初一数学有理数乘除法习题
七年级数学有理数的乘除法练习题
七年级数学《有理数的乘除法》同步练习题姓名:________________ 得分:______________一、填空题1.两个非零有理数相乘,同号得_____,异号得_____.2.零与任意负数的乘积得_____.3.计算:(1)(-4)×15×(-53)=_____(2)(-54)×21×74×(-835)=_____4.两数相除同号_____,异号_____.5.一个数的倒数是它本身,这个数是_____.6.非零有理数与其倒数的相反数的乘积为_____.7.几个不等于0的数相乘,积的符号由______的个数决定.8.自然数中,若两数之和为奇数,则这两个数.9.若两个自然数之积为偶数,则这两个数.10.若一个数的绝对值等于3,则这个数为______.11.如果a >0,b >0,c <0,d <0,则:a ·b ·c ·d____0 b a +d c____0c a+d b____0 (填写“>”或“<”号)12.某学习小组,共有四名同学,在一次考试中所得分数为、82、、73,则这四名同学的平均分为_____,最低分比平均分低了______分.二、选择题13.下列说法正确的是[ ]A.几个有理数相乘,当因数有奇数个时,积为负B.几个有理数相乘,当正因数有奇数个时,积为负C .几个有理数相乘,当积为负数时,负因数有奇数个D.几个有理数相乘,当负因数有偶数个时,积为负14.如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是[ ]A.两个互为相反数的数B.符号不同的两个数C .不为零的两个互为相反数的数D.不是正数的两个数15.如果一个数的绝对值与这个数的商等于-1,则这个数是[ ]A.正数B.负数C .非正 D.非负16.下列说法错误的是[ ]A.正数的倒数是正数B.负数的倒数是负数C .任何一个有理数a 的倒数等于a1D.乘积为-1的两个有理数互为负倒数17.如果abcd <0,a+b=0,cd >0,那么这四个数中负因数的个数至少有[ ]个个个个18.如果两个有理数a 、b 互为相反数,则a 、b 一定满足的关系为[]·b=1 ·b=-1+b=0 -b=019.设a 、b 、c 为三个有理数,下列等式成立的是[ ](b+c)=ab+c B.(a+b)·c=a+b ·cC .(a -b)·c=ac+bc D.(a -b)·c=ac -bc三、解答题20.计算:①[432×(-145)+(-÷(-254)]×151②75.04.34353.075.053.1③)411()2(32)53()5(2321.某班举办数学知识比赛,共分五个小组,其中四个小组的成绩如表所示,请问(1)这四个小组的总平均分比全班的平均分高还是低为什么(2)据(1)你能否判断第五组的成绩比全班平均分高,还是低小组第一组第二组第三组第四组人数15131412小组平均分与全班平均分的差值4-3-2122. 某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元七年级数学《有理数的乘除法》同步练习题参考答案一、1.正负 3.(1)36 (2)14.得正得负5.±16.-17.负数8.一奇一偶9.至少有一偶数10.±3 11.>><12. 80 7二、三、20.①1 ②③8521.(1)高,因为4×15+12×1-13×3-14×2=5>0(2)据(1)可判断第五组的成绩比全班平均分低元。
七年级数学上册有理数的乘除练习题
七年级数学上册有理数的乘除练习题【例1】下列说法正确的是( )A .5个有理数相乘,当负因数为3个时,积为负B .﹣1乘以任何有理数等于这个数的相反数C .3个有理数的积为负数,则这3个有理数都为负数D .绝对值大于1的两个数相乘,积比这两个数都大 【变式1-1】在下列各题中,结论正确的是( ) A .若a >0,b <0,则ba >0B .若a >b ,则a ﹣b >0C .若 a <0,b <0,则ab <0D .若a >b ,a <0,则ba <0【变式1-2】已知a +b >0且a (b ﹣1)<0,则下列说法一定错误的是( ) A .a >0,b >1B .a <﹣1,b >1C .﹣1≤a <0,b >1D .a <0,b >0【变式1-3】下列说法:①若a 、b 互为相反数,则a b=−1;②若b <0<a ,且|a |<|b |,则|a +b |=﹣|a |+|b |;③几个有理数相乘,如果负因数的个数为奇数个,则积为负;④当x =1时,|x ﹣4|+|x +2|有最小值为5;⑤若ab =c d,则c a=d b;其中错误的有( )【例2】若3a ﹣12没有倒数,则a = ;已知m ﹣11的倒数为−17,则m +1的相反数是 . 【变式2-1】(2022•杨浦区校级期中)如果a +3的相反数是﹣513,那么a 的倒数是 . 【变式2-2】(2022秋•贵港期末)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2. (1)直接写出a +b ,cd ,m 的值; (2)求m +cd +a+b m的值.【变式2-3】已知a 与2互为相反数,x 与3互为倒数,则代数式a +2+|﹣6x |的值为( ) A .0B .﹣2C .2D .无法确定【例3】下列计算正确的是( ) A .﹣30×37−20×(−37)=1507B .(−23+45)÷(−115)=﹣2C .(12−13)÷(13−14)×(14−15)=310D .−45÷(+45)×(−827)=0【变式3-1】(1)(−35)×(﹣312)÷(﹣114)÷3 (2)[(+17)﹣(−13)﹣(+15)]÷(−1105)【变式3-2】计算: (1)619÷(﹣112)×1924. (2)﹣125×0.42÷(﹣7)【变式3-3】计算:(1)(−35)×(﹣312)÷(﹣114)÷3; (2)(﹣8)÷23×(﹣112)÷(﹣9).【例4】写出下列运算中每一步所依据的运算律或法则: (﹣0.4)×(﹣0.8)×(﹣1.25)×2.5 =﹣(0.4×0.8×1.25×2.5)(第一步) =﹣(0.4×2.5×0.8×1.25)(第二步) =﹣[(0.4×2.5)×(0.8×1.25)](第三步) =﹣(1×1)=﹣1.第一步: ;第二步: ;第三步: . 【变式4-1】计算:(12−34+18)×(﹣24). 【变式4-2】用简便方法计算 (1)991718×(﹣9)(2)(﹣5)×(﹣367)+(﹣7)×(﹣367)+12×(﹣367)【变式4-3】用简便方法计算:(1)﹣13×23−0.34×27+13×(﹣13)−57×0.34(2)(−13−14+15−715)×(﹣60)【例5】(2022•利辛县月考)下面是小明同学的运算过程. 计算:﹣5÷2×12.解:﹣5÷2×12=−5÷(2×12)...第1步 =﹣5÷1...第2步 =﹣5 (3)请问:(1)小明从第 步开始出现错误; (2)请写出正确的解答过程.【变式5-1】计算:(−109)×(−35).解:(−109)×(−35)=−109×35①=−23.②(1)找错:第 步出现错误; (2)纠错:【变式5-2】阅读下面解题过程: 计算:5÷(13−212−2)÷6 解:5÷(13−212−2)×6=5÷(−256)×6…① =5÷(﹣25)…② =−15⋯③回答:(1)上面解题过程中有两处错误,第一处是第 步,错因是 ,第二处是 ,错因是 . (2)正确结果应是 . 【变式5-3】阅读下列材料: 计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124112=124×3−124×4+124×12=1124. 解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4.所以,原式=14.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:(−142)÷(16−314+23−27).【例6】(1)三个有理数a ,b ,c 满足abc >0,求|a|a +|b|b +|c|c的值.(2)三个有理数a ,b ,c 满足abc <0,求|a|a+|b|b+|c|c的值;(3)若a ,b ,c 为三个不为0的有理数,且|a|a +|b|b+|c|c=−1,求abc|abc|的值.【变式6-1】已知非零有理数a ,b ,c 满足ab >0,bc >0. (1)求|ab|ab +ac|ac|+|bc|bc的值;(2)若a+b+c<0,求|a|a +b|b|+|c|c+|abc|abc的值.【变式6-2】已知|x|=3,|y|=7(1)若x<y,求x﹣y的值;(2)若xy>0,求x+y的值;(3)求x2y﹣xy2+21的值.【变式6-3】若a+b+c<0,abc>0,则ab|ab|+2•|−bc|bc−3•ac|ac|+4•|abc|abc的最大值为()A.6B.8C.10D.7【例7】考察下列每一道算式,回答问题:算式:63×67=4221 72×78=5616561×569=3192009 1814×1816=3294224(1)两个因数个位上的数字之和是多少?其余各位上的数字有何特征?(2)根据四个式子的计算,请你猜想符合上述特征的两个数相乘的运算规律.(3)再举两道符合上述特征的计算题,并用你猜想的规律进行计算.【变式7-1】已知C32=3×21×2=3,C53=5×4×31×2×3=10,C64=6×5×4×31×2×3×4=15,…观察以上规律计算C85=,C10a=45,则a=.【变式7-2】有一列数a1,a2,a3,…a n,若a1=12,从第二个数开始,每一个数都等于1与它前面那个数的差的倒数.(1)试计算a2,a3,a4;(2)根据以上计算结果,试猜测a2016、a2017的值.【变式7-3】已知一些两位数相乘的算式:62×11,78×69,34×11,63×67,18×22,15×55,12×34,54×11利用这些算式探究两位数乘法中可以简化运算的特殊情形:(1)观察已知算式,选出具有共同特征的3个算式,并用文字描述它们的共同特征;(2)分别计算你选出的算式.观察计算的结果,你能发现不经过乘法运算就可以快速、直接地写出积的规律吗?请用文字描述这个规律;(3)证明你发现的规律;(4)在已知算式中,找出所有可以应用(或经过转化可以应用)上述规律的算式,并将它们写在横线上:.【例8】(2022•江宁区校级月考)天龙顶国家山地公园,位于岑溪市南渡镇吉太附近,距岑溪市35公里,天龙顶是桂东最高峰,史上早已成名,被誉为“土主龙楼”天龙顶形成于远古冰川,由整块红色砂岩劈凿而成,拔地而起,是极限攀岩、野外露营及登山爱好者的天堂.某年寒假,小昌与小勇一起去游天龙顶,他们想知道山的高度.小昌说可以利用温度计测量山峰的高度,小昌在山顶测得温度约是﹣1℃,小勇此时在山脚测得温度约是8.6℃,已知该地区每年增加100米,气温大约下降0.8℃,小昌很快算出了答案,你知道天龙顶的高度约是多少米吗?【变式8-1】妈妈身高多少厘米?【变式8-2】某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):﹣34﹣12﹣5进出数量(单位:吨)进出次数21332(1)这天仓库的原料比原来增加或减少了多少吨?(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案较合适?请说明理由.【例9】若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【变式9-1】定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n 喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).(1)判断44和72是否是“n喜数”?请说明理由;(2)请求出所有的“7喜数”之和.【变式9-2】“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代数学家程大位著的《算法统宗》一书中被称为“铺地锦”.例如:如图1,计算46×71,将乘数46写在方格上边,乘数71写在方格右边,然后用乘数46的每位数字乘以乘数71的每位数字,将结果计入相应的方格中,最后沿斜线方向相加得3266.(1)如图2,用“格子乘法”计算两个两位数相乘,则x=,y=;(2)如图3,用“格子乘法”计算两个两位数相乘,得2176,则m=,n=;(3)如图4,用“格子乘法”计算两个两位数相乘,则k=.【变式9-3】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f(3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f(4,﹣2).(1)直接写出计算结果,f(4,1)=,f(5,3)=;2(2)关于“有理数的除方”下列说法正确的是.(填序号)①f(6,3)=f(3,6);②f(2,a)=1(a≠0);③对于任何正整数n,都有f(n,﹣1)=1;④对于任何正整数n,都有f(2n,a)<0(a<0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f(n,a)(n为正整数,a≠0,n≥2),要求写出推导过程将结果写成幂的形式;(结果用含a,n的式子表示)(4)请利用(3)问的推导公式计算:f(5,3)×f(4,13)×f(5,﹣2)×f(6,12).。
有理数的乘除法练习题
有理数的乘除法练习题1. 计算下列有理数的乘积:(1) $3 \times (-2)$(2) $(-5) \times \frac{1}{4}$(3) $(-\frac{3}{8}) \times (-\frac{4}{5})$解答:(1) $3 \times (-2) = -6$(2) $(-5) \times \frac{1}{4} = -\frac{5}{4}$(3) $(-\frac{3}{8}) \times (-\frac{4}{5}) = \frac{12}{40} =\frac{3}{10}$2. 计算下列有理数的商:(1) $\frac{9}{5} \div (-\frac{3}{4})$(2) $(-\frac{2}{3}) \div \frac{1}{6}$(3) $(-\frac{5}{6}) \div (-\frac{2}{9})$解答:(1) $\frac{9}{5} \div (-\frac{3}{4}) = \frac{9}{5} \times (-\frac{4}{3}) = -\frac{36}{15} = -\frac{12}{5}$(2) $(-\frac{2}{3}) \div \frac{1}{6} = (-\frac{2}{3}) \times \frac{6}{1} = -\frac{12}{3} = -4$\frac{9}{2}) = \frac{45}{12} = \frac{15}{4}$3. 解答下列问题:(1) 当两个有理数相乘时,乘积的符号如何确定?答: 两个有理数相乘,如果符号相同,则乘积为正;如果符号不同,则乘积为负。
(2) 当两个有理数相除时,商的符号如何确定?答: 两个有理数相除,如果被除数与除数的符号相同,则商为正;如果被除数与除数的符号不同,则商为负。
4. 请计算以下乘除法练习题:(1) $(-\frac{1}{2}) \times (-\frac{2}{3})$(2) $\frac{3}{4} \div (-\frac{2}{5})$(3) $(-\frac{7}{8}) \times \frac{4}{5}$(4) $(-\frac{2}{3}) \div (-\frac{3}{4})$解答:(1) $(-\frac{1}{2}) \times (-\frac{2}{3}) = \frac{2}{6} = \frac{1}{3}$(2) $\frac{3}{4} \div (-\frac{2}{5}) = \frac{3}{4} \times (-\frac{5}{2}) = -\frac{15}{8}$(3) $(-\frac{7}{8}) \times \frac{4}{5} = -\frac{28}{40} = -\frac{7}{10}$\frac{4}{3}) = \frac{8}{9}$通过上述练习题的计算,我们可以加强对有理数乘除法的理解和运算能力。
有理数的乘除法练习题(含答案)
第一章有理数1.4 有理数的乘除法1.计算12–12×3的结果是A.0 B.1 C.–2 D.–1 2.若等式–2□(–2)=4成立,则“□”内的运算符号是A.+ B.–C.×D.÷3.计算1–(–2)×(–2)÷4的结果为A.2 B.54C.0 D.34-4.|–13|的倒数是A.13B.3 C.–13D.–35.–0.3的倒数是A.10.3B.−10.3C.103D.−1036.2×(–3)=__________.7.计算:523()12 1234+-⨯.8.计算:22 (7)()7-⨯-.9.计算:34(7)(2) 25-÷-⨯+.10.计算:236(3)2(4)-⨯-+⨯-.11.12()2⨯-的结果是A.–4 B.–1 C.14-D.3212.计算:740(16) 2.54÷--÷=A.–1.1 B.–1.8 C.–3.2 D.–3.9 13.下列各数中,与–2的积为1的是A.12B.–12C.2 D.–214.计算11(6)()666⨯-÷-⨯的值为A.1 B.36 C.1-D.+615.计算(1+14+56−12)×12时,下列可以使运算简便的是A.运用乘法交换律B.运用加法交换律C.运用乘法分配律D.运用乘法结合律16.在–3,–2,–1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是__________.17.有三个互不相等的整数a、b、c,如果abc=9,那么a+b+c=__________.18.计算:5 (8)[7(3 1.2)]6-⨯-+-⨯.19.计算:11336()964⨯--.20.计算:11 (1)(9)()32-⨯-÷-.21.(–0.25)×(–79)×4×(–18).22.计算:12112 ()() 3031065-÷-+-.23.计算:(14+512–56)×(–60).24.阅读后回答问题:计算(–52)÷(–15)×(–115)解:原式=–52÷[(–15)×(–115)]①=–52÷1②=–52③(1)上述的解法是否正确?答:__________;若有错误,在哪一步?答:__________;(填代号)错误的原因是:__________;(2)这个计算题的正确答案应该是:25.(2018•陕西)–711的倒数是A.711B.−711C.117D.−11726.(2018•吉林)计算(–1)×(–2)的结果是A.2 B.1 C.–2 D.–3 27.(2018•遂宁)–2×(–5)的值是A.–7 B.7 C.–10 D.10 1.【答案】D【解析】111323===122222-⨯---,故选D.2.【答案】C【解析】–2×(–2)=4.故选C.3.【答案】C【解析】1–(–2)×(–2)÷4=1–4÷4=1–1=0,故选C.4.【答案】B【解析】|–13|=13,13的倒数是3,故选B.5.【答案】D【解析】–0.3=–310,故–0.3的倒数是−103.故选D.6.【答案】–6【解析】根据有理数的乘法法则可得2×(–3)=–6.9.【答案】3 5【解析】3431143(7)(2)()252755-÷-⨯+=-⨯-⨯=.10.【答案】33【解析】236(3)2(4)-⨯-+⨯-2318833=+-=.11.【答案】B【解析】2×(–12)=–(2×12)=–1.故选B.12.【答案】C【解析】原式=575242--÷=572245--⨯=2571010--=3210-=–3.2,故选C.13.【答案】B【解析】∵–2×12=–1,–2×(–12)=1,–2×2=–4,–2×(–2)=4,∴与–2的积为1的是–12.故选B.14.【答案】B【解析】首先确定积的符号,然后将除法转化为乘法再进行计算.原式=16×6×6×6=36.15.【答案】C【解析】∵算式符合乘法分配律的形式,∴运用乘法分配律可以使运算简便.故选C.16.【答案】30【解析】正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.最大乘积是:(–3)×(–2)×5=3×2×5=30.故答案为:30.19.【答案】–29【解析】11311336()363636462729 964964⨯--=⨯-⨯-⨯=--=-.20.【答案】–24【解析】114(1)(9)()9224323-⨯-÷-=-⨯⨯=-.21.【答案】【解析】原式=–(14×79×4×18)=–14.22.【答案】1 10 -【解析】原式=14114()()30661010-÷+--=151()()3062-÷-=11()()303-÷=1()330-⨯=110-.23.【答案】10【解析】原式=14×(–60)+512×(–60)–56×(–60)=–15+(–25)+50=–40+50=10.24.【答案】(1)不正确;①;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;(2)190.【解析】(1);不正确;错误在第①步;运算顺序不对,或者是同级运算中,没有按照从左到右的顺序进行;25.【答案】D【解析】–711的倒数是–117,故选D.26.【答案】A【解析】(–1)×(–2)=2.故选A.27.【答案】D【解析】(–2)×(–5)=+2×5=10,故选D.。
2022-2023学年七年级上数学:有理数的乘除法(附答案解析)
2022-2023学年七年级上数学:有理数的乘除法
一.选择题(共5小题)
1.下列说法中,正确的是()
A.3.6÷0.4=9,所以3.6能被0.4整除
B.12的因数有6个
C.一个素数和一个合数一定互素
D.在正整数中,偶数都是合数
2.甲、乙、丙三人从A地徒步去B 地,甲用了小时,乙用了0.4小时,丙用了小时,那么甲、乙、丙三人的速度之比为()
A.10:12:15B.15:12:10C.6:5:4D.4:6:5
3.下列说法中,错误的是()
A.3能整除15
B.在正整数中,除了奇数就是偶数
C.在正整数中,除2外所有的偶数都是合数
D.一个正整数乘以一个假分数,积一定大于它本身
4.表示有理数a,b的点在数轴上的位置如图所示,以下四个式子中正确的是()
A.a+b>0B.ab>0C.a+2>0D.a﹣b<0
5.有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是()
A.|a|>|b|B.a+b>0C.a﹣b>0D.ab>0
二.填空题(共5小题)
6.14与35的最小公倍数是.
7.求比值:0.25平方米:100平方分米.
8.计算:﹣2÷=.
9.六(4)班昨天有27人到校上课,另有3人请假没来,昨天六(4)班的出勤率是.
第1页(共10页)。
七年级上册数学有理数乘除法练习题
七年级上册数学有理数乘除法练习题
1. 将下列各数的绝对值写出来:
a) -6 b) 3 c) -9 d) 0
2. 计算下列各题的积或商:
a) (-2) × (4) b) (-5) ÷ (-1) c) 18 ÷ (3) d) (-8) × (-
6)
3. 将下列各题填入适当的符号(>, <, =)使等式成立:
a) (-9) __ (-5) b) (-7) __ (-10) c) (-2) __ (-2) d) (-3) __ (-2)
4. 编写一个算式,只使用以下数的绝对值:3, 6, 9, 12
5. 根据所给的数,找到一个相反数和绝对值都相同的数:
a) 4 b) -8 c) -1
6. 如果可行,请找到两个数,其中一个的相反数等于另一个数的倒数,总和为0:
7. 判断下列各式是否正确,正确的用"√"标注,错误的用"×"标注:
a) (-1) × (-5) = 5 b) 3 × (-8) = (-24) c) (-6) ÷ 2 = 3
8. 电影院票价为35元,小明购买了5张电影票,他支付了多
少钱?
9. 一个工人每小时赚20元,他工作了8个小时,他一共赚了
多少钱?
10. 某商品原价100元,打了8折后出售,现在的价格是多少?。
人教版七年级数学上册第一章《有理数的乘除法》课时练习题(含答案)
人教版七年级数学上册第一章《有理数的乘除法》课时练习题(含答案)一、单选题1.与1134⎛⎫-- ⎪⎝⎭互为倒数的是( ) A .143-⨯ B .34⨯C .143⨯ D .34-⨯ 2.已知有理数a ,b ,c 满足0abc ≠,则||||||a b c b a c ++的值不可能为( ) A .3 B .3- C .1 D .23.计算()162⎛⎫-⨯- ⎪⎝⎭的结果是( ) A .-3 B .3 C .-12 D .124.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是( ) A .18- B .2 C .18 D .2-5.计算(﹣1)÷3×(﹣13)的结果是( ) A .﹣1 B .1 C .19 D .9 6.如果0abcd <,0a b +=,0cd >,那么这四个数中负数有( )A .4个B .3个C .2个D .1个或3个 二、填空题7.23的倒数是________.8.体育用品商店出售一种排球,按八折处理,每个36元,这种排球原价__元. 9.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是___. 10.在-5,-3,-2,1,2,7这五个数中任取两数相乘,所得乘积中的最小数与最大数之差的绝对值为________.三、解答题11.阅读材料:求1+2+22+23+24+……+22019的值.解:设S =1+2+22+23+24+ (22019)将等式两边同时乘以2,得2S =2+22+23+24+…+22019+22020,将下式减去上式得2S-S=22020-1,请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34……+3n(其中n为正整数).12.下面是佳佳同学的一道题的解题过程:2÷(-1314+)×(-3)=[2÷(-13)+214÷]×(-3),①=2×(-3)×(-3)+2×4×(-3),②=18-24,③=6,④(1)佳佳同学开始出现错误的步骤是;(2)请给出正确的解题过程.13.已知有理数-16,-10,c在数轴上对应的点分别是A,B,C三点,BC-AB=4.(1)请在数轴上画出点A,B,并求B,C两点间的距离;(2)求AC中点表示的数参考答案1.D2.D3.B4.C5.C6.D7.3 28.459.90.10.5011.(1)211-1;(2)12(3n+1-1) 12.(1)①;13. 10(2)AC中点表示的数为-8或-18。
人教版七年级数学上1.4有理数的乘除法测试题含答案及解析
有理数的乘除法测试时间:60分钟总分:100一、选择题(本大题共10小题,共30.0分)1.若,则下列各式正确的是A. B. C. D. 无法确定2.正整数x、y满足,则等于A. 18或10B. 18C. 10D. 263.若,,且,则等于A. 1或B. 5或C. 1或5D. 或4.算式之值为何?A. B. C. D.5.计算的值是A. 6B. 27C.D.6.若,,且,则的值为A. B. C. 5 D.7.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是A. 相等B. 互为相反数C. 互为倒数D. 相等或互为相反数8.的倒数与4的相反数的商是A. B. 5 C. D.9.计算等于A. 1B.C.D.10.计算:的结果是A. 1B.C.D.二、填空题(本大题共10小题,共30.0分)11.若,,则ab______ 0;若,,则ab______12.已知,,且,则的值等于______ .13.比大的数是______ ;比小______ ;数______ 与的积为14.14.若“”是一种数学运算符号,并且,,,,则的值为______ .15.计算的结果是______ .16.四个互不相等的整数a、b、c、d,使,则______ .17.______ .18.计算:______.19.化简:______ .20.已知,,且,则的值为______ .三、计算题(本大题共4小题,共24.0分)21.22.运算:23..24..四、解答题(本大题共2小题,共16.0分)25.数学老师布置了一道思考题“计算:”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为,所以.请你判断小明的解答是否正确,并说明理由.请你运用小明的解法解答下面的问题.计算:.26.利用适当的方法计算:.答案和解析【答案】1. C2. A3. B4. D5. D6. B7. D8. C9. B10. C11. ;12. 8或13. ;;14. 10015. 316. 1217.18.19. 320. 或21. 解:原式,.22. 解:原式.23. 解:原式.24. 解:原式,.25. 解:正确,理由为:一个数的倒数的倒数等于原数;原式的倒数为,则.26. 解:原式.【解析】1. 解:,同号两数相乘得正,不等式两边乘以同一个正数,不等号的方向不变.故选C.根据有理数乘法法则:两数相乘,同号得正可得再根据不等式是性质:不等式两边乘或除以同一个负数,不等号的方向改变,解答此题.主要考查了不等式的基本性质:不等式两边加或减同一个数或式子,不等号的方向不变不等式两边乘或除以同一个正数,不等号的方向不变不等式两边乘或除以同一个负数,不等号的方向改变.2. 解:,y是正整数,、均为整数,,或,存在两种情况:,,解得:,,;,解得:;或10,故选A.易得、均为整数,分类讨论即可求得x、y的值即可解题.本题考查了整数的乘法,本题中根据或分类讨论是解题的关键.3. 解:因为,,所以,,因为,所以,,所以;所以,,所以;故选B先由绝对值和平方根的定义求得x、y的值,然后根据分类计算即可.本题主要考查的平方根的定义、绝对值、有理数的加法,求得当时,,当时,是解题的关键.4. 解:原式.故选:D.根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可.本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.5. 解:原式,故选:D.利用有理数的乘法法则进行计算,解题时先确定本题的符号.本题考查了有理数的乘法,解题的关键是确定运算的符号.6. 解:,,,,,当,,即当,,;当,,即,,.故选B.首先用直接开平方法分别求出a、b的值,再由可确定a、b同号,然后即可确定a、b的值,然后就可以求出的值.本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7. 解:根据题意得,由比例的性质得:...或.故选:D.设这两个数分别为a、b,根据题意得到,从而可得到,从而可判断出a、b之间的关系.本题主要考查的是有理数的除法、平方差公式的应用,得到是解题的关键.8. 解:的倒数是,4的相反数是,.故选C.依据相反数、倒数的概念先求得的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.主要考查相反数、倒数的概念及有理数的除法法则.9. 解:,故选:B.根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.10. 解:,故选:C.根据有理数的除法,即可解答.本题考查了有理数的除法,解决本题的关键是熟记有理数的除法.11. 解:若,,则;若,,则.故答案为:;.利用有理数乘法法则判断即可得到结果.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.12. 解:,,且,,或,,则或.故答案为:8或根据题意利用有理数的乘法法则判断x与y异号,再利用绝对值的代数意义求出x与y的值,即可求出的值.此题考查了有理数的乘法与减法,以及绝对值,熟练掌握运算法则是解本题的关键.13. 解:比大的数是:;比小;;故答案为:,,.比大的数是,根据有理数的加法法则即可求解;根据题意列式,列出算式,再进行计算即可;根据除法法则进行计算即可.本题考查了有理数的除法和加减法运算,熟练掌握运算法则是解题的关键;注意题中“大”、“小”的意思.14. 解:.故答案为:100.根据“”的运算方法列出算式,再根据有理数的乘法和有理数的除法运算法则进行计算即可得解.本题考查了有理数的乘法,有理数的除法,读懂题目信息,理解新定义的运算方法是解题的关键.15. 解:原式,故答案为:3.根据有理数的除法和乘法,即可解答.本题考查了有理数的乘法和除法,解决本题的关键是把除法转化为乘法计算.16. 解:四个互不相等的整数,,,的积为25,这四个数只能是1,,5,,,,,,则.故答案为:12.找出25的四个互不相等的因数,即1,,5,.本题主要考查了有理数的乘法及加法,解题的关键是要理解25分成四个互不相等的因数只能是1,,5,.17. 解:原式,故答案为:原式利用除法法则变形,约分即可得到结果.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.18. 解:原式,故答案为:.根据有理数的除法,可得有理数的乘法,根据有理数的乘法,可得答案.本题考查了有理数的除法,利用有理数的除法是解题关键.19. 解:,故答案为:3.根据分数的分子分母同号得正,能约分的要约分,可得答案.本题考查了有理数的除法,分子分母同号得正异号得负,并把绝对值相除.20. 解:,,,,,当时,,,当时,,,故答案为:或.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.21. 根据有理数的除法法则,先把除法化成乘法,再根据有理数的乘法进行计算即可.本题主要考查对有理数的乘法、除法等知识点的理解和掌握,能熟练地运用法则进行计算是解此题的关键.22. 原式先计算括号中的加减运算,再计算除法运算即可得到结果.此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.23. 原式利用乘法分配律计算即可得到结果.此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.24. 根据乘法算式的特点,可以用括号内的每一项与相乘,计算出结果.在进行有理数的乘法运算时,要灵活运用运算律进行计算.25. 正确,利用倒数的定义判断即可;求出原式的倒数,即可确定出原式的值.此题考查了有理数的除法,熟练掌握运算法则是解本题的关键.26. 逆用乘法的分配律,将提到括号外,然后先计算括号内的部分,最后再算乘法即可.本题主要考查的是有理数的乘法,逆用乘法分配律进行简便计算是解题的关键.。
有理数的乘除法(习题及答案)
有理数的乘除法(习题)1. 一个有理数与它的相反数的积一定是( )A .正数B .负数C .非负数D .非正数 2. 如果两个数的和为正数,积为负数,那么这两个数( )A .都是正数B .一个是正数,一个是负数,且负数的绝对值较大C .都是负数D .一个是正数,一个是负数,且正数的绝对值较大3. 有5张写着不同数字的卡片-7,-5,0,+4,+10,从中抽取2张卡片,使这2张卡片上的数字相除的商最小,最小的商是________.4. 计算:①9×(-6)=_______;(-7)×(-4) =________;(-0.75)×0=________; ②2934⎛⎫−⨯ ⎪⎝⎭=_______;21513⎛⎫⨯− ⎪⎝⎭=_______; ③1(10)(2)5⎛⎫−⨯−⨯− ⎪⎝⎭=____________; ④521124319152⎛⎫⎛⎫⎛⎫⨯−⨯−⨯− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=____________. 5. (1)(48)16−÷=__________=_____;3(3)128⎛⎫−÷−= ⎪⎝⎭__________=_____; 6255⎛⎫⎛⎫−÷−= ⎪ ⎪⎝⎭⎝⎭__________=_____;155⎛⎫÷− ⎪⎝⎭=__________=_____; (2)324=−__________=_____;548−=−__________=_____; (3)1(2)(5)3⎛⎫−÷−÷−= ⎪⎝⎭_______________=_____; 0.1(0.001)(1)÷−÷−=_______________=_____;5(0.25)(4)4−÷÷−=_______________=_____. 6. 计算:(1)1(0.1)(100)2−÷⨯−; (2)25(2)52⎛⎫−÷−⨯ ⎪⎝⎭;(3)12315574148⎛⎫⎛⎫÷−÷⨯− ⎪ ⎪⎝⎭⎝⎭; (4)11(5)2(0.75)24−÷⨯+−÷;复习巩固(5)55(6)(5)0.25(7)414⎛⎫−⨯−⨯−−÷−⨯ ⎪⎝⎭;(6)21(8)3230.25−−−−÷+−⨯.7. 计算:(1)11112462⎛⎫+−⨯ ⎪⎝⎭; (2)457(36)9612⎛⎫−⨯−+− ⎪⎝⎭;(3)5116312⎛⎫−÷ ⎪⎝⎭; (4)936911⎛⎫−÷ ⎪⎝⎭;(5)111535⎛⎫÷− ⎪⎝⎭; (6)37773711488848⎛⎫⎛⎫⎛⎫⎛⎫−÷−+−÷− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.8. 若某地区夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是28℃,若这座山的高度是5千米,则山顶的温度为____________℃.9. 某冷冻厂的一个冷库,现在的室温是-2℃,现有一批食品,需在-26℃下冷藏,如果每小时能降温4℃,要降到所需温度,需要_______小时.10. 有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(2)若白菜每千克售价2.1元,则出售这20筐白菜可卖多少元?参考答案1.D 2.D 3. -24. ①-54;28;0;②32−;-25;③-4;④13−. 5. (1)14816−⨯;-3;12833⎛⎫−⨯− ⎪⎝⎭;128;6552⎛⎫−⨯− ⎪⎝⎭;3;5(5)⨯−;-25;(2)1324⎛⎫⨯− ⎪⎝⎭;18−; 1(54)8⎛⎫−⨯− ⎪⎝⎭; 274; (3)12(3)5⎛⎫−⨯−⨯− ⎪⎝⎭;65−;1(1000)(1)10⨯−⨯−;100;141454⎛⎫−⨯⨯− ⎪⎝⎭;120. 6. (1)20;(2)252; (3)43; (4)174−; (5)112; (6)173. 7. (1)-1; (2)7; (3)6; (4)1411−; (5)2252; (6)-2.8. -129. 610. (1)与标准重量比较,20筐白菜总重量不足的千克数为10千克;(2)这20筐白菜可卖1 029元.复习巩固。
2019—2020年人教版七年级数学第一学期《有理数的乘除法》同步测试题及答案.docx
1.4有理数的乘除法同步测试题一、选择题1.下列说法正确的是( )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02.两个有理数的商是负数,则这两个数一定是( )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( )A .1B .-1C .0D .25.计算1357×316,最简便的方法是( ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166.下列说法正确的是( )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有( )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab____0;若a >0,b <0,则ab____0;若a <0,b >0,则ab____0;若a <0,b<0,则ab____0.15.若a >0,则|a|a =____,若a <0,则|a|a=______. 16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc________0,abcd________0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是_______ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(____________)=[4×(8×125)-5]×25(____________)=4 000×25-5×25.(____________)19.在如图所示的运算流程中,若输入的数为3,则输出的数为________.20.计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=________.三、解答题(1)14×(-16)×(-45)×(-114);(2)(-81)÷214×49÷(-16);(3)(-12)×(-23)×(-3);(4)317×(317÷713)×722÷1121.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.23.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少?参考答案一、选择题1.下列说法正确的是( C )A .若ab>0,则a>0,b>0B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<02. 两个有理数的商是负数,则这两个数一定是( C )A .都是负数B .都是正数C .两数异号D .两数同号3.若a <c <0<b ,则abc 与0的大小关系是( C )A .abc <0B .abc =0C .abc >0D .无法确定4.如图,数轴上a ,b 两点所表示的两数的商为( B )A .1B .-1C .0D .25. 计算1357×316,最简便的方法是( C ) A .(13+57)×316 B .(14-27)×316C .(16-227)×316 D .(10+357)×3166. 下列说法正确的是( C )A .零除以任何数都等于零B .1除以一个数就等于乘这个数的倒数C .一个不等于零的有理数除以它的相反数等于-1D .两数相除,商一定小于被除数7.如果ab =0,那么一定有( C )A .a =b =0B .a =0C .a ,b 中至少有一个为0D .a ,b 中最多一个为08.下列各式中积的符号为正的有( B )①(-17)×16;②(-0.03)×(-1.8);③45×(+1.1);④(-183)×(-21);⑤(-2016)×0.A .2个B .3个C .4个D .5个9.若a 为有理数,且|a|a=-1,则a 为( B ) A .正数 B .负数 C .非正数 D .非负数10.下列说法错误的有(B )①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.A .0个B .1个C .2个D .3个11.下列计算:①-21÷3=-7;②13÷(-5)=3×(-5)=-15;③-2÷(-6)=13;④(-0.75)÷(-0.25)=-3.其中正确的有( B )A .1个B .2个C .3个D .4个12.如果a +b <0,b a>0,那么下列结论正确的是( B ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >013.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列式子成立的是( C )A .ab >0B .a +b <0C .(b -1)(a +1)>0D .(b -1)(a -1)>0二、填空题14.若a >0,b >0,则ab__>__0;若a >0,b <0,则ab__<__0;若a <0,b >0,则ab__<__0;若a <0,b <0,则ab__>__0.15.若a >0,则|a|a =__1__,若a <0,则|a|a=__-1____.16.有理数a ,b ,c ,d 在数轴上对应的点的位置如图所示,则abc___>_____0,abcd____>____0.(填“>”或“<”)17. (-47)×(-35)×(-23)×(-12)积的符号是____+___ _.18.在算式每一步后面填上这一步应用的运算律:[(8×4)×125-5]×25=[(4×8)×125-5]×25(__乘法交换律__________)=[4×(8×125)-5]×25(____乘法结合律________)=4 000×25-5×25.(_______乘法分配律_____)19.在如图所示的运算流程中,若输入的数为3,则输出的数为___-2_____.20. 计算:(1-2)×(2-3)×…×(2 013-2 014)×(2 014-2 015)=____1____.[三、解答题(1)14×(-16)×(-45)×(-114); 解:原式=-(14×16×45×54)=-4.(2)(-81)÷214×49÷(-16);解:原式=81×49×49×116=1.(3)(-12)×(-23)×(-3); 解:原式=-(12×23×3)=-1.(4)317×(317÷713)×722÷1121. 解:原式=227×37×722×2122=922.22.已知|a|=4,|b|=5,且ab <0,求a +b 的值.解:∵|a|=4,|b|=5,∴a =±4,b =±5,∵ab <0,∴a =4,b =-5或a =-4,b =5,∴a +b =4+(-5)=-1或a +b =(-4)+5=1,即a +b 的值为-1或123.若a ,b 都是非零的有理数,则a |a|+b |b|+ab |ab|的值是多少? 当a>0,b<0时,原式=a a +b b +ab ab=1+1+1=3; 当a>0,b>0时,原式=a a +b -b +ab -ab=1+(-1)+(-1)=-1; 当a<0,b>0时,原式=a -a +b b +ab -ab=-1+1+(-1)=-1; 当a<0,b<0时,原式=a -a +b -b +ab ab=-1+(-1)+1=-1. 即a |a|+b |b|+ab |ab|的值为3或-1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1有理数乘法(1)随堂检测 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___;(7)(-3)×=-)31( 2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯-4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数拓展提高1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大3、计算:(1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
4、计算:(1))8141121()8(+-⨯-; (2))48()6143361121(-⨯-+--。
5、计算:(1))543()411(-⨯- (2)34.075)13(317234.03213⨯--⨯+⨯-⨯-6、已知,032=-++y x 求xy y x 435212+--的值。
7、若a,b 互为相反数,c,d 互为倒数,m 的绝对值是1,求m cd b a 2009)(-+的值。
1、(2009年,)若ab b a ,2,5-==>0,则=+b a ___。
2、(2009年,)计算)21(2-⨯的结果是( )A 、1- B 、1 C 、2- D 、21.4.2 有理数的除法随堂检测 填空:(1)=÷-9)27( ;(2))103()259(-÷-= ;(3)=-÷)9(1 ; (4)=-÷)7(0 ;(5)=-÷)1(34 ;(6)=÷-4325.0 . 2、化简下列分数:(1)216-; (2)4812-; (3)654--; (4)3.09--. 3、计算:(1)4)11312(÷-; (2))511()2()24(-÷-÷-. (3)31329⨯÷.拓展提高 计算:(1))3.0(45)75.0(-÷÷-; (2))11()31()33.0(-÷-÷-.2、计算:(1))41(855.2-⨯÷-; (2))24(9441227-÷⨯÷-;(3)3)411()213()53(÷-÷-⨯-;(4)2)21(214⨯-÷⨯-; (5)7)412(54)721(5÷-⨯⨯-÷-; (6)213443811-⨯⨯÷-.3、如果b a ÷()0≠b 的商是负数,那么( )A 、b a ,异号 B 、b a ,同为正数 C 、b a ,同为负数 D 、b a ,同号4、下列结论错误的是( )A 、若b a ,异号,则b a ⋅<0,b a <0B 、若b a ,同号,则b a ⋅>0,b a >0C 、b a b a b a -=-=-D 、ba b a -=-- 5、若0≠a ,求a a的值。
6、一天,小红与小丽利用温差测量山的高度,小红在山顶测得温度是4-℃,小丽此时在山脚测得温度是6℃.已知该地区高度每增加100米,气温大约降低8.0℃,这个山峰的高度大约是多少米体验中考1、(2009年,威海)实数b a ,在数轴上的位置如图所示,则下列结论正确的是( )A 、0 b a +B 、0 b a -C 、0 b a ⋅D 、0 ba三、解答1.计算: (1) 384⎛⎫-⨯ ⎪⎝⎭; (2) 12(6)3⎛⎫-⨯- ⎪⎝⎭ ; (3)(-7.6)×0.5; (4) 113223⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭.2.计算. (1) 38(4)24⎛⎫⨯-⨯-- ⎪⎝⎭; (2) 38(4)(2)4-⨯-⨯-; (3) 38(4)(2)4⎛⎫⨯-⨯-⨯- ⎪⎝⎭. 3.计算 (1) 111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;(2) 111111111111223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 1- b a 0 14.计算 (1)(+48)÷(+6); (2)213532⎛⎫⎛⎫-÷⎪ ⎪⎝⎭⎝⎭; (3)4÷(-2); (4)0÷(-1000).5.计算. (1)(-1155)÷[(-11)×(+3)×(-5)]; (2)375÷2332⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭;(3)1213(5)6(5)33⎛⎫⎛⎫-÷-+-÷-⎪ ⎪⎝⎭⎝⎭.6.计算(1)111382⎛⎫⎛⎫-÷--÷-⎪ ⎪⎝⎭⎝⎭; (2)11181339⎛⎫-÷-÷- ⎪⎝⎭.1. 有理数的乘除法一、选择1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )A.一定为正B.一定为负C.为零D. 可能为正,也可能为负2.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定3.下列运算结果为负值的是( ) A.(-7)×(-6) B.(-6)+(-4); C.0×(-2)(-3) D.(-7)-(-15)4.下列运算错误的是( )A.(-2)×(-3)=6B. 1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24 5.若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数6.下列说确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-17.关于0,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数8.下列运算结果不一定为负数的是( )A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积9.下列运算有错误的是( ) A.13÷(-3)=3×(-3) B. 1(5)5(2)2⎛⎫-÷-=-⨯- ⎪⎝⎭C.8-(-2)=8+2D.2-7=(+2)+(-7) 10.下列运算正确的是( )A. 113422⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭; B.0-2=-2; C.34143⎛⎫⨯-= ⎪⎝⎭; D.(-2)÷(-4)=2 二、填空1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果410,0a b>>,那么a b _____0. 6.如果5a>0,0.3b<0,0.7c<0,那么b ac ____0.a a =_____;若a<0,则aa=____.7.-0.125的相反数的倒数是________. 8.若a>0,则人教实验版七年级上册有理数的除法练习一. 判断。
1. 如果两数相除,结果为正,则这两个数同正或同负。
()2. 零除任何数,都等于零。
()3. 零没有倒数。
()4. 的倒数是。
()5. 互为相反数的两个数,乘积为负。
()6. 任何数的倒数都不会大于它本身。
()7. ()8. ()二. 填空。
9. 在括号加注运算法则。
例:……(两个有理数相除)……………(异号取负)……………………(并把绝对值相除)(1)………()………()3………………()(2)0÷2=…………() 0……………()10. 如果a表示一个有理数,那么叫做____________。
()11. 除以一个数,等于____________。
12. 一个数与1的积等于____________,一个数与的积等于____________。
13. 是__________的相反数,它的绝对值是__________,它的倒数是__________。
14. 0的相反数是____________,绝对值是____________。
15. 在下列算式的括号填上适当的数。
(1)(2)(3)(4)(5)(6)三. 选择。
16. 下列说确的是()A. 负数没有倒数B. 正数的倒数比自身小C. 任何有理数都有倒数D. 的倒数是17. 关于0,下列说法不正确的是()A. 0有相反数B. 0有绝对值C. 0有倒数D. 0是绝对值和相反数相等的数18. 下列说法不正确的是()A. 互为相反数的绝对值相等B. 互为相反数的和是0C. 互为相反数如果有商,那么商一定是D. 互为相反数的积是119. 下列运算结果不一定为负数的是()A. 异号两数相乘B. 异号两数相除C. 异号两数相加D. 奇数个负因数的乘积20. 下列运算有错误的是()A. B.C. D.21. 下列运算正确的是( ) A. ---⎛⎝ ⎫⎭⎪=312124 B. C. D.22. 下列各式的值等于9的是( )A. B. C. D.四. 化简下列分数。
23. 24. 25. 26.。