习(出示投影)① ② ③ ④3.例题2 计算:① ② ③教师活动设计:通过这几个题是想让同学们体会在绝对值的计算过程中怎样处理假分数.4.从有理数的乘法法则可以看出,有理数的乘法关键是符号的确定,那么三个以上的有理数相乘积的符号怎么确定呢?下面我们就来研究这个问题.确定下列积的符号,你能从中发现什么?① ② ③ ④学生归纳结论:结论1:有一个因数为0,则积为0;结论2:几个不等于0的数相乘,积的符号由负因数的个数决定:当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.巩固练习:判断下列积的符号(口答)① ② ③ ④四、主体活动,探索乘法运算律探索1:任意选择两个有理数(至少有一个是负数)填入下式的□和○中,并比较结果:□×○ ○×□.归纳(乘法交换律):两个有理数相乘,交换因数的位置,积不变,即:ab=ba.篇二:有理数乘除法教案学习目标1.掌握有理数乘法的运算法则和乘法法则,灵活地运用运算律简化运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档