数据结构实验约瑟夫环..
实验报告——约瑟夫环
《数据结构》课程设计报告课程名称:《数据结构》课程设计课程设计题目:约瑟夫环姓名:张光栋院系:计算机学院专业:网络工程年级:2013级学号:13055532指导教师:张纪林一、需求分析1.以单项循环链表存储结构模拟约瑟夫环问题。
即编号为1、2、3…、n的n 个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数上限值m,从第一个人开始按顺时针方向自1开始报数,报到m时停止报数。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向下一个人开始重新从1报数,如此下去,直至所有的人全部出列为止。
按出列顺序印出各人的编号。
2.演示程序以用户与计算机的对话方式执行,用户输入相应的数据,输出结果显示在其后。
3.测试数据:(1)n=55个人的密码依次为:2,4,2,6,2;首先m值为2(正确的输出顺序为:2 1 4 3 5)(2)n=77个人的密码依次为:2,4,1,4,3,2,3首先m值为5(正确的输出顺序为:5 1 3 4 6 2 7)二、概要设计为实现上述程序功能,可利用单向循环链表存储结构模拟此过程。
1.单向循环链表的抽象数据类型定义为:ADT CircularList{数据对象:D={ai|ai∈LNode,i=1,2,…,n,n≥0}数据关系:R1={<ai-1,ai>|ai-1∈D,i=2,…,n}基本操作:Status LisCreate_L(LinkList &L,int I,ElemType &e)操作结果:在不带头结点的单链表L中,创建第i个元素,并用e赋值}2.本程序中包括的两个基本模块:1)主程序模块:Void main(){初始化;do{接受命令;处理命令;}while(“命令”=”退出”)}2)循环链表模块:实现循环链表的抽象数据结构三、详细设计1.结点类型typedef struct ListNode{int mi;int n;struct ListNode *next;}ListNode,*LinkList;2.用循环链表存储约瑟夫环,没有头结点,基本操作函数如下:void CreateList(LinkList&L, int n){LinkList s;int i;L=(LinkList)malloc(sizeof(ListNode));L->n=1;L->next=L;for(i=2;i<=n;i++){s=(LinkList)malloc(sizeof(ListNode));s->next=L->next;L->next=s;s->n=i;L=L->next;}}void Delete(LinkList L, int m){int i;LinkList p,q;p=L;while(p->next!=p){for(i=1;i<m;i++)p=p->next;q=p->next;m=q->mi;printf("%d ",q->n);p->next=q->next;free(q);}printf("%d ",p->n);free(p);}3.主函数:int main(){int n,i,m;LinkList L,p;printf("请输入人数:");scanf("%d",&n);CreateList(L,n);printf("请输入密令\n");p=L->next;for(i=1;i<=n;i++){printf("请输入第%d条密令\n",i);scanf("%d",&p->mi);p=p->next;}printf("请输入初始密令\n");scanf("%d",&m);printf("输出为\n");Delete(L, m);return 0;}四、调试分析1.第一次写时,没有区分出只剩下的一个的情况,导致最终输出出现错误。
C++数据结构之约瑟夫环
2009级数据结构实验报告实验名称:实验线性表实现约瑟夫问题求解学生姓名:桂柯易班级:2009211120班内序号:07学号:09210580日期:2010年10月31日1.实验要求【实验目的】1.熟悉C++语言的基本编程方法,掌握集成编译环境的调试方法;2.学习指针、模板类、异常处理的使用;3.掌握线性表的操作实现方法;4.培养使用线性表解决实际问题的能力。
【实验内容】利用循环链表实现约瑟夫问题的求解。
约瑟夫问题如下:已知n个人(n>=1)围坐一圆桌周围,从1开始顺序编号。
从序号为1的人开始报数,顺时针数到m的那个人出列。
他的下一个人又从1开始报数,数到m 的那个人又出列。
依此规则重复下去,直到所有人全部出列。
请问最后一个出列的人的编号。
2.程序分析2.1 存储结构存储结构:循环链表2.2 关键算法分析【设计思想】首先,设计实现约瑟夫环问题的存储结构。
由于约瑟夫环本身具有循环性质,考虑采用循环链表,为了统一对表中任意节点的操作,循环链表不带头结点。
循环链表的结点定义为如下结构类型:struct Node{int number;Node *next;};其次,建立一个不带头结点的循环链表并由头指针first指示。
最后,设计约瑟夫环问题的算法。
【伪代码】1、工作指针first,r,s,p,q初始化2、输入人数(n)和报数(m)3、循环n次,用尾插法创建链表Node *q;for(int i=1;i<=n;i++){Node *p;p=new Node;p->number=i;p->next=NULL;if(i==1) L=q=p;else{q->next=p;q=q->next;}}q->next=L;if(L!=NULL){return(L);}4、输入报数的起始人号数k;5、Node *q = new Node;计数器初始化i=1;6、循环n次删除结点并报出位置(其中第一个人后移k个)当i<n时移动指针m-2次p=p->next;删除p结点的后一结点qq=p->next;p->next=q->next;*L = p->next;报出位置后Delete q;计数器i++;【复杂度】for(int i=1;i<=n;i++){Node *p;p=new Node;p->number=i;p->next=NULL;if(i==1) L=q=p;else{q->next=p;q=q->next;}时间复杂度:O(n)if(i==1) i+=LengthList(*L);Node *p;p=*L;int j=0;while(j<i-2) {p=p->next;j++;}q = p->next;p->next=p->next->next;*L = p->next;return(q);时间复杂度:O(n2)算法的空间复杂度:O(n2)2.3 其他程序源代码:#include<iostream>using namespace std;struct Node//循环节点的定义{int number;//编号Node *next;};Node *CreateList(Node *L,int &n,int &m);//建立约瑟夫环函数void Joseph(Node *L,int n,int m);//输出每次出列号数函数Node *DeleteList(Node **L,int i,Node *q);//寻找每次出列人的号数int LengthList(Node *L);//计算环上所有人数函数void main()//主函数{Node *L;L=NULL;//初始化尾指针int n, m;cout<<"请输入人数N:";cin>>n;//环的长度if(n<1){cout<<"请输入正整数!";}//人数异常处理else{cout<<"请输入所报数M:";cin>>m;if(m<1){cout<<"请输入正整数!";}//号数异常处理else{L=CreateList(L,n,m);//重新给尾指针赋值Joseph(L,n,m);}}system("pause");}Node *CreateList(Node *L,int &n,int &m)//建立一个约瑟夫环(尾插法){Node *q;for(int i=1;i<=n;i++){Node *p;p=new Node;p->number=i;p->next=NULL;if(i==1) L=q=p;//工作指针的初始化else{q->next=p;q=q->next;}}q->next=L;if(L!=NULL){return(L);}//返回尾指针else cout<<"尾指针异常!"<<endl;//尾指针异常处理}void Joseph(Node *L,int n,int m)//输出每次出列的人{int k;cout<<"请输入第一个报数人:";cin>>k;if(k<1||k>n){cout<<"请输入1-"<<n<<"之间的数"<<endl;} else{cout<<"\n出列顺序:\n";for(int i=1;i<n;i++){Node *q = new Node;if(i==1) q=DeleteList(&L,k+m-1,q);//第一个出列人的号数else q=DeleteList(&L,m,q);cout<<"号数:"<<q->number<<endl;delete q;//释放出列人的存储空间}cout<<"最后一个出列号数是:"<<L->number<<endl;;//输出最后出列人的号数}}Node *DeleteList(Node **L,int i,Node *q) //寻找每次出列的人{if(i==1) i+=LengthList(*L);//顺序依次出列情况的处理方式Node *p;p=*L;int j=0;while(j<i-2) {p=p->next;j++;}q = p->next;p->next=p->next->next;*L = p->next;return(q);}int LengthList(Node *L)//计算环上的人数{if(L){cout<<"尾指针错误!"<<endl;}//异常处理else{int i=1;Node *p=L->next;while(p!=L){i++;p=p->next;}return(i);}}3.程序运行结果1.测试主函数流程:2.测试条件:如上图所示,人数为20人,所报数为6,第一个报数的人是1号。
数据结构实验一 约瑟夫环问题实验报告电子版
for(i = 1;i<length;i++){
tmp = (Node *)malloc(sizeof(Node));
tmp->number = num[i];
tmp->pass = pas[i];
pri->next = tmp;
pri = tmp;
pri->next = head;
for(i=0;i<time;i++){ //找到要删除的结点
tmp = tmp->next;
}
printf("%d ",tmp->number);
timeห้องสมุดไป่ตู้= tmp->pass - 1;
deleteFromList(&head,tmp);//删除结点
tmp = tmp->next;//从下一个结点又开始计算
initList(head);
createFromTail(head,num,pas,sizeof(num)/sizeof(num[0]));
p = head;
printf("\n约瑟夫计数前,每个数和他的密码:\n");
for(i = 0;i<sizeof(num)/sizeof(num[0]);i++){
}
}
// 从链表中删除
void deleteFromList(List *head,Node *tmp)
{
Node *tmp1;
Node *tmp2;
tmp1 = *head;
tmp2 = tmp1;
//如果链表剩了一个元素
约瑟夫环数据结构实验报告
约瑟夫环数据结构实验报告约瑟夫环数据结构实验报告引言约瑟夫环是一种经典的数学问题,它涉及到一个有趣的数据结构。
本次实验旨在通过实现约瑟夫环数据结构,深入理解该问题,并探索其在实际应用中的潜力。
本报告将介绍实验的设计和实现过程,并分析实验结果。
实验设计在本次实验中,我们选择使用链表来实现约瑟夫环数据结构。
链表是一种非常灵活的数据结构,适合用于解决约瑟夫环问题。
我们设计了一个Josephus类,其中包含了创建环、添加元素、删除元素等操作。
实验实现1. 创建环在Josephus类中,我们首先需要创建一个循环链表。
我们使用一个头节点来表示环的起始位置。
在创建环的过程中,我们可以选择指定环的长度和起始位置。
2. 添加元素在创建环之后,我们可以通过添加元素来向约瑟夫环中插入数据。
我们可以选择在环的任意位置插入元素,并且可以动态地调整环的长度。
3. 删除元素根据约瑟夫环的规则,每次删除一个元素后,下一个元素将成为新的起始位置。
我们可以通过删除元素的操作来模拟约瑟夫环的运行过程。
在删除元素时,我们需要考虑环的长度和当前位置。
实验结果通过实验,我们得出了以下结论:1. 约瑟夫环数据结构可以有效地模拟约瑟夫环问题。
通过创建环、添加元素和删除元素的操作,我们可以模拟出约瑟夫环的运行过程,并得到最后剩下的元素。
2. 约瑟夫环数据结构具有一定的应用潜力。
除了解决约瑟夫环问题,该数据结构还可以用于其他类似的问题,如任务调度、进程管理等。
3. 约瑟夫环数据结构的时间复杂度较低。
由于约瑟夫环的特殊性质,我们可以通过简单的链表操作来实现该数据结构,使得其时间复杂度较低。
结论本次实验通过实现约瑟夫环数据结构,深入理解了该问题,并探索了其在实际应用中的潜力。
通过创建环、添加元素和删除元素的操作,我们可以模拟出约瑟夫环的运行过程,并得到最后剩下的元素。
约瑟夫环数据结构具有一定的应用潜力,并且具有较低的时间复杂度。
通过本次实验,我们对数据结构的设计和实现有了更深入的理解,并为将来的研究和应用奠定了基础。
约瑟夫环课程设计实验报告
《数据结构》课程设计报告课程名称: 《数据结构》课程设计课程设计题目: joseph环姓名:院系:计算机学院专业:年级:学号:指导教师:2011年12月18日目录1 课程设计的目的 (2)2 需求分析 (2)3 课程设计报告内容 (3)1.概要设计 (3)2.详细设计 (3)3.调试分析 (x)4.用户手册 (x)5.测试结果 (6)6.程序清单 (7)4 小结 (10)1、课程设计的目的(1)熟练使用C++编写程序, 解决实际问题;(2)了解并掌握数据结构与算法的设计方法, 具备初步的独立分析和设计能力;(3)初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能;(4)提高综合运用所学的理论知识和方法独立分析和解决问题的能力;2、需求分析1.问题描述:编号是1, 2, ……,n的n个人按照顺时针方向围坐一圈, 每个人只有一个密码(正整数)。
一开始任选一个正整数作为报数上限值m,从第一个仍开始顺时针方向自1开始顺序报数, 报到m时停止报数。
报m的人出列, 将他的密码作为新的m值, 从他在顺时针方向的下一个人开始重新从1报数, 如此下去, 直到所有人全部出列为止。
设计一个程序来求出出列顺序。
2.要求:利用不带表头结点的单向循环链表存储结构模拟此过程, 按照出列的顺序输出各个人的编号。
3.测试数据:m的初值为20, n=7 ,7个人的密码依次为3, 1, 7, 2, 4, 7, 4, 首先m=6,则正确的输出是什么?输出形式:建立一个输出函数, 将正确的输出序列3.课程设计报告内容概要设计:在理解了题目后, 我先想到的是我们所学的单链表, 利用单链表先建立循环链表进行存贮, 建立完循环链表后, 我将所要编写的函数分为了两块, 一块是经过学过的单链表改编的循环链表的基本操作函数, 还有一块是运行约瑟夫环的函数。
详细设计:我先建立一个结构体, 与单链表一样, 只是多了一个存密码的code域struct LinkNode{int data; //顺序int code; //密码LinkNode *next;};建立一个类LinkList ,包含的函数:LinkList(); //构造函数void Creat(const int ); //创建循环链表int Delete(LinkNode* ); //删除报到数的结点int Joseph(int ); // 约瑟夫环私有成员是LinkNode* head; //指向第一个结点的指针LinkNode* elem; // 同上int len; //长度我定义了一个elem指针是为了约瑟夫环里运行方便, elem只在约瑟夫环这个函数里用到, 其他函数没有特别大的用处。
数据结构约瑟夫环问题
数据结构实验报告题目:约瑟夫环问题一.设计内容[问题描述]约瑟夫环问题的一种描述是:编号为1, 2, 3,…,n的n个人按顺时针方向围坐一圈,每人手持一个密码(正整数)。
一开始任选一个整数作为报数上限值,从第一人开始顺时针自 1 开始顺序报数,报到m 时停止报数。
报m 的人出列, 将它的密码作为新的m 值,从他在顺时针方向上的下一个人开始重新从 1 报数, 如此下去直到所有人全部出列为止。
试设计程序实现之。
[基本要求] 利用循环链表存储结构模拟此过程,按照出列的顺序打印各人的编号。
[ 实验提示] 程序运行后首先要求用户指定初始报数上限值。
然后读取各人的密码。
设n<=30 。
程序执行后,要求用户在计算机终端上显示“提示信息”后,用键盘输入“提示信息”中规定的命令,以“回车符”为结束标志。
相应的输入数据和运算结果显示在其后。
二、设计目的1. 达到熟练掌握C++ 语言的基本知识和技能;2. 能够利用所学的基本知识和技能,解决简单的面向对象程序设计问题。
3. 把课本上的知识应用到实际生活中,达到学以致用的目的。
三、系统分析与设计(确定程序功能模块)1、为实现上述程序的功能,应以有序链表表示集合。
基本操作:InitList(&L)操作结果:构造一个空的有序表L。
DestroyList(&L)初始条件:有序表L 已存在。
操作结果:销毁有序表L。
ListEmpty(L)初始条件:有序表L 已存在。
操作结果:若L为空表,则返回TRUE,否则返回FALSE。
ListLength(L)初始条件:有序表L 已存在。
操作结果:返回L 中数据元素个数。
GetElem(L,i)初始条件:有序表L已存在,并且K i< ListLength(L)。
操作结果:返回L 中第i 个数据元素。
LocatePos(L,e)初始条件:有序表L已存在,e和有序表中元素同类型的值。
操作结果:若L中存在和e相同的元素,则返回位置;否则返回0。
约瑟夫环问题(python3.x)
约瑟夫环问题(python3.x)数据结构⽼师给我们留了约瑟夫环问题,结合我刚刚学完python想巧妙利⽤python中的列表切⽚来实现⼀个环形列表。
下⾯不多BB直接上代码。
1 n=int(input("输⼊n:")) #⾸先输⼊两个数m,n2 m=int(input("输⼊m:"))3 ls=[] #定义⼀个空列表4for x in range(1,n+1): #将为输⼊的 n 从1开始加到空列表中5 ls.append(x)6 length=n #先给length 赋值 n7if m!=1:8while length>m: #当满⾜while循环时9for i in range(1,length+1):10if i == m:11 a=ls[i:] #通过两次列表切⽚巧妙地将复合条件的数字剔除12 b=ls[:i-1] #注意是从 1开始的不是 0开始的所以列表索引减⼀13for j in b: #将切⽚得到的两个列表合并将靠前的切⽚贴到后⾯巧妙形成⼀个循环14 a.append(j)15 length=len(a) #重新给length赋值是新的到的列表a16 ls=a #将列表a 赋值给 ls17break18continue19if length == m: #如果最后的length = m 则删除索引为m-1的列表元素20del(ls[m-1])21 length=len(ls)22#下⾯对于m<n的情况23while (length < m):24if length != 1:25 cnt = m%length #巧妙求余运算使剩下编号形成⼀个环26if cnt>1: #对余数三种情况讨论27 a=ls[cnt:]28 b=ls[:cnt-1]29for j in b:30 a.append(j)31 length = len(a)32 ls=a33elif cnt==1:34del(ls[cnt-1])35 length=len(ls)36continue37elif cnt==0:38del(ls[length-1])39 length=len(ls)40continue41else:42break43print(ls[0])44else:45print(n)好吧后⾯注释同上。
数据结构实验报告约瑟夫环
数据结构实验报告约瑟夫环约瑟夫环是一个古老而有趣的问题,也是数据结构中一个经典的应用。
它的故事发生在公元前1世纪,当时犹太人正面临罗马的入侵。
为了避免被俘虏,一群犹太士兵决定以一种特殊的方式自杀,而不是被罗马人俘虏。
他们围成一个圈,按照某个规则进行自杀,直到只剩下一个人为止。
这就是著名的约瑟夫环问题。
在这个问题中,我们有n个人,编号从1到n,围成一个圈。
按照一定的规则,从第一个人开始报数,每次报到m的人将被淘汰。
然后,从下一个人开始重新报数,如此循环,直到只剩下一个人为止。
这个问题的解决方法有很多,其中最常见的是使用链表数据结构。
我们可以将每个人表示为一个节点,节点之间通过指针连接,形成一个环形链表。
每次淘汰一个人后,只需要将指针跳过被淘汰的节点,重新连接链表。
为了更好地理解这个问题,我们可以通过一个简单的例子来演示。
假设有10个人,编号从1到10,每次报数到3的人将被淘汰。
首先,我们将这10个人表示为一个环形链表:1->2->3->4->5->6->7->8->9->10->1。
按照规则,第一次报数到3的人是3号,所以我们将3号节点从链表中删除:1->2->4->5->6->7->8->9->10->1。
接下来,从4号节点开始重新报数。
第二次报数到3的人是6号,所以我们再次将6号节点从链表中删除:1->2->4->5->7->8->9->10->1。
以此类推,直到只剩下一个人为止。
通过这个例子,我们可以看到约瑟夫环问题的解决方法非常简单直观。
使用链表数据结构,每次淘汰一个人后,只需要将指针跳过被淘汰的节点,重新连接链表。
这种方法的时间复杂度为O(n*m),其中n为人数,m为报数的次数。
除了链表,还有其他数据结构可以用来解决约瑟夫环问题。
数据结构实验报告约瑟夫环
数据结构实验报告约瑟夫环约瑟夫环是一个经典的问题,涉及到数据结构中的循环链表。
在本次数据结构实验中,我们将学习如何使用循环链表来解决约瑟夫环问题。
约瑟夫环问题最早出现在古代,传说中的犹太历史学家约瑟夫斯·弗拉维奥(Josephus Flavius)在围攻耶路撒冷时,为了避免被罗马人俘虏,与其他39名犹太人躲进一个洞穴中。
他们决定宁愿自杀,也不愿被敌人俘虏。
于是,他们排成一个圆圈,从第一个人开始,每次数到第七个人,就将他杀死。
最后剩下的人将获得自由。
在这个问题中,我们需要实现一个循环链表,其中每个节点表示一个人。
我们可以使用一个整数来表示每个人的编号。
首先,我们需要创建一个循环链表,并将所有人的编号依次添加到链表中。
接下来,我们需要使用一个循环来模拟每次数到第七个人的过程。
我们可以使用一个指针来指向当前节点,然后将指针移动到下一个节点,直到数到第七个人为止。
一旦数到第七个人,我们就将该节点从链表中删除,并记录下该节点的编号。
然后,我们继续从下一个节点开始数数,直到只剩下一个节点为止。
在实现这个算法时,我们可以使用一个循环链表的数据结构来表示约瑟夫环。
循环链表是一种特殊的链表,其中最后一个节点的指针指向第一个节点。
这样,我们就可以实现循环遍历链表的功能。
在实验中,我们可以使用C语言来实现循环链表和约瑟夫环算法。
首先,我们需要定义一个节点结构体,其中包含一个整数字段用于存储编号,以及一个指针字段用于指向下一个节点。
然后,我们可以实现创建链表、添加节点、删除节点等基本操作。
接下来,我们可以编写一个函数来实现约瑟夫环算法。
该函数接受两个参数,分别是参与游戏的人数和每次数到第几个人。
在函数内部,我们可以创建一个循环链表,并将所有人的编号添加到链表中。
然后,我们可以使用一个循环来模拟每次数到第几个人的过程,直到只剩下一个节点为止。
在每次数到第几个人时,我们可以删除该节点,并记录下其编号。
最后,我们可以返回最后剩下的节点的编号。
顺序表实现约瑟夫环的问题,C语言
顺序表实现约瑟夫环的问题,C语言计算机科学与工程学院《算法与数据结构》试验报告[一] 专业班级 10级计算机工程02 试验地点计算机大楼计工教研室学生学号 1005080222 指导教师蔡琼学生姓名肖宇博试验时间 2012-2-29试验项目算法与数据结构试验类别基础性() 设计性() 综合性(?) 其它( )(1)掌握用VC++上机调试线性表的基本方法; 试(2)掌握顺序表的存储结构以及基本运算的实现。
验目的及要求成绩评定表类别评分标准分值得分合计积极出勤、遵守纪律上机表现 30分主动完成设计任务程序代码规范、功能正确程序与报告 70分报告详实完整、体现收获备注:评阅教师:日期: 年月日计算机科学与工程学院试验内容一、实验目的和要求1、实验目的:(1)掌握用VC++上机调试线性表的基本方法;(2)掌握顺序表的存储结构以及基本运算的实现。
2、实验内容约瑟夫环问题:设编号为1,2,3,……,n的n(n>0)个人按顺时针方向围坐一圈,m为任意一个正整数。
从第一个人开始顺时针方向自1起顺序报数,报到m时停止并且报m的人出列,再从他的下一个人开始重新从1报数,报到m时停止并且报m的人出列。
如此下去,直到所有人全部出列为止。
要求设计一个程序模拟此过程,对任意给定的m和n,求出出列编号序列。
3、实验要求:用顺序表实现。
二、设计分析根据实验要求,采用顺序表来完成本次实验。
实验中定义了两个顺序表,一个用来存储n个人的序号,另一个用来存储n个人的出队顺序及序号。
程序中充分考虑了如果出队的元素大于队列的元素个数时应该有的情况,如果出现这样的错误就提示~否则继续出队~三、源程序代码#include<stdio.h>#include<stdlib.h>#define MAXSIZE 10 // 宏替换最大值typedef struct{int data[MAXSIZE];int length;}Sqlist;void CreatList(Sqlist *&L,int a[],int n) //创建顺序表{L=(Sqlist *)malloc(sizeof(Sqlist));for(int i=0;i<n;i++){L->data[i]=a[i];}L->length=n;}void InitList(Sqlist *&L) //初始化顺序表{2 《算法与数据结构》试验报告计算机科学与工程学院L=(Sqlist *)malloc(sizeof(Sqlist));L->length=0;}void DestoryList(Sqlist *&L) //释放顺序表空间{free(L);}void josephus(Sqlist *&L) //约瑟夫环的核心代码{int t=0;int m=0;printf("请输入数到几个人出来");printf("\n");scanf("%d",&m);if(m>L->length){printf("没有这么多人呀~?(?_?)?");}else{printf("出列顺序为:");for(int q=L->length;q>=1;q--){t=(t+m-1)%q;printf("\n");printf("\t%d\t",L->data[t]);for(int j=t+1;j<=q-1;j++)L->data[j-1]=L->data[j];}printf("\n");}}void main(){Sqlist *s;InitList(s);int a[MAXSIZE];int n=0;printf("请键入要输入几个数"); printf("\n");scanf("%d",&n);for(int i=0;i<n;i++)3 《算法与数据结构》试验报告计算机科学与工程学院{a[i]=i+1;}CreatList(s,a,n);josephus(s);DestoryList(s);printf("\n");}四、测试用例(尽量覆盖所有分支) 1.当输入1,2,3,4。
约瑟夫环问题实验报告
//报数为m的人出列
while(n--)
{
for(int s=m-1; s--; r=p, p = p->link);
cout << "The output is: " << p->data << endl;
r->link = p->link;
LinkList d = new LNode;
if(!d)
二、实验问题描述
设编号为1,2,···,n的n个人围坐一圈,约定编号为k(1≤k≤n)的人从1开始报数,数到m的那个人出列,他的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
3、实验步骤
1、实验问题分析
①由于当某个人退出圆圈后,报数的工作要从下一个人开始继续,剩下的人仍要是围成一个圆圈,可以使用循环表;由于退出圆圈的工作对应着表中结点的删除操作,对于这种删除操作频繁的情况,应该选用效率较高的链表结构;为了程序指针每一次都指向一个具体的代表一个人的结点而不需要进行判断,链表不带表头结点。所以,对于所有人围成的圆圈所对对应的数据结构采用一个不带头结点的循环链表来描述。设头指针为p,并根据具体情况移动
可以采用数据类型定义: Typedef struct node {
int number;
struct node *next; }Lnode,*Linklist;
②为了记录退出的人的先后顺序,采用一个顺序表进行存储,程序结束后再输入依次退出的人的编号顺序。由于只记录各个结点的number值就可以,所以定义一个整型一维数组。如“int quite[N];”N为一个根据实际问题定义的一个足够大的整数。
约瑟夫环实验报告
约瑟夫环实验报告约瑟夫环(Josephus problem)是一个非常经典的数学问题,其得名于公元1世纪的犹太历史学家约塞夫斯(Josephus)。
约瑟夫环问题描述如下:n个人围坐成一个圆圈,从一些人开始依次报数,每报到第m个人,该人就被淘汰出圆圈,然后从下一个人重新开始报数。
直到剩下最后一个人时,即为问题的解。
例如,当n=7,m=3时,最后剩下的是4号人。
本次实验的目的是研究约瑟夫环问题的解决方法,并通过编程实现给定n和m的情况下找到最后的获胜者。
首先,我们需要分析问题的特点。
当n=1时,该问题的解即为最后剩下的人;当n>1时,最后剩下的人可以通过前一轮问题的解(剩下n-1个人的情况下)推导出来。
我们可以将解决该问题的方法分为两种:递归法和迭代法。
一、递归法递归法是通过问题的子问题来解决原问题。
对于约瑟夫环问题来说,递归法的解题思路如下:1.当n=1时,问题的解即为1;2.当n>1时,问题的解为(找到n-1个人时的解+m-1)对n取模,即((f(n-1,m)+m-1)%n)+1二、迭代法迭代法通过循环来解决问题,不断更新当前的解,直到问题得到解决。
对于约瑟夫环问题来说,迭代法的解题思路如下:1.初始化一个长度为n的数组a,a[i]=1表示第i个人还在圆圈中,a[i]=0表示第i个人已经被淘汰出圆圈;2. 从第一个人开始计数,每报数到第m个人,则将该人设为已淘汰,并计数器count加1;3. 重复步骤2,直到count=n-1;4.循环遍历数组a,找到最后剩下的人。
为了更加直观地展示实验结果,我们通过Python编写下述代码:```python#递归法解决约瑟夫环问题def josephus_recursive(n, m):if n == 1:return 1else:return (josephus_recursive(n - 1, m) + m - 1) % n + 1#迭代法解决约瑟夫环问题def josephus_iterative(n, m):a=[1]*ncount = 0i=0while count < n - 1:if a[i] == 1:j=0while j < m:if a[(i + j) % n] == 1:j+=1else:j=0i=(i+1)%na[(i-1)%n]=0count += 1for i in range(n):if a[i] == 1:return i + 1#测试递归法解决约瑟夫环问题print(josephus_recursive(7, 3)) # 输出4 #测试迭代法解决约瑟夫环问题print(josephus_iterative(7, 3)) # 输出4 ```通过以上代码,我们可以得到n=7,m=3时,最后剩下的人是4号人。
线性表实验报告
LinkList p;
p=L->next;
while(p){
printf("%5d",p->data);
p=p->next;
}
return OK;
}
void main()
{
int i,n,k,d,e;
LinkList La,Lb;
InitList_L(La);
InitList_L(Lb);
e=L.elem[i];
for(j=i;j<=L.length;j++)
L.elem[j]=L.elem[j+1];
L.length--;
return ok;
}
int output(sqlist &L){
int i;
printf("output sqlist data:\n");
for(i=0;i<L.length;i++)
PrintList(La);
printf("\nAfter delete the list is:\n");
ListDelete_L(La,e);
PrintList(La);
printf("\n");
printf("I will insert:");
scanf("%d",&k);
ListInsert_L(La,k);
int a,j,i,m;
CLinkList p,r;
printf("Input the m(m<=20):\nm=");
scanf("%d",&m);
数字结构实验约瑟夫环的实验报告
约瑟夫环一、目的(本次实验所涉及并要求掌握的知识点)熟练掌握线性表的基本操作在两种储存结构上的实现,其中以各种链表的操作和应用作为重点内容。
二、实验内容与设计思想(设计思路、主要数据结构、主要代码结构、主要代码段分析、电路图)1.问题描述:约瑟夫问题的一种描述是:编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码(正整数)。
一开始任选一个正整数作为报数上限值m,从第一个人开始顺时针方向自1开始顺序报数,报到m时停止报数。
报m的人出列,将他的密码作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下去,直至所有人全部出列为止。
试设计一个程序求出出列顺序。
2.基本要求:利用单向循环链表储存结构模拟此过程,按照出列的顺序印出各人的编号。
3.要求:程序运行后,首先要求用户指定出事报数上限值,然后读取各人的密码。
可设n ≦30。
此题所用的循环链表中不需要“头结点”,请注意空表和非空表的界限。
三、实验使用环境(本次实验所使用的平台及软件)本次实验在VC++6.0环境下调试。
四、程序源代码#include<stdio.h>#include<stdlib.h>typedef struct node{int num; //结点的编号int cipher; //密码struct node *next;}linklist;typedef linklist *head; //链表void main(){int n,m,i,j,k;linklist *head=(linklist*)malloc(sizeof(linklist));//开辟一个空间,并将它的起始地址赋给头指针head//linklist *p1,*p2;printf("请输入队列人数");scanf("%d",&n);//输入总人数//printf("请输入初始报数值:");scanf("%d",&m);//输入初始报数值//p1=head;//将头指针head所指地址赋给p1//for(i=1;i<=n;i++){printf("请输入第%d个人的密码:\n",i);scanf("%d",&j);//输入学生所带密码//p1->next=(linklist*)malloc(sizeof(linklist));//建立一个新的空间,并将它的地址赋给p1->next//p1=p1->next;p1->cipher=j;p1->num=i;//对结点的cipher和num成员赋值//p1->next=head->next;//构成单循环链表//}do{k=1;while(k!=m)//当k==m时一轮报数结束//{p1=p1->next;k++;}//报数过程中将指针p1指向下一位//p2=p1->next;p1->next=p2->next;//将报数为m的人得结点从链表中删去//printf("编号为%d的人出列,他的密码%d作为新的m值\n",p2->num,p2->cipher);//报数为m的人出列//m=p2->cipher;//将报数为m的人的密码作为新的m值//free(p2);//释放报m的人的结点//}while(p1->next!=p1);//当p1->next指向的地址是它自己的地址,所有报数结束//printf("编号为%d的人出列,至此所有人出列完毕\n",p1->num);//所有人出列//free(p1);//释放最后一个人的结点//free(head);//释放头结点//printf("程序结束\n");}五、实验结果测试数据:m的初值为20;n=7,7个人的密码依次为:3,1,7,2,4,8,4,首先m值为6(正确的出列顺序应为6,1,4,7,2,3,5。
约瑟夫环问题 实验报告完整版
{
int data;//数据域
Node *next;//next指针指向下一个结点
};
3.算法设计
问题要求建立模型,确定存储结构,之后对任意n个人,密码为m,实现约瑟夫环问题,出圈的顺序可以依次输出,也可以用一个数组存储。
设计流程图如图1.1所示。
图1.1设计流程图
(1)创建循环链表
{
p=p->next;
}
q=p->next;
p->next=q->next;
p=p->next;
printf("第%3d个出圈的人是:%3d\n",i,q->value);
free(q);
}
scanf("\n");
p->next=NULL;
}
(3)主程序执行
主程序运行,调用函数,程序接受数据后,输出出圈列数。
}
(2)约瑟夫环报数的算法在运行为循环方式,报数者除非本身已经出去,否则继续顺序报数,其报数循环的代码为
void Joseph(NODE *p,int number,int n)
{
int i,j;
NODE *q=NULL;
for(i=1; i<=number; i++)
{
for(j=1; j<n-1; j++)
由于内容的要求以及问题的方便,用循环链表作为本次实验的抽象数据类型。申请一个结点作为第一个结点,之后调用creat_list函数将后续结点一次插入链接,构造为循环链表。
NODE *link(int number)
{
NODE *head=NULL,*p=NULL,*q=NULL;
约瑟夫杯实验报告
一、实验目的1. 理解并掌握约瑟夫环问题的基本原理。
2. 通过编程实现约瑟夫环问题,加深对循环链表的理解和应用。
3. 提高数据结构与算法的设计和实现能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Java3. 开发工具:Eclipse三、实验原理约瑟夫环问题是一个著名的数学问题,其基本模型如下:n个人围成一圈,从第一个人开始报数,每数到m的人出列,然后下一个人继续从1开始报数,直到所有人都出列。
该问题可以用循环链表来解决。
循环链表是一种线性链表,其特点是最后一个节点的指针指向链表的头节点,形成一个环。
在约瑟夫环问题中,每个节点代表一个人,节点的指针指向下一个节点,形成一个圆圈。
四、实验步骤1. 创建一个循环链表,用于存储所有人。
2. 添加一个方法,用于模拟报数过程,并输出出列顺序。
3. 添加一个方法,用于输出所有人的编号。
五、实验代码```javapublic class JosephusCircle {// 循环链表节点static class Node {int number; // 人的编号Node next; // 指向下一个节点public Node(int number) {this.number = number;this.next = null;}}// 创建循环链表public static Node createCircle(int n) {Node head = new Node(1);Node current = head;for (int i = 2; i <= n; i++) {current.next = new Node(i);current = current.next;}current.next = head; // 形成循环return head;}// 模拟报数过程public static void simulate(int n, int m) {Node head = createCircle(n);Node current = head;Node pre = null;while (current.next != current) { // 仍有节点在链表中for (int i = 1; i < m; i++) { // 报数m-1次pre = current;current = current.next;}pre.next = current.next; // 移除当前节点System.out.println("出列:" + current.number);current = current.next; // 继续下一个节点}System.out.println("最后出列的人编号:" + current.number); }// 输出所有人编号public static void printNumbers(int n) {Node head = createCircle(n);Node current = head;System.out.print("所有人编号:");while (current.next != current) {System.out.print(current.number + " ");current = current.next;}System.out.println(current.number);}public static void main(String[] args) {int n = 10; // 人数int m = 3; // 报数simulate(n, m);printNumbers(n);}}```六、实验结果1. 当人数为10,报数为3时,出列顺序为:3 6 9 2 5 8 1 4 7 10。
数据结构实验报告一-约瑟夫环问题
实验1约瑟夫环问题1.需求分析(1)输入的形式和输入值的范围:每一次输入的值为两个正整数,中间用逗号隔开。
若分别设为n,m,则输入格式为:“n,m”。
不对非法输入做处理,即假设输入都是合法的。
(2)输出的形式:输出格式1:在字符界面上输出这n个数的输出序列输出格式2:将这n个数的输出序列写入到文件中(3)程序所能达到的功能:对于输入的约瑟夫环长度n和间隔m,输出约瑟夫环的出列顺序。
(4)测试数据:包括正确的输入及其输出结果和含有错误的输入及其输出结果。
正确:输入:10,3输出:3 6 9 2 7 1 8 5 10 4输入:41,3输出:3 6 9 12 15 18 21 24 27 30 33 36 39 1 5 10 14 19 23 28 32 37 41 7 13 20 2634 40 8 17 29 38 11 25 2 22 4 35 16 31错误:输入:10 3输出:6 8 7 1 3 4 2 9 5 102.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,可以用整数存储用户的输入。
并将用户输入的值存储于线性表中。
线性表ADT定义如下:ADT list数据对象:整形数据关系:线性关系,即<ai,ai+1>(0≤a<n)。
基本操作:bool remove(int &elem)//移除一个元素,被移除的元素赋给elem//如果操作成功,返回true,否则返回falsebool isEmpty()//判断数组的元素是否清空,空返回true,否则返回falsebool setPos(int place)//设置当前元素的位置,设置成功返回true,否则返回falseint getLength()//获取数组的实际长度(2)算法的基本思想:约瑟夫环问题中的数据是人所在的位置,而这种数据是存在“第一元素、最后元素”,并且存在“唯一的前驱和后继的”,符合线性表的特点。
约瑟夫环问题的两种解法(循环链表和公式法)
约瑟夫环问题的两种解法(循环链表和公式法)问题描述这⾥是数据结构课堂上的描述:N people form a circle, eliminate a person every k people, who is the final survior?Label each person with 0, 1, 2, ..., n - 1, denote(表⽰,指代) J(n, k) the labels of surviors when there are n people.(J(n, k)表⽰了当有 n 个⼈时幸存者的标号)First eliminate the person labeled k - 1, relabel the rest, starting with 0 for the one originally labeled k.0 1 2 3 ... k-2 k-1 k k+1 ... n-1... k-2 0 1 ...Dynamic programmingJ(n, k) = J(J(n - 1, k) + k) % n, if n > 1,J(1, k) = 0⽤中⽂的⽅式简单翻译⼀下就是 (吐槽:为啥课上不直接⽤中⽂呢?淦!) 有 n 个⼈围成⼀圈,从第⼀个⼈开始,从 1 开始报数,报 k 的⼈就将被杀死,然后从下⼀个⼈开始重新从 1 开始报数,往后还是报 k 的⼈被杀掉,杀到最后只剩⼀个⼈时,其⼈就为幸存者。
(上⾯的英⽂是从 0 开始的,是因为我们写程序时使⽤了数组,所以下标从 0 开始)解决⽅案循环链表⽅法算法思路很简单,我们这⾥使⽤了循环链表模拟了这个过程:节点 1 指向节点 2,节点 2 指向节点 3,...,然后节点 N 再指向节点 1,这样就形成了⼀个圆环。
如图所⽰,n 取 12,k 取 3,从 1 开始报数,然后依次删除 3, 6, 9, 12:#include<stdio.h>#include<stdlib.h>typedef struct Node // 节点存放⼀个数据和指向下⼀个节点的指针{int data;struct Node *next;} *NList; // NList为指向 Node 节点的指针// 创建⼀个节点数为 n 的循环链表NList createList(int n){// 先创建⼀个节点NList p, tmp, head;p = (NList)malloc(sizeof(struct Node));head = p; // 保存头节点p->data = 1; // 第⼀个节点for (int i = 2; i <=n ; i++){tmp = (NList)malloc(sizeof(struct Node));tmp->data = i;p->next = tmp;p = tmp;}p->next = head; // 最后⼀个节点指回开头return head;}// 从编号为 1 的⼈开始报数,报到 k 的⼈出列,被杀掉void processList(NList head, int k){if (!head) return;NList p = head;NList tmp;while (p->next != p){for (int i = 0; i < k - 1; i++){tmp = p;p = p->next;}printf("%d 号被杀死\n", p->data);tmp->next = p->next;free(p);p = NULL; // 防⽌产⽣野指针,下同p = tmp->next;}printf("幸存者为 %d 号", p->data);free(p);p = NULL;}int main(){NList head = createList(11);processList(head, 3);return 0;}测试结果:易知,这个算法的时间复杂度为O(nk),显然,这不是⼀个好的算法。
约瑟夫环设计实验报告
一、实验目的1. 理解并掌握约瑟夫环问题的基本原理和解决方法。
2. 熟悉循环链表在数据结构中的应用,并能够运用其解决实际问题。
3. 提高编程能力和算法设计能力,培养逻辑思维和问题解决能力。
二、实验内容1. 实验背景约瑟夫环问题是一个经典的数学问题,描述了N个人围成一圈,按照一定的规则进行报数,最终确定出列顺序的过程。
该问题在计算机科学、通信等领域有广泛的应用。
2. 实验原理本实验采用循环链表作为数据结构来模拟约瑟夫环问题。
循环链表是一种线性表,其特点是最后一个节点的指针指向第一个节点,形成一个环。
在本实验中,我们将每个节点表示为一个人,节点的数据域存储该人的编号。
3. 实验步骤1. 初始化循环链表:首先创建一个循环链表,包含N个节点,节点编号依次为1, 2, ..., N。
2. 设置报数上限:从键盘输入一个正整数M,作为报数上限。
3. 模拟报数过程:a. 从链表头节点开始,按照顺时针方向进行报数。
b. 当报数达到M时,将当前节点出列,并将M的值设置为该节点的数据域。
c. 将指针指向下一个节点,继续进行报数。
d. 重复步骤b和c,直到链表中只剩下一个节点。
4. 输出出列顺序:按照出列的顺序,将每个节点的编号打印出来。
4. 实验代码```c#include <stdio.h>#include <stdlib.h>typedef struct Node {int number;struct Node next;} Node;// 创建循环链表Node createList(int n) {Node head = NULL, tail = NULL, temp = NULL; for (int i = 1; i <= n; i++) {temp = (Node)malloc(sizeof(Node));temp->number = i;temp->next = NULL;if (head == NULL) {head = temp;tail = temp;} else {tail->next = temp;tail = temp;}}tail->next = head; // 形成循环链表return head;}// 打印出列顺序void printOrder(Node head) {Node temp = head;while (temp->next != temp) {printf("%d ", temp->number); temp = temp->next;}printf("%d\n", temp->number);}int main() {int n, m;printf("请输入人数: ");scanf("%d", &n);printf("请输入报数上限: ");scanf("%d", &m);Node head = createList(n);printOrder(head);// 释放内存Node temp;while (head->next != head) {temp = head;head = head->next;free(temp);}free(head);return 0;}```5. 实验结果与分析通过运行实验代码,可以得到约瑟夫环问题的出列顺序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构课程设计题目1.目的数据结构是研究数据元素之间的逻辑关系的一门课程,以及数据元素及其关系在计算机中的存储表示和对这些数据所施加的运算。
该课程设计的目的是通过课程设计的综合训练,培养分析和编程等实际动手能力,系统掌握数据结构这门课程的主要内容。
2.内容本次课程设计的内容是用单循环链表模拟约瑟夫环问题,循环链表是一种首尾相接链表,其特点是无须增加存储容量,仅对表的链接方式稍作改变,使表处理更加灵活,约瑟夫环问题就是用单循环链表处理的一个实际应用。
通过这个设计实例,了解单链表和单循环链表的相同与不同之处,进一步加深对链表结构类型及链表操作的理解。
约瑟夫环问题的描述是:设编号为1,2,…,n的n个人按顺时针方向围坐一圈,每个人持有一正整数密码。
开始时选择一个正整数作为报数上限m,从第一个人开始顺时针方向自1起顺序报数,报到m时停止报数,报m的人出圈,将他的密码作为新的m值,从他在顺时针方向上的下一个人起重新从1报数。
如此下去,直到所有人都出圈为止。
令n最大值为100。
要求设计一个程序模拟此过程,求出出圈的编号序列。
3.设计:1)对设计内容进行分析2)逻辑设计1、循环链表抽象数据类型定义typedef struct LNode//定义单循环链表中节点的结构 { int num;//编号 int pwd;//passwordstruct LNode *next;//指向下一结点的指针}LNode;2、本程序包含一下几个模块 (1)构造结点模块LNode *createNode(int m_num,int m_pwd) {图2 约瑟夫环原理演示图LNode *p;p=(LNode *)malloc(sizeof(LNode));//生成一个结点p->num=m_num;//把实参赋给相应的数据域p->pwd=m_pwd;p->next=NULL;//指针域为空return p;}(2)创建链表模块void createList(LNode *ppHead,int n)(3)出队处理模块void jose(LNode *ppHead,int m_pwd)(4)约瑟夫环说明输出模块void instruction()(5)菜单模块void menu()(6)主函数模块int main()函数的调用关系图如下:3)具体设计流程:1.主函数图4 主函数数据流程图根据流程图,主函数程序如下:int main(){int n,m,x;LNode *ppHead=NULL;menu();for(;;){printf("\n请选择要执行的操作:");scanf("%d",&x);system("cls");switch(x){case 1:printf("************************************************************* ***\n");printf("约瑟夫环:\n");printf(" 编号为1,2,3,4…,n的n个人按顺时针方向围坐一圈,每人持有一个密\n");printf("码(正整数).一开始任选一个正整数作为报数的上限值m,从第一个人开始\n");printf("按顺时针方向自1开始顺序报数,报到m时停止.报m的人出列,将他的密码\n");printf("m作为新的m值,从他在顺时针方向上的下一人开始重新从1报数,如此下去,\n");printf("直到所有人全部出列为止.编程打印出列顺序.\n");printf("************************************************************* ***\n");main();break;case 2:printf("\n请输入总人数n:");scanf("%d",&n);printf("请输入开始上限数m:");scanf("%d",&m);createList(&ppHead,n);printf("\n");printf("出队顺序:\n");jose(ppHead,m);printf("\n约瑟夫环游戏结束!\n");main();break;case 0:exit(0);default:system("cls");printf("\n您选择的操作有误,请重新选择...\n\n\n");main();}}return 0;}2.链表的创建图5 创建链表函数的数据流程图/*创建单向循环链表ppHead,人数个数为n,并输入每个人的密码值,若建立失败则生成头结点,让cur指向他,若建立成功则插入结点P,cur指向的数据元素为p,后续为"空"的节点,再把P插入循环链表ppHead中*/根据流程图,创建链表函数程序如下:void createList(LNode **ppHead,int n){int i,m_pwd;LNode *p,*cur;//cur:浮标指针for(i=1;i<=n;i++){printf("输入第%d个人的密码:",i);scanf("%d",&m_pwd);//输入持有密码p=createNode(i,m_pwd);//调用构造结点函数if(*ppHead==NULL)//如果头结点为空{*ppHead=cur=p;//生成头结点,让cur指向他cur->next=*ppHead;//cur的指针域指向自身}else//如果不为空,则插入结点{p->next = cur->next;cur->next = p;cur= p;//cur指向新插入结点}}printf("完成创建!\n"); //提示链表创建完成}3.出队处理图6 出队函数的数据流程图/*p指向要删除节点的前一个节点,ppHead指向要删除的节点,使p=ppHead,ppHead再指向要删除节点的下一个节点,使p和ppHead链接,输出p指向节点的编号和密码值,释放ppHead,如此循环,直至把所有节点都打印和删除为止!*/根据流程图,出队函数程序如下:void jose(LNode *ppHead,int m_pwd){int i,j;LNode *p,*p_del;//定义指针变量for(i=1;p!=ppHead;i++){for(j=1;j<m_pwd;++j){p=ppHead;//p赋值为ppHead,p指向要删除结点的前一个结点ppHead=ppHead->next;//ppHead指向下一个元素}p->next = ppHead->next;//p结点与头结点链接i=ppHead->pwd;//i赋值为ppHead->pwdj=ppHead->num;//j赋值为ppHead->num,j为要删除的密码值printf("第%d个人出列,密码:%d\n",j,i);m_pwd=ppHead->pwd;//m_pwd赋值为ppHead->pwdfree(ppHead);//释放头结点ppHead=p->next;//ppHead重新赋值给p->next,即释放前的ppHead->pwd指针//删除报数结点}i=ppHead->pwd;//i赋值为ppHead->pwdj=ppHead->num;//j赋值为ppHead->numprintf("最后一个出列是%d号,密码是:%d\n",j,i);free(ppHead);//释放头结点}4. 约瑟夫环说明模块void instruction(){printf("***********************************************************************\n");printf("** 约瑟夫(Joseph)环: **\n");printf("** 编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码 **\n");printf("** (正整数)。
一开始任选一个正整数作为报数上限值m,从第一个人开始按顺 **\n");printf("** 时针方向自1开始顺序报数,报到m时停止报数。
报m的人出列,将他的密码 **\n");printf("** m作为新的m值,从他在顺时针方向上的下一个人开始重新从1报数,如此下 **\n");printf("** 去,直至所有人全部出列为止。
试设计一个程序求出出列顺序。
**\n");printf("***********************************************************************\n");}5. 菜单模块void menu(){printf("**************************约瑟夫环*****************************\n");printf(" \n");printf(" [1]约瑟夫环问题的阐述\n");printf(" [2]按要求求解约瑟夫环\n");printf(" [0]退出\n");printf("************************** 欢迎使用!****************************\n");}4.实现:程序语言:#include <stdio.h>//输入输出函数头文件#include <stdlib.h>//字符串转短整形函数的头文件//typedef struct LNode//定义单循环链表中节点的结构{int num;//编号int pwd;//密码struct LNode *next;//指向下一结点的指针}LNode;/*构造结点*/LNode *createNode(int m_num,int m_pwd){LNode *p;p=(LNode *)malloc(sizeof(LNode));//生成一个结点p->num=m_num;//把实参赋给相应的数据域p->pwd=m_pwd;p->next=NULL;//指针域为空return p;}/**创建循环链表**/void createList(LNode **ppHead,int n){int i,m_pwd;LNode *p,*cur;//cur:浮标指针for(i=1;i<=n;i++){printf("输入第%d个人的密码:",i);scanf("%d",&m_pwd);//输入持有密码p=createNode(i,m_pwd);//调用构造结点函数if(*ppHead==NULL)//如果头结点为空{*ppHead=cur=p;//生成头结点,让cur指向他cur->next=*ppHead;//cur的指针域指向自身}else//如果不为空,则插入结点{p->next = cur->next;cur->next = p;cur = p;//cur指向新插入结点}}printf("完成创建!\n"); //提示链表创建完成}/*出队处理*/void jose(LNode *ppHead,int m_pwd){/*p指向要删除节点的前一个节点,ppHead指向要删除的节点,使p=ppHead, ppHead再指向要删除节点的下一个节点,使p和ppHead链接,输出p指向节点的编号和密码值,释放ppHead,如此循环,直至把所有节点都打印和删除为止!*/int i,j;LNode *p,*p_del;//定义指针变量for(i=1;p!=ppHead;i++){for(j=1;j<m_pwd;++j){p=ppHead;//p赋值为ppHead,p指向要删除结点的前一个结点ppHead=ppHead->next;//ppHead指向下一个元素}p->next = ppHead->next;//p结点与头结点链接i=ppHead->pwd;//i赋值为ppHead->pwdj=ppHead->num;//j赋值为ppHead->num,j为要删除的密码值printf("第%d个人出列,密码:%d\n",j,i);m_pwd=ppHead->pwd;//m_pwd赋值为ppHead->pwdfree(ppHead);//释放头结点ppHead=p->next;//ppHead重新赋值给p->next,即释放前的ppHead->pwd指针//删除报数结点}i=ppHead->pwd;//i赋值为ppHead->pwdj=ppHead->num;//j赋值为ppHead->numprintf("最后一个出列是%d号,密码是:%d\n",j,i);free(ppHead);//释放头结点}void instruction(){printf("***********************************************************************\n");printf("** 约瑟夫(Joseph)环: **\n");printf("** 编号为1,2,…,n的n个人按顺时针方向围坐一圈,每人持有一个密码 **\n");printf("** (正整数)。